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Fundamental Domains
for Lattice Groups in Division Algebras II *>

By Hermann Weyl Princeton (New Jersey)

C. AN OLD STORY RETOLD
(WITH SOME MINOR ADAPTATIONS)

§ 5. MinkowskFs Fundamental Inequality

Express the symmetric bilinear form

tr (Çf!) xfT,y
in terms of that basis. We compute the déterminant d of its coefficients
fik tr (âJiCok) as follows. If J represents the opération £->f in terms
of the basis co^, (11), then

tr ((ôi(ok) Etfu tr ((ota)k)
or

hence

d= ±|tr
d is necessarily positive, tr (cotft>&) are the coefficients of the bilinear
form tr (£*?), whieh is also symmetric because tr (XY) dépends sym-
metrically onthetwo matrices X, Y. Thus we find that d is the absolute
value of the déterminant | tr (co^co^l. This absolute value is indepen-
dent of the choise of the minimal basis co11..., cog of { 5} &nd is there-
fore known as the discriminant of {5}. Computation of tr (a^o)*) by
means of the basis co, itself shows that thèse coefficients and therefore
d are rational integers. The non-degeneracy of the symmetric bilinear
form tr(£??) implied by d ^ 0 is an important fact which concerns
the division algebra 5 over & (though our proof passes through %K by
means of the conjugation f ->^).

Lemma 5.1. The déterminant d of the quadratic form

tT{lS) x'Tox=To[x]
equals the discriminant of { 5} a^d is a positive rational integer.

1) Anmerkung der Bedaktion. Der I. Teil der Arbeit ist in der Festschrift fur
Andréas Speiser, Orell-Fûfili, Zurich, 1945, p. 218, erschienen.
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Since the conjugate of £ y rj is rj y f, provided y is âymmetric, tr (f y rj)
xfTy is a symmetric bilinear form. Its coefficients are £tfc tr
We hâve

tr 21 tr

G

Thus:

Lemma 5.2. The déterminant of the quadratic form tr (f y|)
yM ©quais d * Nm y

In terms of the fixed minimal basis co1,..., cog of the order { 5} we
express each component 1^ of a veetor x (lu £n) by the column
of its coordinates x^, £^ Z^a^^co^, and now use the N ng quan-
tities Xpiip 1,..., n; i 1,..., g) as coordinates of X] they follow
one another in the order jui 11,..., 1 g; 21,..., 2gr;.... The Jacobi
transformation (17) then appears as a linear transformation

ZU — Xa + ^ (21)

which connects the coordinates z ^ with a;^ and has the triangular matrix

0 E

0 0

(22)

Hence (16) and Lemma 5.2 prove that the déterminant of the quadratic
form t[x] tr[x] of the variables x^ equals

dn • Nm xx... Nm #n

A lattice 31 is given, and {$} with the minimal basis (o1,..., œg is
the order of its multipliers. Since for any positive t there is only a finite
number of lattice vectors x for which t[x] < t we can construct the
successive minima of t [x] as follows : Among ail lattice vectors ï^o
the minimum tx ott [x] is attainedfor x bi; among ail lattice vectors
not in [bj the minimum t2 of t [x] is attained for x b2; ©te. For any
m, 1 m let x range over ail lattice vectors not in [b1?..., bw-.x];
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t[x] then assumes its minimum tm for a certain x bw. The bl9..., bn
thus obtained by induction constitute a semi-basis for 31 such that

whenever x is in 31 but not in [b1?..., b^J; m 1,..., n. Let us

express this by saying that bi,..., bn is a reduced semi-basis of 31 with
respect to F; we hâve proved the existence of such a basis. The consécutive

minima tm=t[hm] increase with the index m, 0<^^f2^- • • ^tn.
By carrying out the transformation (6) 31 is turned into a lattice fl

containing the unit vectors e^, the form F into a form of the variables rj.
Denoting the new form by F again, and the variables by £ instead of rj,
we are facing the following situation : 2 is a given admissible lattice and,
for any m 1,..., n,

tri*] > *r[e«] (23)

whenever x (£1?..., fn) is in fi and (fw,..., |n) ^ (o,..., o).
Let us say under thèse circumstances that F is an 2,-reduced form. Set

again t[tm] tm and observe that the iV-dimensional "sphère" defined

/«(ï) ç-i. tr (f^^,) + • ¦ • + Ç-1- tr (£„*„£,) < 1 (24)

contains no lattice vector ï^o, provided J1 is reduced2). Indeed, let
|m be the last non-vanishing component of the non-vanishing lattice
vector x. We hâve

