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Beitrdage zur Homotopietheorie

Von HEeinz Horpr, Ziirich

Diese Beitrige setzen die Untersuchung der Zusammenhinge fort, die
zwischen den Homotopiegruppen von Hurewicz, der Fundamentalgruppe
und den Homologiegruppen bestehen; derartige Untersuchungen sind
bereits in den grundlegenden Arbeiten von Hurewicz [1], in einer Arbeit
von Eilenberg [2] und in zwei Arbeiten von mir [3, 4] angestellt worden?);
Begriffe, Methoden und Sétze aus diesen Arbeiten werden im folgenden
benutzt.

Die Ergebnisse sind in den Abschnitten 2.1, 2.2, 3.5, 4.3, 4.9, 5.4,
5.5 formuliert; die Erklirung der in diesen Sitzen vorkommenden Be-
griffe findet man in den Abschnitten 1.1 bis 1.5, 3.1, 3.2, 4.1, 4.2, In
den Abschnitten 2.7 und 5.6 ff. wird durch einige spezielle Beispiele
gezeigt, in welchen Richtungen sich die allgemeinen Sidtze anwenden
lassen.

1. Definition der Gruppen I73, '™, A™

1.1. R sei ein beliebiger zusammenhéngender, simplizialer Komplex,
endlich oder unendlich, und & das durch & bestimmte Polyeder?). Die
Homotopiegruppen von | nennen wir auch die Homotopiegruppen des
Komplexes & und bezeichnen sie mit I7*(K) oder, wenn kein MiBiver-
stdndnis moglich ist, kurz mit 7I*; (n =1,2,...).

Die Definition dieser Gruppen ist bekannt ([1], (I)). Es sei hier nur an
folgendes erinnert: Die Elemente von IT" sind die Aquivalenzklassen der-
jenigen Abbildungen?) einer Sphiire S* in das Polyeder &, welche einen
festen Punkt a ¢ S*, den ,,Pol, auf einen festen Eckpunkt o von &, den
,,Nullpunkt‘“ abbilden; dabei gelten zwei Abbildungen f,g als &qui-
valent, wenn man sie unter Festhaltung des Bildes von a stetig ineinander
deformieren kann.

1.2. Ein ,stetiger Zyklus“ [f(2)] in & ist durch eine Abbildung f
eines Polyeders z in das Polyeder | bestimmt, wobei z ein Zyklus ist

1) Literaturverzeichnis am Schluf3 der Arbeit.

?) Terminologie immer wie in [6]. — Nur statt ,,algebraischer Komplex‘‘ sage ich jetzt
»Kette .

3) Alle Abbildungen von Sphéren und anderen Polyedern sollen stetig, alle Abbil-
dungen von Komplexen simplizial sein.
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([6], p. 3321f.). Ist speziell z =8™ der Grundzyklus einer orientierten
n-dimensionalen Sphire, so nennen wir [f(S")] eine ,,stetige (n-dimen-
sionale) Sphire“. Die Elemente der oben betrachteten Aquivalenz-
klassen sind also stetige Sphéren.

Die stetigen Spharen [f(8")], [¢(S")] heiBen ,,homotop* zueinander,
wenn die Abbildungen f, g homotop sind, d. h. wenn sie sich stetig inein-
ander deformieren lassen, wobei im Gegensatz zu oben kein Pol a aus-
gezeichnet ist. Je zwei stetige Sphiiren aus einer Aquivalenzklasse sind
homotop; daraus folgt: wenn eine stetige Sphire aus der Aquivalenz-
klasse « zu einer stetigen Sphire aus der Aquivalenzklasse «’ homotop
ist, so ist jede stetige Sphire aus « zu jeder stetigen Sphire aus «’ homo-
top; in diesem Falle nennen wir die Elemente «, o’ zueinander homotop.
Die Gruppe II" zerfillt so in Homotopieklassen.

Es kann vorkommen, da jede Homotopieklasse von /I* nur ein ein-
ziges Element enthilt, daBl also zwei verschiedene Elemente von /7" nie-
mals zueinander homotop sind. In diesem Falle heiBit & ,,einfach* in der
Dimension = . Dies ist speziell dann der Fall, und zwar fiir alle », wenn &
einfach zusammenhéngend, d. h. wenn die Fundamentalgruppe /I =0
ist [2].

1.3. Unter 17 verstehen wir die Untergruppe von II*, die von allen
Differenzen o — &’ erzeugt wird, wobei «,a’ beliebige zueinander
homotope Elemente von II™ sind; sie besteht aus allen Summen
2 (6; —«}), wobei immer &; und «; homotop sind.

Wenn K in der Dimension 7 einfach, also insbesondere wenn K einfach
zusammenhéngend ist, ist [ =0.

1.4. Jeder stetige Zyklus in & gehort zu einer bestimmten Homologie-
klasse von R ([6], p. 334). Homotope stetige Zyklen gehéren zu derselben
Homologieklasse ; hieraus folgt erstens, dal jedem Element « eI/I™ eine
bestimmte Homologieklasse ha zugeordnet ist, und zweitens: sind «, &’
homotope Elemente von IT", so ist hx = ha'.

Aus den Definitionen der Addition in /7* und in der Bettischen Gruppe
B" von K ergibt sich, dal » eine homomorphe Abbildung von /7/” in B
ist. Der Kern dieses Homomorphismus, also das Urbild des Nullelementes
von B, ist eine Untergruppe von /I*, die wir I'* nennen; sie besteht also
aus denjenigen Elementen von /7", die die Eigenschaft haben, dafl die
in ihnen enthaltenen stetigen Sphéren homolog 0 sind. (Wenn & n-dimen-
sional ist, so darf man hierbei statt ,,homolog 0‘‘ auch ,,gleich 0%, im
Sinne der Addition von Ketten, sagen.) Wir werden die in /™ enthaltenen
Elemente von II” selbst ,,homolog 0‘‘ nennen.
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1.5. Wenn «, a’ zueinander homotop sind, so ist, wie in 1.4 fest-
gestellt wurde, ho =ha', also h(x —a’) =0, d.h. « — &’ homo-
log 0, und folglich sind alle Elemente der Gruppe I3 homolog 0; man
kann sagen, dafl das diejenigen Elemente von II” sind, welche bereits
auf Grund ihrer Homotopieeigenschaften ,,trivialerweise‘‘ homolog 0 sind.

Es ist also IIj c I'", und mithin ist die Faktorgruppe 4" =I1"/IT}
erklidrt. Diese Gruppen 4™ werden den Hauptgegenstand unserer Unter-
suchung bilden; in ihrer Struktur duBlern sich die Existenz und Eigen-
schaften solcher Elemente von I7%, welche homolog 0 sind, fiir welche
dies aber nicht ,trivial“ — in dem soeben besprochenen Sinne — ist.

