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Beitrâge zur Homotopietheorie

Von Heinz Hopf, Zurich

Dièse Beitrâge setzen die Untersuchung der Zusammenhânge fort, die
zwischen den Homotopiegruppen von Huxewicz, der Fundamentalgruppe
und den Homologiegruppen bestehen; derartige Untersuchungen sind
bereits in den grundlegenden Arbeiten von Hurewicz [1], in einer Arbeit
von Eilenberg [2] und in zwei Arbeiten von mir [3, 4] angestellt worden1) ;

Begriffe, Methoden und Sâtze aus diesen Arbeiten werden im folgenden
benutzt.

Die Ergebnisse sind in den Abschnitten 2.1, 2.2, 3.5, 4.3, 4.9, 5.4,
5.5 formuliert ; die Erklârung der in diesen Sâtzen vorkommenden
Begriffe findet man in den Abschnitten 1.1 bis 1.5, 3.1, 3.2, 4.1, 4.2. In
den Abschnitten 2.7 und 5.6 ff. wird durch einige spezielle Beispiele
gezeigt, in welchen Richtungen sich die allgemeinen Sàtze anwenden
lassen.

1. Définition der Gruppen IJô9 Fn, An

1.1. 51 sei ein beliebiger zusammenhângender, simplizialer Komplex,
endlich oder unendlich, und 51 das durch 51 bestimmte Polyeder2). Die
Homotopiegruppen von 51 nennen wir auch die Homotopiegruppen des

Komplexes 51 und bezeichnen sie mit IIn($t) oder, wenn kein MiBver-
stândnis môglich ist, kurz mit TIn ; (n 1, 2,...

Die Définition dieser Gruppen ist bekannt ([1], (I)). Es sei hier nur an
folgendes erinnert : Die Elemente von/7n sind die Âquivalenzklassen der-
jenigen Abbildungen3) einer Sphâre Sn in das Polyeder 51, welche einen
festen Punkt a e Sn, den ,,Pol", auf einen festen Eckpunkt o von 51, den

,,Nullpunkt" abbilden; dabei gelten zwei Abbildungen f,g als âqui-
valent, wenn man sie unter Festhaltung des Bildes von a stetig ineinander
deformieren kann.

1.2. Ein ,,stetiger Zyklus" [/(z)] in 51 ist durch eine Abbildung /
eines Polyeders z in das Polyeder 5Î bestimmt, wobei z ein Zyklus ist

1) Literaturverzeichnis am SchluB der Arbeit.
*) Terminologie iminer wie in [5], — Nur statt ,,algebraischer Komplex" sage ich jetzt

,,Kette".
3) Aile Abbildungen von Sphâren und anderen Polyedern sollen stetig, aile

Abbildungen von Komplexen simplizial sein.
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([5], p. 332jff.). Ist speziell z =8n der Grundzyklus einer orientierten
n-dimensionalen Sphâre, so nennen wir [/($n)] eine ,,stetige (w-dimen-
sionale) Sphâre". Die Elemente der oben betrachteten Âquivalenz-
klassen sind also stetige Sphâren.

Die stetigen Sphâren [f(8n)], [g(S*1)] heiBen ,,homotop" zueinander,
wenn die Abbildungen /, g homotop sind, d. h. wenn sie sich stetig inein-
ander deformieren lassen, wobei im Gegensatz zu oben kein Pol a aus-
gezeichnet ist. Je zwei stetige Sphâren ans einer Âquivalenzklasse sind
homotop; daraus folgt: wenn eine stetige Sphâre aus der Âquivalenzklasse

oc zu einer stetigen Sphâre aus der Âquivalenzklasse ocr homotop
ist, so ist jede stetige Sphâre aus a zu jeder stetigen Sphâre aus oc' homotop

; in diesem Falle nennen wir die Elemente oc, oc1 zueinander homotop.
Die Grappe TIn zerfâllt so in Homotopieklassen.

Es kann vorkommen, daB jede Homotopieklasse von TIn nur ein ein-
ziges Elément enthâlt, daB also zwei verschiedene Elemente von Tln nie-
mais zueinander homotop sind. In diesem Falle heiBt R ,,einfach" in der
Dimension n. Dies ist speziell dann der Fall, und zwar fur aile n, wenn R
einfach zusammenhângend, d. h. wenn die Fundamentalgruppe IP- 0

ist [8].

1.3. Unteri7o verstehen wir die Untergruppe von 77n, die von allen
Differenzen oc —oc' erzeugt wird, wobei oc, oc' beliebige zueinander
homotope Elemente von IIn sind; sie besteht aus allen Summen

£ (di —oc'i), wobei immer oc{ und oc[ homotop sind.
Wenn Si in der Dimension n einfach, also insbesondere wenn R einfach

zusammenhângend ist, ist 11% 0

1.4. Jeder stetige Zyklus in R gehôrt zu <einer bestimmten Homologie-
klasse von R ([5], p. 334). Homotope stetige Zyklen gehôren zu derselben

Homologieklasse ; hieraus folgt erstens, daB jedem Elément oc elJ71 eine
bestimmte Homologieklasse hoc zugeordnet ist, und zweitens: sind oc, oc1

homotope Elemente voniln, so ist hoc =hocf.
Aus den Definitionen der Addition in TIn und in der Bettischen Gruppe

93n von 51 ergibt sich, daB h eine homomorphe Abbildung von ITn in 23n

ist. Der Kern dièses Homomorphismus, also das Urbild des Nullelementes
von f&n, ist eine Untergruppe von77n, die wir Fn nennen; sie besteht also

aus denjenigen Elementen von nn, die die Eigenschaft haben, daB die
in ihnen enthaltenen stetigen Sphâren homolog 0 sind. (Wenn R w-dimen-
sional ist, so darf man hierbei statt ,,homolog 0" auch ,,gleich 0", im
Sinne der Addition von Ketten, sagen.) Wir werden die in Fn enthaltenen
Elemente voni7n selbst ,,homolog 0" nennen.
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1.6. Wenn oc, oc' zueinander homotop sind, so ist, wie in 1.4 fest-
gestellt wurde, hoc =hoc', also h(oc —oc') =0, d. h. oc —oc' homolog

0, und folglich sind aile Elemente der Grappe 11% homolog 0 ; man
kann sagen, daB das diejenigen Elemente von FIn sind, welche bereits
auf Grand ihrer Homotopieeigenschaften ,,trivialerweise" homolog 0 sind.

Es ist also 11% c Fn, und mithùi ist die Faktorgruppe An Fn/II%
erklàrt. Dièse Gruppen An werden den Hauptgegenstand unserer Unter-
suchung bilden; in ihrer Struktur âuBern sich die Existenz und Eigen-
schaften solcher Elemente von IIn, welche homolog 0 sind, fur welche
dies aber nicht ,,trivial" — in dem soeben besprochenen Sinne — ist.

