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Ûber die Enden diskreter Râume und Gruppen

Von Hans Fbeudenthal, Amsterdam

In meiner Dissertation1) habe ich offene Ràume durch ,,Endpunkte"
kompaktifiziert; neuerdings habe ich2) die Théorie der Enden bis an die
Grenzen — wie ich meinte — ihrer Gultigkeit ausgedehnt. Der Sinn der
Unternehmungen war es, unter den Kompaktifizierungen eines nicht kom-
pakten Raumes eine zu bevorzugen ; die Forderungen, die ich stellte, lau-
teten :

Das ,,Unendliehferne" (die zum Raume hinzugefugte Menge)
soll môglichst dûnn (nulldimensional) sein.

Das Unendlichferne soll môglichst weitgehend aufgespalten sein.

Ich habe dies Kompaktifizierungsproblem in meiner zweiten zitierten
Arbeit durch die Méthode der Endpunkte gelôst fur aile

semikompakten3) (a)
separablen Râume (b)
mit kompaktem Quasikomponentenraum4), (c)

und ich habe dort auch gezeigt, daB man keine dieser Bedingungen ab-
schwâchen kann. Dièse Tatsache hat ihre endgûltige Formulierung durch
J. de Groot erfahren, der in seiner Dissertation5) definierte und bewies :

R* heiBt idéale Kompaktifikation des separablen U, wenn die
Menge R*\R der ,,neuen" Punkte nulldimensional und jede
andere Kompaktifikation Rr stetiges Bild der Kompaktifikation
R* ist (d. h. jede topologische Abbildung von R auf sich selbst

zu einer stetigen Abbildung von jfi* auf RT erweitert werden

kann).

1) Ûber die Enden topologischer Ràume und Gruppen. Math. Zeitschr. 33

(1931), 692—713.
a) Neuaufbau der Endentheorie. 1941. Vermutlich in den Annals of Mathematics

erschienen,
8) d. h. jeder Punkt besitzt eine Umgebung mit kompakter Berandung. — Dieser

Begriff in der Endentheorie rûhrt von L. Zippin her: On semicompact spaces. Amer.
J. of Math. 57 (1935), 327—341.

*) d. h. jede abnehmende Folge nichtleerer offener abgeschlossener Teilmengen von
B soll einen nichtleeren Durchschnitt besitzen.

*) Topologische Studiën. Compactificatie, voortzetting van afbeeldingen en samen-
hang. 1942.
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B ist dann und nur dann idéal kompaktifizierbar, wenn es obige
drei Eigensohaften (a), (b), (c) besitzt.

Es war jedenfalls ûber jedem Zweifel erhaben, daB etwa der Raum,
der aus abzâhlbar viel isolierten Punkten besteht, keine ausgezeichnete
und gleichzeitig ,,anstândige" Kompaktifizierung besitzt, die MaximaU-
tatsforderungen, wie wir sie gestellt haben, erfûllt.

Hier hat nun eine Arbeit von H. Hopf6) ganz neue Gesiehtspunkte
aufgezeigt und mich zu einer Endentheorie abzâhlbarer, diskreter Râume
veranlaBt. AUerdings muB man das Wort ,,diskret" nicht zu wôrtlich
auffassen. Es handelt sich immerhin um Ràume mit einer nichttrivialen
Topologie. Wir fordern, daB in R ein nichttrivialer, reflexiver Begriff der

Nachbarschaft zweier Punkte7)

definiert ist (d. h. je zwei Punkte sind Nachbarn oder sind es nicht),
wobei jeder Punkt

endlich viel Nachbarn

besitzt. Unter der Huile eines Punktes in einem solchen Raum verstehen
wir die Menge seiner Nachbarn und unter der (k + l)-ten Huile die Huile
seiner A-ten Huile. Zwei solche Topologien heiBen àquivalent, wenn ein k
existiert, so daB

§iWc§[W und $i{a)

mit §n(a) als n-te Huile von a in der einen und
&n(a) „ „ „ „ a „ „ anderen Topologie.

In diskreten Râumen mit Nachbarschaftsbegriff kann man nun in der
Tat eine Endentheorie — ganz analog wie friiher — entwickeln; àqui-
valente Râume liefern dabei denselben Endenraum.

Ein anschauliches Modell eines diskreten Raumes R mit
Nachbarschaftsbegriff ist ein

Polygon.

6) Enden offener Râume und unendliche diskontinuierliche Gruppen.
Comment. Math. Helvet. 16 (1943), 81—100.

7) Ein derartiger topologischer Grundbegrifï steht wohl in der Literatur zuerst bei
B. Linfidd, Espaces discrets paramétriques et non-paramétriques. Thèse
Strasbourg 1925. Siehe aueh: H. Fréchet, Fund. Math. 8 (1926), 151—159, wo die Begriffe
Linfields auf altère topologische Begriffe zurûckgefûhrt werden. — Von den tiefergehenden
Untersuchungen Alexandrofïs u. a. ûber diskrete Râume werden wir hier nichts
brauchen.



Man identifiziere namlich die Punkte von R mit den Ecken des Poly-
gons P und denke sich je zwei benachbarte Punkte durch eine Kante
verbunden. Allerdings gehort dabei zu aquivalenten R nicht notwendig
dasselbe Polygon Aber die Endentheone von R fallt mit der von P (im
alten Sinne) zusammen

Mein Ausgangspunkt waren ursprunglich die Enden der topologischen
Gruppen Das verscharfte Résultat meiner zweiten zitierten Arbeit lautet.

Jede separable, semikompakte, zusammenhangende Grappe
besitzt hochstens zwei Endpunkte (ist also im kleinen kompakt).

Auch uber die Enden der Wirkungsraume transitiver topologischer
Gruppen habe ich in meiner Dissertation etwas ausgesagt, aber H. Hopf
hat (1. c fur ganz andersartige Raume scharfe Aussagen uber die Anzahl
der Endpunkte machen konnen, namlich fur offene Raume, in denen eine
diskontinuierliche Menge topologischer Selbstabbildungenmitkompaktem
Fundamentalbereich agiert. Er bewies, daB solch ein Raum

einen,
zwei oder
eine perfekte Menge von Endpunkten

besitzt8).
Es zeigte sich bei Hopf, da8 fur den Fall einer Qruppe G topologischer

Selbstabbildungen die Endenzahl nicht von der speziellen Darstellung

8) Emen Endpunkt hat die Ebene (mit der Decktransformationsgruppe des Torus),
zwei Endpunkte hat die Gerade (mit der Decktransformationsgruppe des Kreises) Fur
den Fall unendhch vieler Endpunkte geben wir an Stelle des Hopfschen Beispiels eins
aus der Théorie der automorphen Funktionen ohne Grenzkreis In der funktionen-
theoretischen Ebene seien drei Kreise Kx, K2, Kz gegeben, von denen je zwei m demselben
von den zwei Gebieten hegen, die der dritte bestimmt Die drei Kreise beranden zusammen
ein dreifach zusammenhangendes Gebiet Ax Man spiegele Ax an semen drei Ràndern
und veremige die drei Spiegelbilder — so entsteht A2 Die Veremigung Ax ^ A2 spiegele
man an îhren sechs Randkreisen, veremige die Spiegelbilder und nenne das Résultat A9.
So fahre man fort Die Vereimgung A aller An erfullt die ganze Ebene bis auf eine null-
dimensionale perfekte Menge (die Menge der Enapunkte von A) In A herrscht die Grappe
gebrochen lmearer Abbildungen, die von den Spiegelungen an K19 K2, K9 erzeugt wird,
Ax ist emer îhrer Fundamentalbereiche Zu der Gruppe gehoren automorphe Funktionen,
deren Singularitatenmenge mit der Endpunktmenge von A zusammenfâllt — Man kann
dièses Sehottkysehe Beispiel auch durch emen regularen Baum vom Grade 3 ersetzen
(bei Hopf ist das emfachste Beispiel em regulàrer Baum vom Grade 4), d h durch ein
Polygon ohne geschlossenes Teilpolygon und mit drei Strecken bei jeder Ecke HeiÛt eine
Ecke 0 und sind die benachbarten Ecken 1, 2, 3, so nenne man Slt S2, S3 gewisse Spiege
lungen (Automorphismen des Baumes von der Période 2) die bzw 0 mit 1, 2, 3 vertau
schen Die St erzeugen die gewunschte Gruppe



der Gruppe abhangt, sondern eine Invariante der abstrakten Gruppe
ist, und daB man allgemein von den Enden einer abstrakten Gruppe
mit endlich vielen Erzeugenden sprechen kann. Auf Grund dieser

Ergebnisse formulierte Hopf folgende Problème:

1. eine direkte Endentheorie der abstrakten Gruppen mit endlich

viel Erzeugenden zu entwickeln,
2. algebraisehe Kriterien dafur anzugeben, daB eine Gruppe

1, 2 oder unendlich viel Endpunkte hat.