Wenn 8 in der Dimension 7 einfach, also insbesondere wenn K einfach
zusammenhiéngend ist, ist A?= 1",

1.6. Die Gruppe /I' ist die Fundamentalgruppe von K. Sie ist, im
Gegensatz zu I/", n > 1, im allgemeinen nicht kommutativ, und man
schreibt sie, im Gegensatz zu II",n>1, nicht additiv, sondern multipli-
kativ. Zwei Elemente «, «” e/I' sind dann und nur dann homotop, wenn
sie dhnlich sind, d. h. wenn ein g eII' existiert, sodaBl o’ =fuap! ist
([6], p.176); an die Stelle der oben betrachteten Differenzen « — «’
treten also die Kommutatoren «fa-18-1, und I7; ist die Kommutator-
gruppe von II'. Andererseits sind die Elemente der Kommutatorgruppe
von II* dadurch charakterisiert, dafl die sie reprédsentierenden geschlos-
senen Wege, als stetige Zyklen aufgefaBit, homolog 0 sind ([6], p. 173);
folglich ist auch I die Kommutatorgruppe von IT'. Es ist also I} =1I™

und damit A4' =0. — Die Gruppen A4” verdienen also nur fir » > 1
Interesse.

1.79. SchlieBlich sei noch darauf hingewiesen, da die Homotopie
zwischen zwei Elementen «, o’ e/I* nach Eilenberg [2] auch folgender-
maBen charakterisiert werden kann (diese Charakterisierung wird nur
einmal, in 2.6, explizit eine Rolle spielen): Den Elementen « der Funda-
mentalgruppe II' sind in natiirlicher Weise Automorphismen A4, der
Gruppe II" zugeordnet; II™ ist also als ,,Gruppe mit Operatoren‘‘ aufzu-
fassen, wobei IT' der Operatorenbereich ist. Es gilt der Satz: ,,Die Ele-
mente «, &’ eII" sind dann und nur dann homotop, wenn es ein x eII*
gibt, sodaB &’ = A, x ist“ ([2], §§ 9,11). — (Fir » =1 sind die 4,
die inneren Automorphismen von /7.

Hieraus folgt, daB durch die Struktur von II* als Gruppe mit Opera-
toren in dem soeben erklirten Sinne die Gruppe /I vollstéindig bestimmt
ist.
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2. Der Zusammenhang zwischen den Gruppen A" ({") und der Funda-
mentalgruppe

2.1. K heiBt ,,asphérisch* in der Dimension », wenn IT*"()) =0 ist,
d. h. wenn jede stetige m-dimensionale Sphiire in & auf einen Punkt
zusammengezogen werden kann ([1], (IV)).

Wir betrachten N-dimensionale Komplexe & =&Y und werden
zeigen :

Es sei N >2, und &Y sei asphirisch in den Dimensionen m mit
1 <n < N. Dann ist die Struktur der Gruppe A¥(KY) durch die Struktur
der Fundamentalgruppe IT'(RKY) bestimmd.

Die Voraussetzung iiber K ist inhaltlos, wenn N =2 ist; daher
enthilt dieser Satz den folgenden:

Fiar jeden zwerdimensionalen Komplex K2 ist die Struktur der Gruppe
A4%(K2) durch die Struktur der Fundamentalgruppe II'(KR2) bestimmd.

2.2. Diese Sitze lassen sich noch prézisieren. Jeder abstrakten Gruppe
® sind durch einen algebraischen Prozef3, den ich frither dargestellt habe,
Abelsche Gruppen !, ®2,... zugeordnet, die ,,zu ® gehorenden Bet-
tischen Gruppen‘ ([4], § 1)*). Welche Eigenschaften dieser Gruppen wir
hier brauchen, wird unten in 2.4 gesagt werden. Es gilt

Satz I. Esset N > 2, und & sei ein N-dimensionaler Komplex, der
die Fundamentalgruppe ® besitzt und asphdrisch in den Dimensionen n
mit 1 <n< N ist. Dann ist AY(KY) = G . 9)

Speziell gilt also, analog wie in 2.1,

Satz I'. Fiir jeden zwetdvmensionalen Komplex K2 mit der Fundamental-
gruppe ® st A*(K2) = G

2.3. Beweis von Satz I. K sei der universelle Uberlagerungskomplex
von & = R¥. Die Abbildung, die jedem Punkt p ¢ K den von ihm
iiberlagerten Punkt p ¢ & zuordnet, heisse U. Der Homomorphismus
h sei fiir K ebenso erklirt, wie in 1.4 der Homomorphismus 4 fiir K.

Die nachstehenden Tatsachen a), b), ¢) sind aus der Theorie von Hure-
wicz bekannt:

a) U bildet fir » > 1 die Gruppe I*(K) isomorph auf die Gruppe
Im(K) ab ([1], (I), Satz IV).

4) Der Koeffizientenbereich ist immer der Ring der ganzen Zahlen.
5) Durch diesen Satz wird die am SchluB von [4] angekiindigte Beziehung hergestellt.
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Hieraus folgt, da auch K in den Dimensionen » mit 1<n <N
asphérisch ist; K ist aber einfach zusammenhingend, d. h. auch asphi-
risch in der Dimension 1. Daher gelten b) und c¢):

b) K ist in den Dimensionen n mit 1 <{n < N azyklisch, d. h. die
Bettischen Gruppen dieser Dimensionen sind Null ([1], (II), Satz II);

c) k bildet die Gruppe I7¥(K) isomorph auf die Bettische Gruppe
BY¥(K), also, da K N-dimensional ist, auf die Gruppe Z~¥ der N-dimen-
sionalen Zyklen von K ab ([1], (II), Satz I).

2.4. Die Decktransformationen von K, welche & erzeugen, bilden
eine mit ® isomorphe Gruppe. Sie bewirken Automorphismen der Grup-
pen Z¥ und IT¥ (K) (cf. [2]).

Unter ZY verstehen wir die Untergruppe von Z¥, die von allen Diffe-
renzen z — Az erzeugt wird, wobei z alle Elemente von Z¥ und A4 alle
Decktransformationen durchléduft.

XY sei die Gruppe derjenigen N-dimensionalen Ketten von K, welche
durch U auf die Null abgebildet werden. Da UAz = Uz fiir jede Deck-
transformation 4 und jede Kette z ist, ist ZY¥ < X7 .

Mithin ist die Faktorgruppe (X3 ~ Z¥)/Z{ erklirt. Sie ist, da 2.3 b)
gilt, nach einem frither bewiesenen Satz ([4], Satz 1V) isomorph mit

®N+1

2.5. Jede Abbildung eines Komplexes auf sich oder auf einen anderen
Komplex ordnet der, gemifl 1.4 erklirten Homologieklasse eines Ele-
mentes einer Homotopiegruppe die Homologieklasse des Bildelementes
zu. Angewandt auf die Abbildung U und auf die Decktransformationen
A liefert diese Bemerkung die Regeln

Uh =hU, AR =1A.

2.6. Infolge 2.3 a) und c) ist AU-! =H ein Isomorphismus von
II¥(]) auf Z%.

Aus 2.5 folgt hoo = UHa fiir jedes « e/I¥(R). Da die Elemente «
von I'(!) durch hx =0 charakterisiert sind, sind also ihre Bilder
z =Hox durch Uz =0, also durch z e XY ~ Z¥ charakterisiert. Es
ist daher HI'Y(]) =X¥ ~Z"V.

Nach einem Satz von Eilenberg ([2], §§9, 11) sind die Elemente
x, o’ eII"(]) dann und nur dann homotop, wenn es eine Decktrans-
formation 4 gibt, sodal U-'a’ =A4 U '« ist (cf. 1.7); diese Bedingung
ist nach 2.3 c) gleichbedeutend mit AU-'a’ =hAU-'«, also nach 2.5
mit Ho' = AHx; die Differenzen « —«’, wobei «,x’ homotop
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sind, gehen also bei H iiber in die Differenzen z — Az. Das bedeutet:
HITY(R) =27 .