Wenn R in der Dimension n einfach, also insbesondere wenn R einfach
zusammenhàngend ist, ist An= Fn

1.6. Die Gruppe IP- ist die Fundamentalgruppe von 51. Sie ist, im
Gegensatz zu TIn, n> l, im allgemeinen nicht kommutativ, und man
schreibt sie, im Gegensatz zu IIn,n>l, nicht additiv, sondern multipli-
kativ. Zwei Elemente oc, oc' cil1 sind dann und nur dann homotop, wenn
sie âhnlich sind, d. h. wenn ein fi cil1 existiert, sodaB oc' fia fi'1 ist
([6], p. 176); an die Stelle der oben betrachteten Differenzen oc —oc'

treten also die Kommutatoren oc fi or1 fi"1, und ilJ ist die Kommutatorgruppe

von II1. Andererseits sind die Elemente der Kommutatorgruppe
von il1 dadurch charakterisiert, daB die sie reprâsentierenden geschlos-
senen Wege, als stetige Zyklen aufgefaBt, homolog 0 sind ([6], p. 173);
folglich ist auch F1 die Kommutatorgruppe von II1. Es ist also II\ —F1

und damit A1 0 — Die Gruppen An verdienen also nur fur n > 1

Interesse.

1.7. SchlieBlich sei noch darauf hingewiesen, daB die Homotopie
zwischen zwei Elementen oc, oc' €lln nach Eilenberg [2] auch folgender-
maBen charakterisiert werden kann (dièse Charakterisierung wird nur
einmal, in 2.6, explizit eine Rolle spielen): Den Elementen x der
Fundamentalgruppe il1 sind in natùrlicher Weise Automorphismen Ax der
Gruppe FIn zugeordnet; FIn ist also als ,,Gruppe mit Operatoren" aufzu-
fassen, wobei FI1 der Operatorenbereich ist. Es gilt der Satz: ,,Die
Elemente oc, oc' elln sind dann und nur dann homotop, wenn es ein x ciJ1

gibt, sodaB oc' =Axoc ist" ([2], §§9,11). - (Fur n =1 sind die Am

die inneren Automorphismen von II1.)
Hieraus folgt, daB durch die Struktur von iJn als Gruppe mit Operatoren

in dem soeben erklârten Sinne die Gruppe 11% vollstândig bestimmt
ist.
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2. Der Zusammenhang zwischen den Oruppen An ($n) und der Funda-
mentalgruppe

2.1. 51 heifit ,,asphàrisch" in der Dimension n, wenn 77* (51) 0 ist,
d. h. wenn jede stetige w-dimensionale Sphâre in R auf einen Punkt
zusammengezogen werden kann ([1], (IV)).

Wir betrachten ^-dimensionale Komplexe R =!HN und werden
zeigen :

Es sei N ^ 2, und RN sei asphârisch in den Dimensionen n mit
1 < n< N. Dann ist die Struktur der Gruppe AN(RN) durch die Struktur
der Fundamentalgruppe TP(RN) bestimmt.

Die Voraussetzung uber 51^ ist inhaltlos, wenn N — 2 ist; daher
enthàlt dieser Satz den folgenden:

jeden zweidimensionalen Komplex R2 ist die Struktur der Gruppe
A2(R2) durch die Struktur der Fundamentalgruppe IJl(R2) bestimmt.

2.2. Dièse Sâtze lassen sich noch prâzisieren. Jeder abstrakten Gruppe
© sind durch einen algebraisehen ProzeB, den ich friiher dargestellt habe,
Abelsche Gruppen (g1, ©2,... zugeordnet, die ,,zu © gehôrenden Bet-
tischen Gruppenfc ([4], § l)4). Welche Eigenschaften dieser Gruppen wir
hier brauchen, wird unten in 2.4 gesagt werden. Es gilt

Satz I. Es sei N ^ 2, und StN sei ein N-dimensionaler Komplex, der
die Fundamentalgruppe © besitzt und asphârisch in den Dimensionen n
mit Kn<N ist Dann ist AN(RN) ^ ffi*+1. 5)

Speziell gilt also, analog wie in 2.1,

Satz F. Fur jeden zweidimensionalen Komplex R2 mit der Fundamentalgruppe

© ist A2(R2) ©3.

2.3. Beweis von Satz I. K sei der universelle Ûberlagerungskomplex
von 51 51^. Die Abbildung, die jedem Punkt p € K den von ihm
ûberlagerten Punkt p e 51 zuordnet, heisse U. Der Homomorphismus
h sei fur K ebenso erklârt, wie in 1.4 der Homomorphismus h fur R.

Die nachstehenden Tatsachen a), b), c) sind aus der Théorie von Hure-
wicz bekannt:

a) U bildet fur n > 1 die Gruppe IIn(K) isomorph auf die Gruppe
n*(&) ab ([1], (I), Satz IV).

*) Der Koeffizientenbereich ist immer der Ring der ganzen Zahlen.
6) Durch diesen Satz wird die am SchluB von [4] angekûndigte Beziehung hergestellt.
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Hieraus folgt, daB auch K in den Dimensionen n mit 1 < n < N
asphàrisch ist; K ist aber einfach zusammenhângend, d. h. auch asphà-
risch in der Dimension 1. Daher gelten b) und c):

b) K ist in den Dimensionen n mit 1 < n< N azyklisch, d. h. die
Bettischen Gruppen dieser Dimensionen sind Null ([1], (II), Satz II);

c) h bildet die Grappe I7N(K) isomorph auf die Bettische Grappe
BN(K), also, da K iV-dimensional ist, auf die Gruppe ZN der i^-dimen-
sionalen Zyklen von K ab ([1], (II), Satz I).

2.4. Die Decktransformationen von K, welehe Si erzeugen, bilden
eine mit © isomorphe Gruppe. Sie bewirken Automorphismen der Gruppen

ZN und nN(K) (cf. [2]
Unter Zq verstehen wir die Untergruppe von ZN, die von allen Diffe-

renzen z — Az erzeugt wird, wobei z aile Elemente von ZN und A aile
Decktransformationen durchlauft.

Xq sei die Gruppe derjenigen i^-dimensionalen Ketten von K, welehe
durch U auf die Null abgebildet werden. Da UAz =Uz fur jede Deck-
transformation A und jede Kette z ist, ist Z% c X%

Mithin ist die Faktorgruppe (Zf ^ ZN)/Z$ erklàrt. Sie ist, da 2.3 b)
gilt, nach einem friiher bewiesenen Satz ([4], Satz IV) isomorph mit

2.5, Jede Abbildung eines Komplexes auf sich oder auf einen anderen

Komplex ordnet der, gemâB 1.4 erklârten Homologieklasse eines Ele-
mentes einer Homotopiegruppe die Homologieklasse des Bildelementes
zu. Angewandt auf die Abbildung U und auf die Decktransformationen
A liefert dièse Bemerkung die Regeln

Uh=hU, Ah=hA.
2.6. Infolge 2.3a) und c) ist h U"1 H ein Isomorphismus von

77^(51) aufZ^.
Aus 2.5 folgt hoc =UHoc fur jedes oc eTIN(S{) Da die Elemente oc

von rN($t) durch hoc =0 charakterisiert sind, sind also ihre Bilder
z —Hoc durch Uz =0, also durch z e X£ r* ZN charakterisiert. Es
ist daher HTN(R) =X* ~ZN

Nach einem Satz von Eilenberg ([2], §§9, 11) sind die Elemente

oc, oc1 €lIN($t) dann und nur dann homotop, wenn es eine Decktrans-
formation A gibt, sodaB U~1ocr =AU~1oc ist (cf. 1.7); dièse Bedingung
ist nach 2.3 c) gleichbedeutend mit hU~1ocf =hA U^oc, also nach 2.5
mit Hocr =AHoc] die Differenzen oc — ocf, wobei oc, oc1 homotop
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sind, gehen also bei H uber in die Differenzen z — Az Das bedeutet :

Mithin wird die Faktorgruppe AN(R) rN/II* durch H auf die
Faktorgruppe (X* ^ Zn)/Zq abgebildet. Hieraus und aus 2.4 ergibt
sich Satz I.