(X) 2ÏU Ç1 • tr (~CV kv Q > t'1 • S ?.i tr (C, «, W ^x • t[x],

but by (23) t[x] > ^w. The "length" /(3e) is a gauge function. If vn is

the volume of the n-dimensional unit sphère, vn {r(|)}n/r( 1 + — |

then the volume of the sphère (24) equals

ahd hence the inequality (9) yields

3]2 < Nm xx... Nm

a) In this way Minkowski himself proceeded for quadratic forma; see Géométrie
der Zahlen, 1896, pp. 196—199. About his gênerai inequality Sx... 5nF< 2n ibid.,
pp. 211—219; compare H. Davenport, Quarterly Jour, of Math. 10 (1939), 119—121f

H. Weyl, Proc. London Math. Soc, ser. 2, vol. 47 (1942), 270—279.
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If one knows a number rn ^ 1 such that congruent non-overlapping
sphères in a lattice arrangement cannot occupy more than the part rn
of the total w-dimensional space, then vN may hère be replaeed by the
larger constant nN — vN/rN. Blichfeldt has shown that, for instance,

rn (n + 2)^ 2~ * n+ js a legitimate choice3). Setting

[2: 2J] j ?n, cn Anfâ, we hâve arrived at the following funda-
mental inequality:

<Vi7?=1 ir1 tr yw)^ <i7:=1 Nm ^ (25n)

The docked form arising from the reduced F[x] by setting

Sm+i • • • In o

is an fim-reduced form of the vector (Çl9.. |m). Hence a similar
inequality holds for every m 1,..., n:

cm-m=1 ((T1 tr yvv)< < 77»=1 Nm xv (25m)

where cm Amjm* From Lemma 3.5 and (19) we learn that

(çT1 • tr 7vvy > (g-1 • tr xtf ^Nm^.

Applying this in (25m) for v= 1, ...,m we obtain the important
inequality

*m Amil<l (w 1,..., n) ; (26)

if, however, we apply it for v 1,..., m — 1 only, we find

^mHm^cm(r1tTymmy, (27)

a fortiori, in view of (19)

Nmxm>cm(g-1tvxmy. (27')

From (26) upper bounds depending on {g} only resuit for the indices

Ji >•••>}'n • As there is but a finite number of lattices fl over 3 with
given indices, we hâve thus proved the

») Math. Ann. 101, 1929, 605—608.
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FIRST THEOREM OF FINITENESS: There exist £,-reduced forma
for not more than a finite number of admissible lattices fi.

(27) gives occasion to apply Lemmas 3.6 and 3.7 by identifying xm
and gr1 • tr ymm tm/ g with the quantities y and t of the lemmas.
Let therefore rm and r* be the least and the largest eigenvalue of the
positive symmetric matrix Km and set e(cm) em, b(cm) 6m,

B(cJ Bm. Then

rm > bmtj g, C< BmtJ g (for g > 1) ; (28)

C/rm<em (fore?>2). (29)

In the following we dénote by M constants depending on fi only, not
always the same. bm, Bm, em are of this nature.

By Lemma 3.4

tr (Cm«mU >rm-tv (CmU >çr1-Ktm- tr (CwCm) (30)

and
tr (!m*mU < r1' Bmtm* tr CCmU (31)

§ 6. The Pyramid of Reduced Forms

Our next goal is two-fold: we shall dérive upper bounds M for
abs(5fAV(// < v) and show that the "eell" Zo of the fi-reduced forms F is
defined within H+ by a finite number of linear inequalities and hence is

a convex pyramid.
Let m be one of the numbers 1,..., n, F an û-reduced form, t tFt

and 2 (fi,..., fn) a lattice vector for which

(*«,...,*») ?Mo,...,o) (32)
and

t[x] tm (33)

(equality, not inequality). We maintain that under thèse circumstances

upper bounds M may be ascertained for ail abs Çv. Indeed, our équation
(33) reads

hence

tr (ÇvxvÇv) < tm < tv for v > m.
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By (30)

Consequently

(for v m,...,n) (34)

Similar bounds for v < m dépend on the fact that F is reduced. Any
élément of ^K is congruent mod {Qf} to a "reduced" élément

| x1co1 H h xgcog

i. e. one for which — ^< xt ^ ^. Let g2 be an upper bound of tr (££)
T0[x] in the unit cube — \ ^ xt < ^. If %K is endowed with a metric
by the positive form TQ[x], then the (/-dimensional linear space %K is

completely covered by circles of radius q around ail éléments of {3f}.
Let v < m. The lattice vector x is changed into another lattice vector
X° x — û by subtracting a vector of the form a {<xl9..., <xv, o .o),
the components <xl9...,<xv of which lie in {3}. The components
fK+i >•••>{*! are not affected, Q ^ for fx > v ; hence

Because J1 is reduced, we then must hâve

and this gives

But the terms in the left and right sums coincide for /u > v. Therefore

?^ f,J ^ X;=x tr (£>MO • (35)