Das erste Problem (das bei Hopf nicht in AngrifiE genommen wird)
werden wir vollstàndig lôsen. Das zweite, das fur den Fall zweier
Endpunkte bei Hopf vollstàndig und befriedigend béantwortet wird, werden
wir zwar nicht lôsen, aber doch einigermaBen fordern ; gleichzeitig werden
wir einige feinere Aussagen ûber die Struktur der Endenmenge diskreter
Gruppen machen kônnen.

Der Zusammenhang zwischen diskreten Râumen und diskreten Gruppen

wird nahegelegt durch die Dehnschen Gruppenbilder. Sei

U {ul9...,u9)

eine Teilmenge der Gruppe G, derart daB

1. U die Gruppe G erzeugt,
2. die Identitàt zu U gehôrt,
3. mit irgendeinem Elément auch das Inverse zu U gehôrt.

Wir machen G zu einem diskreten Raum durch die Festsetzung :

a und 6 sind benachbart, wenn 6 au fur ein geeignetes u
aus U.

Nun kann man auf die Gruppe unsere Endentheorie fur diskrete Râume
anwenden. Der Nachbarschaftsbegriff hàngt zwar von der — willkiir-
lichen — Wahl des erzeugenden Systems U ab; man sieht aber ohne

weiteres, daB man mit einem andern erzeugenden System einfach zu
einem aquivalenten Raum kommt, also auch zu einer âquivalenten
Endentheorie. Die Abhângigkeit vom erzeugenden System ist also nur
scheinbar.

In dieser Topologie ist die Gruppe G von selber zusammenhângend,
und man kann nun ungefâhr genau so, wie Hopf es tut (oder wie es bei
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dem entsprechenden Satz in meiner Dissertation geschehen ist), beweisen,
daB G endlich ist oder 1,2 oder unendlich viel Endpunkte besitzt. DaB es

nicht — wie in meiner Dissertation bei 1 oder 2 Endpunkten bleibt, hat
seinen tieferen Grand darin, daB im diskreten Fall die Linksmultiplika-
tionen

die Endenmenge nicht mehr punktweise festhalten. Der ,,Abstand"
zwischen x und ax braucht nàmlich (bei festem a und variablem x) nicht
mehr beschrânkt zu bleiben, und je ,,freier und nichtkommutativer" die
Gruppe ist, desto wahrscheinlicher ist es, daB die Endpunkte in der Tat
nicht festbleiben und die Endenmenge unendlich wird.

Wie man das rechte MaB fur die Nichtkommutativitât genauer formu-
lieren muB — dièse Frage kônnen wir, wie gesagt, nur annàhernd béant-
worten; wir verweisen dafûr auf die Arbeit selbst.

Bezeichnungen :

^,11 Vereinigung,

^, n Durchschnitt,
a e M\N bedeutet : a e M, aê N,

O ist die leere Menge.

1. Diskrete Baume.

1.1. R heiBt ein Nachbarschaftsraum, wenn fur je zwei Punkte von
R definiert ist, ob sie benachbart sind oder nicht, und zwar auf reflexive
und symmetrische Weise: a ist Nachbar von a; ist a Nachbar von 6,
so ist b Nachbar von a.

1.2. Die Menge der Nachbarn von a heiBt seine Hûlle § (a). Unter
der Hûlle einer Menge verstehen wir die Vereinigung der Hullen ihrer
Elemente.

1.3. Franse einer Menge M heiBt die Menge

der Elemente der Huile von M, die nicht zu M gehôren.

Wir definieren
M,



§k(M) heiBt die k-te Huile von M.

heiBt die k-te Franse von M.

1.4. Man hat
S(UJf.) U$(JfJ 1.4.1

und
U§*(a), 1.4.2

1.5. Wir ordnen dem Raum R ein Polygon R zu: jedem Elément

von JB entspricht eine Ecke von R ; benachbarten Elementen entsprechen

Ecken, die durch eine Kante verbunden sind.

1.6. R besitze von nun an die Eigensehaft

(K) §(^) îst fur jedes a endlich,

und die Eigensehaft

(S) R ist abzâhlbar.

Man sieht ohne weiteres, daB dièse Eigenschaften bei R die

Kompaktheit im Kleinen
und

Separabilitât
nach sich ziehen.

1.7. Die Gesamtheit aller Mengen M mit

%(M) endlich

heiBe Q. Wegen (K) ist jedes endliehe M in £i.

1.8. Mit M ist aueh £)(Jf) €&, denn nach 1.4.1 ist

und hier ist der erste Summand nach Voraussetzung und der zweite
nach 1.7 endlich.
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1.9. Ist M e &, so ist auch ^(M) endlich. Denn

$>k(M)\M U (S&'-^M)\§>K-1(M)) U

und hier ist nach 1.8 jeder Summand endlich.

1.10. Wir nennen zwei Nachbarschaftsbegriffe (in derselben Menge)
àquivalent9), wenn fur die zugehôrigen Hiillenbegriffe § und <?)' gilt:

Es gibt ein k, so daB fur aile a

S'(a), c £fc(a) und £ (a) c £'*(a)
erfullt ist.

1.11. Fur àquivalente Nachbarschaftsbegriffe sind 3f(Jf) und ^r(M)
nur gleichzeitig endlich oder unendlich; die Gesamtheit Q ist fur
àquivalente Nachbarschaftsbegriffe also dieselbe.

Dièse Behauptung folgt unmittelbar aus 1.9.

2. Die Endpimkte.

2.1. Eine Teilmenge e von JQ heiBt

Endpunkt von R,
wenn

1. Q ^O fur aile Q € t,
2. mit Qx, Q2 € e auch Q1^Q2et (also ^ o)
3. E\M € e fur jedes endliche M,
4. e maximal ist.

Die Menge aller Endpunkte von R heiBt (£.

2.2. Statt Q e e sagen wir auch e -< Q. Wir definieren:

{Q} ist die Vereinigung aller a cQ und aller e -{ Q

Wir nennen {Q} auch Umgebung jedes in ihm enthaltenen Endpunktes.
Umgebung eines a c R heiBt die einpunktige Menge a selbst.

Durch dièse Festsetzungen wird -K ^ (£ i2* zu einem Umgebungs-
raum.

•) Man nennt das vielleicht besser: gleichmâfiig aquivalent.



2.3. In R* gilt das Trenimngsaxiom : zwei Punkte lassen sich durch
Umgebungen voneinander trennen. Und zwar ist es trivial fur zwei
Punkte aus R, und es folgt aus 2.1.3 fur einen Punkt aus R und den
anderen aus (£. Fur zwei Endpunkte e ^ t! beweist man es so: Aus
e ^ e7 folgt die Existenz eines Q et, ë e7. Also mu6 ein Qr e e7 mit
Q rsQf o existieren, da man Q sonst noch zu e7 hinzufugen kônnte
(im Widerspruch zu2.1.4). Aus Qr,Qf o folgt {Q}~{Q'} O, und
zwar ist das trivial hinsichtlich der Punkte von R und folgt fur Endpunkte
daraus, daB t" e{Q}<^{Qr} Qi l" und Qf i e/; nach sich zôge, was
nach 2.1.2 unmôglich ist. {Q} und {Qf} sind also die gewûnschten zu-
einander fremden Umgebungen von e und e7.

2.4. Wir notieren noch die soeben bewiesene Tatsache:

Mit Qx r> Q2 ist auch {Qx} ^ {Q2} nicht leer.

2.5. Die Berandung jedes {Q} ist leer. Denn wâre e Randpunkt von
Q,so wâre{Q} ^{Q1} ^ O fur jedeUmgebung{Q7} von e,alsoQ^Q; ^o
im Widerspruch zu 2.1.4.

2.6. jR* ist regulâr und separabel. Denn aus 2.5 folgt das Trennungs-
axiom in seiner schârfsten Form.

3. Zusammenhang.

3.1. Ist %{M)rsN ^o, so ist auch ${N) * M ^ O. (Klar.) Spe-
ziell:

Ist $(N) N, so ist ${R\N) BSN

3.2. N abgeschlossen — bedeutet: $(N) o

Aus 3.1 folgt:

Mit N ist auch JB\^ abgeschlossen. 3.2.1.