2.7. Bemerkungen zum Satz /'. Zu jeder abzâhlbaren Gruppe © kann
man bekanntlich zweidimensionale Komplexe Si2 konstruieren, deren
Fundamentalgruppe © ist6). Man wird versuchen, einen solchen Komplex
ft2 zu finden, der môglichst einfach ist, in dem Sinne, daB er môglichst
wenig geschlossene zweidimensionale Gebilde enthâlt, wobei wir tinter
,,geschlossenen Gebilden" sowohl Elemente der Bettischen Gruppe, also
der Zyklengruppe, als auch Elemente der Homotopiegruppe verstehen
werden. Nun wird aber im allgemeinen die Existenz solcher Gebilde in
nicht zu geringer Anzahl durch die Struktur von © unvermeidlich ge-
macht; und zwar ist uns hieruber jetzt folgendes bekannt:

Erstens ist nach einem fruheren Satz7) : 2?2/®2 ~ ©2, wobei 932 die
Bettische, also die Zyklengruppe und S2 die Gruppe derjenigen Zyklen
ist, welche simpliziale Bilder einer Kugelflâche sind (cf. 3.2); wenn
©2 ^ 0 ist, ist also das Auftreten von Zyklen, die nicht homolog 0 sind,
unvermeidlich. Zweitens ist nach unserem Satz I': J12//?2,^©8; wenn
©8 7^ 0 ist, so ist also auch das Auftreten von Kugelbildern unvermeidlich,

welche nicht homotop 0, aber homolog 0 sind, sich also in der Gruppe
SB2 nicht bemerkbar machen (die schwâchere Tatsache, daB 772 ^ 0 sein
muB, falls ©8 ^ 0 ist, ist in einem schon fruher bewiesenen Satz ([4],
16.2) enthalten).

Ist z. B. © die freie Abelsche Gruppe vom Range r, so ist ©n die freie

Abelsche Gruppe vom Range (r), ([4], 10.2); folglich existieren dann in
lr\Si2 wenigstens Lj Zyklen, die linear unabhângig (im Sinne der Addition

von Ketten) sind, und zwar solche Zyklen, welche nicht Bilder von Kugeln

sind; sowie wenigstens (1) Kugelbilder, welche linear unabhângig im

Sinne der Addition in der Homotopiegruppe 772 sind, und dies sogar,
wenn man modulo/72 rechnet, und zwar solche Kugelbilder, welche homolog

0, aber nicht ,,trivialerweise" homolog 0 (im Sinne von 1.5) sind.

•) Nach der in [6], p. 180, Aufgabe 3, angedeuteten Méthode kann man zunàchst
einen (i. a. unendlichen) Komplex mit der Fundamentalgruppe © konstruieren ; der
Komplex 5l2 seiner hôchstens zweidimensionalen Simplexe hat dann auch die Fundamentalgruppe

(£>»

7) [8] ; sowie [4], 9.2; die Gruppe (52 hieû in [8] (£>* ; wegen der Gleichheit ®2=($)J
vgl. man [4], Nr. 12.
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3. Homotopierânder ; die Gruppen @"

Die Théorie der N-dimensionalen Homotopierânder ist fur den Fall
N 1 in [3], § 2, entwickelt worden. Die Beweise lassen sich ohne Miihe
auf die Fâlle N > 1 ûbertragen8) ; ich verzichte daher hier auf ihre
Darstellung. Die Grundbegriffe werden in 3.1, 3.2, 3.3 erklàrt; in 3.4
werden die frûher bewiesenen Tatsachen formuliert.

51 ist wie bisher ein beliebiger Komplex, RN der Komplex seiner hôch-
stens i^-dimensionalen Simplexe, N ^ 1

3.1. EN+1 sei ein orientiertes, simplizial untergeteiltes, (N + 1)-
dimensionales Elément (d. h. topologisches Bild eines Simplexes), SN
seine Randsphâre, auf der ein Pol a ausgezeichnet sei. / sei eine simpli-
ziale Abbildung von EN+1 in R, bei welcher f(a) =o der Nullpunkt
der Grappe IJN(RN) ist. Hierdurch ist erstens die (N + l)-dimensionale
Kette C f(EN+1) in 51 gegeben und zweitens das durch die stetige
Sphâre [/(#^)] bestimmte Elément a €lTN(SiN) Wir nennen oc ,,einen
Homotopierand" von C.

(Da8 wir nicht die stetige Sphâre [f(SN)] sondern das Elément oc

als Homotopierand von C bezeichnen, ist durch die folgende leicht beweis-
bare Tatsache gerechtfertigt : wenn [^(S^)] eine in RN mit [f(SN)]
homotope stetige Sphâre ist, so lâBt sich die Abbildung g von SN zu
einer solchen Abbildung von EN+1 erweitern, da8 auch g(EN+1) =C
ist; cf. [3], Nr. 8, b.)

3.2. Ein (N + l)-dimensionaler Zyklus in $t heiBt ein ,,sphârischer"
Zyklus — frûher ,,Kugelbild" genannt —, wenn er simpliziales Bild
einer (N + l)-dimensionalen, orientierten Sphâre (genauer: des Grund-
zyklus einer solchen Sphâre) ist.

Man sieht leicht (cf. [3], Nachtrag, Nr. 1): Die sphârischen Zyklen
bilden eine Grappe ; dièse Grappe heiBe QN+1. Bezeichnen wir die Grappe
aller Zyklen mit 3^+1> d*e Grappe derjenigen Zyklen, welche in 51 homo-
log 0 sind, mit $*+\ so ist SN+1 3 S^+1 3 %N+1. Aus S*+1 3 %N+1

folgt, daB eine Homologieklasse entweder keinen sphârischen Zyklus
oder nur sphârische Zyklen enthâlt ; diejenigen Homologieklassen, deren

Zyklen sphârisch sind, bilden die Untergruppe <5N+1 W+1/§>N+1 der
Bettischen Grappe 58^+1. Es ist to**1/®**1^ 3»+*/&*+*.

Ûbrigens kann man die Gruppe S^+1 auch folgendermaBen definieren :

h habe dieselbe Bedeutung wie in 1.4; dann ist S*+1 hnN+1(R).

8) Fur N > 1 tritt sogar gegenùber N 1 eine Vereinfachung ein, da die in [8],
Nr. 8, g), betrachtete Gruppe & jetzt Abelsch wird.
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3.3. Diejenigen Elemente von IIN(SiN), welche in R homotop 0 sind,
bilden eine Gruppe 5R. Unter 9î0 verstehen wir die Untergruppe von 9Î,
die von allen Differenzen q — g' erzeugt wird, wobei q,q' Elemente
von 5R sind, die zueinander homotop sind (in RN). Es ist 5R0 c IIq(Rn)
also auch % c rN(RN) und SR0 c 9t ~ rN(RN)

Bei unserer friiheren Behandlung des Falles N 1 hatte 31 dieselbe

Bedeutung wie jetzt; die Gruppe II^R1) hieB g, iï^ft1) Jni(&1) hieB

C, und 5R0 hieB <£(»).