One may choose ocv,..., ocx in { g } one after the other so that Ç°v,... ,£?

are reduced mod {g} Then

tr (ï£ty#) < fir1^^ 'tr ^^)
and consequently the right member of (35) does not exceed
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In the left member we retain only the last term

tr (tv*vCv)> ^6^-tr (£,£,,)
Hence

hv • tr (CFU < Q2(BX + • • • + Bv) for v 1,..., m - 1. (34*)

Given the reduced F, the équation (33) holds in partieular for x em;
therefore by (34*)

V<É?2(£1+-..+ Bv)/bv (v<n). (36)

In view of Lemma 3.2 and the recursion formulas

*• :.,

our upper bounds M for abs £„ and abs ôvfl as given by (34), (34*),
(36) entail similar bounds for abs |y,

abs2!, <M
Representing |v by its column xv (xvl,..., xvg) in terms of the basis

co1,..., (og we thus find

and since T0[x] is a positive quadratic form completely determined by
{5} we obtain upper bounds M for ail the coordinates xvi of x,

\xvi\^M. (37)

3 is a subgroup of index / of the additive Abelian group fi ; hence the
multiple j of any vector of fi lies in 3> °r in other words the xvi are in-
tegers divided by /. Thus (37) leaves only a finite number of possibilités
for x, independent of the spécial reduced form F.

For a more careful formulation of this resuit let m again be one of
the numbers 1,..., n. We call a vector X (îi ,...,£») in fi an essen-
tial lattice vector of rank m if (fm,..., £n) # (o,..., o) and if there
exista an fi- reduced form F such that

Then we hâve proved that there is only a finite number of essential
lattice vectors x of rank m.
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The cell ZQ of the reduced forms F is defined within H+ by an infinité
number of linear inequalities L (F) ^ 0 : for each m < n and each
lattice vector x satisfying (32) we hâve such an L, namely

L(F) tr[x] - tr[tJ 2^* tr (Vp« -tr V™ > 0 (38)

We speak of the positive forms F as points in H+. Let .Fo be a point in
Zo, F outside Zo. Then there is at least one inequality L which is not
satisfied by F, L (F) < 0. But as there is only a finite number of lattice
veetors x for which tr[x] < ^r[ej or < tr[t2] or there is not more
than a finite number of inequalities L Lti..., Lh which are violated
by F: the planes Lv ,,separate,, Fo from F. Traveling from Fo to F along

the straight segment Fo F the variable point uF0 + (1 — u)F (0 <w< 1)

will cross the plane Lp at u up,up LP(FO) + (1 — up) LV{F) 0. Let
ux be the least of the numbers ux,..., uh, and %/*<) + (1 — u^F the
corresponding point J1!. Then Ft is obviously reduced, but satisfies the
équation L^FJ 0. Hence j^! is essential in the sensé that there
exists a reduced form Fx for which the équation L^F-^) 0 holds.
However, Lx (F) < 0. Thus we hâve shown : If F violâtes any of the
inequalities L it violâtes in particular an essential L. Or formulated in
the positive way: a point F satisfying the essential among the inequalities

L, satisfies them ail. But we know that there is only a finite number
of essential inequalities L (which correspond to what we called above
the essential lattice veetors x of ranks m 1,..., n). This finishes the
proof of the

SECOND THEOREM OF FINITENESS: The cell Zo of fi- reduced

forms is defined within the space H+ of ail positive forms by means of a

finite number of linear inequalities; in this sensé it is a convex pyramid.

(The proof makes use of the assumption that ZQ is not empty. Of
course an empty Zo may also be defined by a finite number of linear
inequalities, but one must not choose them from among the inequalities

L.)

§ 7. The Pattern oî Cells

The following géométrie terminology suggests itself. Any semi-basis

bi,..., bn of 31 détermines a cell Z Z(t)1,..., bn); the point F lies
in the cell if bi, •. •, bn is reduced with respect to F, i. e. if

tr[x] > tr{t>J
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for ail veetors x that are in % but not in [bi,..., bm_i] (m 1,..., n).
Because there exists a reduced semi-basis of 2t with respect to any given
positive form F, each point F lies in at least one cell Z : the celte cover H+
without gaps. To each cell -Z(bi,..., bn) there corresponds an admissible
lattice fi, namely the représentation of % in terms of bi,..., bn; the
same lattice to two cells if and only if they arise from each other by a
lattice substitution s,

s carries F into the form Fs defined by

F8[x8] F[x] or F8[x]

F8 lies in Z8 when F lies in Z. We distinguish the différent admissible
lattices fi by différent colors and paint the cells accordingly. Provided
we omit the empty cells (the lattices fi for which there are no fi- reduced
forms) only a finite number of colors is needed. A lattice transformation s

carries this pattern of cells including its coloring into itself. We know
the non-empty cells to be convex pyramids.

