Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 17 (1944-1945)

Artikel: Uber die Enden diskreter Raume und Gruppen.
Autor: Freudenthal, Hans

DOl: https://doi.org/10.5169/seals-16328

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-16328
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber die Enden diskreter Rdume und Gruppen

Von HaNs FREUDENTHAL, Amsterdam

In meiner Dissertation!) habe ich offene Rédume durch ,,Endpunkte‘
kompaktifiziert ; neuerdings habe ich?) die Theorie der Enden bis an die
Grenzen — wie ich meinte — ihrer Giiltigkeit ausgedehnt. Der Sinn der
Unternehmungen war es, unter den Kompaktifizierungen eines nicht kom-

pakten Raumes eine zu bevorzugen; die Forderungen, die ich stellte, lau-
teten:
Das ,,Unendlichferne (die zum Raume hinzugefiigte Menge)
soll moglichst diinn (nulldimensional) sein.

Das Unendlichferne soll méglichst weitgehend aufgespalten sein.

Ich habe dies Kompaktifizierungsproblem in meiner zweiten zitierten
Arbeit durch die Methode der Endpunkte gelost fiir alle

semikompakten?) (a)
separablen Rédume (b)
mit kompaktem Quasikomponentenraum?), (e)

und ich habe dort auch gezeigt, daBl man keine dieser Bedingungen ab-
schwichen kann. Diese Tatsache hat ihre endgiiltige Formulierung durch
J.de Groot erfahren, der in seiner Dissertation®) definierte und bewies:

R* heiflt ideale Kompaktifikation des separablen R, wenn die
Menge R*\ R der ,,neuen‘‘ Punkte nulldimensional und jede
andere Kompaktifikation R’ stetiges Bild der Kompaktifikation
R* ist (d. h. jede topologische Abbildung von R auf sich selbst

zu einer stetigen Abbildung von R* auf R’ erweitert werden
kann).

1) Uber die Enden topologischer Raume und Gruppen. Math. Zeitschr. 33
(1931), 692—713.

2) Neuaufbau der Endentheorie, 1941. Vermutlich in den Annals of Mathematics
erschienen.,

3) d. h. jeder Punkt besitzt eine Umgebung mit kompakter Berandung. — Dieser
Begriff in der Endentheorie riihrt von L. Zippin her: On semicompact spaces. Amer,
J. of Math. 57 (1935), 327—341.

4) d. h. jede abnehmende Folge nichtleerer offener abgeschlossener Teilmengen von
R soll einen nichtleeren Durchschnitt besitzen.

¥) Topologische Studién. Compactificatie, voortzetting van afbeeldingen en samen-
hang, 1942,
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R ist dann und nur dann ideal kompaktifizierbar, wenn es obige
drei Eigenschaften (a), (b), (¢) besitzt.

Es war jedenfalls iiber jedem Zweifel erhaben, daB etwa der Raum,
der aus abzdhlbar viel isolierten Punkten besteht, keine ausgezeichnete
und gleichzeitig ,,ansténdige‘‘ Kompaktifizierung besitzt, die Maximali-
tatsforderungen, wie wir sie gestellt haben, erfiillt.

Hier hat nun eine Arbeit von H. Hopf®) ganz neue Gesichtspunkte
aufgezeigt und mich zu einer Endentheorie abzéhlbarer, diskreter Rdume
veranlaBt. Allerdings muBB man das Wort ,,diskret‘‘ nicht zu wortlich
auffassen. Es handelt sich immerhin um Rédume mit einer nichttrivialen
Topologie. Wir fordern, da in R ein nichttrivialer, reflexiver Begriff der

Nachbarschaft zweier Punkte?)

definiert ist (d.h. je zwei Punkte sind Nachbarn oder sind es nicht),

wobei jeder Punkt
endlich viel Nachbarn

besitzt. Unter der Hiille eines Punktes in einem solchen Raum verstehen
wir die Menge seiner Nachbarn und unter der (k¥ 4 1)-ten Hiille die Hiille
seiner k-ten Hiille. Zwei solche Topologien heilen dquivalent, wenn ein k
existiert, so daB

$1(@) € Hi(@) und H;(a) c Hila)

mit §,(a) als n-te Hiille von a in der einen und
51,1 (a') T IEY) D) o A 5 anderen Topologie.

In diskreten Rdumen mit Nachbarschaftsbegriff kann man nun in der
Tat eine Endentheorie — ganz analog wie frither — entwickeln; dqui-
valente Riaume liefern dabei denselben Endenraum.

Ein anschauliches Modell eines diskreten Raumes R mit Nachbar-

schaftsbegriff ist ein
Polygon.

¢) Enden offener Riaume und unendliche diskontinuierliche Gruppen,
Comment. Math. Helvet, 16 (1943), 81—100.

?) Ein derartiger topologischer Grundbegriff steht wohl in der Literatur zuerst bei
B, Linfield, Espaces discrets paramétriques et non-paramétriques. Thése
Strasbourg 1925. Siehe auch: H. Fréchet, Fund. Math. 8 (1926), 151—159, wo die Begriffe
Linfields auf altere topologische Begriffe zuriickgefithrt werden. — Von den tiefergehenden
Untersuchungen Alexandroffs u. a. iiber diskrete Réume werden wir hier nichts
brauchen.
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Man identifiziere ndmlich die Punkte von R mit den Ecken des Poly-
gons P und denke sich je zwei benachbarte Punkte durch eine Kante
verbunden. Allerdings gehort dabei zu dquivalenten R nicht notwendig
dasselbe Polygon. Aber die Endentheorie von R fillt mit der von P (im
alten Sinne) zusammen.

Mein Ausgangspunkt waren urspriinglich die Enden der topologischen
Gruppen. Das verschirfte Resultat meiner zweiten zitierten Arbeit lautet:

Jede separable, semikompakte, zusammenhingende Gruppe
besitzt hochstens zwei Endpunkte (ist also im kleinen kompakt).

Auch iiber die Enden der Wirkungsriume transitiver topologischer
Gruppen habe ich in meiner Dissertation etwas ausgesagt, aber H. Hopf
hat (l. c.) fiir ganz andersartige Réume scharfe Aussagen iiber die Anzahl
der Endpunkte machen kénnen, ndmlich fiir offene Rdume, in denen eine
diskontinuierliche Menge topologischer Selbstabbildungen mitkompaktem
Fundamentalbereich agiert. Er bewies, daf3 solch ein Raum

einen,
zwel oder
eine perfekte Menge von Endpunkten
besitzt?).
Es zeigte sich bei Hopf, daB fiir den Fall einer Gruppe G topologischer
Selbstabbildungen die Endenzahl nicht von der speziellen Darstellung