Aus 1.4.3 folgt:

Die Vereinigung abgeschlossener Mengen ist abgeschlossen.
3.2.2.

Und hieraus durch Ûbergang zum Komplement :

Der Durchschnitt abgeschlossener Mengen ist abgeschlossen.
3.2.3.



3.3. Durch Relativierung entsteht die Définition:

N c M abgeschlossen rel M — bedeute :

F(N) œF(M) 3.3.1.

Oder F(N) ~ M o 3.3.2.

Die Sâtze aus 3.1—2 gelten auch fur die relative Àbgeschlossenheit.

3.4. Minimale rel M abgeschlossene Teilmengen von M heiBen Kom-
ponenten. Mengen mit nur einer Komponente heiBen zusammenhàngend.

3.5. Jede rellf abgeschlossene Menge zerfâllt in disjunkte Kompo-
nenten von M. Denn nach 3.2.3 ist der Durchschnitt aller das Elément a
enthaltenden (rel M) abgeschlossenen Mengen abgeschlossen (rel If), also
minimal abgeschlossen, also eine Komponente. Ebenfalls nach 3.2.3
kônnen zwei Komponenten nur einen leeren Durchschnitt besitzen.

3.6. Ist P c N c M und P abgeschlossen rel N, N abgeschlossen
rel if, so ist P abgeschlossen relilf. Denn F(P) czF(N) czF(M).

3.7. Ist N abgeschlossen rel M und N c Mo c M, so ist N
abgeschlossen rel M. Denn F (N) ^ M o, also (FN) ^ M0 o

3.8. Die Komponenten von M sind zusammenhangend. Denn nach
3.6 wâre eine rel M abgeschlossene Teilmenge einer Komponente von
M auch in M abgeschlossen, im Widerspruch zur Minimalitât der
Komponenten.

3.9. Die Komponenten von M sind maximale zusammenhângende
Teilmengen von M. Denn nach 3.7 ist jede Komponente N von M auch
Komponente jedes Mo mit N c Mo c M, so daB keine Menge, die N
echt enthâlt, noch zusammenhangend sein kann.

3.10. Kette heiBt eine endliche Elementfolge, wenn jedes ihrer Ele-
mente dem folgenden benachbart ist.

Je zwei benachbarte Elemente von M gehôren zur selben Komponente
von M. Also auch je zwei Elemente von M, die sich in M durch eine
Kette verbinden lassen. Andererseits ist die Menge der Elemente, die
sich in M mit einem Elément durch eine Kette verbinden lassen,
abgeschlossen, also nach 3.5 aus Komponenten von M zusammengesetzt.
Hieraus folgt :

Komponenten von M sind die Teilmengen der Elemente, die sich mit
einem festen Elément durch eine Kette verbinden lassen.

9



3.11. Von nun an besitze R immer die Eigenschaft:

(Z) R ist zusammenhàngend.

3.12. Jede Komponente von M besitzt Punkte in 5 (M). Sonst hâtte
sie nâmlich wegen 3.3.1 eine leere Franse, wàre also eine Komponente
von R, das doch zusammenhàngend sein soll.

3.13. Jedes Q e Q besitzt nur endlich viel Komponenten. Denn nach
3.12 gibt es in der Franse 3f {%) jeder Komponente K von Q einen Punkt
von 3f(Q). Also gibt es in jeder Komponente K von Q ein Elément von
S(3K$))- Q besitzt also hôchstens soviel Komponenten wie 2f(5(Q))
Elemente. Nach 1.9 sind das endlich viele.

3.14. Fur jedes a ist U §n(a) R. (Folgt aus 3.10—11.)
n

3.15. (Z) bleibt gultig beim Ûbergang zu einem âquivalenten Nach-
barschaftsbegrifï. (Folgt aus 3.14.)

4. Die Kompaktheit von II*.

4.1. a sei fest gewàhlt. Die unendlichen Komponenten von R\$k(a)
nennen wir

Da ihre Fransen in §fc(a) liegen, gehôren sie zu Q.

4.2. Sei e ein Endpunkt. Zu jedem k gibt es ein P*** € e, und dièse

bilden eine absteigende Folge.
Denn wegen 2.1.3 ist R\Hk(a) c e. Wâre fur ein gewisses k kein

-Pc* € e, so gâbe es (fur dièses feste k) zu jedem a 1,..., sk ein Qa e e

mit
Pik) - Qa O

Wir setzen

und haben aa=1

nk) - q o,
ako

Q hâtte also mit R\$)k(a) einen endlichen, mit einem geeigneten R\$l(a)
nach 3.14 sogar einen leeren Durchschnitt, im Widerspruch zu 2.1.3.
Daher muB es zu jedem k das gewunschte P^ € e geben. DaB dièse bei
wachsendem k abnehmen, ist klar.

10



4.3. Zu jeder absteigenden Folge P™ gibt es genau ein e, das sie

enthâlt.
DaB es solch ein e gibt, ist klar: man braucht die Folge der P™ nur

zu einer maximalen Menge mit den Eigenschaften 2.1.1 —3 zu ergànzen.
Gàbe es zwei solche Endpunkte, e und e7, so gàbe es nach 2.3 Q e e,
Q'et', Q^Q' o. Man wàhle dann k so groB, daB g(Q) w %(Q') c §*(a)
liegt. Die Mengen

gehôren nach 2.1.2—3 immer noch zu e resp. e/', und man hat

Nach 3.5 setzen sich die in R\$)k(a) abgeschlossenen Mengen Qo und
Qfo aus Komponenten von R\$k(a) zusammen, also aus Mengen
Wegen 2.1.2 hat man

Pîk"Qo¥>09 also P*k c Qo

im Widerspruch zum Vorigen. — Es kann also nur einen Endpunkt zu
der Folge P^ geben, und damit ist die Behauptung bewiesen.

4.4. Nach 4.2 und 4.3 kann man die Endpunkte einfach mit Hilfe
der absteigenden Folgen der Mengen P erzeugen. Hieraus folgt, daB R*
ein Kompaktum ist. 2.5 lehrt weiter, daB -R* nulldimensional ist. Wir
fassen das Ergebnis folgendermaBen zusammen:

Satz 1: Jeder Nachbarschaftsraum Rf der (K), (S) und (Z)
genûgt, laBt sich durch seine Endpunkte zu einem null-
dimensionalen Kompaktum JK* abschlieBen, dessen einzige Hâu-
fungspunkte die Endpunkte sind. Jeder Endpunkt besitzt
beliebig kleine Umgebungen, die im Sinne des Nachbarschafts-
begriffes zusammenhàngend sind und eine endliche Franse haben.
Âquivalente R liefern dasselbe JB*.

(Die letzte Bemerkung folgt aus 1.11.)

4.5. Die in 1.5 definierte Zuordnung eines Polygons zu einem
Nachbarschaftsraum R verallgemeinern wir folgendermaBen :

11



B sei ein im kleinen kompakter, im kleinen zusammenhângender,
zusammenhângender Raum mit 2. Abzâhlbarkeitsaxiom. 93 sei ein System
von

kompakten Gebieten F aus B
mit den Eigenschaften

(K7) Jedes F mit F aus 35 hat mit fast allen Gebieten aus SB

einen leeren Durchschnitt.
(S7) 93 ist abzâhlbar.

(Z7) Zu je zwei F € 93 gibt es eine Kette von F € 93, in der
jedes F mit dem folgenden einen nichtleeren Durchschnitt
hat.

Wegen der Existenz eines Systems 93 unter unsern Voraussetzungen
siehe1), Hilfssatz 2, wo (K7) und (S7) gezeigt werden. (Z7) ergibt sich aus
dem Zusammenhang von B : Die Vereinigung der F, die sich mit einem
festen F durch eine Kette verbinden lassen, heiBe T. Ein etwaiger Rand-
punkt von T làge in einem neuen F e 93, das mit einem der in T enthal-
tenen einen nichtleeren Durchschnitt hâtte. Also muB der Rand von T
leer sein, also T eine Komponente von B, also B.

B und 93 definieren einen Nachbarschaftsraum B: Elemente
von B sind die F e 93,

F2 F2 heiBen benachbart, wenn Vx ^ F2 # O.

B besitzt auf Grand von (K7), (S7), (Z7) die Eigenschaften
(K), (S), (Z).

Ist B ein Polygon und ordnet man einer Ecke a von B die Vereinigung
von a mit den von a ausgehenden offenen Kanten zu, so kommt man
zu einem System 93, das der in 1.5 definierten Zuordnung fur Polygone
entspricht.