There will, however, be overlappings : a point F may belong to a
number of distinct cells. Indeed, the two cells Z(bl5...,bn) and

Z(bi<*i,..., bn<%w) completely cover one another if the oc^ are unitary
factors. Hère an élément oc of $ (or of $K) is said to be unitary if

aoc e

The norm of a unitary élément oc equals ± 1 and its reciprocal ocx ~ôc.

Hence tr (<xr<%) tr r for every élément r of %K; in particular the
value (14) is not changed by passing from the argument xto xoc, whatever
the quadratic form F Hy^JI- The unitary éléments form a group.

As above, we consider the cells as entities sui generis, not as point
sets ; but we identify certain cells according to the rule : Any two semi-
bases bi,..., bn and Ci,..., cn belong to the same family or détermine
the same cell if c^ b^o^ where oc^ is unitary. In this case Ci,..., cn is

a reduced basis with respect to the quadratic form F whenever bi,..., bn
is ; hence whether or not a point F lies in a cell Z does not dépend on the
basis, bi,..., bn or d,..., Cn, by which Z is defined. It is also true that
the image Z8 of Z by a given lattice substitution s is independent of the
defining basis because cM b^^ implies c^ b^ocp. Two admissible
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lattices fi and fi* are said to belong to the same family if they arise
from each other by a "spécial substitution"

fft ^m^* (*** unitary) • (39)

There is a one-to-one correspondence between the classes of équivalent
cells and the families of lattices fi, and we now paint ail lattices fi of the
same family and ail cells of the eorresponding class with the same color.
Given an admissible fi, the number of spécial substitutions (39) we hâve
to reckon with is a priori limited. Indeed, since e^ is contained in fi*,
the vectors

(<%!,<>,. ..,0), (O,«2, ...,0), (0,0, ..,«n)

must be in fi, and the inequalities

will leave but a finite number of possibilities open for them. This shows
two things: (1) a family of admissible lattices contains only a finite
number of members; (2) the group of spécial substitutions carrying fi into
itself is finite. If one writes out the substitution

in terms of the coordinates x^ (ju 1,..., m ; i 1,..., g) of £x,...,
Jm its déterminant equals Nm txx... Nm <xm ± 1. Hence the
fondamental parallelotopes of Qm and fi* hâve the same (mgr)-dimensional
volume provided fi and fi* belong to the same family. Thus two lattices
of the same family hâve the same row of indices j1,..., jn.

t>i > • • • 9 t)n îg saîd. to be a properly reduced semi-basis of 91 with respect
to F, and F is said to belong to the core of Z (bx,..., bn) if

for ail vectors x in ?I which are not in [bx,..., bm_i] and not of the
spécial form bm<x {<x unitary) (m 1,..., n). One proves at once: Is
bi,..., bn a properly reduced and bf,..., b* a reduced semi-basis
with respect to JT, then b,* b^^, the oc^ being unitary. Or : A point
belonging to the core of a cell Mes in no other celL

Does this mean that there are no overlappings? Considering a cell
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Z Z(t>l9..., bn) as the set of points F lying in Z we must show that
any inner point of Z belongs to its core.

Again, we make the substitution

* Mi+••• + *>«*?« (40)

and afterwards write f for rj> with the effect that e^, fi, Zo take the
place of b^, SI, £(ï>i,..., bn). For each m 1,..., n and each vector
3e in fi outside [ex,..., tm--î\ which is not of the form em<% (oc unitary)
we set up the linear form

L(F) 27f4f v tr (f^f,)- tr (ymm) (41)

If it is sure that none of thèse L vanishes identieally, then an inner point
F of Zo necessarily satisfies the strict inequalities L(F) > 0 and hence

belongs to the core of Zo. Thus we must prove that, given a vector x
of Z, (41) vanishes identieally in F only if x tmoc, oc unitary. It suf-
fices to do this for m 1. Let y be any symmetric élément of %K.
Choosing for F in succession the n diagonal matrices 11 >7*vl I

éléments

along the diagonal we deduce from the identity L(F) 0:

tr(?1yf1) try, tr (?2|2) 0,..., tr (?nfJ 0,

therefore |2 |w o, x ei«, and |j a satisfies the équation

tr (<*}>#) tr y for every symmetric y. Specialize further by
setting first y e and then y — oûx :

tr e g, tr (Ixoc) g, tr (ôïocïxol) tr (#â) tr (ôcoc) y.

Consequently the trace of the square of /? ]8 ë*<% — e is zéro ; but
tr (/?/?) 0 implies fi o, hence a is unitary,

Thus there is no overlapping inasmuch as no inner point of one cell lies

in any other cell of our pattern. In the next section we shall show that
there is no clustering of cells inside H+. For this reason we still hâve a

covering of H+ without gaps even when we retain only the cells with
inner points; thèse are solid pyramids.