8) Einen Endpunkt hat die Ebene (mit der Decktransformationsgruppe des Torus);
zwei Endpunkte hat die Gerade (mit der Decktransformationsgruppe des Kreises). Fir
den Fall unendlich vieler Endpunkte geben wir an Stelle des Hopfschen Beispiels eins
aus der Theorie der automorphen Funktionen ohne Grenzkreis: In der funktionen-
theoretischen Ebene seien drei Kreise K, , K,, K, gegeben, von denen je zwei in demselben
von den zwei Gebieten liegen, die der dritte bestimmt. Die drei Kreise beranden zusammen
ein dreifach zusammenhéngendes Gebiet 4,. Man spiegele 4, an seinen drei Randern
und vereinige die drei Spiegelbilder — so entsteht 4,. Die Vereinigung 4, v 4, spiegele
man an ihren sechs Randkreisen, vereinige die Spiegelbilder und nenne das Resultat A,.
So fahre man fort. Die Vereinigung A4 aller 4, erfiillt die ganze Ebene bis auf eine null-
dimensionale perfekte Menge (die Menge der Endpunkte von A4). In 4 herrscht die Gruppe
gebrochen linearer Abbildungen, die von den Spiegelungen an K,, K,, K, erzeugt wird;
4, ist einer ihrer Fundamentalbereiche. Zu der Gruppe gehéren automorphe Funktionen,
deren Singularitdtenmenge mit der Endpunktmenge von A4 zusammenféllt. — Man kann
dieses Schottkysche Beispiel auch durch einen reguléren Baum vom Grade 3 ersetzen
(bei Hopf ist das einfachste Beispiel ein regulérer Baum vom Grade 4), d. h. durch ein
Polygon ohne geschlossenes Teilpolygon und mit drei Strecken bei jeder Ecke. Hei3t eine
Ecke 0 und sind die benachbarten Ecken 1, 2, 3, so nenne man Sy, S,, S; gewisse Spiege-
lungen (Automorphismen des Baumes von der Periode 2) die bzw. 0 mit 1, 2, 3 vertau-
schen. Die S; erzeugen die gewiinschte Gruppe.



der Gruppe abhingt, sondern eine Invariante der abstrakten Gruppe
ist, und daB man allgemein von den Enden einer abstrakten Gruppe
mit endlich vielen Erzeugenden sprechen kann. Auf Grund dieser
Ergebnisse formulierte Hopf folgende Probleme:

1. eine direkte Endentheorie der abstrakten Gruppen mit end-
lich viel Erzeugenden zu entwickeln,

2. algebraische Kriterien dafiir anzugeben, daBl eine Gruppe
1, 2 oder unendlich viel Endpunkte hat.

Das erste Problem (das bei Hopf nicht in Angriff genommen wird)
werden wir vollstindig 16sen. Das zweite, das fiir den Fall zweier End-
punkte bei Hopf vollstéindig und befriedigend beantwortet wird, werden
wir zwar nicht 16sen, aber doch einigermafien férdern ; gleichzeitig werden
wir einige feinere Aussagen iiber die Struktur der Endenmenge diskreter
Gruppen machen kénnen.

Der Zusammenhang zwischen diskreten Rdumen und diskreten Grup-
pen wird nahegelegt durch die Dehnschen Gruppenbilder. Sei

U= (uy,...,u,)
eine Teilmenge der Gruppe G, derart dal

1. U die Gruppe G erzeugt,
2. die Identitdt zu U gehort,
3. mit irgendeinem Element auch das Inverse zu U gehort.

Wir machen @ zu einem diskreten Raum durch die Festsetzung:

a und b sind benachbart, wenn b = aw fiir ein geeignetes
aus U.

Nun kann man auf die Gruppe unsere Endentheorie fiir diskrete Rdume
anwenden. Der Nachbarschaftsbegriff hingt zwar von der — willkiir-
lichen — Wahl des erzeugenden Systems U ab; man sieht aber ohne
weiteres, dafl man mit einem andern erzeugenden System einfach zu
einem #dquivalenten Raum kommt, also auch zu einer dquivalenten
Endentheorie. Die Abhingigkeit vom erzeugenden System ist also nur
scheinbar.

In dieser Topologie ist die Gruppe G von selber zusammenhéngend,
und man kann nun ungefihr genau so, wie Hopf es tut (oder wie es bei
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dem entsprechenden Satz in meiner Dissertation geschehen ist), beweisen,
daB G endlich ist oder 1,2 oder unendlich viel Endpunkte besitzt. Da8 es
nicht — wie in meiner Dissertation bei 1 oder 2 Endpunkten bleibt, hat
seinen tieferen Grund darin, dafl im diskreten Fall die Linksmultiplika-
tionen

' = ax

die Endenmenge nicht mehr punktweise festhalten. Der ,,Abstand‘
zwischen z und ax braucht ndmlich (bei festem a und variablem x) nicht
mehr beschriankt zu bleiben, und je , freier und nichtkommutativer‘ die
Gruppe ist, desto wahrscheinlicher ist es, dafl die Endpunkte in der Tat
nicht festbleiben und die Endenmenge unendlich wird.

Wie man das rechte Maf} fiir die Nichtkommutativitdt genauer formu-
lieren mufl — diese Frage konnen wir, wie gesagt, nur annihernd beant-
worten; wir verweisen dafiir auf die Arbeit selbst.

Bezeichnungen :
v, U = Vereinigung,
~, N = Durchschnitt,
a e M \N bedeutet: ae M, ac N,
o ist die leere Menge.

1. Diskrete Réiume.

1.1. R heilt ein Nachbarschaftsraum, wenn fiir je zwei Punkte von
R definiert ist, ob sie benachbart sind oder nicht, und zwar auf reflexive
und symmetrische Weise: a ist Nachbar von a; ist a Nachbar von b,
so ist b Nachbar von a.

1.2. Die Menge der Nachbarn von a heil3t seine Hiille $(a). Unter
der Hille einer Menge verstehen wir die Vereinigung der Hiillen ihrer
Elemente.

1.3. Franse einer Menge M heillt die Menge
(M) = HMNM

der Elemente der Hiille von M , die nicht zu M gehéren.
Wir definieren

I

M) = M,
H*UM) = H(H¥M)).



H*(M) heiBlt die k-te Hiille von M.
FEM) = HMN\M

heiflt die k-te Franse von M.
1.4. Man hat

H(UM,) = UH(M,) 1.4.1

und n n
H¥M) = U H¥a), 1.4.2

a€eEM

UM, < UF®(M,) . 1.4.3.

n n

1.5. Wir ordnen dem Raum R ein Polygon R zu: jedem Element
von R entspricht eine Ecke von R ; benachbarten Elementen entsprechen
Ecken, die durch eine Kante verbunden sind.

1.6. R besitze von nun. an die Eigenschaft

(K) $(a) ist fiir jedes a endlich,
und die Eigenschaft
(S) R ist abzihlbar.

Man sieht ohne weiteres, dafl diese Eigenschaften bei R die

Kompaktheit im Kleinen
und
Separabilitdt
nach sich ziehen.