3.4. Es gelten die folgenden Sàtze ([3], § 2):
Jeder Homotopierand ist Elément von 5R ; jedes Elément von 91 ist

Homotopierand. Jede Kette C besitzt Homotopierânder (d. h. G lâBt sich
wie in 3.1 als Bild f(EN+1) darstellen); die Homotopierânder von C
bilden eine der Restklassen, in welche 51 modulo 5R0 zerfâllt. Nennen wir
dièse Restklasse T(C), so ist demnaeh T eine Abbildung der Gruppe
fi^+1 aller (N + l)-dimensionalen Ketten von Si auf die Gruppe 5R/5RO.

Dièse Abbildung T ist ein Homomorphismus. Die Zyklen sind dadurch
charakterisiert, daB ihre Homotopierânder in rN(StN), und die sphâ-
rischen Zyklen dadureh, daB ihre Homotopierânder in 5R0 enthalten
sind; S^+1 ist also der Kern des Homomorphismus T, und
bei T das Urbild der Gruppe 9t * rN(RN)/% ; folglich ist

3N+1/eN+1 ^ «
und daher (cf. 3.2) auch

^ ^ ^ rN(SiN)/% (1)

3.5. Soweitdiefrûherfur N 1 ausfûhrlichdargestelltenTatsachen.
— Wir ziehen zunâchst eine Folgerung aus (1), die mit folgendem Satz

von Hurewicz zusammenhângt ([1], (II), Satz I): ,,Wenn ein Komplex
asphârisch in den Dimensionen 1,2,..., n — 1 ist, so hat der
Homomorphismus h (cf. 1.4) in der Dimension n die folgenden beiden Eigen-
schaften: a) er ist ein Isomorphismus, d. h. es ist Fn 0 ; b) er ist eine

Abbildung vonIIn auf 23n, d. h. jeder w-dimensionale Zyklus ist sphârisch
(cf. 3.2).

Wir behaupten nun, daB die Aussage b) gûltig bleibt, wenn man den

Komplex nur in den Dimensionen 1,..., n — 2 als asphârisch voraus-
setzt ; mit anderen Worten, wobei wir n — 1 durch N ersetzen :

51 sei asphârisch in den Dimensionen 1,2,..., N —1; dann ist jeder
(N + lydimensionale Zyklus sphârisch (N > 2).

314



Beweis : Da fur n < N immer IIn{$t) JJn(RN) ist, ist auch RN in
den genannten Dimensionen aspharisch, und nach Teil a) des soeben
zitierten Satzes von Hurewicz ist daher FN(RN) 0 ; aus (1) folgt daher
35^+1 =(5^+1, w.z.b w.

Demnach sind z. B. in einem einfach zusammenhângenden — d. h. in
der Dimension 1 aspharischen — Komplex nicht nur (wie in jedem Kom-
plex) aile eindimensionalen, und nicht nur (nach dem Satz von Hurewicz)

aile zweidimensionalen, sondern auch aile dreidimensionalen Zyklen
spharisch9); dagegen ist z. B. der vierdimensionale Grundzyklus der
einfach zusammenhângenden Produktmannigfaltigkeit S2 x S2 nicht
spharisch, da sich die S* nicht mit dem Grade 1 auf S2 X S2 abbilden laBt
([7], Satz Illa).

3.6. Durch die in 3.4 skizzierte Betrachtung wurde in [3] die Iso-
morphie

232/S2 <S2

bewiesen, wobei (5 die Fundamentalgruppe von R ist7). Fur JV > 1 kann
man folgendermaBen weiter schlieBen : Wenn R aspharisch in der Dimension

N ist, so ist 91 IIN(RN), und (1) geht uber in

Wenn R auBerdem aspharisch in den Dimensionen n mit 1 < n < JV ist,
so ist auch 51^ fur dièse n aspharisch, da fur n<N immer IIn($i)=nn(RN)
ist ; folglich ist der Satz I anwendbar, und aus (2) folgt

Und wenn schlieBlich R auch noch aspharisch in der Dimension JV +
ist, so ist S^1 =hIIN+1(Si) =0, also geht (3) uber in

Die Satze (3) und (4) waren bereits in der Arbeit [4], § 5, mit einer

etwas anderen Méthode — ubrigens gemeinsam fur JV 1 und JV > 1

— bewiesen worden.10)

•) Man beachte immer: dafi der Zyklus z C il spharisch ist, bedeutet, daÛ es eine

Abbildung / emer Sphare S m den Komplex Si — aber mcht notwendig nur auf den Komplex

| z | » — mit f(S) z gibt.
10 Der Unterschied der gegenwartigen von der fruheren Méthode besteht darm, daû

wir jetzt aus [4] nur den Satz IV benutzt haben, fur dessen Beweis die Homologiebetrach-

tungen in [4], 7.3, 7.4, 8.2, nicht benotigt wurden, an îhre Stelle ist jetzt die Betrachtung

der Homotopierander getreten.

315



3.7. Aber nicht dièse Sâtze sind im Augenblick unser Hauptziel, son-
dern die Behandlung der folgenden Frage im AnschluB an 3.4: ,,Welche
Ketten haben die Eigenschaft, daB ihre Homotopierânder in der Grappe
#f(ft^) enthalten sind?"

Fur N 1 ist dièse Frage uninteressant ; denn da 77J F1 ist
(cf. 1.6), sind nach 3.4 die fraglichen Ketten einfach aile Zyklen.

Wir werden in Nr. 4 sehen, daB fur N > 1 die fraglichen Ketten
spezielle, geometrisch ausgezeichnete Zyklen sind; in Nr. 5 wird dann
gezeigt werden, daB die Grappe dieser Zyklen mit unseren Gruppen
ÂN in Zusammenhang steht.

4. Henkelmannigfaltigkeiten ; die Gruppen tyn

4.1. Wenn man aus einer Sphâre Sn die Innengebiete von l zueinander
fremden n-dimensionalen Elementen — etwa von sphârischen Voll-
kugeln oder von Simplexen einer Triangulation von Sn — herausnimmt,
so entsteht eine berandete Mannigfaltigkeit Q"; ihr Rand besteht aus
(n — l)-dimensionalen Sphâren sl9..., st. Wir zeichnen eine Orientie-

rang von Sn, und damit von Qnt aus und orientieren dann die Sx so, daB

Q\ Usx ist ; dabei fassen wir die orientierte Mannigfaltigkeit Qnt und
die orientierten Sphâren Sx als Ketten auf und verstehen unter Qnt den
Rand der Kette Qnv

Es sei l 2p; die Randsphâren nennen wir jetzt nicht sx,..., s2p,
sondern st, 8f19..., $p, slp Fiir jedes A, 1 ^ A < p, nehmen wir eine
topologische Identifizierung von Sx und s'x vor und zwar so, daB, im Sinne
der eben eingefuhrten Orientierung, s[ —Sx wird. Dadurch entsteht
eine geschlossene orientierte Mannigfaltigkeit H^; wir nennen sie eine

,Henkelmannigfaltigkeit ' '.
Man kann H^ auch dadurch definieren, daB man nicht Sx und s'x identi-

fiziert, sondern fur jedes A ein Exemplar Px des topologischen Produktes
$n-i >< ^i? wobei E1 eine Strecke ist, derart an Ç^ansetzt, daB von den
beiden orientierten Randsphâren von Px die eine mit — Sx, die andere
mit «( identifiziert wird; das ist das Ansetzen von ,,Henkeln" an
die 8n.