An assembly of cells Z Z(bi,..., bn) in which each color is repre-
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sented by one member would constitute a fundamental domain for the
lattice group if the group qz of lattice transformations carrying Z into
itself consisted of the identity only. As this will not be so, generally
speaking, we first hâve to whittle down Z to a fundamental domain
within Z of the finite group qz In view of our rule of identification for
cells a lattice transformation s carrying Z(ï)x,..., bw) into itself must
be of the form b^-^b^ b^oc^ where the factors «^ are unitary. It
transforms the vector b1rj1 + • • • + bnrjn into

where rf^ oc^rj^. Hence after the substitution (40) which replaces 21

and Z(bi,..., bn) by fi and Zo respectively, the group gz is made up
of those spécial transformations

{ocx,..., ocn): f£ XpSfj, (^ unitary)

which carry £ into itself. They induce a group g of linear transformations

in the space H of quadratic forms F Wy^ \\ :

v. (42)

Dénote by g2 the invariant subgroup of Qt g the éléments of which
leave y12 unchanged, by g3 the invariant subgroup of g2 whose éléments
leave ylz unchanged, by gn the invariant subgroup of gn-1 the
éléments of which leave yln unchanged. gn consists of the identity only.
Indeed, for any élément {<%x, ol2,<x3, &n} of g2 the substitution
f->«ifa2 ^s ^e identity, therefore oc^ôi^ e or oc± ot2. Hence ail
éléments of g n are of the form {oc,..,, oc} and |->&|# is the identity.
But then (42) is the identity. — In its influence upon y12 the group gx
is actually Qt/ g2. We endow the </-dimensional space of the variable
"point" | y12 with a metric by means of the positive form tr (£f).
The opérations of qx/ g2 are linear metric-preserving ("orthogonal")
mappings of the |-space. In familiar fashion we construct a fundamental
domain for this finite group as follows. We choose a point | n0 which
is carried into h + 1 distinct points tz0 nx,...,% by the h -\- l
opérations of qx/ q2 and set up the h linear inequalities expressing that
the variable point f lies at least as near to n0 as to nx,..., nh :

?'>(£) tr {(^0 — ^)|} > 0 (r 1,..., h)
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By adding thèse h inequalities l(y12) ^0 to the ones L(F) > 0 de-

fining Zo, we obtain a convex part Z^ oîZ which is invariant under the
group g 2 but whose h -f- 1 images generated by the opérations of
9i/ 82 cover ZQ without gaps and overlappings. We then carry out the
same construction for y13 with respect to the group g2/ g3,..., for yln
with respect to the group gw_x/ gn gn_i- Thus by a number of linear
inequalities

4ra)(yi2) >0,..., irn)(yln) >0 (1 < r2 < h29..., 1 < rn < hn),

each concerning only one coefficient ofF, a convex part Z J of Zo is con-
structed, the images of which by the mappings s of g cover Zo without
gaps and overlappings. Dénote the corresponding part of Z(bi,..., bn)

by Z* (bi,..., bn): an assembly of such Z# (bx,..., bn) in which each
color is represented by one member constitutes a fundamental domain
for the lattice group. (In the case n 1, one has of course to proceed
in the same manner in the (/+-dimensional space of a symmetric variable

y yn rather than in the gr-dimensional spaces of y12,..., yin>)

§ 8. The Third Theorem oî Finiteness

To make sure that the pattern of cells shows no inner clustering in
H+ it is not sufficient, as Minkowski seems to hâve believed, to prove
that each cell borders on not more than a finite number of neighbors.
Rather, one has to introduce a variable subregion Ht of H+ depending
on a real parameter t > 0 in such manner that it grows as t increases
and sweeps over the whole région H+ as t tends to infinity, and then to
prove that there is only a finite number of lattice substitutions s carrying
a given cell Z Z(bi,..., bw) into cells Z8 which hâve points in com-
mon with Ht.

In analyzing Minkowski's proof I came to adopt the following définition

of the expanding subregion. Given p ^ 1, w > 0 and a semi-
basis Ci,..., cw of %, we say that the positive form F lies in

for every m 1,..., n and every vector x that is in 91 but not in
[ Ci,..., Cm_J, and if moreover

— V] >tr[cm] — w-trlCp]
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for /a <m whenever X) is in 31 and in [ d,..., c^]. While p and w in-
crease to infinity, the set Z(Ci,..., tn\p,w) grows, and any given
point F of H+ will finally corne to lie in it. Instead of p and w one could
of course introduce a lot more parameters, but could also reduce the two
parameters to one, for instance by setting p exp w ; it makes little
différence either way.