1.7. Die Gesamtheit aller Mengen M mit
& (M) endlich
heiBle Q). Wegen (K) ist jedes endliche M in Q.
1.8. Mit M ist auch $H(M) ¢ Q, denn nach 1.4.1 ist
T (D)) € F(M) v F(HBN\M) = F (M)~ F(F(M)),

und hier ist der erste Summand nach Voraussetzung und der zweite
nach 1.7 endlich.
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1.9. Ist M € Q, so ist auch F* (M) endlich. Denn
k
FOM) = SHUNY = U (H9" M)\ HM)) = U FH (M),
k=1 k=1
und hier ist nach 1.8 jeder Summand endlich.

1.10. Wir nennen zwei Nachbarschaftsbegriffe (in derselben Menge)
dquivalent?), wenn fiir die zugehorigen Hiillenbegriffe § und §’ gilt:

Es gibt ein k, so daB fiir alle a

H'(@).c H¥a) und H(a) c H'*a)
erfillt ist.

1.11. Fiir d4quivalente Nachbarschaftsbegriffe sind & (M) und §'(M)
nur gleichzeitig endlich oder unendlich; die Gesamtheit Q ist fiir dqui-
valente Nachbarschaftsbegriffe also dieselbe.

Diese Behauptung folgt unmittelbar aus 1.9.

2. Die Endpunkte.
2.1. Eine Teilmenge ¢ von Q heillt

Endpunkt von R,
wenn

1. @ £ 0 fiir alle Q ee,

2. mit @,, @,ee auch @,~Q,ee (also #0),
3. R\ M ee fiir jedes endliche M,

4. ¢ maximal ist.

Die Menge aller Endpunkte von R heiit €.

2.2. Statt @ ee sagen wir auch e { ¢. Wir definieren:
{@} ist die Vereinigung aller a e @ und aller ¢ { @ .

Wir nennen {Q} auch Umgebung jedes in ihm enthaltenen Endpunktes.
Umgebung eines a ¢« R heiBt die einpunktige Menge a selbst.

Durch diese Festsetzungen wird R v € = R* zu einem Umgebungs-
raum.,

%) Man nennt das vielleicht besser: gleichmaBig équivalent,



2.3. In R* gilt das Trennungsaxiom: zwei Punkte lassen sich durch
Umgebungen voneinander trennen. Und zwar ist es trivial fir zwei
Punkte aus R, und es folgt aus 2.1.3 fiir einen Punkt aus B und den
anderen aus €. Fiir zwei Endpunkte ¢ # ¢/ beweist man es so: Aus
e # ¢’ folgt die Existenz eines Q ee, ce’. Also muB ein Q' ee’ mit
Q ~Q’ = o0 existieren, da man @ sonst noch zu ¢’ hinzufiigen kénnte
(im Widerspruch zu 2.1.4). Aus @ ~Q’ = o folgt {Q}~{Q'} = 0, und
zwar ist das trivial hinsichtlich der Punkte von R und folgt fiir Endpunkte
daraus, daB e¢” ¢ {@}~{Q'} @< ¢’ und Q’< ¢” nach sich zoge, was
nach 2.1.2 unmoglich ist. {@} und {Q’} sind also die gewiinschten zu-
einander fremden Umgebungen von ¢ und e’.

2.4. Wir notieren noch die soeben bewiesene Tatsache:
Mit @, ~Q, ist auch {Q,} ~ {@,} nicht leer.

2.5. Die Berandung jedes {Q} ist leer. Denn wire ¢ Randpunkt von

Q, so wiire {Q} ~ {Q’} # o fiir jede Umgebung {@’} von ¢, also @ ~ Q' # 0
im Widerspruch zu 2.1.4.

2.6. R* ist reguldr und separabel. Denn aus 2.5 folgt das Trennungs-
axiom in seiner schirfsten Form.

3. Zusammenhang.

3.1. Ist H(M)~ N #£0, so ist auch H(N)~ M # o. (Klar.) Spe-
ziell:

Ist S9(N)= N, so ist H(R N)= R \N.
3.2. N abgeschlossen — bedeutet: F(N) =o0.
Aus 3.1 folgt:
Mit N ist auch R\ N abgeschlossen. 3.2.1.
Aus 1.4.3 folgt:

Die Vereinigung abgeschlossener Mengen ist abgeschlossen.

3.2.2.
Und hieraus durch Ubergang zum Komplement:

Der Durchschnitt abgeschlossener Mengen ist abgeschlossen.
3.2.3.



3.3. Durch Relativierung entsteht die Definition:
N c M abgeschlossen rel M — bedeute:
F(N) cF(M). 3.3.1.
Oder F(N)~ M =o0. 3.3.2.
Die Sitze aus 3.1—2 gelten auch fiir die relative Abgeschlossenheit.

3.4. Minimale rel M abgeschlossene Teilmengen von M heilen Kom-
ponenten. Mengen mit nur einer Komponente heiflen zusammenhéngend.

3.5. Jede rel M abgeschlossene Menge zerfillt in disjunkte Kompo-
nenten von M . Denn nach 3.2.3 ist der Durchschnitt aller das Element a
enthaltenden (rel M) abgeschlossenen Mengen abgeschlossen (rel M), also
minimal abgeschlossen, also eine Komponente. Ebenfalls nach 3.2.3
konnen zwei Komponenten nur einen leeren Durchschnitt besitzen.

3.6. Ist P c N c M und P abgeschlossen rel N, N abgeschlossen
rel M, so ist P abgeschlossen rel M. Denn F(P) c F(N) c F(M).

3.7. Ist N abgeschlossen rel ¥ und N c M, c M, so ist N abge-
schlossen rel M. Denn F(N)~ M =0, also (FN)~M,=o0.

3.8. Die Komponenten von M sind zusammenhingend. Denn nach
3.6 wire eine rel M abgeschlossene Teilmenge einer Komponente von

M auch in M abgeschlossen, im Widerspruch zur Minimalitdt der Kom-
ponenten.

3.9. Die Komponenten von M sind maximale zusammenhingende
Teilmengen von M . Denn nach 3.7 ist jede Komponente N von M auch
Komponente jedes M, mit N ¢ M, ¢ M, so daB keine Menge, die N
echt enthilt, noch zusammenhéngend sein kann.

3.10. Kette heifit eine endliche Elementfolge, wenn jedes ihrer Ele-
mente dem folgenden benachbart ist.

Je zwei benachbarte Elemente von M gehoren zur selben Komponente
von M. Also auch je zwei Elemente von M, die sich in M durch eine
Kette verbinden lassen. Andererseits ist die Menge der Elemente, die
sich in M mit einem Element durch eine Kette verbinden lassen, abge-
schlossen, also nach 3.5 aus Komponenten von M zusammengesetzt.
Hieraus folgt:

Komponenten von M sind die Teilmengen der Elemente, die sich mit
einem festen Element durch eine Kette verbinden lassen.



3.11. Von nun an besitze R immer die Eigenschaft:

(Z) R ist zusammenhingend.

-

3.12. Jede Komponente von M besitzt Punkte in & (M). Sonst hitte
sie namlich wegen 3.3.1 eine leere Franse, wire also eine Komponente
von R, das doch zusammenhiéngend sein soll.