Dabei darf immer p =0 sein: es ist Hq =8n; ferner ist, wie man
leicht sieht, H\ homôomorph mit dem topologischen Produkt S7^1 x S1.

Fiir p > 1 lassen sich die flj dann induktiv auch folgendermaBen er-
klâren: H% ist die topologische Summe von H^_x und H\, d. h. : H%
entsteht, indem man aus H^_t und aus H\ je ein n-dimensionales Elément
entfernt und die beiden (n — l)-dimensionalen Randsphâren zusammen-
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heftet. Allgemein ist die topologische Summe einer Hp und einer H1^

eine Hp+q.
Fur n =2 ist bekanntlich jede geschlossene orientierbare Mannig-

faltigkeit eine Henkelmannigfaltigkeit. Fur n > 2 aber sind die H% sehr
spezielle Mannigfaltigkeiten.

Wir werden im folgenden mit Hp oft auch den Grundzyklus der ebenso

genannten (orientierten) Mannigfaltigkeit bezeichnen.

4.2. Bildet man Hp simplizial in den Komplex Si ab, so entsteht in Si
eine Kette, und zwar ein Zyklus, C /(#£). Wir behaupten, daB die-
jenigen Ketten von Si, die sich in dieser Weise als Bilder von
Henkelmannigfaltigkeiten darstellen lassen, eine Gruppe bilden. In der Tat ist
erstens klar, daB mit C auch —0 ein solches Bild ist. Zweitens: es sei

C1=f1(Hpi), C2=f2(Hp2) ; wir diirfen Hpi und HPî als fremd zueinander
annehmen ; wir verbinden einen Punkt ax € Hpi mit einem Punkt a2 eHp2
durch eine Strecke E, die sonst keinen Punkt mit Hpi oder HPi gemein-
sam hat ; dann gibt es, wie man leicht sieht, eine solche Abbildung g einer
HPl+P2 auf Hlx +E +HP2, daB dabei die beiden Hnpi mit dem Grade 1

bedeckt werden; man bilde nun HPi + E + HPi so durch / in Si ab, daB

f =fi auf Hnpi ist (i =1,2) und daB E irgendwie auf einen Streckenzug
abgebildet wird, der in Si die Punkte fx{a^) und /2(a2) verbindet ; dann ist
fg eine Abbildung von Hpi+P2 in Si mit fg(HPi+Pz) =Ct +C2.

Die Gruppe der Bilder w-dimensionaler Henkelmannigfaltigkeiten in
51 heiBe tyn. Da die Sphâre Sn eine Henkelmannigfaltigkeit ist, ist
<pn 3 ~Qn, also auch tyn 3 §n (cf. 3.2). Aus der letzten Relation folgt:
in einer Homologieklasse ist entweder kein Zyklus Bild einer
Henkelmannigfaltigkeit, oder aile Zyklen sind solche Bilder; diejenigen Homolo-
gieklassen, deren Zyklen Bilder von Henkelmannigfaltigkeiten sind,
bilden die Untergruppe ^}n ^n/§n der Bettischen Gruppe 23n. Es ist

4.3. Wir knûpfen an 3.7 an und behaupten :

Satz II. Dann und nur dann sind die Homotopierânder der (N + 1)-

dimensionalen Kette C von Si in der Oruppe i7^(5liV) enthalten, wenn C

Bild einer Henkelmannigfaltigkeit ist.

Hierzu ist zu bemerken: wenn ein Homotopierand q von C in 77^(5^)
enthalten ist, so ist jeder Homotopierand qr von C in IIq(S^) ; denn es

ist (cf. 3.4) Qf - q € «o und (cf. 3.3) % c n*(RN)
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Fur N 1 besagt der Satz II nur, da8 jeder zweidimensionale Zyklus
Bild einer geschlossenen orientierten Flâche ist; dièse Tatsache ist be-

kannt11) ; beim Beweis des Satzes II diirfen wir daher — was aber nicht
unbedingt nôtig ist — N ^ 2 voraussetzen. Der Beweis wird in den
Abschnitten 4.4 bis 4.7 gefuhrt werden.

4.4. Qf+1 ist wie in 4.1 definiert; QN sei der aus allen hôehstens
i^-dimensionalen Simplexen einer Simplizialzerlegung von Qf+1 beste-
hende Komplex ; o sei ein Eckpunkt von £iN, den wir als Nullpunkt fur
die Grappe nN(Q,N) benutzen. Fur jedes % verbinden wir o durch einen

Kantenzug w\ von £lN mit einem Punkt bx der Randsphâre Sx und bilden
eine Sphàre SN so auf die Punktmenge w\ -f- s\ ab, daB einem auf SN

ausgezeichneten Pol der Punkt o entspricht und daB Sx mit dem Grade 1

bedeekt wird. Hierdurch werden Elemente <%x eHN(Q.N) definiert
(A =l,...,i).

Da man den Weg wx in sieh auf den Punkt bx zusammenziehen kann,
ist ax — genauer : jede stetige Sphàre, welche das Elément ax repràsen-
tiert — in Q.N homotop zu Sx, wobei Sx als stetige Sphàre aufzufassen ist.

Wir behaupten weiter: £ ocx ist Homotopierand der Kette Qf+1.
Fur N 1 erkennt man dies am einfachsten, indem man Q] làngs den

Wegen wx, von denen man annehmen darf, daB sie auBer o keinen Punkt
gemeinsam haben, aufschneidet. Fur N > 1 kann man entweder einen,
diesem Aufschneiden analogen ProzeB vornehmen oder folgendermaBen
schlieBen : h sei (fur den Komplex £iN) der in 1.4 erklàrte Homomorphis-
mus von IIN in %}N; aus der Définition des Homotopierandes folgt un-
mittelbar, daB immer, wenn q Homotopierand einer Kette G ist, h q =C
der Rand von G im Sinne der Homologietheorie ist; in unserem Falle
ist also, wenn das Elément q €ÏIN(£iN) Homotopierand von Qf+1 ist,
Jiq =£sx. Andererseits sind die ocx so definiert, daB hax =8x ist; es

ist also Kq =hU<xx. Nun ist aber, wie man leicht sieht, Qf+1 und damit
auch £iN asphàriseh in den Dimensionen 1,..., jY — 1 ; folglich
([1], (II), Satz I) ist h ein Isomorphismus und q Zocx •

Wir haben damit gezeigt:Qf+1kesftzteinen Homotopierand q =27<xa>

wobei die ocx in Q.N homotop zu den Sphâren Sx sind.