THE THEOREM OF DISCONTINUITY : There is only a finite
number of lattice substitutions s carrying a given cell Z Z(bx,..., bn)
into cells Z8 ihat hâve points in common with

Hpw Z(Cl,..., cjp, w) : Z' n Hpw ^0
From the beginning we may assume b^ e^. Then % coincides with

fi and Z(bi,..., bn) with Zo. The image Z% has points in common with
Hpw if Zo n H£lw ^z 0. Let s-1 carry d,..., cn into e*,..., e* andp £
F be a common point of Zo and 2(ef e* \p, w). Then the e* are
vectors in fi. Write £r[eJ tm, tr[t%] t*. The form r is fi-
reduced whereas

trm>T1'tr[C] (43)

whenever x is in fi and outside [cf e*.^], and

whenever r) is in fi and in [ef,..., e*] (ju < m < n). From thèse facts
bounds M which do not dépend on F are to be derived for the vectors
e*. We omit the subscript F in tr. Two lemmas point the way:

Lemma 8.1. Jîk ±

Proof. At least one of the m vectors tx,..., tm, say eM, lies out-
Bîde[ef,...,c2.j. Then by (43)

> pri • *[O or t

and since ^ ^ t2 ^ • • • ^ ^m a fortiori tm

Lemma 8.2. If the two spaces Sm [ex,..., em] and /SJ

[cf,..., e*] do not coincide, then
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Indeed, if e*(/J < m) lies outside [tlf..., ew], then by the définition
of réduction t* f[e*] ^ £m+1. Therefore by (44), p^ > ^m+i and
a fortiori ptm >*w+1.

The second lemma suggests introduction of those numbers

m lQ, ll9...,lv (0 Zo< *i<' "<h *0

for which 8m S1* and to divide the row m 1, 2,..., n into the
sections

k < m < ll9 lx < m < l2>..., ^ < m < lv (46)

The inequality (45) holds if m and m + 1 belong to the same section;
hence

ty, < ^-^, (47)

for /* > v provided v and /j are in the same section.
From now on the proof foliows closely the Une of Minkowski's proof

of the first theorem of finiteness. Again we use Jacobi's transformation
for F and the notations that go with it. We consider the possibilities for
ef,..., e* which correspond to a definite partition (46) into sections.
For a given m let A be any of the numbers lx,..., lv_x which is less

than m. Because of (44) and [ef e*] [ei,..., e;J the vector
X e * of fi satisfies the following inequalities

«M < ptm,

t[x — û] ^ t[x] — wptx (48)

whenever a is in fi and [d,..., C^]. We maintain that they are recon-
cilable only with a finite number of possibilities for x. As in § 6 the first
inequality yields

6V. tr (CVQ <pg for v > m (49)

Owing to (47), the same argument still works for v < m provided v is

in the same section as m, with the resuit

Vtr(Cvt,)<Pm-v+1-0. (49*)

If, however, v is in a lower section than m, lu_x < v ^lu K<m, we
apply the inequality (48),

t[x] — t[x — û] < wptx (50)
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to a vector a e^i -{-••• + Cv<xv the components ax,..., <%„ of which
belong to the order {g} Setting x° X — a we may ascertain

<xv,..., ocx so that C?> • • •, Cî become reduced mod { 5}, and then (50)
gives

tr (CH£?,) -tvbv- tr

tr

,/Lt=i v^/*

Bv) (49*

Thèse bounds Jf for ail abs2 Çv lead by means of (36) and Lemma 3.2
to similar bounds for ail abs2 £„. Since x t* lies in S1, provided the
section to which m belongs ends with l, one might add to (49) the
remark that Çv and £„ vanish for v > l.

D. SIEGEL'S RESULTS

§ 9. The Jacobi Transîorm oî tr
Siegel foliows another procédure4). He carries through the Jacobi

transformation of the quadratic form tr[x] of the N variables x^{. By
means of the substitution (21) we transformed it into

where Tm[z] tr (ÇxmÇ). Setting

T

besides (22) we hâve

Upper bounds M that dépend on 2 only were found for abs2 (5^; do

they imply upper bounds of the same nature for the coefficients of the
representing matrices D^.

To ask the question is to answer it. Let £ be an élément of $K such
that abs2! T0[x] < M. Write down the multiplication table of the
basis co,:

a)iœk 2,e$a>,.

4) Ann. of Math. 44, 1943, p. 687.