3.13. Jedes @ € Q) besitzt nur endlich viel Komponenten. Denn nach
3.12 gibt es in der Franse §(K) jeder Komponente K von ¢ einen Punkt
von & (Q). Also gibt es in jeder Komponente K von @ ein Element von
F(F(@). @ besitzt also hochstens soviel Komponenten wie F(F(Q))
Elemente. Nach 1.9 sind das endlich viele.

3.14. Fiir jedes a ist U H*(a) = R. (Folgt aus 3.10—11.)

3.15. (Z) bleibt giiltig beim Ubergang zu einem #quivalenten Nach-
barschaftsbegriff. (Folgt aus 3.14.)

4. Die Kompaktheit von R*,
4.1. a sei fest gewdhlt. Die unendlichen Komponenten von R\ $*(a)
nennen wir
PH, ..., PSR,
Da ihre Fransen in $*(a) liegen, gehoren sie zu Q.

4.2. Sei ¢ ein Endpunkt. Zu jedem k gibt es ein P{) e e, und diese
bilden eine absteigende Folge.
Denn wegen 2.1.3 ist B \H¥(a)ee. Wire firr ein gewisses t kein

PR e, so gibe es (fiir dieses feste k) zu jedem o =1,...,s, einQ, e
mit

P(ak) ~Q,=0.
Wir setzen .

Q@ =n8g,(#0)

und haben o=1

PP ~Q@=o0,
also

8
UPH ~Q=0.
o=1
@ hitte also mit B\ $*(a) einen endlichen, mit einem geeigneten R\ $H%(a)
nach 3.14 sogar einen leeren Durchschnitt, im Widerspruch zu 2.1.3.
Daher muBl es zu jedem % das gewiinschte P(ak,,) e ¢ geben. Dal} diese bei
wachsendem k& abnehmen, ist klar.
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4.3. Zu jeder absteigenden Folge P}) gibt es genau ein e, das sie
enthilt.

Dafl es solch ein ¢ gibt, ist klar: man braucht die Folge der P(,,';) nur
zu einer maximalen Menge mit den Eigenschaften 2.1.1—3 zu ergiinzen.
Gébe es zwei solche Endpunkte, ¢ und ¢’, so gibe es nach 2.3 Q«<ce,
Q'ee’,Q ~Q'= 0. Man wihle dann k so groB3, da F(Q) v FQ') < H*(a)
liegt. Die Mengen

Qo = @ \H*a),

Qo = @"\H*(a)
gehoren nach 2.1.2—3 immer noch zu ¢ resp. ¢/, und man hat

QDAQ(;:O-

Nach 3.5 setzen sich die in R\ $*(a) abgeschlossenen Mengen ¢, und
Q' aus Komponenten von R\$*(a) zusammen, also aus Mengen P3).
Wegen 2.1.2 hat man

ng"‘QoSﬁO, 9:180 Pg'kCQO
P, ~Qy#0, , Pi c@,

im Widerspruch zum Vorigen. — Es kann also nur einen Endpunkt zu
der Folge P geben, und damit ist die Behauptung bewiesen.

4.4. Nach 4.2 und 4.3 kann man die Endpunkte einfach mit Hilfe
der absteigenden Folgen der Mengen P erzeugen. Hieraus folgt, daB R*
ein Kompaktum ist. 2.5 lehrt weiter, daB R* nulldimensional ist. Wir
fassen das Ergebnis folgendermaflen zusammen:

Satz 1: Jeder Nachbarschaftsraum R, der (K), (S) und (Z)
geniigt, lifBt sich durch seine Endpunkte zu einem null-
dimensionalen Kompaktum R* abschlieen, dessen einzige Héu-
fungspunkte die Endpunkte sind. Jeder Endpunkt besitzt
beliebig kleine Umgebungen, die im Sinne des Nachbarschafts-
begriffes zusammenhingend sind und eine endliche Franse haben.
Aquivalente R liefern dasselbe R*.

(Die letzte Bemerkung folgt aus 1.11.)

4.5. Die in 1.5 definierte Zuordnung eines Polygons zu einem Nach-
barschaftsraum R verallgemeinern wir folgendermafen:
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R sei ein im kleinen kompakter, im kleinen zusammenhingender,
zusammenhéngender Raum mit 2. Abzahlbarkeitsaxiom. B sei ein System
von

kompakten Gebieten V aus R
mit den Eigenschaften

(K’) Jedes V mit V aus B hat mit fast allen Gebieten aus B
einen leeren Durchschnitt.

(S8”) B ist abzihlbar.
(Z') Zu je zwei V ¢ B gibt es eine Kette von V ¢ B, in der

jedes V mit dem folgenden einen nichtleeren Durchschnitt
hat.

Wegen der Existenz eines Systems 8B unter unsern Voraussetzungen
siehe!), Hilfssatz 2, wo (K’) und (S’) gezeigt werden. (Z’) ergibt sich aus
dem Zusammenhang von R: Die Vereinigung der V, die sich mit einem
festen V durch eine Kette verbinden lassen, heifle 7. Ein etwaiger Rand-
punkt von 7' lidge in einem neuen V ¢ B, das mit einem der in 7' enthal-
tenen einen nichtleeren Durchschnitt hitte. Also mufli der Rand von T
leer sein, also 7' eine Komponente von R, also = R.

E und B definieren einen Nachbarschaftsraum R: Elemente
von R sind die V ¢ B,

Vi, V, heiBen benachbart, wenn V,~ ¥V, # 0.

R besitzt auf Grund von (K’), (S), (Z’) die Eigenschaften
(K), (8), (Z).

Ist R ein Polygon und ordnet man einer Ecke a von R die Vereinigung
von @ mit den von a ausgehenden offenen Kanten zu, so kommt man
zu einem System B, das der in 1.5 definierten Zuordnung fiir Polygone
entspricht.

4.6. Zwischen der Endentheorie von R und der von R (im Sinne
meiner Dissertation!)) besteht ein einfacher Zusammenhang, der be-
schrieben wird durch

Satz 2: Die Beziehung zwischen R und R gemiB 4.5 LiBt sich stetig
fortsetzen zu einer topologischen Abbildung der zugehérigen Enden-
mengen £ und E, und zwar stetig in dem Sinne, daf lim ¥V, = e im
Sinne von R dann und nur dann gilt, wenn es im Sinne von R gilt. Ins-
besondere haben also R und R ebenso viel Endpunkte.
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Die Zuordnung geschieht so: Sei

_ Qe (in R).
Wir setzen in R : _
Q=g@=UV.
Ver

Q ist offen. Ist ¢ Randpunkt von é, s0 ist ¢ in einem gewissen V, ¢ B,

das mit ¢, also mit einem der V ¢  einen nichtleeren Durchschnitt hat.
Also

ae U V.
VeHQ)

Andererseits ist a als Randpunkt von Z)
ceU V.
Also ist el
Rand (Q) c U V,
Veg@Q
also kompakt.
Ist umgekehrt

Q eine offene Menge von R mit kompaktem Rand,

80 setzen wir
Q@ = ¢'(Q) = Gesamtheit der V c Q .