4.5, Der eine Teil des Satzes II lautet folgendermaBen: Die (N + 1)-
dimensionale Kette G von Si sei Bild einer Henkelmannigfaltigkeit ; dann
besitzt G als Homotopierand ein Elément der Grappe IIq(Rn)

Beweis : Die Voraussetzung iiber G lâBt sieh auch so formulieren : es

n) [H p. 290; oder als leichte Folgerung aus Satz IV, p. 173 in [6].
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ist C =/(Qfp+1), wobei Qf+X die Randsphàren s1,s[, ...,sP,s'p besitzt
und / fur jedes X die Sphàren sx, s[ derart abbildet, da6 die stetigen
Sphâren [f(-sx)] und [/(«£)] identisch sind: [/(-«*)]=[/(«£)] sA.
Da bei einer simplizialen Abbildung ein Homotopierand einer Kette
immer in einen Homotopierand der Bildkette iibergeht, besitzt C den

Homotopierand^ /(g) =f(a1) +f{*[) + ••• +/(«,) + /(*,) > wobei
<%i, #1, ocp, «p die analoge Bedeutung haben wie ^, oc2, ocl in 4.4.
Da in £iN immer ocx m^ s\ un(i <*x m^ 5x homotop ist, ist in $tN immer
f(otx) mit —sa und f(ocfx) mit sA, also /(<xA) mit — /(a£) homotop.
Folglichist W

4.6. Aueh dem Beweis des zweiten Teiles von Satz II schicken wir
einen Hilfssatz voraus, der die von den Sphâren sl9 ...,St berandete
Mannigfaltigkeit Qf+1 betrifft. ï sei ein beliebiger Komplex.

Hilfssatz : / sei eine Abbildung der Sphàren sx in das Polyeder l ; fur
jedes A sei [/(s;\)] in ï einem solchen Elément ^€77^(1) homotop, daB

£f}x 0 ist. Dann làBt sich / zu einerAbbildungvon Q^+1 in ï erweitern.12)
Beweis: Fur 1=0 ist der Hilfssatz inhaltslos. — Fur l 1 ist er

riehtig; denn Qf+1 ist eine Vollkugel, und die Voraussetzung besagt, daB

[/(5i)] in ï homotop 0 ist. — Auch fur 1=2 ist der Hilfssatz riehtig;
denn Qf+1 ist das topologische Produkt einer SN mit einer Strecke, und
die Voraussetzung besagt, daB [/(«x)] und [/( — s2)~] in l einander homotop

sind.
Es sei l 3. Wir stellen Qf+1 folgendermaBen im euklidischen Raum

ftN+i dar: aus dem Inneren einer, von der JV-dimensionalen Sphâre sz

begrenzten Vollkugel sind die Innengebiete zweier zueinander fremder,
von sx bzw. $2 begrenzter Vollkugeln herausgenommen. Es seien: «3 eine
mit s3 konzentrisché, kleinere Sphàre, die sx und s2 im Innern enthâlt;
A eine JN^-dimensionale Ebene, die s± und s2 voneinander trennt; u die

(N — l)-dimensionale Schnittsphâre von A und sf3; E die von u in A
begrenzte Vollkugel; h±, h2 die beiden Teile, in die s'3 durch u zerlegt
wird, derart, daB st in dem von h{ +JS? begrenzten Gebiet liegt (i =1,2).

Wir sollen die auf 8t, s2, ss gegebene, die Voraussetzung des Hilfs-
satzes erfûllende Abbildung / zu einer Abbildung von Q*+1 in ï erweitern.
Wir setzen zunâchst f(E) =0, wobei o der Nullpunkt der Gruppe
IIN(î) ist; darauf erklàren wir / auf h{ so, daB die Abbildung des, mit
einer SN homôomorphen Gebildes hi + Ë das in der Voraussetzung
genannte Elément f}{ eIIN(î) reprâsentiert (i 1,2) ; das Bild von
sf3 =hx -\-h2 stellt dann, wie aus der Summendefinition inIIN hervor-

12) DaB der Raum ïein Polyeder ist, wird ûbrigens beim Beweis nieht benutzt werden.
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geht, das Elément px + &> also nach Voraussetzung das Elément — fiz
dar. Da das durch / gelieferte Bild von sz nach Voraussetzung homotop
zu /?3 ist, kann man daher / zu einer Abbildung der von s3 und —srz

berandeten Kugelschale erweitern; schlieBlich kann man fur i =1,2,
da [/(«*)] homotop zu dem durch [/(ftt- + J?)] reprâsentierten Elément
& ist,/auch aufden von ht +E und —Si begrenzten Bereich erweitern.
Damit ist / in der gewiinschten Weise konstruiert.

Es sei l > 3 ; fur QfJi1 sei der Hilfssatz schon bewiesen. Wir dûrfen
annehmen, daB sich in Qf+1 eine iV-dimensionale Sphâre s* wâhlen lâBt,
die Si und s2 einerseits von sz, st andererseits trennt ; sie zerlegt
Qf+1 in eine Qf+1 und eine Qf+i ; dabei sei s* so orientiert, daB die Rânder

QX+1 Sl + s2 + s*, Qf_Y s3 H + st — s* sind. Wir erklâren /
auf s* so, daB [/(s*)] mit —•& —/32, also auch mit /J8 + • • • + pt
homotop ist; dann kann man /, wie soeben gezeigt wurde, auf Qf+1
sowie nach Induktionsvoraussetzung auf QfJ~i erweitern.

Damit ist der Hilfssatz bewiesen. — Leicht zu beweisen ist ûbrigens
seine Umkehrung : Wenn / eine Abbildung von Qf+1 in ï ist, so gibt es in
nN(ï) solche Elemente j8^, daB die [/(^^)] homotop zu den /?A sind und
daB Zpx=O ist.

4.7. Jetzt beweisen wir den zweiten Teil von Satz II, der so lautet:
Die Kette C von 51 besitze einen Homotopierand q €IIq(Rn) ; dann ist
C €yN+1 (cf. 4.2).

Beweis: Es genugt, eine Kette O1 e ^}^+1 zu finden, die denselben

Homotopierand q besitzt ; denn in der Ausdrucksweise von 3.4 ist dann

T(C)=T(C), also C-C'cS^1, also, da S*+1 c ^+1 ist
(cf. 4.2), auch C ef*+1.

v
Es ist q =]£((}\ —fi'y), wobei immer fo,/?£ homotope Elemente

x-i
von UN($tN) sind. Wir betrachten eine Qf^, deren Randspharen wir
81,8l9f8p98p,r nennen, und zwar seien sie so orientiert, daB

^ =2J(sx —8\) —t ist. Wir definieren eine Abbildung / der

Randspharen in den Komplex RN so, daB [/(^A)], [/(*x)]> [f(r)] ^zw. die
Elemente /9A, /?£> Q reprâsentieren; dann laBt sich / nach 4.6 zu einer

Abbildung / von Qf^ in $tN erweitern. Fur jedes A setzen wir an Q^i
ein Exemplar P^ des topologischen Produktes einer 8N mit einer Strecke
derart an, daB die orientierten Randspharen von PA mit — s^ und sfx

identifiziert werden; da [/(«a)] uad. [/(«O] in ^ miteinander homotop
sind, lâBt sich dann / so auf dièse P\ erweitern, daB / (Q^t + E P\) c SiN

ist. SchlieBlich fûgen wir ein Elément EN+1 an Qf^i dadurch an, daB
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wir seine Randsphâre mit r identifizieren ; da das durch [/(r)] reprâsen-
tierte Elément q cIIn(Rn) als Homotopierand in der Gruppe 91 liegt
(cf. 3.3,3.4), ist [/ (r)] in R homotop 0, und daher lâfit sich / auf EN+1
erweitern, sodaB f{EN+1) c 51 ist. Die Kette C =f(EN^) hat dann
die gewûnschten Eigenschaften: erstens hat sie den durch [/(r)] reprâ-
sentierten Homotopierand q; zweitens ist, da f(Qf^t +ZP\) c RN

ist, C" gleich dem Bild f(H$+1) der Henkelmannigfaltigkeit

4.8. Den Inhalt des hiermit bewiesenen Satzes II kônnen wir unter
Benutzung der Ausdrucksweisen aus 3.4 und 4.2 auch folgendermaBen
formulieren: Bei dem Homomorphismus T ist die Gruppe tyNJtX das