298



Then the matrices representing cd1,

II4VII > • • •> II 4**11 >
henee f x1œ1 H

cog in terms of this basis are
is représentée! by

*|I where e^ H h

^oM ^ M yields upper bounds M for the absolute values of the coor-
dinates xx,..., xg and thus for the absolute values of xlk. However,
this is not the most direct proof. Dénote for a moment by ||a^||,
||a?ffc|| the two matrices representing £ in terms of the normal basis <dq%

and the basis cot respectively, and by U \\utk\\, U"1 \\u%k\\ the
transformation that leads from one to the other. Then

xl1c — hUh

Hère

and therefore

lk °% Mu\

where u°t, u°t are the éléments in the diagonal of U' U and (Ur U)*1.
To complète our task we hâve to perform the Jacobi transformation

on each of the forms T Tm. We compare them with the form To which
is independent of F. Thus we are dealing with two positive quadratic
forms T[x] and T0[x] of g variables x and carry out their Jacobi
transformation,

and TQ Qo[Dol

Q, Qo are diagonal matrices with the positive terms qx,..., qg ;

Qi y • • • > ïg along the diagonal while D and Do are triangular,

D

d12 dln
1 t

1

||ctIntroduce the triangular G

Lemma 9.1. Suppose we hâve two positive constants r, r* such that
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Then

and

[This is a quantitative reinforcement of the qualitative statement that
a form T détermines its Jacobi transformation uniquely: r* r 1

implies Q Qo, (C E,)D Z>0J

Proof. Instead of T ^r*T0 or Q[D] < r*Q0[D0] one may write
Q[G] ^r*Q0. This inequality for the matrices Q[C] and Qo implies
the corresponding inequalities for the éléments in their diagonal :

Therefore qk < r*g£ Interchanging T and To one finds in the same

2* r taking this resuit into account (51) yields

Apply the lemma to our forms

Tm Qm[Dm]

Returning to the notations of § 5, (28), (29), we hâve indeed

and therefore obtain for the coefficients cffi of the triangular matrix
DQX the upper boundsCm

Similar such bounds, which dépend on 2 only, follow then for Dm

OmD0 and ultimately for the triangular matrix

E, D12, Dln

E

2>

aoo



which effects the transformation of tr into the diagonal matrix

tr=Q[D].

Dénote the diagonal éléments

•••lïnl> •••»?«

of Q in this order by qx,..., qN. For any two consécutive ones which
do not jump the partitions |, like qvi and qv t+1 (i 1,..., g — 1), we
find by Lemma 9.1

hence by Lemma 3.6 or formula (29)

ïr.i+ l ^ " «?+l
(53)

In order to cross a partition, for instance from qvg to qv+1< t we appeal
to (28) and Lemma 9.1:

But tv+l > <y ; therefore

(53*)

We thus obtain bounds M for ail the quotients

qK/qK+1 (K=19...,N-1)
and ail the coefficients dKL of 2> Any positive quadratic form

of N variables ojj,..., xN détermines uniquely its Jacobi transformation
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— XK -f- JL

Given a positive number t, let us say that G belongs to the set ${t if

t and d\L < * (K<L)

We hâve constructed a number a which dépends on fi only, such that for
every %,-reduced form F the corresponding tr belongs to 5Ra.

The quadratic forms of N real variables xx,..., xN with real coefficients

form a linear space 91 in which the positive ones form an open
convex cône 9t+. In SiegePs conception the theorem of discontinuity
deals with this space 9t of dimensionality ^N(N -f- 1) rather than with
the space of quadratic forms F in %K of dimensionality gn. It is clear
that with t increasing to infinity, 9t( will exhaust 5R+, and the set Ht of
ail positive JTfor which the corresponding tr lies in 9ît will exhaust H+.
A lattice transformation

when expressed in terms of the N coordinates x^ appears as the linear
transformation A, (20); it has the property that the coefficients both of
A and its inverse Ar1 are rational numbers with the common denomi-
nator j. A gênerai principle of SiegeFs5) asserts that, given a > 0 and

t> a, there exists but a finite number of transformations A of this
character which carry 5Ra into sets that hâve points in common with 9{t.
This principle, which is a very powerful tool in ail investigations con-
cerning quadratic forms, including the indefinite ones, permits him to
transfer the problem of the discontinuity ofthe lattice group from H to 91.

Compared to Minkowski's approach which the previous section followed
in its outline, this method has the disadvantage of yielding undesirably
high estimâtes for the number of such images Z\ of Zo as may be expec-
ted to hâve points in common with Ht. But it recommends itself by
the generality of the underlying principle.

The lattice group consists of certain linear substitutions (54) and is,

therefore, contained in the continuous group W of ail non-singular
linear substitutions A \\ocpy\\, oc^ e $K Consider continuous
représentations of W which become discontinuous under restriction of the

5) Abh. Math. Sem. Hansischen Univ. 13, 1940, Satz 3, p. 217.
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variable élément s of W to the lattice group, in the sensé that in the
représentation space no set of points which are équivalent under this
group has an accumulation point. As the Theorem of Discontinuity in
either of its two forms proves, the représentation F->F8 FIA"1] in
the space H+ of ail positive quadratic forms F is of this discontinuous
nature. Siegel dévotes the major part of his paper6) to developing a
gênerai principle from which it follows that among ail représentations
of such nature our F-+F8 is the "most compact" and therefore of
least dimension. I shall not deal hère with this side of the problem of
réduction.