Da die V ¢ B Gebiete sind, muB jedes, das Punkte von 6 enthilt, ohne
in @ enthalten zu sein, Punkte von Rand (@) enthalten, d. h.

aus VeF(Q) folgt V~Rand(@) #£o0.

Rand (@) ist in endlich viel ¥V zusammen enthalten, V,,..., V,. Also:

Ist VeF@), soist VeH(V)v ---vH(V,).
Also ist

¥ (@) endlich, also Q@ e Q.

9'9(Q) ist in $(Q) enthalten, unterscheidet sich also von Q nur in einer

endlichen Menge. Ebenso unterscheidet sich gg’ (Q) von Q hochstens in
der Vereinigung der V, die den Rand von @ iiberdecken, also in einer

13



kompakten Menge. Fiir die Bildung der Endpunkte sind zwei @ bzw. é,
die sich nur in einer endlichen bzw. kompakten Menge unterscheiden,
nicht wesentlich verschieden. In diesem Sinne ist die durch g und ¢’

vermittelte Beziehung zwischen den @ und den Q eineindeutig.

Man erhilt nun aus einem Endpunkt ¢ von R einen Endpunkt ¢’ von
R, indem man jedes @ e¢e¢ durch das zugehorige ¢(¢) ersetzt. Es ist

klar, daB € und € dann topologisch aufeinander bezogen sind, und daB
diese Beziehung stetige Forsetzung der zwischen R und R gegebenen ist.

b. Gruppen.
5.1. R sei von nun an eine
Gruppe G mit endlich vielen Erzeugenden.

Wir machen @ durch folgende Festsetzungen zu einem Nachbarschafts-
raum :
Sei U eine Teilmenge von G mit den Eigenschaften:

1. U ist endlich,

2. U enthilt die Identitit,

3. U enthélt mit jedem Element das inverse,

4. die kleinste Untergruppe von G, die U enthilt, ist mit @
identisch.

Wir nennen zwei Elemente

a,b benachbart, wenn a—1be U 19),

5.2. Wegen 5.1.2—3, ist der Nachbarschaftsbegriff symmetrisch und
reflexiv. Die Hiille von a wird

H(a)

$k(@) = aU* 1), 5.2.2

alU, 5.2.1
die k-te Hiille

10) Man konnte natiirlich ebensogut festsetzen: a@,b benachbart, wenn ab-'e U.
Statt der ,,Rechtsnachbarschaft‘‘ als Grundbegriff erhielte man dann eine ,,Linksnachbar-
schaft‘‘ als Grundbegriff. Beide diirfen nicht durcheinander geworfen werden, obschon sie
natiirlich isomorphe Theorien liefern.

11) In Gruppen bedeutet M N die Menge aller mn mit m € M, n € N. M? bedeutet
hier die Menge M + M « « -+ + M (p-mal).
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Hieraus folgt:

G ist ein Nachbarschaftsraum mit Giiltigkeit von (K), (S), (Z).

Wir konnen alles, was wir in § 1—4 entwickelt haben, anwenden.

5.3. Ersetzt man das System U durch ein anderes, U’, das auch die

Eigenschaften 5.1.1—4 besitze, so gelangt man nur zu einem #quiva-
lenten Nachbarschaftsbegriff.

Wegen 5.1.4 gibt es ndmlich ein k& mit
U cUk, UcU'k.

Setzt man das in 5.2.2 ein und beriicksichtigt man die Definition aus
1.10, so ist man fertig.

6. Endpunkte von Gruppen.

6.1. Rechtsmultiplikation und Linksmultiplikation mit einem festen
Element sind eineindeutige Abbildungen von G auf sich.

Rechtsmultiplikationen und Linksmultiplikationen lassen sich
topologisch bis in die Endpunkte hinein fortsetzen. Die Rechts-
multiplikationen lassen jeden Endpunkt invariant; die Links-
multiplikationen lassen die Begriffe ,,Nachbar®, , Hiille,
,,Jranse‘ invariant. (Dagegen werden die Linksmultiplikationen
im allgemeinen die Endpunkte nicht punktweise festlassen, und
die Rechtsmultiplikationen werden die Struktur von R zer-
storen.)

Die Beweise stehen in 6.2—3.

6.2. Rechtsmultiplikationen: Sei lima, =e¢. Wir beweisen, da(
dann auch lima,c = ¢. Wir brauchen das nur fiir den Fall ce U zu
beweisen — durch endlichfache Wiederholung ergibt es sich hieraus
allgemein. Sei also ¢ e U. Sei {@} irgendeine Umgebung von e mit @ « Q.
Fast alle

a”n € Q 1

also fast alle

a,ceQc c HQ)=0Q v F@).
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Da §(Q) endlich ist, sind also fast alle

a,cel.

Das gilt fiir jede Umgebung {@} von e, und damit ist lima,c = ¢ be-
wiesen — also alles, was wir iiber die Rechtsmultiplikationen aussagten.

6.3. Linksmultiplikationen: Bei der Linksmultiplikation mit a geht
2 in ax und y in ay iiber.

(@z)~Hay) = 71y .

Also gilt: sind «, ¥y benachbart, so sind ax, ay benachbart. Daher sind
,, Hille‘ und ,,Franse‘ linksinvariant,

H@M) = aH (M), FaM)=aFH).
Hieraus folgt:
Ist Q €, so ist auch aQ €« Q).
Ist e ein Endpunkt, so auch ae .
Ist {¢} Umgebung von e, so ist {aQ)} Umgebung von ae .

Hieraus ergeben sich alle zu beweisenden Aussagen iiber die Linksmulti-

plikationen.

6.4. Ist lima, =¢ und M endlich, ist ferner {Q} eine Umgebung
von ¢, so gilt fiir fast alle n
a,Mc@Q.

Denn nach 6.2 ist ac € Q

fir fast alle n. Angewandt auf die endlich vielen ¢ von M folgt hieraus
die Behauptung.

6.5. Seien {Q,}bzw. {Q,} Ungebungen der (evtl. zusammenfallenden)
Endpunkte ¢, bzw. ¢,; @,, @, ¢ Q. Sei lim a, =¢,. Dann
gilt fir fast alle n:

a,@; < @, oder (1)
a.Q: DO B\Q,. (2)

Zum Beweise bestimmen wir nach 6.4 7 so grof}, da3
2, F@:) < Q. (3)

16



Wir lassen den Index » von nun an weg. Wir nehmen an, daB

R\Q, & aQ, ' (4)

sei. Dann ist entweder

(BN\@)) ~aQ; = 0,

also a@, c Q,,
also (1) erfiillt, oder
(BN\Qy) ~aQy = @5 (5)
eine
nichtleere echte Teilmenge von R\, . (6)

Wir diirfen annehmen, daf3
RNQ,

zusammenhéngend ist (evtl. verkleinern wir @, um endlich viel Elemente,
um das zu erreichen). Wegen (5) und der Definition 3.4 ist

F(@) ~ (B\Q,) #0, (7)

da @, sonst Komponente von R\Q, also =R\, wire im Widerspruch
zu (6). Andererseits ist nach (5)

F(@)  H(E\Q,) ~ H(ak,),

also c [(B\@) ~ a@:] v F(B\Q1) v & (aQs) ,
also c F(RN\Q,) v F(aQ,)

also C @ v §(ay)

(nach 6.3) = Qv af (@)

(nach (3)) = @,.