4.6. Zwischen der Endentheorie von B und der von B (im Sinne
meiner Dissertation1)) besteht ein einfacher Zusammenhang, der be-
schrieben wird durch

Satz 2 : Die Beziehung zwischen B und B gemâB 4.5 lâBt sich stetig
fortsetzen zu einer topologischen Abbildung der zugehôrigen Enden-

mengen E und E, und zwar stetig in dem Sinne, daB lim VVn e im
Sinne von B dann und nur dann gilt, wenn es im Sinne von B gilt. Ins-
besondere haben also B und B ebenso viel Endpunkte.
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Die Zuordnung geschieht so: Sei

Wir setzen in R :

Q g(Q) u F
FeQ

Q ist ofifen. Ist a Randpunkt von Q, so ist a in einem gewissen Fo e 33,

das mit Q, also mit einem der V eQ einen nichtleeren Durchschnitt hat.
Also

ac U V

Andererseits ist a als Randpunkt von Q

ê U F
Also ist F€Q

Rand (Q) c U F
F€Ç(Q)

also kompakt.

Ist umgekehrt

Q eine offene Menge von R mit kompaktem Rand,

so setzen wir
Q g'(Q) Gesamtheit der V œQ

Da die F c 35 Gebiete sind, muB jedes, das Punkte von Q enthalt, ohne

in Q enthalten zu sein, Punkte von Rand (Q) enthalten, d. h.

aus F e 3f (Q) folgt F ^ Rand {Q) # o

Rand (Q) ist in endlich viel F zusammen enthalten, Fx,..., Fs. Also :

Ist Feg(Q), so ist F
Also ist

endlich, also Q e Q

g'g(Q) ist in §(Q) enthalten, unterscheidet sich also von Q nur in einer

endlichen Menge. Ebenso unterscheidet sich gg\Q) von Q hôchstens in
der Vereinigung der F, die den Rand von Q iiberdecken, also in einer

13



kompakten Menge. Fur die Bildung der Endpunkte sind zwei Q bzw. Q,
die sich nur in einer endlichen bzw. kompakten Menge unterscheiden,
nicht wesentlich verschieden. In diesem Sinne ist die durch g und gr

vermittelte Beziehung zwischen den Q und den Q eineindeutig.
Man erhàlt nun aus einem Endpunkt e von R einen Endpunkt e' von

R, indem man jedes Q e e durch das zugehôrige g(Q) ersetzt. Es ist
klar, daB (g und (£ dann topologisch aufeinander bezogen sind, und daB

dièse Beziehung stetige Forsetzung der zwischen R und R gegebenen ist.

5. Gruppen.

5.1. R sei von nun an eine

Gruppe G mit endlich vielen Erzeugenden.

Wir machen G durch folgende Festsetzungen zu einem Nachbarschafts-
raum:

Sei U eine Teilmenge von G mit den Eigenschaften :

1. U ist endlich,
2. U enthâlt die Identitât,
3. U enthâlt mit jedem Elément das inverse,
4. die kleinste Untergruppe von G, die U enthâlt, ist mit G

identisch.

Wir nennen zwei Elemente *

a, b benachbart, wenn a"16 c U 10).

5.2. Wegen 5.1.2—3, ist der Nachbarschaftsbegriff symmetrisch und
reflexiv. Die Huile von a wird

£(a) aU 5.2.1
die ifc-te Huile

§^(a) aUk u). 5.2.2

10) Man kônnte natiirlich ebensogut festsetzen: a,b benachbart, wenn ab~x e U.
Statt der ,,Itechtsnachbarsehaft" als Grundbegriff erhielte man dann eine ,,Linksnaehbar-
schaft" als Grundbegriff. Beide durfen nicht durcheinander geworfen werden, obschon sie
natiirlich isomorphe Theorien liefern.

11 In Gruppen bedeutet MN die Menge aller mn mit m e M, n e N. Mp bedeutet
hier die Menge M • M M (p-mal).
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Hieraus folgt:

G ist ein Nachbarschaftsraum mit Gûltigkeit von (K), (S), (Z).

Wir kônnen ailes, was wir in § 1—4 entwickelt haben, anwenden.

5.3. Ersetzt man das System U durch ein anderes, U', das auch die
Eigenschaften 5.1.1—4 besitze, so gelangt man nur zu einem âquiva-
lenten Nachbarschafbsbegriff.

Wegen 5.1.4 gibt es nàmlich ein k mit

U' czUk, U c U'k.

Setzt man das in 5.2.2 ein und berûcksiehtigt man die Définition aus
1.10, so ist man fertig.

6. Endpunkte von Gruppen.

6.1. Rechtsmultiplikation urid Linksmultiplikation mit einem festen
Elément sind eineindeutige Abbildungen von G auf sich.

Rechtsmultiplikationen und Linksmultiplikationen lassen sich
topologisch bis in die Endpunkte hinein fortsetzen. Die
Rechtsmultiplikationen lassen jeden Endpunkt invariant; die
Linksmultiplikationen lassen die Begriffe ,,Nachbar", ,,Huile",
,,Franse" invariant. (Dagegen werden die Linksmultiplikationen
im allgemeinen die Endpunkte nicht punktweise festlassen, und
die Rechtsmultiplikationen werden die Struktur von R zer-
stôren.)

Die Beweise stehen in 6.2—3.

6.2. Rechtsmultiplikationen: Sei liman e. Wir beweisen, da8
dann auch lim anc e. Wir brauchen das nur fur den Fall c e U zu
beweisen — durch endlichfache Wiederholung ergibt es sich hieraus
allgemein. Sei also c c U. Sei {Q} irgendeine Umgebung von e mit Q e jQ.
Fast aile

also fast aile
anceQc œH(Q) Q^%(Q).
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Da 5 {Q) endlich ist, sind also fast aile

anc€Q.

Das gilt fur jede Umgebung {Q} von e, und damit ist Km anc e be-
wiesen — also ailes, was wir ûber die Rechtsmultiplikationen aussagten.

6.3. Linksmultiplikationen: Bei der Linksmultiplikation mit a geht
x in ax und y in a y uber.

(ax)-1(ay) x~xy

Also gilt: sind x9 y benachbart, so sind ax, a y benachbart. Daher sind
,,Huile" und ,,Franse" linksinvariant,

§ {aM) a§ (if), g (aM) a
Hieraus folgt :

Ist Q e Q, so ist auch aQ € &
Ist e ein Endpunkt, so auch at.
Ist {Q} Umgebung von e, so ist {aQ} Umgebung von ae

Hieraus ergeben sich aile zu beweisenden Aussagen uber die
Linksmultiplikationen.

6.4. Ist lim an e und M endlich, ist ferner {Q} eine Umgebung
von e, so gilt fur fast aile n

anMaQ.
Denn nach 6.2 ist anc e Q

fur fast aile n. Angewandt auf die endlich vielen c von M folgt hieraus
die Behauptung.

6.5. Seien {Q^ bzw. {Q2} Umgebungen der (evtl. zusammenfallenden)
Endpunkte d bzw. e2 ; Qi, Q2 € Q- Sei lim an — tx. Dann
gilt fur fast aile n :

anQ, c Qt oder (1)

anQ2 3 2?\gl. (2)

Zum Beweise bestimmen wir nach 6.4 n so groB, daB

«•BfWJc^. (3)
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Wir lassen den Index n von mm an weg. Wir nehmen an, daB

R\QX cr aQ2 (4)
sei. Dann ist entweder

(R\Q1) - aQ2 o

also aQ2 c Qx,
also (1) erfûllt, oder

(S\QX) ~ aQ2 Q3 (5)
eine

nichtleere echte Teilmenge von R\Qt. (6)

Wir dûrfen annehmen, daB

zusammenhângend ist (evtl. verkleinern wir Qx um endlich viel Elemente,
um das zu erreichen). Wegen (5) und der Définition 3.4 ist

%{QZ) r, (KKQJ^o, (7)

da Qz sonst Komponente von R\QX also =R\Q1 wâre imWiderspruch
zu (6). Andererseits ist nach (5)

c [(R\Q1) - aQ2]

also c
also c
(nach 6.3) Qt»a%(Q%)

(nach (3)) Qx.

Das steht im Widerspruch zu (7). Von den beiden Alternativschlûssen,
die wir aus der Annahme (4) zogen, war also (5)—(6) unzulàssig und
nur (1) zulâssig. Es gilt also: (1) richtig oder (4) falsch. Oder: (1) oder
(2) richtig, w.z.b.w.