§ 10. Volume ol the fondamental domain

Let us consider that portion of the pyramid Zo of the 2-reduced positive
^—11 ?nv\ I whose points F satisfy the condition

Nm F < 1 (55)

Using the Jacobi transformation of the coefficients y^v into x^, ô^
(ju < v) Siegel proved7) that this portion of Zo has a finite volume V in
the gn-dimensional linear space H. I describe hère an alternative procédure

which opérâtes directly with the y and leads to simpler estimâtes.
Dealing first with the latéral y^v (p < v) set for a moment

— 7^7^ Ppv (p < v) an(l take /?25 P as an example. Write

y^ y^. Choose any élément f of {$} and apply (38) to the lattice
vector S (fi,..., fn) of which ail components f^ vanish, except
f2 f, f5 e. One finds

or
tr {(? — S) y2(P~i)}> tr (Py2{i) (56)

Détermine f in {JÇ} sc> that j8 — f /5Q is reduced mod {5}- We make
use of the upper bound furnished by Lemma 3.5, but replace the largest
eigenvalue r* by the sum try of ail eigenvalues:

tr (Â>72£o) < tr y2. tr $oiSo) < Q*. tr y2

•) Discontinuous Groups, Ann. of Math. 44, 1943, 674—684. Cf. also M.Eichler,
Comm. Math. Helv. 11, 1938/39, 253—272.

7) 1. c.6), p. 688.
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Hence (56) implies

*r Qp.YjiJ < e2 •tr y» </* 2, v 5),

or more generally, for n < v,

For a fixed ^ we extend the intégration with respect to the g real coefficients

of the variable y^v over the entire ellipsoid (57). Since by Lemma
5.2 d • (Nm fy)"1 is the déterminant of the quadratic form

we find for the volume V^ of this ellipsoid

or, because of Nm y^ < (gr1 • tr y^f>,

FM < l(tr yM)«

where

In view of (25n) and (55) it remains to integrate

respect to the «gf+ coordinates of the variable symmetric positive
• > y» over *ne région described by

(58)

v+/g+ be the volume in the space of the g+ coefficients of an arbi-
trary symmetric élément y of the bounded portion described by y > 0,
tr y ^ 1. Then the volume of the infinitely thin shell

7>0, t <tr y t^t + dt

is v+P^-idt, and we obtain as an upper bound for F the intégral of
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extended with respect to the real variables tlf..., tn over (58). It is

only at this last quite elementary step that we are dealing with a non-
bounded domain. (58) implies

Intégration over the larger domain described by thèse inequalities may
be carried out step by step, first with respect to tn,

fchen with respect to $n-1,

with the resuit

F < ——

For the rational case, g 1, this upper limit is

By following existing models for gr 1 one can find explicit expressions

for the volume of the fundamental domain.

§ 11. The Group ol Units in an Order of a Simple Algebra

From the fundamental domain of the lattice group and its images
one obtains at once a fundamental domain for any subgroup of the
lattice group of finite index. This remark settles the problem for the group
of ttnits in any order of a simple algebra over k.

According to Wedderburn, the éléments A of such an algebra gfn

consist of the matrices
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formed by means of arbitrary éléments oc^ of a division algebra g.
again g be the rank of g an(l se"k N — ng. Nn — n2g is the rank of
3fM. As previously, we interpret A as a linear mapping of the veetor
space Sn/ g. Let {gw} be an order in gn and ûl5.. .,QNn a minimal
basis of {gn}. The first columns of ail éléments A of {g} form a veetor
lattice 21; the élément ,4 of {gn} is a mapping that carries every veetor
of the lattiee 21 into a veetor of 21. The units in { gn} are those éléments A
of { gw} which are one-to-one mappings of 31 into itself. We now eonsider
ail éléments B of gn which, interpreted as mappings, earry lattice vec-
tors into lattice vectors; they form an order {gw}* D{gn}, the units
of which are our old lattice transformations s. We maintain that the
group of units of {3fn} *s a subgroup of finite index within the group of
units of {gn}*.

Indeed, express £il9..., QNn in terms of a minimal basis Q* Q*n
of {2fn}*. The coefficients are rational integers; dénote the absolute
value of its déterminant by h. Then the multiple hB of any élément
B of { gn}* is an élément A of { gn}. Let Bt, B2 be two units in { 3fn}*,
the différence of which is of the form hB, B in {2fw}*. Then

-1 hB3

B2 J5-1 A where A E + hB3.

3

or
5-1

Hère £3 lies in {2fn}*, hence hBZ9 A in {gn}. Consequently the index
whose finiteness we claim cannot exceed hNn.

(Received the 10 April 1945.
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