Das steht im Widerspruch zu (7). Von den beiden Alternativschliissen,
die wir aus der Annahme (4) zogen, war also (5)—(6) unzulissig und
nur (1) zuldssig. Es gilt also: (1) richtig oder (4) falsch. Oder: (1) oder
(2) richtig, w.z.b.w.

6.6. e, e, seien zwei (evtl. zusammenfallende) Endpunkte, und
lim @, = ¢, . Dann ist

entweder lim a,e, = ¢, (1)
oder ¢; Hiufungspunkt der a! (2)

(aber nicht beides zugleich).
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Denn seien {@,}, {@;} Umgebungen von bzw. e;, e,. Tritt fiir fast
alle n der Fall 6.5.1 ein, so hat man fiir fast alle n

a’nez € {Ql} ’
also
lima,e, = e, .

Tritt dagegen fiir unendlich viele » der Fall 6.5.2 ein, so hat man unend-
lich oft

C eaan s

wo ¢ ein (festes) Element von R\, ist, also unendlich oft

a;'ce,.

Das gilt fiir jede Umgebung @, von ¢,, also ist e, Hiaufungspunkt der
a;'c, also nach 6.2 auch -

¢, Hiufungspunkt der a;’,
w.z. b.w.

6.7. Seien ¢,, e,, ¢, drei verschiedene Endpunkte und lima, = e, .
Die a, ! kénnen sich an und fiir sich bei allen drei Endpunkten e, ¢,, ¢,
hiufen; durch Auswahl kann man aber erreichen, daf sie sich bei hioch-
stens einem, etwa ¢’ hiufen (¢’ kann mit ¢, zusammenfallen); die beiden
anderen nennen wir ¢”, ¢”. Nach 6.6 ist

lim a,¢” = lim a,¢” = ¢, ,
also: in jeder Umgebung von ¢, liegen mindestens zwei Endpunkte. Also:

Gibt es mehr als zwei Endpunkte, so ist die Menge € der End-
punkte perfekt!?).

6.8. Die Endpunkte e, ¢/ heiBen einander invers, wenn eine Folge
a, existiert mit

lima, =¢, lima;'=c¢’.

Die Vereinigung aller zu ¢ inversen Endpunkte heifle ¢~ .

12) Satz von Hopf, L. c., S. 82.
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6.9. e !ist abgeschlossen.

Denn seien alle ¢, invers zu e und lim ¢, = ¢,. Seien {@} und {Q,}
bzw. Umgebungen von ¢ und ¢,. In jeder Umgebung von ¢,, also auch
in {Q,} gibt es Elemente a, mit a,;* ¢ Q. Das gilt fiir jedes Paar {Q}, {Q,}
von Umgebungen von ¢ bzw. ¢,. Also ist ¢, auch invers zu ¢, w.z.b.w.

6.10. Sind ¢ und ¢’ einander invers, so sind auch ae¢ und e’ einander
invers.

Denn es sei etwa lim ¢, = ¢, lim ¢, ' = ¢’. Dann ist nach 6.2:

limc, a1 =¢’.

Andererseits limac, =ae.
Das bedeutet, daB ¢’ und ae¢ invers sind.

6.11. Wir verstehen unter

Re die Menge aller ae, a e R.
Wir nennen
¢ linksinvariant, wenn Re¢ = ¢ ist.

Jede Gruppe befindet sich in einem der beiden folgenden Fille:

Entweder fiir jedes e

Re = € 6.11.1
und el = €. 6.11.2
Oder: es gibt einen linksinvarianten Endpunkt, 6.11.3

und jeder linksinvariante Endpunkt e, erfiillt
el = ¢, fiir jedes e # ¢, . 6.11.4
Zum Beweise nennen wir
V(e,) die Menge aller ¢ mit e~ = ¢,,

wenn ¢, irgendein Endpunkt ist. V(e,) kann natiirlich leer sein; im allge-
meinen besteht ja e—! aus mehr als einem Endpunkt.
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Wir haben

@:- V(eo)um 6.11.5

fiir jedes e, , denn ist

ee V(e
80 ist

et F e ;
es gibt dann eine Folge a, mit

lima, =¢
und

¢, nicht Hiufungspunkt von a;t;
also ist nach 6.6
lima,e, = e

in Re, enthalten. Also gilt 6.11.5 in der Tat.

Wir haben nun zwei Fille:

a) V(e) = o fiir jedes ¢. Dann ist nach 6.11.5
Re=G

fiir jedes ¢, also 6.11.1 giiltig. Ist weiter ¢, ein Endpunkt in e-1, so ist
nach 6.10

ae, C ¢,

Re, c e
und nach 6.9

Re, c e,
also nach 6.11.1

el = €,

so daf3 auch 6.11.2 gilt.

b) Fiir ein gewisses ¢, ist V(¢;) % O. Dann ist fiir ein gewisses ¢
el = ¢. (6.11.6)
Nach 6.10 sind dann aber auch ¢ und ae, invers, also wegen 6.11.6
aey, = €,
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womit 6.11.3 bewiesen ist. Man hat also

Reo == e0 ’
alsonach 6.11.5

e e V(e fiir alle e # ¢,,
d. h.

el = ¢, fiir jedes e # ¢,,

und damit ist zum SchluB auch 6.11.4 bewiesen.

6.12. Hat G zwei linksinvariante Endpunkte, so hat es genau zwei
Endpunkte.
Denn nach 6.11 gilt, wenn ¢, linksinvariant ist,

el = ¢, fiir jedes e # ¢, .
Ebenso, wenn auch e, linksinvariant ist,
e~1 = ¢, fiir jedes ¢ # ¢, .
Es kann also kein ¢ # ¢, und s e, geben.
6.12a. Hat G genau zwei Endpunkte, so sind sie zueinander invers.

Sind sie obendrein invariant, so ist keiner zu sich selbst invers. (Folgt
aus 6.11.2 und 6.11.4.)

6.13. Sind e, ¢’ zwei verschiedene einander inverse Endpunkte und
{Q}, {@'} bzw. (fremde) Umgebungen, so gibt es ein ¢ derart, dal

c@ echtin @,

¢c~1Q’ echt in Q'
enthalten ist.
Da ¢ und e’ invers sind, gibt es ndmlich eine Folge a,,,

lima, =e¢
lima;' =¢’.
Nach 6.5 gilt also fiir ein a, (das wir auch ¢ nennen diirfen)
CQ o Ql ’
Q' c @,
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wo @, und @; irgendwelche echte Teilumgebungen von @ und Q' seien.
Daraus folgt die Behauptung.