6.6. ei,e2 seien zwei (evtl. zusammenfallende) Endpunkte, und
lim an d Dann ist

entweder lim ane2 ei (1)
oder e2 Haufungspunkt der a"1 (2)

(aber nicht beides zugleich).

2 Commentarii Mathematici Helvetici ^



Denn seien {Qt}, {Q2} Umgebungen von bzw. tx, e2 • Tritt fur fast
aile n der Fall 6.5.1 ein, so hat man fur fast aile n

also
lim ane2 t±.

Tritt dagegen fur unendlich viele n der Fall 6.5.2 ein, so hat man unend-
lich oft

c ^ anQ2,

wo c ein (festes) Elément von R\Q1 ist, also unendlich oft

Das gilt fur jede Umgebung Q2 von e2> also ist e2 Hàufungspunkt der
a~xc, also nach 6.2 auch

e2 Hàufungspunkt der a"1

w.z.b.w.

6.7. Seien tx, e2, e3 drei verschiedene Endpunkte und liman ex.
Die a"1 kônnen sich an und fur sich bei allen drei Endpunkten ex, e2, e3

hâufen ; durch Auswahl kann man aber erreichen, daB sie sich bei hôch-
stens einem, etwa e7 hâufen (e' kann mit tx zusammenfallen) ; die beiden
anderen nennen wir e;/, e/;/. Nach 6.6 ist

lim ant" lim antm tx,

also: in jeder Umgebung von ei liegen mindestens zwei Endpunkte. Also:

Gibt es mehr als zwei Endpunkte, so ist die Menge (£ der
Endpunkte perfekt12).

6.8. Die Endpunkte e, t' heiBen einander invers, wenn eine Folge
an existiert mit

lim an e lim a"1 e;.

Die Vereinigung aller zu e inversen Endpunkte heiBe e"1.

12) Satz von Hopf, 1. c, S. 82.
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6.9. e"1 ist abgeschlossen.

Denn seien aile en invers zu e und lim ew e0. Seien {Q} und {Qo}
bzw. Umgebungen von e und e0 • In jeder Umgebung von en, also auch
in {Qo} gibt es Elemente an mit a"1 e Q. Das gilt fur jedes Paar {Q}, {Qo}

von Umgebungen von e bzw. e0- Also ist e0 auch invers zu e, w.z.b.w.

6.10. Sind e und e' einander invers, so sind auch at und e' einander
invers.

Denn es sei etwa lim cn e, lim c^1 e'. Dann ist nach 6.2 :

lim c~xarx e7.

Andererseits lim acw =ae.

Das bedeutet, da8 e; und ae invers sind.

6.11. Wir verstehen unter

Rt die Menge aller ae, a c R
Wir nennen

e linksinvariant, wenn Rt e ist.

Jede Gruppe befindet sich in einem der beiden folgenden Fâlle:

Entweder fur jedes e

Ëi (g 6.11.1

und e-1 (£. 6.11.2

Oder: es gibt einen linksinvarianten Endpunkt, 6.11.3
und jeder linksinvariante Endpunkt e0 erfullt

e-1 e0 fur jedes c^e0. 6.11.4

Zum Beweise nennen wir

F(e0) die Menge aller e mit e"1 e0,

wenn e0 irgendein Endpunkt ist. F(e0) kann natûrlich leer sein; im allge-
meinen besteht ja e""1 aus mehr als einem Endpunkt.
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e-1 # e0 ;

Wir haben
<£ F(eo)^5ê; 6.11.5

fur jedes eo, denn ist

so ist

es gibt dann eine Folge an mit
liman e

und
e0 nicht Hâufungspunkt von cÇ

also ist nach 6.6
limane0 e

in Ue0 enthalten. Also gUt 6.11.5 in der Tat.

Wir haben nun zwei Fâlle:

a) F(e) O fur jedes e. Dann ist nach 6.11.5

fur jedes e, also 6.11.1 gûltig. Ist weiter ex ein Endpunkt in e*"1, so ist
nach 6.10

atx c e"1

Rtt c e-1

und nach 6.9
'Rtl c e-1,

also nach 6.11.1
e-1 (£,

so dafi auch 6.11.2 gilt.

b) Fur ein gewisses e0 ist F(e0) ¥" O Dann ist fur ein gewisses e

e-1 - e0. (6.11.6)

Nach 6.10 sind dann aber auch e und ae0 invers, also wegen 6.11.6

ae0 e0,
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womit 6.11.3 bewiesen ist. Man hat also

Rto Co,
also nach 6.11.5

e c F(e0) fur aile e^e0,
d.h.

e"1 c0 fur jedes e^e0,

und damit ist zum SchluB auch 6.11.4 bewiesen.

6.12. Hat 0 zwei linksinvariante Endpunkte, so hat es genau zwei
Endpunkte.

Denn nach 6.11 gilt, wenn c0 linksinvariant ist,

e"1 e0 fur jedes e^e0.
Ebenso, wenn auch ex linksinvariant ist,

e""1 ei fur jedes e ^ ex.

Es kann also kein e # e0 und ^ ei geben.

6.12a. Hat 0 genau zwei Endpunkte, so sind sie zueinander invers.
Sind sie obendrein invariant, so ist keiner zu sich selbst invers. (Folgt
aus 6.11.2 und 6.11.4.)

6.13. Sind e, tf zwei verschiedene einander inverse Endpunkte und
{Q}> {Qf} bzw. (fremde) Umgebungen, so gibt es ein c derart, da8

cQ echt in Q

c~1Qr echt in Qr
enthalten ist.

Da e und tf invers sind, gibt es nâmlich eine Folge an9

liman e

lima"1 e'.

Nach 6.5 gilt also fur ein an (das wir auch c nennen durfen)

cQ c Qlt

criQ' c Ci,
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wo Qi und Q[ irgendwelche echte Teilumgebungen von Q und Qr seien.
Daraus folgt die Behauptung.

6.14. Eine Gruppe mit genau zwei Endpunkten besitzt eine unend-
liche zyklische Untergruppe von endlichem Index13).

Zum Beweise wâhle man ein c gemâB 6.13. (Wegen 6.12a ist das

môglich.) Daim bilden die Mengen

cnQ

eine absteigende Folge. Der Durchschnitt ist leer, da Q sonst eine Folge

enthielte, was nach 6.13 nicht môglich ist. Jedes Elément von Q liegt
also in einer der Mengen

CnQ\cn+lQ (n 0, 1, 2,.

Ebenso liegt jedes Elément von Q! in einer der Mengen

Q\cQ und Q^c^Q' sind endlich.

Jedes Elément von G ist also darstellbar in der Form

cnal9...,cPak,

mit geeigneten (aber festen) al9..., ak und ganzem n.
c erzeugt also die gesuchte zyklische Untergruppe von endlichem Index.

6.15. Eine Gruppe, die eine unendliche zyklische Untergruppe von
endlichem Index besitzt, besitzt genau zwei Endpunkte13).

Jedes Elément von G ist nàmlich in der Form

darstellbar. Die von c erzeugte Untergruppe besitzt die Endpunkte

e lim cn und e ' lim c~n

18) Auch dieser Satz ist von Hopf, 1. c, S. 97.
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Jede unendliche Folge aus G làBt sich in Folgen

cnaK und crnaK

mit festem k zerlegen. Nach 6.2 konvergieren dièse gegen e und e'.
Also sind das die einzigen Endpunkte von G. e^e' in G, da, n>0 bzw.
n < 0 zueinander fremde Umgebungen von e bzw. e' sind.

6.16. Satz 3:

1. Die Kompaktisierung einer Grappe G von endlieh vielen
Erzeugenden durch ihre Endpunktmenge (g ist eindeutig
bestimmt.

2. (E besteht aus 0, 1, 2 Punkten, oder ist perfekt12).
3. 0 Endpunkte besitzen die endlichen Gruppen und nur dièse.

4. 2 Endpunkte besitzen die Gruppen mit unendlicher zykli-
scher Untergruppe von endlichem Index und nur dièse13).

5. (S ist invariant bei Linksmultiplikationen und punktweise
invariant bei Rechtsmultiplikationen.

6. Die a e liegen entweder uberall dicht oder e ist linksinvariant.
7. Es kann A

linksinvariante Endpunkte geben — wir sprechen dann von

elliptischen, parabolischen oder hyperbolischen
Gruppen.