Mithin wird die Faktorgruppe A4¥(R) = I'/IIY durch H auf die
Faktorgruppe (XX ~Z%¥)/Z{ abgebildet. Hieraus und aus 2.4 ergibt
sich Satz I.

2.7. Bemerkungen zum Satz I'. Zu jeder abzihlbaren Gruppe ® kann
man bekanntlich zweidimensionale Komplexe K2 konstruieren, deren
Fundamentalgruppe ® ist®). Man wird versuchen, einen solchen Komplex
K? zu finden, der moglichst einfach ist, in dem Sinne, da er moglichst
wenig geschlossene zweidimensionale Gebilde enthilt, wobei wir unter
s-geschlossenen Gebilden‘‘ sowohl Elemente der Bettischen Gruppe, also
der Zyklengruppe, als auch Elemente der Homotopiegruppe verstehen
werden. Nun wird aber im allgemeinen die Existenz solcher Gebilde in
nicht zu geringer Anzahl durch die Struktur von & unvermeidlich ge-
macht; und zwar ist uns hieriiber jetzt folgendes bekannt:

Erstens ist nach einem fritheren Satz?): B2/G2 = $2, wobei B2 die
Bettische, also die Zyklengruppe und &2 die Gruppe derjenigen Zyklen
ist, welche simpliziale Bilder einer Kugelfliche sind (cf. 3.2); wenn
®?2 £ 0 ist, ist also das Auftreten von Zyklen, die nicht homolog 0 sind,
unvermeidlich. Zweitens ist nach unserem Satz I’: I'?/II; =~ %*; wenn
®?2 # 0 ist, so ist also auch das Auftreten von Kugelbildern unvermeid-
lich, welche nicht homotop 0, aber homolog 0 sind, sich also in der Gruppe
B2 nicht bemerkbar machen (die schwéchere Tatsache, dafl /72 £ 0 sein
mub, falls ®* £ 0 ist, ist in einem schon frither bewiesenen Satz ([4],
16.2) enthalten).

Ist z. B. ® die freie Abelsche Gruppe vom Range r, so ist " die freie

Abelsche Gruppe vom Range (;), ([4], 10.2); folglich existieren dann in
K2 wenigstens (g) Zyklen, die linear unabhéngig (im Sinne der Addition
von Ketten) sind, und zwar solche Zyklen, welche nicht Bilder von Kugeln
sind; sowie wenigstens (;) Kugelbilder, welche linear unabhingig im

Sinne der Addition in der Homotopiegruppe /12 sind, und dies sogar,
wenn man modulo7; rechnet, und zwar solche Kugelbilder, welche homo-
log 0, aber nicht ,,trivialerweise‘‘ homolog 0 (im Sinne von 1.5) sind.

¢) Nach der in [6], p. 180, Aufgabe 3, angedeuteten Methode kann man zunéchst
einen (i. a. unendlichen) Komplex mit der Fundamentalgruppe & konstruxeren, der
Komplex f2 seiner hdchstens zweidimensionalen Simplexe hat dann auch die Fundamen-
talgruppe G.

7) [8]; sowie [4], 9.2; die Gruppe (%? hieB in [8] ®] ; wegen der Gleichheit (%= (51
vgl. man [4], Nr. 12,
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3. Homotopieriinder; die Gruppen &"

Die Theorie der N-dimensionalen Homotopierinder ist fiir den Fall
N =1 in [3], § 2, entwickelt worden. Die Beweise lassen sich ohne Miihe
auf die Fille N > 1 iibertragen®); ich verzichte daher hier auf ihre
Darstellung. Die Grundbegriffe werden in 3.1, 3.2, 3.3 erklirt; in 3.4
werden die frither bewiesenen Tatsachen formuliert.

K ist wie bisher ein beliebiger Komplex, & der Komplex seiner hoch-
stens N-dimensionalen Simplexe, N > 1.

3.1. E¥*! gei ein orientiertes, simplizial untergeteiltes, (N + 1)-
dimensionales Element (d.h. topologisches Bild eines Simplexes), S¥
seine Randsphire, auf der ein Pol a ausgezeichnet sei. f sei eine simpli-
ziale Abbildung von E¥*! in R, bei welcher f(a) =o0 der Nullpunkt
der Gruppe IT¥(RY) ist. Hierdurch ist erstens die (N - 1)-dimensionale
Kette C =f(EY*") in K gegeben und zweitens das durch die stetige
Sphére [f(S¥)] bestimmte Element « ¢II¥(R%). Wir nennen « ,,einen
Homotopierand‘‘ von C .

(DaB wir nicht die stetige Sphire [f(S¥)], sondern das Element «
als Homotopierand von C bezeichnen, ist durch die folgende leicht beweis-
bare Tatsache gerechtfertigt: wenn [g(S¥)] eine in K mit [f(S™)]
homotope stetige Sphire ist, so 148t sich die Abbildung g von S¥ zu
einer solchen Abbildung von E¥*! erweitern, daB auch ¢g(EV*t!) =C
ist; cf. [3], Nr. 8, b.)

3.2. Ein (N + 1)-dimensionaler Zyklus in & heif}t ein ,,sphérischer*
Zyklus — frither ,,Kugelbild* genannt —, wenn er simpliziales Bild
einer (N -+ 1)-dimensionalen, orientierten Sphéire (genauer: des Grund-
zyklus einer solchen Sphire) ist.

Man sieht leicht (cf. [3], Nachtrag, Nr. 1): Die sphérischen Zyklen
bilden eine Gruppe; diese Gruppe heie S?**. Bezeichnen wir die Gruppe
aller Zyklen mit 3%+, die Gruppe derjenigen Zyklen, welche in & homo-
log 0 sind, mit $¥*?, so ist JV*! o SV+1 5 ¥+, Aus &V o I¥+!
folgt, daBl eine Homologieklasse entweder keinen sphérischen Zyklus
oder nur sphérische Zyklen enthilt; diejenigen Homologieklassen, deren
Zyklen sphirisch sind, bilden die Untergruppe &¥*! = &¥*1/§¥+1 der
Bettischen Gruppe B+l Es ist B+ /S¥+1 = V+1 /SN+1,

Ubrigens kann man die Gruppe &¥** auch folgendermaBen definieren :
b habe dieselbe Bedeutung wie in 1.4; dann ist G¥*! = RIT¥tY(R).

8) Fiir N > 1 tritt sogar gegeniiber N = 1 eine Vereinfachung ein, da die in [8],
Nr. 8, g), betrachtete Gruppe P jetzt Abelsch wird.
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3.3. Diejenigen Elemente von IT(RY), welche in & homotop 0 sind,
bilden eine Gruppe R. Unter R, verstehen wir die Untergruppe von R,
die von allen Differenzen ¢ — o’ erzeugt wird, wobei g, o’ Elemente
von R sind, die zueinander homotop sind (in }Y). Esist R, c ITY(]KY),
also auch R, c I'Y(]KY) und R, c R ~ 'Y (KY).

Bei unserer fritheren Behandlung des Falles N =1 hatte R dieselbe
Bedeutung wie jetzt; die Gruppe [I7Y(K') hieB §, II(K!) =I"(K!) hieB
€, und R, hieB C(R).