6.14. Eine Gruppe mit genau zwei Endpunkten besitzt eine unend-
liche zyklische Untergruppe von endlichem Index13).

Zum Beweise wihle man ein ¢ gemdfB 6.13. (Wegen 6.12a ist das
moglich.) Dann bilden die Mengen

c"Q
eine absteigende Folge. Der Durchschnitt ist leer, da ¢ sonst eine Folge
c"b

enthielte, was nach 6.13 nicht moglich ist. Jedes Element von @ liegt

also in einer der Mengen
crQN\e"tQ (n=0,1,2,...)

= (@ \cQ) .
Ebenso liegt jedes Element von @’ in einer der Mengen
c™(@\c1Q') .
Q\cQ und Q’'\c1Q’ sind endlich.
Jedes Element von @ ist also darstellbar in der Form

ca,,..., c"a, ,

mit geeigneten (aber festen) a,,...,a, und ganzem n.
c erzeugt also die gesuchte zyklische Untergruppe von endlichem Index.

6.15. Eine Gruppe, die eine unendliche zyklische Untergruppe von
endlichem Index besitzt, besitzt genau zwei Endpunkte!d).
Jedes Element von G ist ndmlich in der Form

C"Aqyy. .., C"A
darstellbar. Die von ¢ erzeugte Untergruppe besitzt die Endpunkte

e=1lime* wund ¢’ =limc™.

13) Auch dieser Satz ist von Hopf, L. c., S. 97.
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Jede unendliche Folge aus G liBt sich in Folgen

n —
c*a, und c"a,

mit festem « zerlegen. Nach 6.2 konvergieren diese gegen ¢ und e’.
Also sind das die einzigen Endpunkte von G. ¢ % ¢’ in G, da n > 0 bzw.
n < 0 zueinander fremde Umgebungen von ¢ bzw. ¢’ sind.

6.16. Satz 3:

1.

Die Kompaktisierung einer Gruppe G' von endlich vielen
Erzeugenden durch ihre Endpunktmenge € ist eindeutig
bestimmyt.

2. € besteht aus 0, 1, 2 Punkten, oder ist perfekt!2).

11.

12.
13.

14.

. 0 Endpunkte besitzen die endlichen Gruppen und nur diese.

2 Endpunkte besitzen die Gruppen mit unendlicher zykli-
scher Untergruppe von endlichem Index und nur diese!3).

. € st invariant bei Linksmultiplikationen und punktweise

invariant bei Rechtsmultiplikationen.
Die a e liegen entweder iiberall dicht oder ¢ ist linksinvariant.

- Es kann 0, 1 oder 2

linksinvariante Endpunkte geben — wir sprechen dann von

elliptischen, parabolischen oder hyperbolischen
Gruppen.

Gruppen mit 0 Endpunkten sind elliptisch.

. Gruppen mit 1 Endpunkt sind parabolisch.
10.

Gruppen mit 2 Endpunkten sind elliptisch oder hyper-
bolisch. :
Gruppen mit oo viel Endpunkten sind elliptisch oder (?)
parabolisch. (Ob hier der parabolische Fall wirklich ein-
treten kann, ist unsicher.)

Bei elliptischen Gruppen ist e~! = € fiir jedes e.

Bei parabolischen Gruppen mit dem linksinvarianten End-
punkt e, ist e-1 = ¢, fiir alle e #¢, und ¢;' = €.

Bei hyperbolischen Gruppen sind die beiden (invarianten)

Endpunkte zueinander invers, aber keiner zu sich selbst
invers.

12) Satz von Hopf, 1. c., S. 82.
13) Auch dieser Satz ist von Hopf, 1. c., S. 97.
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Wir geben zu jeder Nummer an, wo sie bewiesen ist. 1. in 5.2—3.
2.in 6.7. 3. trivial. 4. in 6.14—15. 5. in 6.1—3. 6. in 6.11.1 und
6.11.3. 7. in 6.12 (Beispiele folgen). 8. trivial. 9. trivial. 10. trivial
(Beispiele folgen). 11.in 6.12. 12.in 6.11.2. 13. Die erste Aussage steht
in 6.11.4, die andere ergibt sich so: ¢;'> E\e¢,, also = € wegen der
Abgeschlossenheit von ¢! und der Perfektheit von €. 14. in 6.12a.

6.17. Beispiele:

1. Gruppe mit einem Endpunkt: abelsche Gruppe von 2 Er-
zeugenden.

2. Hyperbolische Gruppe: zyklische unendliche Gruppe.

3. Elliptische Gruppe mit 2 Endpunkten: die Gruppe mit den
2 Erzeugenden s und ¢ und den Relationen

82 = stst = Identitéat.

4. Elliptische Gruppe mit co vielen Endpunkten: freie Gruppe
von 2 Erzeugenden.

1. $™(1) besteht aus uv’ mit |i| + |j| =< », wenn u, v die Erzeugenden
sind. R\$H™(1) ist also zusammenhingend.

2. $™(1) besteht aus den u?, || < », wenn u die Erzeugende ist. R\ $H™(1)
besitzt die Komponenten ut,7 >n und 1 < — n. w-uf = wi+, d. h.
die Endpunkte bleiben fest.

3. Man zieht aus den beiden Relationen:

st = t1s,
also

stt = t~%g.
Man kann mit dieser Relation alle Elemente von G auf die Gestalt
ti 80,1

bringen. Man erhilt fiir
o), Jil=n

tls, |1|=mn—1.
Die Komplementérmenge besitzt also wieder zwei Komponenten P, P’

Bei den tis1e P it 1>0,
e P’ 1<0.
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Linksmultiplikation mit s liefert
stighl = -igh?,
also Vertauschung der beiden Endpunkte.

4. Die Erzeugenden seien » und ». Die ,,Worte‘
w=ulvl ... uko! =
verteilen sich auf vier Mengen:
U,:v>0-U_:1<0.
Vyit=0,>0.V_:1=0,7<0.

Alle haben die Franse 1, gehoren also zu Q, sind unendlich und paar-
weise elementefremd. Jede enthilt mindestens einen Endpunkt; es
gibt also vier, also oo viel Endpunkte. Der Automorphismus

U <>V

vertauscht die linksinvarianten Endpunkte untereinander, aber auch
U, mit V, und U_mit V_. Gibt es einen linksinvarianten End-
punkt, so gibt es zwei, was nicht moglich ist.

Die Gruppe ist demnach nicht parabolisch, also elliptisch.

Problem: Gibt es iiberhaupt parabolische Gruppen mit unendlich
vielen Endpunkten ?