8. Gruppen mit 0 Endpunkten sind elliptisch.
9. Gruppen mit 1 Endpunkt sind parabolisch.

10. Gruppen mit 2 Endpunkten sind elliptisch oder hyper-
bolisch.

11. Gruppen mit oo viel Endpunkten sind elliptisch oder
parabolisch. (Ob hier der parabolische Fall wirklich ein-

treten kann, ist unsicher.)

12. Bei elliptischen Gruppen ist e"1 (S fur jedes e.

13. Bei parabolischen Gruppen mit dem linksinvarianten End¬

punkt e0 ist e"1 e0 fur aile e # e0 und e^"1 ~ (£

14. Bei hyperbolischen Gruppen sind die beiden (invarianten)
Endpunkte zueinander invers, aber keiner zu sich selbst
invers.

") Satz von Hopf, 1. c, S. 82.

") Auch dieser Satz ist von Hopf, 1. c, S. 97.
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Wir geben zu jeder Nummer an, wo aie bewiesen ist. 1. in 5.2—3.
2. in 6.7. 3. trivial. 4. in 6.14—15. 5. in 6.1—3. 6. in 6.11.1 und
6.11.3. 7. in 6.12 (Beispiele folgen). 8. trivial. 9. trivial. 10. trivial
(Beispiele folgen). 11. in 6.12. 12. in 6.11.2. 13. Die erste Aussage steht
in 6.11.4, die andere ergibt sich so: e^1 zd (£\eo> &lso (£ wegen der
Abgeschlossenheit von e""1 und der Perfektheit von CE. 14. in 6.12a.

6.17. Beispiele:
1. Grappe mit einem Endpunkt: abelsche Gruppe von 2 Er-

zeugenden.
2. Hyperbolische Gruppe: zyklische unendliche Gruppe.
3. EUiptische Gruppe mit 2 Endpunkten: die Gruppe mit den

2 Erzeugenden s und t und den Relationen

$2 z=z sfet Identitàt.

4. EUiptische Gruppe mit oo vielen Endpunkten : freie Gruppe
von 2 Erzeugenden.

1. §n(l) besteht aus vtv* mit |i| + \j\ ^ n> wenn u, v die Erzeugenden
sind. i?\§w(l) ist also zusammenhângend.

2. §w(l) besteht aus den u1, \i\ ^ n, wenn u die Erzeugende ist. Jî\§n(l)
besitzt die Komponenten ui,i> n und i < — n u-u* ui+1, d. h.
die Endpunkte bleiben fest.

3. Man zieht aus den beiden Relationen:

st t^s,
also

st* ir**.

Man kann mit dieser Relation aile Elemente von 0 auf die Gestalt

ïs0'1
bringen. Man erhâlt fur

%*(l):ti \i\£n
fis, |i|^n-l.

Die Komplementârmenge besitzt also wieder zwei Komponenten P, P;.

Bei den ^s0'1 € P ist i > 0
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Linksmultiplikation mit 8 liefert

also Vertauschung der beiden Endpunkte.

4. Die Erzeugenden seien u und v. Die ,,Worte"

verteilen sich auf vier Mengen :

*7+ : i > 0 • CL : f < 0

V+ : i 0, ; > 0 • F_ : i 0, < 0

Aile haben die Franse 1, gehôren also zu £i, sind unendlich und paar-
weise elementefremd. Jede enthâlt mindestens einen Endpunkt; es

gibt also vier, also oo viel Endpunkte. Der Automorphismus

u <—> v

vertauscht die linksinvarianten Endpunkte untereinander, aber auch

U+ mit V+ und IL mit F_. Gibt es einen linksinvarianten
Endpunkt, so gibt es zwei, was nicht môglich ist.

Die Gruppe ist demnach nicht parabolisch, also elliptisch.

Problem: Gibt es ûberhaupt parabolische Gruppen mit unendlich
vielen Endpunkten?

7. Untergruppen.

7.1. Wir nennen

#c die Untergruppe aller a mit ae e

7.2. S^^cS.c-1.

7.3. Sei an eine Folge aus Se. Dann ist

entweder liman e 7.3.1

oder e Hâufungspunkt der a"1 7.3.2
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Denn sei 7.3.2 falsch und an, eine Teilfolge mit

liman, e' =j£ e 7.3.3
Dann ist nach 6.6

liman,e e',
also wegen an, e e

e' e

im Widerspruch zu 7.3.3. Also mu6 entweder 7.3.1 oder 7.3.2 gelten.

7.4. Ist St rs 8t, unendlich, so sind e und e' gleich oder invers.

Denn sei an eine Teilfolge von 8t r> $c, Dann gibt es auch eine
Teilfolge bn mit

lim bn e

(nàmlich entweder an selbst oder — nach 7.3 — eine Teilfolge von a"1).
Nun ist

lim bn ef ^ e

ausgeschlossen, also nach 6.6

e' Hâufungspunkt von b"1.

Es gibt also eine Teilfolge cn mit

lim cn ^^ c > lim c ==: 6
w.z.b.w.

7.5. Sind d, ea, e3 drei verschiedene Endpunkte, so ist

endlich. ei e* e*

Denn nach 7.4 gibt es eine Folge cn mit

limcn e1, limc~1=ea

im Widerspruch zu 7.3, angewandt auf e3.

7.6. Wir fûhren den Gledankengang von 6.13 weiter: e und tr sind
zueinander inverse Endpunkte mit den im Sinne von R zusammen-
hangenden Umgebungen {Q}, {Q'}. Man findet ein c so, daB die

cnQ
und die

absteigende Folgen bilden.
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n cnQ n c-nQ' o,
n n

da sonst z. B. Q eine Folge crnb enthielte, was nicht môglich ist. cnQ ist
zusammenhângend. Es gibt also (siehe 4.1 —3) zu jedem k ein w, so da8

cnQ in genau einem P k 13a)

enthalten ist.
dcn{Q} (ebenso n

besteht also aus genau einem Endpunkt

d lim cn (bzw. e{ lim c~n)
Man hat

ei=ei,
^ex= e1? cei= cj,

d. h.
$Ci ^ /S^ enthâlt ein Elément unendlicher Ordnung.

Wir haben demnach bewiesen :

Zu jedem Paar verschiedener, zueinander inverser Endpunkte
e, e' gibt es in beliebiger Nâhe ein Paar inverser Endpunkte
tx f t[ mit unendlichem

Sowie :

Jede Gruppe mit mehr als einem Endpunkt besitzt Elemente
unendlicher Ordnung. (Dieser Satz gilt aber allgemeiner.)

7.7. Ist T eine unendliche Untergruppe von 8^^Str und cTc~x
ebenfalls in Se<~s Ser enthalten, so ist

ce e ce7 e'

oder ce e', ce'= e

Sei nâmlich
an*T c8t~8t,

eine unendliche Folge. Man darf auf Grund von 7.3 (nach evtl. Ûbergang

zur inversen und Àuswahl) voraussetzen, da8

lim an e lîm a"1 e7. (1)

13 a) k ist hier naturlich nicht Exponent.
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Nun ist auch
canc~x €cTc~x <z8t^ 8e, ;

man darf also nach 7.3 wiederum voraussetzen, daB

entweder

oder
ist, also nach 6.2

entweder

oder
d. h. wegen (1)

entweder

oder
jedenfalls aber

also

w.z.b.w.

lim canc~x

lim cancx

lin can

lim can

ce

ce

c2e

c2

e

e',

c

e',

e >

e',

e,

1 €/S

lim

lim

lim

lim

ce'

ce'

c2e'

can1c~1

ca^c~l

can

ca"1

e'

e,

e',

e

e

e'

e

7.8. Wir fassen die Ergebnisse zusammen in

Satz 4: 1. Die Untergruppen 8e der Elemente von B, die die Endpunkte
e bei Linksmultiplikation festlassen, haben zu je dreien einen
endlichen Durchschnitt und zu je zweien hôchstens dann einen
unendlichen Durchschnitt, wenn die zugehôrigen Endpunkte
zueinander invers sind; in jeder Umgebung jedes inversen
Endpunktpaares kann man ein Endpunktpaar finden, fur das

der Durchschnitt in der Tat unendlich ist.
2. Ist

T unendlich, T c 8t ^ 8e, cTc-1 € Se ^ Se,

so ist

oder

und

ce

ce

e

e

C2€

ce'=e'
ce' e

7.9. Man ktan Satz 4 zu einem abstrakten notwendigen Kriterium fur
die Existenz unendlich vieler Endpunkte ausgestalten, indem man von der
zwischen $e und seinem Endpunkt e bestehenden Beziehung abstrahiert.
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Satz 5 : Zu eùier Gruppe G mit unendlich vielen Endpunkten gibt es
ein System £ von Untergruppen 8 mit folgender Eigenschaft :

1. £ enthâlt mit jeder Gruppe aile konjugierten.
2. Jedes Tripel von £ hat einen endlichen Durchschnitt.
3. Es gibt unendlich viel Paare von £ mit unendlichem

Durchschnitt.