Urbild der Gruppe 5R r,n*{RN). Nach 3.4 und 4.2 folgen hieraus die
Isomorphien

N+iN+i NSi ^^(5)
(6)

4.9. Auf (6) werden wir in 5.4 zurûckkommen; von (5) machen wir
sogleich eine Anwendung:

Wenn R asphârisch in wenigstens einer der beiden Dimensionen 1 und
N ist, so ist jeder (N + l)-dimensionale Zyklus, der Bild einer
Henkelmannigfaltigkeit ist, sogar Bild einer Sphâre.

Denn wenn 51 asphârisch in der Dimension 1, also einfach zusammen-
hângend ist, so gilt dasselbe von &N, und daher ist IIq($ïn) 0 (cf. 1.3);
wenn R asphârisch in der Dimension N ist, so ist

in beiden Fâllen ist nach (5) <$N+1/QN+1 0

6. Die Beziehung zwischen den Gruppen AN(®N) und

5.1. Wir betrachten wie bisher einen Komplex 51 und den zugehôrigen

Komplex RN. Die Gruppen IIN(R) und 77^(5^) sollen denselben Null-
punkt o haben. Dann reprâsentiert jede stetige Sphâre, die ein Elément

von nN(RN) reprâsentiert, zugleich ein Elément von IIN(Si), und zwei

stetige Sphâren, die in RN âquivalent sind (cf. 1.1), also dasselbe Ele-
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ment oc eIIN(RN) reprâsentieren, sind auch in R âquivalent, reprâsen-
tieren also dasselbe Elément <poc €lIN(R). Damit ist eine eindeutige
Abbildung, die ,,naturliche" Abbildung, 9? von IIN(RN) in IIN(R) er-
klârt, Sie ist oflfenbar ein Homomorphismus. Sie ist sogar eine Abbildung
auf IIN(R), d. h. es ist (pIIN(RN) =IIN(R) ; denn jedes Elément von
IIN(R) lâBt sich nicht nur durch ,,stetige", sondern auch durch ,,simpli-
ziale" j^-dimensionale Sphàren reprâsentieren, und dièse liegen in RN,
reprâsentieren also zugleich Elemente von IIN(RN). Der Kern von <p ist
die Gruppe 91 (cf. 3.3).

Aus den Definitionen der Gruppen IIN und FN folgt leicht, daB

(fIIN(RN) cilf(51), <prN(RN) c rN(R) ist; wir werden in 5.2 und 5.3
zeigen, daB sogar <pn*(RN) =IIN(R), (pFN(RN) ^FN(R) ist.

5.2. Um zu zeigen, daB <pIIN0(RN) =11*(R) ist, genugt es offenbar,
folgendes zu beweisen: Die Elemente fi, fi' €lIN(R) seien einander
homotop (in R) ; dann gibt es solche Elemente oc, ocr €lIN(RN), daB

a, ocf aneinander homotop (in RN) sind und daB (poc /}, q>ocr /?' ist.

Beweis: QN+1 seiein, von zweikonzentrischen Sphâren s, s'begrenzter
Bereich des RN+1; die Orientierungen seien derart, daB QN+1 s —sf
ist; dann gibt es eine solche simpliziale Abbildung / von QN+1 in R, daB
die stetigen (simplizialen) Sphâren [/(*)], [/(«0] à*e Elemente ($,{}'
reprâsentieren; dabei sind auf s,sf Pôle a, a1 ausgezeichnet. Wir ver-
binden a1 mit a durch einen Weg w, der aus Kanten der, / zugrunde-
gelegten Simplizialzerlegung von QN+1 besteht, und verstehen unter g
eine solche Abbildung einer SN auf die Punktmenge w + s, daB s mit
dem Grade 1 bedeckt wird; dabei sei auf SN ein Pol at! mit g (a") =a'
ausgezeichnet. Nun seien a.y<x' die durch die stetigen Sphâren [/(«)],
[fg(SN)] reprâsentierten Elemente von IIN(RN). DaB oc,ck' einander
homotop in RN sind, sieht man, indem man w in sich auf den Punkt a
zusammenzieht, wodurch [^(/S^)] in s deformiert wird, und diesen Pro-
zeB durch f in R (und zwar in RN) ûbertrâgt. DaB <poc /? ist, ist klar ;

daB <pocr =p' ist, d. h. daB [fg(SN)] und [/(s')] in !ft âquivalent sind,
ergibt sich, wenn man w + s innerhalb QN+1 unter Festhaltung von
ar auf die Sphâre sf deformiert und dabei immer die Abbildung / ausiibt.

6.3, Um zu beweisen, daB q>FN{RN) =zFN(R) ist, haben wir zu einem
gegebenen (Î€rN(R) ein ocerN(RN) so zu finden, daB q>oc =(} ist.

h sei der wie in 1.4 erklârte Homomorphismus von nN(RN) in die
Bettische Gruppe f$N oder, was dasselbe ist, in die Zyklengruppe 3^
von RN. Zu dem gegebenen /S gibt es (cf. 5.1) ein <%0 *1IN(RN) mit
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daB p€FN(R) ist, bedeutet:derZyklusAa0istin5lhomolog0,
d. h. es gibt eine Kette 0, deren Rand C hot0 ist. g sei ein Homotopie-
rand von C (cf. 3.4); dann ist auch hq =C. Setzen wir oco — q =«,
so ist daher hoc =0, d. h. oc€FN(SiN)', ferner ist ge9ï, also <pq 0
und qxx <pa0 fi

6.4. Bereits aus den in 5.1 festgestellten Tatsachen

RN) c n*($) und <pr»($iN)

folgt, da8 cp einen Homomorphismus 0 der Restklassengruppe
in die Restklassengruppe AN(S<) bewirkt. Aus 5.3 folgt, daB 0 eine
Abbildung auf ^1^(51) ist. Wir wollen jetzt den Kern von 0 bestimmen.

Die durch q? bewirkte Abbildung von FN(${N) auf FN(St) nennen wir
<pf ; da 5R der Kern von <p ist, ist 5R ^ rN($tN) der Kern von <pr ; hieraus
und aus 5.2 folgt, daB das Urbild von TIf(Si) bei der Abbildung y' die
Grappe 17$(RN)* (91 ^ rN(RN)) ist. Demnach ist der Kern von 0 die
Faktorgruppe

n»(s*) • (9i - r^^)) /n*(RN) -,

sie ist isomorph mit

9î - r^(^) / 91 - rW*) - n*{stN),

also, da 77^ c rN ist, mit

dièse Grappe aber ist nach 4.8 (6) isomorph mit

Damit sind wir zu folgendem Ergebnis gelangt:

Satz III. Der nattirliche Homomorphismus y von IIN(SiN) auf IIN(R)
bewirkt einen Homomorphismus 0 von AN(StN) auf AN{St), dessen Kern
isomorph mit der Faktorgruppe *8N+1/tyN+1 ist.