7. Untergruppen.

7.1. Wir nennen

S, die Untergruppe aller ¢ mit ae = e.
7.2. S, = cS.ct.
7.3. Sei a, eine Folge aus §,. Dann ist

entweder lima, =-c¢ 7.3.1

oder ¢ Haufungspunkt der a;'. 7.3.2
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Denn sei 7.3.2 falsch und a,. eine Teilfolge mit

lima, = ¢ #e. 7.3.3
Dann ist nach 6.6
lima,e = ¢,
also wegen a,.¢ = ¢
e = ¢

im Widerspruch zu 7.3.3. Also muf} entweder 7.3.1 oder 7.3.2 gelten.

7.4. Ist S,~ S, unendlich, so sind ¢ und ¢’ gleich oder invers.

Denn sei a,, eine Teilfolge von S, ~ S,. . Dann gibt es auch eine Teil-
folge b, mit ]

limb, =¢e
(némlich entweder a,, selbst oder — nach 7.3 — eine Teilfolge von a;!).
Nun ist .
limb, =¢' # ¢
ausgeschlossen, also nach 6.6
¢’ Hiufungspunkt von b;?'.

Es gibt also eine Teilfolge ¢, mit

lime, =e¢, lime;'=¢,
w.z.b.w.

7.5. Sind e,, ¢,, ¢, drei verschiedene Endpunkte, so ist
endlich. Bei~ Beu ™ Be,
Denn nach 7.4 gibt es eine Folge c, mit
lime, =¢;, limc'=e¢,

im Widerspruch zu 7.3, angewandt auf e,.

7.6. Wir fithren den Gedankengang von 6.13 weiter: ¢ und e’ sind
zueinander inverse Endpunkte mit den im Sinne von R zusammen-
hingenden Umgebungen {Q@}, {@’}. Man findet ein ¢ so, dafl die

cnQ
cnQ’

und die

absteigende Folgen bilden.
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Ne@ =nec"Q’ = o,
n n

da sonst z. B. @ eine Folge ¢c—™b enthielte, was nicht moglich ist. c*@Q ist
zusammenhéngend. Es gibt also (siehe 4.1—3) zu jedem % ein n, so daB

c"Q in genau einem P k13%)
enthalten ist.
Nc*{Q} (ebenso N c™{Q'})
n n

besteht also aus genau einem Endpunkt

e; = limc¢® (bzw. e; = limc¢™).
Man hat
ce; = ¢,, C¢ = ¢,

cle,=¢,, cl¢;=e¢e,,
d. h. 1 1 1 1
S, ~ S, enthilt ein Element unendlicher Ordnung.

Wir haben demnach bewiesen :

Zu jedem Paar verschiedener, zueinander inverser Endpunkte
¢, e’ gibt es in beliebiger Nihe ein Paar inverser Endpunkte
¢1, ¢; mit unendlichem

S, ~ S;l .
Sowie:
Jede Gruppe mit mehr als einem Endpunkt besitzt Elemente
unendlicher Ordnung. (Dieser Satz gilt aber allgemeiner.)

7.7. Ist T eine unendliche Untergruppe von S, ~ 8, und c¢7¢?
ebenfalls in S, ~ §,, enthalten, so ist

ce=¢, ce =¢’
oder ce=¢, ce/=ce,
Czesef\Se,.

Sei nidmlich
an € T (- Se mn Sel

eine unendliche Folge. Man darf auf Grund von 7.3 (nach evtl. Ubergang
zur inversen und Auswahl) voraussetzen, da@3

lima, =e¢, lima,'=c¢’. (1)

13a) k ist hier natiirlich nicht Exponent.
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Nun ist auch

cacteclecrc8,~8,;

man darf also nach 7.3 wiederum voraussetzen, daf

entweder lim ca,c'=¢, limca,'c!=¢’

oder lim ca,c7l=¢’, limca,'cl=-¢
ist, also nach 6.2

entweder lin ca,, =¢, limeca,* =¢e'

oder limca, =-¢e¢/, limca,? =ce,
d. h. wegen (1)

entweder ce=¢, ce =¢’

oder ce=¢e/, ce/=ce,
jedenfalls aber

ce=¢e, c%' =¢e',
also
02 € Se n Sel )
w.z.b.w.
7.8. Wir fassen die Ergebnisse zusammen in

Satz 4: 1. Die Untergruppen S, der Elemente von R, die die Endpunkte

¢ bei Linksmultiplikation festlassen, haben zu je dreien einen
endlichen Durchschnitt und zu je zweien hochstens dann einen
unendlichen Durchschnitt, wenn die zugehodrigen Endpunkte
zueinander invers sind; in jeder Umgebung jedes inversen
Endpunktpaares kann man ein Endpunktpaar finden, fiir das
der Durchschnitt in der Tat unendlich ist.

2. Ist
T unendlich, T c 8,~8,., ¢Tc1e8,~ 8, ,
80 1ist
ce=¢, ce/=¢’
oder ce=c¢e/, ce/=c¢e
und c2eS,~ S, .

7.9. Man kann Satz 4 zu einem abstrakten notwendigen Kriterium fiir
die Existenz unendlich vieler Endpunkte ausgestalten, indem man von der
zwischen 8, und seinem Endpunkt ¢ bestehenden Beziehung abstrahiert.
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Satz 5: Zu einer Gruppe G mit unendlich vielen Endpunkten gibt es
ein System 2’ von Untergruppen 8 mit folgender Eigenschaft:

1. 2 enthilt mit jeder Gruppe alle konjugierten.

2. Jedes Tripel von 2 hat einen endlichen Durchschnitt.

3. Es gibt unendlich viel Paare von 2 mit unendlichem Durch-
schnitt.

4. Ist S,, 8; ein Paar von Y, T unendlich, 7' < 8, ~ S,,

cTecr c8,~8,, soist c2e8;~ 8, und ¢8,c* = 8, oder S,.
Ist die Gruppe obendrein parabolisch, so fillt genau eine
der Gruppen S von 2 mit G zusammen.

Man nehme natiirlich fiir 2’ das System aller unendlichen Gruppen 8, .
Die im parabolischen Fall mit G zusammenfallende Gruppe gehért zum
linksinvarianten Endpunkt.

7.10. Als Anwendungsbeispiel beweise ich:

Das direkte Produkt zweier unendlicher Gruppen G und H
besitzt genau einen Endpunkt.

(Allerdings kann man diesen Satz mit anderen Methoden einfacher
beweisen — siehe die zweite zitierte Arbeit des Verf.2), Satz 8 — aber
darauf soll es uns hier nicht ankommen.)
. Nach Satz 3, (3)—(4) sind die Moglichkeiten ,,0 und 2 Endpunkte‘‘ aus-
geschlossen. Wir schlieBen nun die Méglichkeit ,,co viel Endpunkte‘‘ aus.

Seien coviel Endpunkte vorhanden. Nach 7.6 gibt es ein Element
unendlicher Ordnung

c=aXxXb, ae@, beH,

lime®» =¢ , lime™=c¢e’.
¢ erzeugt eine unendliche zyklische Gruppe 7' c 8, ~S,,. Nun ist
co=1X2b
mit 7 elementweise vertauschbar, also nach Satz 4
c=1Xxb*e8 ~8<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>