4. Ist 8l9 82 ein Paar von £, T unendlich, T c Strs 82t
cTc-1 c 8X^ 82y so ist c2 € 8t ^ 82 und cS^-1 8X oder 82.

Ist die Gruppe obendrein parabolisch, so fâllt genau eine
der Gruppen 8 von £ mit G zusammen.

Man nehme natûrlich fur £ das System aller unendlichen Gruppen 8e.
Die im parabolischen Fall mit G zusammenfallende Gruppe gehôrt zum
linksinvarianten Endpunkt.

7.10. Als Anwendungsbeispiel beweise ich:

Das direkte Produkt zweier unendlicher Gruppen G und H
besitzt genau einen Endpunkt.

(Allerdings kann man diesen Satz mit anderen Methoden einfacher
beweisen — siehe die zweite zitierte Arbeit des Verf.2), Satz 8 — aber
darauf soll es uns hier nicht ankommen.)

Nach Satz 3, (3) —(4) sind die Môglichkeiten ,,0 und 2 Endpunkte" aus-
geschlossen. Wir schlieBen nun die Môglichkeit ,,cx) viel Endpunkte" aus.

Seien ooviel Endpunkte vorhanden. Nach 7.6 gibt es ein Elément
unendlicher Ordnung

c a X b
y a cG b € H

lim cn e lim c~n t'.
c erzeugt eine unendliche zyklische Gruppe T c 8t^ 8t, Nun ist

c0 1 x b

mit T elementweise vertauschbar, also nach Satz 4

Cl 1 X 62 € 8t rs 8e

Wegen der Gruppeneigenschaft ist
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e* oder c2qq ist von unendlicher Ordnung und erzeugt eine unendliche
zyklisehe Gruppe Tl c #c ^ 8<>, Entweder jedes Elément von G oder

jedes Elément von H ist mit Tf elementweise vertauschbar. Also nach 7.7:

Aile cc0 X 1'

oder aile c e l x H

vertauschen e und tr untereinander. Da $c ^ $c, in der Gruppe der e

und t! vertauschenden Linksmultiplikationen vom Index 2 ist, gilt:

Unendlich viel c c 6? X 1 '

oder unendlich viel c c 1 X H

liegen in 8e ^ 8C, Durch noehmalige Anwendung von 7.7 folgt hieraus :

aile ceG X 1'

und aile c e 1 X H

vertauschen e und e', also auch

aile c eG x H

8er\ 8e, ist also vom Index 2 in G X H

was der Annahme der Existenz von mehr als einem Endpunkt wider-
spricht.

8. Normalteiler.

8.1. Die Rechtsnebengruppen Ha und Hb von H in G heiBen benach-
bart, wenn a und 6 benachbart sind. GUt das fur Ha und Hb, so gilt
sogat: Zu jedem ar € Ha gibt es ein benachbartes b1 cHb. Man nehme
nâmlich a'a^b

8.2. Benachbarte Nebengruppen hâufen sich gegen dieselben End-
punkte. Denn sei liman e, aneHa, und sei Hb benachbart zu Ha.
Dann gibt es zu an einen Nachbar bn in Hb : bn anun) uneU Da U
endlich ist, zerfâllt die Folge der bn in endlich viel Teilfolgen, die nach
6.2 den Limes e besitzen. Daraus folgt die Behauptung.
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8.3. Je zwei Rechtsnebengruppen von H in G hâufen sich gegen die-
selben Endpunkte. Man kann ja irgend zwei Elemente, also auch zwei
Rechtsnebengruppen von H in G durch eine Kette benachbarter ver-
binen. Nach 8.2 folgt hieraus die Behauptung.

8.4. H sei eine feste Untergruppe von G. Q sei e Q. Gilt fur ein Ha

Q ^ Ha endlich,
so gilt es fur aile Ha.

Denn ist Q^Ha endlich, so gibt es in Q keinen Endpunkt e, der
Hàufungspunkt von Ha ist. Nach 8.3 gilt dieselbe Aussage hinsichtlich
eines jeden Ha, und da Q Umgebung des etwaigen e ist, mufi dann auch
wieder bzw. Q ^ Ha endlich sein.

8.5. Ist N Normalteiler von G, so haben naturlieh auch aile Links -

nebengruppen von N in G dieselben Hâufungspunkte. Andererseits ist
nach 6.3, wenn e Hàufungspunkt von N ist, auch ae Hàufungspunkt
von aN. Hieraus folgt:

Mit e sind aile ae Hâufungspunkte von N.
Nach 6.11 ergeben sich also zwei Môglichkeiten :

Satz 5. Ist N Normalteiler von G, so hâuft sich N entweder

gegen aile Endpunkte von G, oder es hâuft sich gegen genau
einen, nàmlich den invarianten Endpunkt von G.

8.6. Ist H Untergruppe von G und Q eQ (also F(Q) endlich), so ist
fur fast aile Rechtsnebengruppen Ha

Q ^ Ha abgeschlossen in Ha

(also nach 3.5 aus Komponenten von Ha zusammengesetzt).
Denn man hat

%(Qr,Ha)r,Ha c $(Q ~ Ha) ~ Ha cz&(Q)r>Ha,
also

%{Qrs Ha) r,Haa (§(Q) ~ Ha)\(Q ^ Ha) %(Q)\Ha.
Die Vereinigung aller

ist also endlich, also sind fast aile leer, d. h. fast aile Q ^ Ha
abgeschlossen in ihrem Ha.

8.7. Satz 6. Besitzt G einen zusammenhângenden unendlichen
Normalteiler mit unendlicher Faktorgruppe, so besitzt G genau
einen Endpunkt.
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Zum Beweise wenden wir 8.6 auf den zusammenhàngenden Normal-
teiler iV' an :

Ist Q € Ci, so gilt fur fast aile aN :

Q^aN o
oder aN. (1)

Anders formuliert:
QrsaN oder (B\Q) * aN o fur fast aile aN (1')

und da es unendlich viel aN gibt, auch fur mindestens eines. Also gilt
nach 8.4

QrsaN oder (B\Q) * aN endlich fur aile aN (2)

Einer dieser beiden FâUe kann nur eintreten, z. B.

Qr,aN endlich fur aile aN (2')

Dann mufi in (1) auch der JM1

Q r, aN o fur fast aile aN (]/)

eintreten, da aN ja unendlich ist. Die Ausnahme-aiV, fur die hier

ist, werden nun durch (27) erfafit. Also ist

Q endlich. (3')
Hat man hingegen statt (2^

{R\Q) ^ aN endlich fur fast aile aN, (2;/)

so schlieBt man analog:
R\Q endlich. (3^)

Aile Q c JQ befinden sich also im Falle (3;) oder im Falle (3^), d. h.
sie sind bis auf endlich viel Elemente mit O oder O identisch. Es kann
daher keine zwei Endpunkte geben (die ja disjunkte Umgebungen Q
haben mûBten). Da O unendlich ist, gibt es demnach genau einen End-
punkt.

8.7. Zusatz zu Satz 6: Besitzt O einen unendlichen Normalteiler
von endlich viel Erzeugenden mit unendlicher Faktorgruppe,
so besitzt 0 genau einen Endpunkt.
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Wâhlt man nâmlich, wenn eine Gruppe G von endlich vielen Erzeu-
genden und eine Untergruppe H gegeben sind, das System U fur G

(gemâB 5.1) so, daB es ein Erzeugendensystem von H als Teilmenge
enthâlt, so stimmt der Nachbarschaftsbegrifï in H mit dem von G indu-
zierten uberein und H wird zusammenhângend. Daraus ergibt sich der
Zusatz.

Daraus folgt insbesondere : Eine freie Gruppe von endlich vielen Er-
zeugenden besitzt keine Normalteiler von endlich vielen Erzeugenden
und unendlichem Index. — Jedoch kann man das leicht auch direkt
beweisen.