Hierin ist enthalten:

Korollar. Die Gruppe AN(StN) besitzt eine solche Untergruppe 6^,
dafi die folgenden beiden Isomorphien gelten :

AN(RN) /&N^ AN(R), 0N ^
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6.5. Durch Kombination dièses Korollars mit dem Satz I (Nr. 2.2)
erhalt man

Satz IV. il sei ein beliebiger Komplex, der die Fundamentalgruppe ©
besitzt und asphàrisch in den Dimensionen n mit 1 <n < N ist (N ^ 2).
Dann enthalt die Oruppe ©jsr+1 eine Untergruppe 0N, filr welche die Iso-
morphien gelten13) :

®N+1/eN ^ a* rN/n?, (7)

QN ~ $}N+1/tyN+1 (8)

Denn da fur n < N immer IIn(R) =IIn(SiN) ist, folgt aus den Vor-
aussetzungen des Satzes IV, daB die Voraussetzungen des Satzes I erfullt
sind; aus der Behauptung des Satzes I und dem Korollar 5.4 folgt die
Behauptung des Satzes IV.

Der Satz I ist iibrigens ein Korollar des Satzes IV. Denn wenn
Si =RN ist, so ist SB*+1 0, nach (8) also ©N =0, und (7) geht in
die Behauptung des Satzes I liber.

Ebenso wie der Satz I den Satz I', enthalt der Satz IV den

Satz IV7. il sei ein beliebiger Komplex mit der Fundamentalgruppe ©.
Dann enthalt dieOruppe ©3 eine Untergruppe <92, fur welche die Isomorphien
gelten :

6.6. Anwendungen und Beispiele. Wenn ©3 0 — also z. B. wenn ©
eine freie Gruppe ist ([4], 10.1) —, so ist jeder dreidimensionale Zyklus
in il Bild einer Henkelmannigfaltigkeit ; denn aus ©3 0 folgt 02 0,
also nach (8') 933 =^3. Ferner folgt aus ©3 =0 nach (7;), daB

r2=i7^ ist.

6.7. Wir nehmen zu der Voraussetzung ©3 =0 noch die Voraus-
setzung hinzu, daB il Mz eine dreidimensionale geschlossene orientier-
bare Mannigfaltigkeit ist. DaB ihr Grundzyklus Bild einer Henkelmannigfaltigkeit

Hz ist, bedeutet : Hz lâBt sich mit dem Grade 1 auf Mz abbilden.
Bei einer solchen Abbildung ist jeder Zyklus aus Mz dem Bilde eines

Zyklus aus Hz homolog ([7], Satz II); nun besitzt H3, wie man direkt

13) Die Gruppen in (7) und (8) beziehen sich sâmtlich auf den Komplex R.
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bestâtigt, eine zweidimensionale Homologiebasis, die aus Kugelfl&chen
besteht ; folglich ist jeder zweidimensionale Zyklus aus M3 einem Kugel-
bild homolog, d. h. es ist 952 S2. Da immer 932/<52 ©2 ist, ist
also ©2 0. Damit ist bewiesen : Ist © Fundamentalgruppe einer (ge-
schlossenen orientierbaren) Mannigfaltigkeit M3 und ist ©3 0, so ist
auch ©2=0.

Gruppen ©, fur welche ©2 ^ 0, ©3 =0 ist, kônnen also nicht als

Fundamentalgruppen von Mannigfaltigkeiten M3 auftreten. Beispiele
solcher Gruppen sind die Fundamentalgruppen der geschlossenen
orientierbaren Flàchen von positivem Geschlecht14), allgemeiner: die
Fundamentalgruppen von zweidimensionalen Komplexen î, welche in der
Dimension 2 asphârisch, aber nicht azyklisch sind; denn da ï asphârisch
ist, ist erstens 333/S3 ©3 (cf. 3.6), also, da I zweidimensional ist,
©3 =0, und zweitens ®2 =0, also S2 ®2, also, da ï nicht
azyklisch ist, ©2 ^ 0

5.8. Wir betrachten noch weiter Mannigfaltigkeiten M3 mit ©3 0.
Nach 5.7 ist 232 S2 ; aus den Definitionen von ®2 als Bild hIP und
von T2 als Kern von h folgt, daB immer S2 ~/72/T2 ist; nach 5.6 ist
T2 =772 ; es ist also SB2 ^772/i72. Die erste Bettische Grappe von M3
ist isomorph mit der Gruppe S1 (dies ist die Faktorgruppe der Gruppe ©
nach ihrer Kommutatorgruppe) ; nach dem Poincaréschen Dualitâtssatz
ist dann 952 isomorph mit der Faktorgruppe ©J der Gruppe ©x nach der
Untergruppe ihrer Elemente endlicher Ordnimg. Fur eine M3 mit ©3 0

ist also nyni ^ ©j.
Beispiel: Die Fundamentalgruppe © der Mannigfaltigkeit M3 sei die

freie Gruppe mit p Erzeugenden (dies ist der Fall, wenn M3 die Henkel-
mannigfaltigkeit fÇ ist). Dann ist n%/II% die freie Abelsche Gruppe
vom Range p.15)

6.9. Fur die eben betrachteten Mannigfaltigkeiten M3 ist A2 =0,
d. h. F2 =IIl ; Mannigfaltigkeiten, fur die dies nicht der Fall ist, findet
man auf Grund folgender Bemerkung: Fur eine M3 ist SB3 unendlich
zyklisch, nach (87) also <92 zyklisch; wenn ©3 nicht zyklisch ist, ist daher
nach (7;) T

14 Ein anderer Beweis dafûr, dafi dièse Gruppen nicht als Fundamentalgruppen von
Mannigfaltigkeiten M3 auftreten, ist in [3], Nr. 28, enthalten.

15) Die Struktur der Gruppe Jïw j IT" verdient besonders darum Interesse, weil sich

in ihr eine wesentliche Eigenschaft der Homotopiegruppe J2n als „Gruppe mit Operatoren"
im Sinne von [2] âufiert; cf. 1.7.
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Beispiel: Mz sei die topologische Summe ([6], p. 218 unten) von zwei
dreidimensionalen Toroiden (topologischen Produkten Sxx S1 x S1) ;

daim ist, wie man leicht bestatigt, (53 die freie Abelsche Gruppe vom
Range 2;16) da <92 zyklisch ist, folgt aus (8'), dafi A2 unendlich ist. —

Ûbrigens ist fur dièse Jf3, wie man ebenfalls leicht sieht, S2 0, also,
da immer S2=i72/T2 ist, r2=i72, A2=II2/n20.

18 Andeutung eines Beweises: Der Komplex 51, der entsteht, wenn man zwei Toroide
in einem Punkt zusammenheftet, hat dieselbe Fundamentalgruppe (5 wie M3 ; er ist, wie
man leicht sieht, asphârisch (im Gegensatz zu M3), und daher ist (53 isomorph mit seiner
dritten Bettischen Gruppe.
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