3.4. Es gelten die folgenden Sitze ([3], § 2):

Jeder Homotopierand ist Element von R ; jedes Element von R ist
Homotopierand. Jede Kette C besitzt Homotopierdnder (d. h. C 148t sich
wie in 3.1 als Bild f(E¥*') darstellen); die Homotopierinder von C
bilden eine der Restklassen, in welche R modulo R, zerfillt. Nennen wir
diese Restklasse 7'(C), so ist demnach 7T eine Abbildung der Gruppe
2¥+1 aller (N 4 1)-dimensionalen Ketten von & auf die Gruppe R/R, .
Diese Abbildung 7' ist ein Homomorphismus. Die Zyklen sind dadurch
charakterisiert, daB ihre Homotopierinder in I'*(]”), und die sphi-
rischen Zyklen dadurch, daf ihre Homotopierdinder in R, enthalten
sind; S%*! ist also der Kern des Homomorphismus 7', und 3¥*! ist
bei T das Urbild der Gruppe R ~ I'¥(]Y)/R,; folglich ist

3N+1/'6—N+1 ; ‘.R A FN(RN)/mo
und daher (cf. 3.2) auch
BV /S¥HL =R ~ T'Y(KRY)/R, . (1)

3.b. Soweit die frither fiir N =1 ausfiihrlich dargestellten Tatsachen.
— Wir ziehen zunichst eine Folgerung aus (1), die mit folgendem Satz
von Hurewicz zusammenhingt ([1], (II), Satz I): ,,Wenn ein Komplex
asphirisch in den Dimensionen 1,2,..., n —1 ist, so hat der Homo-
morphismus % (cf. 1.4) in der Dimension n die folgenden beiden Eigen-
schaften: a) er ist ein Isomorphismus, d. h. es ist I =0; b) er ist eine
Abbildung von /1" auf B", d. h. jeder n-dimensionale Zyklus ist sphérisch
(cf. 3.2).

Wir behaupten nun, daBl die Aussage b) giiltig bleibt, wenn man den
Komplex nur in den Dimensionen 1,..., n — 2 als asphirisch voraus-
setzt; mit anderen Worten, wobei wir » — 1 durch N ersetzen:

K sei asphirisch tn den Dimensionen 1,2,..., N —1; dann ist jeder
(N + 1)-demensionale Zyklus sphdrisch (N = 2).
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Beweis: Da fir » < N immer IT"(R)= IT"(]Y) ist, ist auch K in
den genannten Dimensionen asphirisch, und nach Teil a) des soeben
zitierten Satzes von Hurewicz ist daher I'(RY) = 0; aus (1) folgt daher
B+ =SV w.z.b.w.

Demnach sind z. B. in einem einfach zusammenhingenden — d. h. in
der Dimension 1 asphérischen — Komplex nicht nur (wie in jedem Kom-
plex) alle eindimensionalen, und nicht nur (nach dem Satz von Hure-
wicz) alle zweidimensionalen, sondern auch alle dreidimensionalen Zyklen
sphirisch?); dagegen ist z. B. der vierdimensionale Grundzyklus der ein-
fach zusammenhingenden Produktmannigfaltigkeit S2 x 82 nicht sphi-
risch, da sich die S% nicht mit dem Grade 1 auf S2 x 82 abbilden 1iBt
([7], Satz IlIa).

3.6. Durch die in 3.4 skizzierte Betrachtung wurde in [3] die Iso-

morphie
B2/ = G2

bewiesen, wobei ® die Fundamentalgruppe von & ist”). Fir N > 1 kann
man folgendermaflen weiter schlieBen: Wenn K asphérisch in der Dimen-
sion N ist, so ist R = IT¥(KY), und (1) geht iiber in

PJY+/ SV = AV (RY) . (2)

Wenn & aullerdem asphirisch in den Dimensionen n mit 1 <n < N ist,
so ist auch K7 fiir diese » asphirisch, da fir n<N immer IT"(K)=II"(]Y")
ist; folglich ist der Satz I anwendbar, und aus (2) folgt

Y/ SV 2 BN (3)

Und wenn schlieBlich & auch noch asphirisch in der Dimension N 41
ist, so ist ¥ =AII¥TYR) =0, also geht (3) iiber in

%N-f—l ; (f)N+l ) (4)

Die Sitze (3) und (4) waren bereits in der Arbeit [4], § 5, mit einer
etwas anderen Methode — iibrigens gemeinsam fir N =1 und N > 1
— bewiesen worden.1?)

%) Man beachte immer: daB der Zyklus 2z C & sphérisch ist, bedeutet, dal es eine
Abbildung f einer Sphére S in den Komplex  — aber nicht notwendig nur auf den Kom-
plex |z ]! — mit f(S) =2z gibt.

10) Der Unterschied der gegenwirtigen von der fritheren Methode besteht darin, daB
wir jetzt aus [4] nur den Satz IV benutzt haben, fiir dessen Beweis die Homologiebetrach-
tungen in [4], 7.3, 7.4, 8.2, nicht benstigt wurden; an ihre Stelle ist jetzt die Betrach-
tung der Homotopierdnder getreten.
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3.7. Aber nicht diese Siitze sind im Augenblick unser Hauptziel, son-
dern die Behandlung der folgenden Frage im Anschlul an 3.4: ,,Welche
Ketten haben die Eigenschaft, daBl ihre Homotopieridnder in der Gruppe
IT¥(R]Y) enthalten sind?*

Fir N =1 ist diese Frage uninteressant; denn da I3 =1I" ist
(cf. 1.6), sind nach 3.4 die fraglichen Ketten einfach alle Zyklen.

Wir werden in Nr. 4 sehen, da8 fiir N > 1 die fraglichen Ketten
spezielle, geometrisch ausgezeichnete Zyklen sind; in Nr. 5 wird dann
gezeigt werden, daB die Gruppe dieser Zyklen mit unseren Gruppen
A¥ in Zusammenhang steht.

4. Henkelmannigfaltigkeiten ; die Gruppen )"

4.1. Wenn man aus einer Sphiire S die Innengebiete von ! zueinander
fremden n-dimensionalen Elementen — etwa von sphirischen Voll-
kugeln oder von Simplexen einer Triangulation von 8" — herausnimmt,
so entsteht eine berandete Mannigfaltigkeit @7 ; ihr Rand besteht aus
(n — 1)-dimensionalen Sphéren s,,...,s8;. Wir zeichnen eine Orientie-
rung von S”, und damit von " aus und orientieren dann die s) so, dafl

.'; = 2's) ist; dabei fassen wir die orientierte Mannigfaltigkeit @ und
die orientierten Sphiren s, als Ketten auf und verstehen unter Q’; den
Rand der Kette Q7.

Es sei | =2p; die Randsphiren nennen wir jetzt nicht s,,..., s,,,
sondern s,,sj,...,8,,8,. Fir jedes 4, 1 <A< p, nehmen wir eine
topologische Identifizierung von s, und s} vor und zwar so, daB, im Sinne
der eben eingefiihrten Orientierung, s; = —s) wird. Dadurch entsteht
eine geschlossene orientierte Mannigfaltigkeit H;; wir nennen sie eine
,,Henkelmannigfaltigkeit‘‘.