Bemerkung zu Satz 5: Der Satz erinnert an Satz 18 meiner Dissertation1)

: Besitzt die abgeschlossene Untergruppe von G genau einen End-
punkt, so besitzt auch G genau einen Endpunkt. Etwas Derartiges gilt
bei diskreten Gruppen nicht ; man kann die Forderung, daB N ein Normal-
teiler sein soll, nicht fallen lassen, wenn man den Satz aufrecht erhalten
will. Beispiel: Die Gruppe von 4 Erzeugenden uliu2,vliv% und den
Relationen utu2 u2ux, vxv2 v2vlf von der man genau wie von der
Gruppe 6.17.4 beweist, daB sie unendlich viel Endpunkte besitzt.
Man sieht ohne weiteres, daB sie eine — sogar abgeschlossene —

Untergruppe mit genau einem Endpunkt besitzt, z. B. die von ux, u2 erzeugte.

Bemerkung zu Satz 6: Dieser Satz erinnert an Satz 8 meiner
Dissertation: Das kartesische Produkt zweier nichtkompakter Râume hat
genau einen Endpunkt. Er ist mit diesem Satz auch begrifflich verwandt.
Ûbrigens ist naturlich auch 7.10 als einfache Folge von Satz 6 einzù-
sehen.

Die Frage liegt nahe, ob auch fur die in meiner Dissertation behandelten

Gruppen ein Analogon des Satzes 6 gilt. Die Frage ist zu bejahen, selbst

unter den weiteren Voraussetzungen meiner unter2) zitierten Arbeit.
Wir zeigen das im Anhang.

9. Darstellungen diskreter Gruppen.

9.1. jR sei ein im kleinen kompakter, im kleinen zusammenhângender,
zusammenhàngender Raum mit 2. Abzàhlbarkeitsaxiom. Die diskrete
Gruppe G sei dargestellt durch topologische Selbstabbildungen von R.

aeG entspricht fa(R) M

3 Commentaril Mathematici Helvetici oo



Die Darstellung sei stark diskontinuierlich14), d. h. :

Sind A und B kompakt in Jî, so ist fa(A) r\ B o fur fast
aile a.

Die Darstellung besitze eine kompakte Fundamentalmenge14) M, d. h. :

U UM) R
aeG

9.2. In B existiert eine Folge kompakter Gebiete V1, F2,... die R
ûberdeckt, und je zwei der F lassen sich durch eine Kette von F ver-
binden, in der jedes mit dem folgenden einen Punkt gemeinsam hat.
(Siehe 4.5.)

Nach dem bekannten Ûberdeckungssatz gibt es ein p, so da8 die

kompakte Fundamentalmenge

vM c Vx - - • • - Vv

liegt. Wegen der Ketteneigenschaft gibt es ein q ^ p, so daB

M* V, w w Vq

zusammenhângend ist. M* ist also ein kompaktes Fundamentalge&ïeÊ.

9.3. Die Transformierten ia{M*) sind ebenfalls kompakte Gtebiete

und ûberdecken ganz B. Sie bilden ein System 93 im Sinne von 4.5.
(Zusammenfallende F werden mehrfach gezàhlt.) Insbesondere ist (Kr)
erfûllt wegen der starken Diskontinuitat von G. Wir kônnen also die
fa(M*) als Elemente eines Nachbarschaftsraumes B auffassen, mit

fa(M*) - fb(M*) * o

als Nachbarschaftsbegriff. Nach 4.5 sind dann (K), (S), (Z) erfullt»

9.4. Die Teilmenge U von G werde so definiert:

a € U, wenn /a(ifef*) ^ M* ^ o
Zu jedem

UM*)
gibt es eine Kette

14) Beide Definitionen bei Hopf, 1. c, S. 88, 90.
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bi 1 bt c

mit
7£(JÎF) - /^(S5) # o,

also

also

Hieraus folgt

d. h. ein Produkt von Elementen aus U. U ht demnach ein erzeugendes
System.

9.5. Es ist klar, daB die Nachbarschaftsbegriffe von G (siehe 9.4)
und R (siehe 9.3) zusammenfallen, sobald man a mit fa(M*) identifiziert.
Déisselbe gilt dann auch fur die Endentheorien. Nach 4.6 kann man
weiter die Endentheorien von B und R identifizieren, und damit gelangt
man zu dem

Satz 7 : Die Gruppe G von endlich vielen Erzeugenden sei dar-

gestellt in einem Raum R (siehe 9.1); die Darstellung sei stark
diskontinuierlich und besitze eine kompakte Fundamental-

menge. Die Endentheorien von G und R fallen zusammen, wenn

man eine Menge Q € JQ von G identifiziert mit

U fa(M*),
aeQ

wo M* irgendein Fundamentalgreôietf ist. Insbesondere haben G

und R gleichviel Endpunkte15).

10. Ânhang.

10.1. Wir beschâftigen uns noch mit den im Kleinen kompakten,
zusammenhângenden Gruppen G mit 2. Abzâhlbarkeitsaxiom. (Siehe 2).)

Wir beweisen

15) Bei Hopf sind die Endpunkte von R primai*. Die Tatsache, daû zwei Baume R
mit demselben O dieselbe Anzahl Endpunkte haben, wies auf die Môglichkeit einer End-
punkttheorie von Q hin (Hopf, 1. c, S. 96).
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Satz 8 G besitze einen zusammenMngenden, abgesehlossenen
nichtkompakten Normalteiler mit nichtkompakter Faktor-
gruppe16). Dann besitzt G genau einen Endpunkt.

10.2. 9t bezeichne die Randbildung in B. Q sei eine offene Menge
mit kompaktem Rand.

Wir sagen, daû eine Eigenschaft gilt fur ,,nahezu allé" Elemente einer
Menge, wenn sie nur in einer kompakten Teilmenge nicht gilt.

Wegen der Kompaktheit von 91 (Q) bilden die aN mit

eio,e kompakte Teilmenge der Faktorgruppe Q/N. Fur nahezu aile aN
gilt demnach

und da mit N auch aN zusammenhângend ist:

o

oder aN.
Anders formuliert

Q r^aN o
fur nahezu aile aN. 1

oder {B\Q) * aN o

Je zwei Nebengruppen aN hàufen sich (wegen der Invarianz der End-
punkte bei Multiplikationen17)) gegen dieselben Endpunkte. Ist Q rs aJN
kompakt, so muB darum auch jedes Q r^ aN kompakt sein; andernfalls
gâbe es ja in Q einen Endpunkt, gegen den aN, aber nicht a0N sich
hâufte.

Da G/N nicht kompakt ist, folgt aus (1) die Existenz eines a0 mit

Q rs a0N o (also kompakt)

oder (E\Q) r* a0N o (also kompakt) ;

also gilt
Q rs a0N oder (B\Q) n aN kompakt fur aile aN. (2)

1§) Das Nôtige ûber Normalteiler und Faktorgruppen jSndet man bei Verf., Einige
Sâtze ûber topologische Gruppen, Annals of Math. 37 (1936), 46—56, oder bei D. van
Dantzig, Zut topologischen Algebra, I, Math. Annalen 107 (1932), 587—626.

IT) Siehe *), Satz 8. Man kann sich aber auch mit1), Satz 9, begnugen.
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Einer der beiden Fâlle kann nur eintreten, z. B.

Q^aN kompakt fur aile aN. (2 ')

Daim muB in (1) auch notwendigerweise der Fall

Qr^aN o fur nahezu aile aN (l7)
eintreten.

Sei nun irgendeine Folge
aneQ

gegeben. Naeh (1') bilden die anN eine kompakte Menge in 0/N, und
wir dûrfen — nach Auswahl — die Existenz von

lim anN aN

annehmen, d. h. die Existenz von

bneN, beN (3)
mit

liman6n ab (4)

Aus (3) folgt, dafi die Folgen

an und 6"1

sich gegen dieselben Endpunkte haufen; da Q eine Umgebung dieser

Endpunkte ist, gilt

fur fast aUe n. (3) und (5) liefern (5)

b-^Qr.N,
also ist nach (27) die Folge

6"1 kompakt. (6)

(4) und (6) zusammen liefern, daB

an kompakt

ist, daB man also aus jeder Folge von Q eine kompakte auswâhlen kann,
d.h.

Q kompakt. (7;)
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Hâtte man nun statt (2r)

(R\Q) ~aN kompakt fur aile aN, (2")

so schlôsse man genau so auf

R\Q kompakt. (7")

Aile Q befinden sich also im Falle (7;) oder (7//). Sie sind aile nahezu O

oder nahezu G. Es kann daher keine zwei verschiedenen Endpunkte
geben (die ja disjunkte Umgebungen haben muBten). Da G nicht kompakt

ist, besitzt es also genau einen Endpunkt.

(Eingegangen den 1. Mârz 1944.)

38


	Über die Enden diskreter Räume und Gruppen.