Man kann H” auch dadurch definieren, da man nicht s, und s, identi-
fiziert, sondern fiir jedes 4 ein Exemplar P, des topologischen Produktes
8™1>< K1, wobei E* eine Strecke ist, derart an @3,ansetzt, dall von den
beiden orientierten Randsphiren von P, die eine mit —s,, die andere
mit s, identifiziert wird; das ist das Ansetzen von ,,Henkeln“ an
die S*.

Dabei darf immer p =0 sein: es ist H; = 8*; ferner ist, wie man
leicht sieht, H} homéomorph mit dem topologischen Produkt S7-1 >< St.
Fiir p>1 lassen sich die Hy dann induktiv auch folgendermaBen er-
kldren: H ist die topologische Summe von H}_, und Hj, d. h.: H} ent-
steht, indem man aus Hj_, und aus Hf je ein n-dimensionales Element
entfernt und die beiden (n — 1)-dimensionalen Randsphéren zusammen-
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heftet. Allgemein ist die topologische Summe einer Hj und einer Hj}
eine H7, .
Fiir » =2 ist bekanntlich jede geschlossene orientierbare Mannig-
faltigkeit eine Henkelmannigfaltigkeit. Fiir # > 2 aber sind die H} sehr
spezielle Mannigfaltigkeiten.
Wir werden im folgenden mit H}, oft auch den Grundzyklus der ebenso

genannten (orientierten) Mannigfaltigkeit bezeichnen.

4.2. Bildet man H7, simplizial in den Komplex K ab, so entsteht in
eine Kette, und zwar ein Zyklus, C =f(H}). Wir behaupten, daf die-
jenigen Ketten von R, die sich in dieser Weise als Bilder von Henkel-
mannigfaltigkeiten darstellen lassen, eine Gruppe bilden. In der Tat ist
erstens klar, daB mit C auch —C ein solches Bild ist. Zweitens: es sei
C,=h(H;)), C;=[y(H},); wir diirfen H} und Hj als fremd zueinander
annehmen ; wir verbinden einen Punkt a, ¢ H; mit einem Punkt a,eHp,
durch eine Strecke &, die sonst keinen Punkt mit Hy oder Hj gemein-
sam hat; dann gibt es, wie man leicht sieht, eine solche Abbildung g einer
Hj ., auf H) +E +H} , daB dabei die beiden H’), mit dem Grade 1
bedeckt werden; man bilde nun Hj -+ E 4 H) so durch fin & ab, da83
f =f;auf H} ist (¢ =1, 2) und daB E irgendwie auf einen Streckenzug
abgebildet wird, der in & die Punkte f,(a,) und f,(a,) verbindet; dann ist
fg eine Abbildung von H ., in & mit fg(H) ,,) =C, 4 C,.

Die Gruppe der Bilder n-dimensionaler Henkelmannigfaltigkeiten in
| heiBe P». Da die Sphire S* eine Henkelmannigfaltigkeit ist, ist
P o Sr, also auch P > H* (cf. 3.2). Aus der letzten Relation folgt:
in einer Homologieklasse ist entweder kein Zyklus Bild einer Henkel-
mannigfaltigkeit, oder alle Zyklen sind solche Bilder; diejenigen Homolo-
gieklassen, deren Zyklen Bilder von Henkelmannigfaltigkeiten sind,
bilden die Untergruppe P = P»/H™ der Bettischen Gruppe B". Es ist

S_Bn ) 6n’ %n/gn;?‘?n/'@n’ 23”/%";3"/—‘3”

4.3. Wir kniipfen an 3.7 an und behaupten:

Satz II. Dann und nur dann sind die Homotopierdinder der (N + 1)-
dimensionalen Kette C von R in der Gruppe ITY(KY) enthalten, wenn C
Bild einer Henkelmannigfaltighkest ist.

Hierzu ist zu bemerken : wenn ein Homotopierand ¢ von C in ITY(K]%)
enthalten ist, so ist jeder Homotopierand ¢’ von C in IT3(]Y); denn es
ist (cf.3.4) o/ —peR, und (cf. 3.3) R, c IIY(KY).
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Fir N =1 besagt der Satz 11 nur, daf} jeder zweidimensionale Zyklus
Bild einer geschlossenen orientierten Fliche ist; diese Tatsache ist be-
kannt!!); beim Beweis des Satzes II diirfen wir daher — was aber nicht
unbedingt notig ist — N > 2 voraussetzen. Der Beweis wird in den
Abschnitten 4.4 bis 4.7 gefithrt werden.

4.4. QY+ ist wie in 4.1 definiert; QY sei der aus allen héchstens
N-dimensionalen Simplexen einer Simplizialzerlegung von @¥+' beste-
hende Komplex; o sei ein Eckpunkt von Q¥, den wir als Nullpunkt fiir
die Gruppe IT¥(Q") benutzen. Fiir jedes A verbinden wir o durch einen
Kantenzug w) von Q¥ mit einem Punkt b, der Randsphiire s, und bilden
eine Sphire SV so auf die Punktmenge w) -+ s ab, daB einem auf S¥
ausgezeichneten Pol der Punkt o entspricht und daf s) mit dem Grade 1
bedeckt wird. Hierdurch werden Elemente «) ¢II¥(QY) definiert
(A=1,...,10).

Da man den Weg w, in sich auf den Punkt b, zusammenziehen kann,
ist &) — genauer: jede stetige Sphére, welche das Element «) reprisen-
tiert — in QY homotop zu s), wobei s, als stetige Sphiire aufzufassen ist.

Wir behaupten weiter: Xu, ist Homotopierand der Kette Q7 *+'.
Fir N =1 erkennt man dies am einfachsten, indem man @3 lings den
Wegen w), von denen man annehmen darf, daf sie auler o keinen Punkt
gemeinsam haben, aufschneidet. Fir N > 1 kann man entweder einen,
diesem Aufschneiden analogen ProzeB3 vornehmen oder folgendermafien
schlieBen : % sei (fiir den Komplex Q) der in 1.4 erklirte Homomorphis-
mus von I77 in BY; aus der Definition des Homotopierandes folgt un-

mittelbar, daB immer, wenn ¢ Homotopierand einer Kette C ist, hp =C
der Rand von C im Sinne der Homologietheorie ist; in unserem Falle
ist also, wenn das Element ¢ <¢/7¥(QY) Homotopierand von @Y*! ist,
ho = 2's). Andererseits sind die «) so definiert, dal hay =s, ist; es
ist also hp =h2«). Nun ist aber, wie man leicht sieht, @) ** und damit
auch QY asphirisch in den Dimensionen 1,...,N —1; folglich
([1], (II), Satz I) ist & ein Isomorphismus und ¢ =2« .

Wir haben damit gezeigt : @Y 7! besitzt einen Homotopierand p = X «,,
wobei die &) in QF homotop zu den Sphiren s, sind.

4.5. Der eine Teil des Satzes II lautet folgendermaBen: Die (N 4 1)-
dimensionale Kette C von K sei Bild einer Henkelmannigfaltigkeit ; dann
besitzt C als Homotopierand ein Element der Gruppe ITY(KY).

Beweis: Die Voraussetzung iiber C 148t sich auch so formulieren: es

11) [3], p. 290; oder als leichte Folgerung aus Satz IV, p. 173 in [6].
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ist C =f(Q;, "), wobei @7} die Randsphéren s,,s], ...,s,, s, besitat
und f fiir jedes 1 die Sphiren s,,s; derart abbildet, daB die stetigen
Sphiren [f(—s))] und [f(s})] identisch sind: [f(—s))] = [f(s1)] = sa-
Da bei einer simplizialen Abbildung ein Homotopierand einer Kette
immer in einen Homotopierand der Bildkette iibergeht, besitzt C' den
Homotopierand  f(0) = f(oy) + () + -+ +f(x,) +/(al), wobei
Gy, 015 « - -5 &y, o, die analoge Bedeutung haben wie «,, «,, ..., &; in4.4.
Da in QY immer «) mit sy und «, mit s, homotop ist, ist in ] immer
f(xy) mit —s) und f(xy) mit sy, also f(x)) mit —f(x;) homotop.
Folglich ist f(p) ITY(K]Y).

4.6. Auch dem Beweis des zweiten Teiles von Satz II schicken wir
einen Hilfssatz voraus, der die von den Sphiren s, ...,s, berandete
Mannigfaltigkeit @Y betrifft. f sei ein beliebiger Komplex.

Hilfssatz: f sei eine Abbildung der Sphiren s, in das Polyeder ¥; fiir
jedes 4 sei [f(s))] in f einem solchen Element g, ¢I7¥(f) homotop, daB
2 B)=0 ist.Dann liBt sich f zu einer Abbildung von @¥*+* in f erweitern.12)

Beweis: Fiir I =0 ist der Hilfssatz inhaltslos. — Fiir I =1 ist er
richtig; denn @ *! ist eine Vollkugel, und die Voraussetzung besagt, daB
[f(s,)] in T homotop 0 ist. — Auch fiir | =2 ist der Hilfssatz richtig;
denn QY *! ist das topologische Produkt einer S mit einer Strecke, und
die Voraussetzung besagt, daB [f(s,)] und [f(—s,)] in T einander homo-
top sind.

Essei | =3. Wir stellen @Y folgendermaBen im euklidischen Raum
R¥*! dar: aus dem Inneren einer, von der N-dimensionalen Sphire s,
begrenzten Vollkugel sind die Innengebiete zweier zueinander fremder,
von s, bzw. s, begrenzter Vollkugeln herausgenommen. Es seien: s; eine
mit s, konzentrische, kleinere Sphire, die s, und s, im Innern enthélt;
A eine N-dimensionale Ebene, die s, und s, voneinander trennt; u die
(N — 1)-dimensionale Schnittsphire von A und s;; E die von % in 4
begrenzte Vollkugel; h,,k, die beiden Teile, in die s; durch w zerlegt
wird, derart, daB s, in dem von k; 4+ E begrenzten Gebiet liegt (¢: =1,2).

Wir sollen die auf s,,s,,s, gegebene, die Voraussetzung des Hilfs-
satzes erfiillende Abbildung f zu einer Abbildung von @Y ! in f erweitern.
Wir setzen zunidchst f(£) = o, wobei o der Nullpunkt der Gruppe
IT7 () ist; darauf erkliren wir f auf &, so, daB die Abbildung des, mit
einer 8Y homéomorphen Gebildes %; + E das in der Voraussetzung
genannte Element pB; e/I"(f) reprisentiert (¢ =1,2); das Bild von
8t =h, +h, stellt dann, wie aus der Summendefinition in IT* hervor-

12) DaB der Raum f ein Polyeder ist, wird iibrigens beim Beweis nicht benutzt werden.
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geht, das Element f; + f;, also nach Voraussetzung das Element —pg,
dar. Da das durch f gelieferte Bild von s; nach Voraussetzung homotop
zu f, ist, kann man daher f zu einer Abbildung der von s; und —s;
berandeten Kugelschale erweitern; schlieflich kann man fiir ¢ = 1,2,
da [f(s;)] homotop zu dem durch [f(k; + E)] représentierten Element
B;ist, f auch aufden von k; + F und —s; begrenzten Bereich erweitern.
Damit ist f in der gewiinschten Weise konstruiert.

Es sei 1> 3; fir QY sei der Hilfssatz schon bewiesen. Wir diirfen
annehmen, daB sich in Q¥** eine N-dimensionale Sphire s* wihlen 1i8t,
die s, und s, einerseits von s8,, ..., s, andererseits trennt; sie zerlegt
QY+ in eine @Y ! und eine @Y *!; dabei sei s* so orientiert, daB die Rénder
OV g s, +s*, QYN =8y + -+ +8, —s* sind. Wir erkléiren f
auf s* so, daB [f(s*)] mit —pB, —pB,, also auch mit g; +--- + 8,
homotop ist; dann kann man f, wie soeben gezeigt wurde, auf @Y *!
sowie nach Induktionsvoraussetzung auf @¥*' erweitern.

Damit ist der Hilfssatz bewiesen. — Leicht zu beweisen ist iibrigens
seine Umkehrung: Wenn f eine Abbildung von @Y+ in ¥ ist, so gibt es in
IT¥(¥) solche Elemente 8,, daB die [f(s))] homotop zu den 8, sind und
daB 2'B) =0 ist.

4.7. Jetzt beweisen wir den zweiten Teil von Satz 11, der so lautet:
Die Kette C von & besitze einen Homotopierand ¢ «IT¥(R%); dann ist
C e P¥+! (cf. 4.2).

Beweis: Es geniigt, eine Kette O’ ¢ P¥*! zu finden, die denselben
Homotopierand g besitzt; denn in der Ausdrucksweise von 3.4 ist dann
T(C) =T(C'), also C —C’'eG ', also, da G¥*'c P¥+' st
(cf. 4.2), auch C ¢ P+,

p
Es ist ¢ =3 (8\ —f,), wobei immer B,,p; homotope Elemente
—1

von [T%(]Y) sind. Wir betrachten eine @Y%, deren Randsphiren wir

81,80, «u ey 8y, s;,, r nennen, und zwar seien sie so orientiert, da@

Qih =2 (sy —8) —r ist. Wir definieren eine Abbildung f der
Randsphiren in den Komplex K so, daB [f(s))], [f(s2)], [f(r)] bzw. die
Elemente f,, f;, 0 reprisentieren; dann liBt sich f nach 4.6 zu einer
Abbildung f von @)1} in K erweitern. Fiir jedes 4 setzen wir an @31}
ein Exemplar P, des topologischen Produktes einer S¥ mit einer Strecke
derart an, daB die orientierten Randsphéren von P) mit —s) und s;
identifiziert werden; da [f(s))] und [f(s})] in & miteinander homotop
sind, 158t sich dann f so auf diese Py erweitern, daB (@Y, + 2 P)) c|”

2p+1
ist. SchlieBlich fiigen wir ein Element E¥+! an Q)t' dadurch an, daB
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wir seine Randsphire mit r identifizieren; da das durch [f(r)] reprisen-
tierte Element ¢ ¢/T¥(}”") als Homotopierand in der Gruppe R liegt
(cf. 3.3, 3.4),ist [f(r)] in & homotop 0, und daher 148t sich f auf E¥+?
erweitern, sodaB f(E¥*') c & ist. Die Kette C’ =f(E¥*') hat dann
die gewiinschten Eigenschaften: erstens hat sie den durch [f(r)] repri-
sentierten Homotopierand ¢; zweitens ist, da f(Q7,7y + 2 P)) c |

ist, €/ gleich dem Bild f(H])*') der Henkelmannigfaltigkeit
HYY =@t + 2 Py + EN+L.

4.8. Den Inhalt des hiermit bewiesenen Satzes II konnen wir unter
Benutzung der Ausdrucksweisen aus 3.4 und 4.2 auch folgendermafen
formulieren: Bei dem Homomorphismus 7' ist die Gruppe P! das
Urbild der Gruppe R ~IIY(]Y). Nach 3.4 und 4.2 folgen hieraus die
Isomorphien

$N+1/GN+1;‘$N+1/'@N+1;91an)V(RN)/mo, (5)
B+ /P = GV /PI X R TVRKY) /RAITKY) . (6)

4.9. Auf (6) werden wir in 5.4 zuriickkommen; von (5) machen wir
sogleich eine Anwendung:

Wenn K asphdrisch in wenigstens einer der beiden Divmensionen 1 und
N ist, so st jeder (N + 1)-dimenstonale Zyklus, der Bild einer Henkel-
mannigfaltigkeit ist, sogar Bild einer Sphdre.

Denn wenn K asphirisch in der Dimension 1, also einfach zusammen-
hingend ist, so gilt dasselbe von K%, und daher ist 17y (]Y) =0 (cf. 1.3);
wenn & asphérisch in der Dimension N ist, so ist

R=I"KY), R~IJKY) =R;

in beiden Fillen ist nach (5) P¥+1/S¥+ =0.

5. Die Beziehung zwischen den Gruppen A™(KY) und 4V(R)

5.1. Wir betrachten wie bisher einen Komplex & und den zugehérigen
Komplex K. Die Gruppen II¥(R) und I7¥(R”") sollen denselben Null-
punkt o haben. Dann reprisentiert jede stetige Sphire, die ein Element
von IT¥(R]Y) reprisentiert, zugleich ein Element von I7¥(R), und zwei
stetige Sphiren, die in ] #quivalent sind (cf. 1.1), also dasselbe Ele-
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ment & ¢II”(}Y) reprisentieren, sind auch in | dquivalent, représen-
tieren also dasselbe Element ¢« ¢I7¥(R). Damit ist eine eindeutige
Abbildung, die ,,natiirliche‘ Abbildung, ¢ von IT¥(RY) in IT¥(R) er-
klart. Sie ist offenbar ein Homomorphismus. Sie ist sogar eine Abbildung
auf IT¥(R), d.h. es ist @IT™(]Y) =IT"(R)); denn jedes Element von
IT¥(R) laBt sich nicht nur durch ,,stetige*, sondern auch durch ,»Simpli-
ziale’“ N-dimensionale Sphiren reprisentieren, und diese liegen in ]Y,
reprisentieren also zugleich Elemente von IT¥(®”"). Der Kern von ¢ ist
die Gruppe R (cf. 3.3).

Aus den Definitionen der Gruppen ITY und I'™ folgt leicht, daB
eIT¥(]Y) c TY(R), o '*(]Y) ¢ I'¥(R) ist; wir werden in 5.2 und 5.3
zeigen, daB sogar @IIY(]Y) =ITY(R), eI'¥(KY) =TI'¥(K) ist.

5.2. Um zu zeigen, daB ¢II%(KY) =117 (R) ist, geniigt es offenbar,
folgendes zu beweisen: Die Elemente S, 8’ eII¥(R) seien einander
homotop (in K); dann gibt es solche Elemente o, «’ eIT¥(RY), daB
«, o’ aneinander homotop (in &) sind und daB @x =4, pa’=p' ist.

Beweis: @Y1 sei ein, von zwei konzentrischen Sphiiren s, s’ begrenzter

Bereich des R¥*!; die Orientierungen seien derart, daB Q¥ '=s —s'

ist; dann gibt es eine solche simpliziale Abbildung f von @¥*! in &, daB
die stetigen (simplizialen) Sphiren [f(s)], [f(s)] die Elemente g, g’
reprisentieren; dabei sind auf s, s’ Pole a, a’ ausgezeichnet. Wir ver-
binden a’ mit @ durch einen Weg w, der aus Kanten der, f zugrunde-
gelegten Simplizialzerlegung von @¥*! besteht, und verstehen unter ¢
eine solche Abbildung einer S¥ auf die Punktmenge w -+ s, daB s mit
dem Grade 1 bedeckt wird; dabei sei auf S¥ ein Pol a” mit g(a”) =a’
ausgezeichnet. Nun seien «,«’ die durch die stetigen Sphéren [f(s)],
[fg(S™)] reprisentierten Elemente von II¥(]"). DaB «,«’ einander
homotop in K7 sind, sieht man, indem man w in sich auf den Punkt a
zusammenzieht, wodurch [¢(S¥)] in s deformiert wird, und diesen Pro-
zeB durch f in ] (und zwar in KY) iibertrigt. DaB ga =g ist, ist klar;
daB @o’ =p’ ist, d.h. daB [fg(SY)] und [f(s”)] in R dquivalent sind,
ergibt sich, wenn man w -+ s innerhalb @¥*! unter Festhaltung von
a’ auf die Sphire s’ deformiert und dabei immer die Abbildung f ausiibt.

5.3. Um zu beweisen, daB ¢I'¥(]") =I'¥(R) ist, haben wir zu einem
goegebenen B eI'¥(R) ein & e 'Y(]Y) so zu finden, daB @ =p ist.
h sei der wie in 1.4 erklirte Homomorphismus von I7¥(RY) in die
Bettische Gruppe B” oder, was dasselbe ist, in die Zyklengruppe 3%
von {Y. Zu dem gegebenen B gibt es (cf. 5.1) ein «, /7¥(RY) mit
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Qoo =pf; daB B e I'(R) ist, bedeutet : der Zyklus h«x, ist in & homolog0,
d. h. es gibt eine Kette C, deren Rand C = h«, ist. g sei ein Homotopie-

rand von C (cf. 3.4); dann ist auch hg =C. Setzen wir ay — o =«,
so ist daher ho =0, d.h. &« e 'V(]Y); ferner ist p ¢ R, also ¢p =0
und @x =g@xy =4.

b.4. Bereits aus den in 5.1 festgestellten Tatsachen
eII(RY) cIIF(]) und  ¢I'(RY) c I'Y(R)

folgt, daB ¢ einen Homomorphismus @ der Restklassengruppe A4Y(}Y)
in die Restklassengruppe A4%¥(]) bewirkt. Aus 5.3 folgt, daB @ eine
Abbildung auf AY(K) ist. Wir wollen jetzt den Kern von @ bestimmen.

Die durch ¢ bewirkte Abbildung von I'¥(RY) auf I'"(R) nennen wir
@’ ; da R der Kern von ¢ ist, ist R ~ I'"(]") der Kern von ¢’ ; hieraus
und aus 5.2 folgt, daB das Urbild von ITY(R) bei der Abbildung ¢’ die
Gruppe ITY(]Y). (R ~ I'"(]Y)) ist. Demnach ist der Kern von @ die
Faktorgruppe

IY(RY) - (R~ TYKY)) /TFKY) 5
sie ist isomorph mit
R~ TYRY) /R~ TVKY) ~ITF(RY),
also, da ITY c I'" ist, mit
R~ TYRY) / RAITFRY) ;
diese Gruppe aber ist nach 4.8 (6) isomorph mit BY*+!/PY¥+1,

Damit sind wir zu folgendem Ergebnis gelangt:

Satz III. Der natiirliche Homomorphismus ¢ von IT¥(R]Y) auf II¥(R)
bewirkt einen Homomorphismus ® von AY(K]KY) auf AY(R), dessen Kern
isomorph mit der Faktorgruppe BYT1/PY+1 ist.

Hierin ist enthalten:

Korollar. Die Gruppe A¥(RY) besitzt eine solche Untergruppe 6,
da die folgenden beiden Isomorphien gelien :

AV(R]Y) /O = AV(R), @Y = BYT/PIHL,
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6.5. Durch Kombination dieses Korollars mit dem Satz I (Nr. 2.2)
erhilt man

Satz IV. K sei ein beliebiger Komplex, der die Fundamentalgruppe
besitzt und asphdrisch in den Dimensionen n mit 1 <n < N ist (N > 2).
Dann enthdilt die Gruppe G eine Untergruppe OF , fiir welche die Iso-
morphien gelten 13) :

6N+1/@N ; AN — FN/HéV , (7)

@N ; $N+1/mN+1 . (8)

Denn da fir n < N immer IT*(&) =II"(]Y") ist, folgt aus den Vor-
aussetzungen des Satzes IV, daB die Voraussetzungen des Satzes I erfiillt
sind; aus der Behauptung des Satzes I und dem Korollar 5.4 folgt die
Behauptung des Satzes IV.

Der Satz I ist ibrigens ein Korollar des Satzes IV. Denn wenn
K =RKY ist, s0ist B¥*' = 0, nach (8) also @F =0, und (7) geht in
die Behauptung des Satzes I iiber.

Ebenso wie der Satz I den Satz I/, enthilt der Satz IV den

Satz IV'. K sei ein beliebiger Komplex mit der Fundamentalgruppe ® .
Dann enthdlt dieGruppe &3 eine Untergruppe @2, fiir welche die Isomorphien

gelten :
6G3/02 = A* =TI?/IT}, (77)

Or = B°/P°. (8")

b.6. Anwendungen und Beispiele. Wenn &* =0 — also z. B. wenn G
eine freie Gruppe ist ([4], 10.1) —, so ist jeder dreidimensionale Zyklus
in ] Bild einer Henkelmannigfaltigkeit; denn aus *=0 folgt #*=0,
also nach (8’) B2 = P3. Ferner folgt aus G* =0 nach (7’), daB
I =IT} ist.

5.7. Wir nehmen zu der Voraussetzung &* =0 noch die Voraus-
setzung hinzu, dal & = M? eine dreidimensionale geschlossene orientier-
bare Mannigfaltigkeit ist. DaB ihr Grundzyklus Bild einer Henkelmannig-
faltigkeit H? ist, bedeutet: H? 148t sich mit dem Grade 1 auf M3 abbilden.
Bei einer solchen Abbildung ist jeder Zyklus aus M3 dem Bilde eines
Zyklus aus H® homolog ([7], Satz II); nun besitzt H3, wie man direkt

13) Die Gruppen in (7) und (8) beziehen sich samtlich auf den Komplex & .
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bestitigt, eine zweidimensionale Homologiebasis, die aus Kugelflichen
besteht ; folglich ist jeder zweidimensionale Zyklus aus M3 einem Kugel-
bild homolog, d. h. es ist B2 = S2. Da immer B2/S2 = G2 ist, ist
also ®* = 0. Damit ist bewiesen: Ist & Fundamentalgruppe einer (ge-
schlossenen orientierbaren) Mannigfaltigkeit M?® und ist ®® =0, 8o st
auch ®* =0.

Gruppen ®, fiir welche ®2 # 0, ®* =0 ist, kénnen also nicht als
Fundamentalgruppen von Mannigfaltigkeiten M? auftreten. Beispiele
solcher Gruppen sind die Fundamentalgruppen der geschlossenen orien-
tierbaren Flichen von positivem Geschlecht!?), allgemeiner: die Funda-
mentalgruppen von zweidimensionalen Komplexen ¥, welche in der
Dimension 2 asphérisch, aber nicht azyklisch sind; denn da f asphérisch
ist, ist erstens B2/S® = G* (cf. 3.6), also, da f zweidimensional ist,
®® =0, und zweitens &% =0, also B2 G2, also, da f nicht azy-
klisch ist, ®2 £ 0.

b.8. Wir betrachten noch weiter Mannigfaltigkeiten M3 mit &* = 0.
Nach 5.7 ist B2 = S2; aus den Definitionen von &2 als Bild 212 und
von I"? als Kern von A folgt, daBl immer &2 =1/?/I" ist; nach 5.6 ist
I'*=]1%; esist also B2 I12/IT. Die erste Bettische Gruppe von M3
ist isomorph mit der Gruppe ®! (dies ist die Faktorgruppe der Gruppe ®
nach ihrer Kommutatorgruppe); nach dem Poincaréschen Dualitédtssatz
ist dann B2 isomorph mit der Faktorgruppe ®3 der Gruppe (! nach der
Untergruppe ihrer Elemente endlicher Ordnung. Fiir eine M3 mit ®* =0
ist also IT2/I1: == G} .

Beispiel: Die Fundamentalgruppe & der Mannigfaltigkeit M* sei die
freie Gruppe mit p Erzeugenden (dies ist der Fall, wenn M? die Henkel-

mannigfaltigkeit H} ist). Dann ist II*/II; die freie Abelsche Gruppe
vom Range p. %)

5.9. Fiir die eben betrachteten Mannigfaltigkeiten M3 ist A% =0,
d. h. I =II2; Mannigfaltigkeiten, fiir die dies nicht der Fall ist, findet
man auf Grund folgender Bemerkung: Fiir eine M3 ist B unendlich
zyklisch, nach (8’) also @2 zyklisch; wenn ®?° nicht zyklisch ist, ist daher
nach (7/) I'* £11} .

1) Ein anderer Beweis dafiir, da8 diese Gruppen nicht als Fundamentalgruppen von
Mannigfaltigkeiten M3 auftreten, ist in [8], Nr. 28, enthalten.

15) Die Struktur der Gruppe II"[IIj verdient besonders darum Interesse, weil sich

in ihr eine wesentliche Eigenschaft der Homotopiegruppe II" als,,Gruppe mit Operatoren**
im Sinne von [2] &uBert; cf. 1.7.
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Beispiel : M3 sei die topologische Summe ([6], p. 218 unten) von zwei
dreidimensionalen Toroiden (topologischen Produkten 8! >< 8! >< §1);
dann ist, wie man leicht bestdtigt, ®* die freie Abelsche Gruppe vom
Range 2;1%) da ©2 zyklisch ist, folgt aus (8’), da A2 unendlich ist. —
Ubrigens ist fiir diese M3, wie man ebenfalls leicht sieht, &% =0, also,
da immer &2 XIT2/I? ist, I'*=I12, A®=I1%/II}.

18) Andeutung eines Beweises: Der Komplex R, der entsteht, wenn man zwei Toroide
in einem Punkt zusammenheftet, hat dieselbe Fundamentalgruppe ® wie M3 ; er ist, wie
man leicht sieht, asphérisch (im Gegensatz zu M3), und daher ist $® isomorph mit seiner
dritten Bettischen Gruppe.
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