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Uber fldchenldufige Bewegungsvorgénge
Von WiLaELM BrascHKE, Hamburg

1. E. Studys Ubertragungsprinzip.

Es sei {p; e;, ¢,, ¢;} ein Cartesisches Achsenkreuz, p sein Ursprung,
e; die paarweis rechtwinkligen Einheitsvektoren auf den Achsen. Wir
betrachten zwei Vektoren

=5
X =D0X =¢,T; + %, + ¢3%;,

N (1)
)Y=00D=¢,¥Y; + €Y + €3¥;

gleichzeitig als Vertreter ihrer Endpunkte. Diese sollen die Entfernung
Eins haben:

=8 —31)=(4 —2)+ (o — %)+ (g5 — )2 =1. (2)
Wir fithren den ,, Richtungsvektor
g=1p—x (3)
ein und den ,,Momentenvektor um den Ursprung, ndmlich
=% X D=2(T3Y3 — T39s) + ol T3 1 — T1¥s) -+ &5 (T 43— Toy1) . (4)
Darin bedeutet x das ,,Vektorprodukt.
Zwischen g, g bestehen die Beziehungen fiir ihre Skalarprodukte
9g=1,88=0. (5)

Umgekehrt gehort zu jedem Vektorpaar, das diese Bedingungen erfiillt,
eine gerichtete Gerade (,,Achse’‘) ® unseres Euklidischen R,.
Die Bedingung dafiir, daB x auf ® liegt, lautet

g=xXxg. (6)

Aus reellen Zahlen a,a bauen wir ,,duale’ auf mittels der dualen
Einheit &:
A=a-+ca, (7)
die der Rechenregel geniigt
=1, (8)
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Sonst sollen die gewdhnlichen Rechenregeln ihre Giiltigkeit behalten,
nur kann ein Produkt Null sein, ohne dafl ein Faktor verschwindet. Es
gibt nimlich die ,,Nullteiler* ea. Entsprechend bilden wir aus dem reellen
Vektorpaar g, g den dualen Vektor

G =g +eg. (9)
Dann lassen sich die Bedingungen (5) in die einzige zusammenfassen
66 =1. (10)

Damit sind die dualen Einheitsvektoren oder die ,,Punkte auf der
dualen Einheitskugel“ eineindeutig den (reellen, eigentlichen) Achsen
des Euklidischen R, zugeordnet.

Das Skalarprodukt zweier solcher Vektoren &, &’ gibt ausfiihrlich

66’ = gg’ + ¢(gg’ + ag") . (11)
Darin ist der Dualteil
1l =z Ty X3
— ~ 1
8’ +98'=| | D 2 0 (12)
1 ¥/ Y2 Ys'

gleich dem sechsfachen Vierflachinhalt iiber den 4 Ecken x,1; x’,p’.
Nennt man ¢ den Winkel und ¢ den kiirzesten Abstand der Geraden
®, &', so wird bei geeigneter Vorzeichenwahl demnach

G®’' = cos
mit (13)
D =@+ ep, cosd = cosp — ep sing .

Darin wird eine analytische Funktion einer dualen Veridnderlichen durch
ihre Potenzreihe erklirt. Insbesondere bedeutet das Verschwinden des
Skalarprodukts

GG =0 ' (14)

rechtwinkliges Schneiden der Geraden G, &'
Wir setzen jetzt
® = ¢,G, + ¢,G; + ¢;G, (15)

und betrachten die Geradenzuordnung ® — &*, die einer eigentlichen
orthogonalen Substitution
Gr= 20, G, (16)
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mit dualen C;, entspricht. Sie stellen eine stetige Gruppe G mit 3 dualen,
also 6 reellen wesentlichen Parametern dar, bei der das Skalarprodukt
(13) erhalten bleibt. Die entsprechenden Geradenabbildungen des R, sind
wegen (13), (14) die Bewegungen des R,. Das ist der Grundgedanke von
E. Studys ,,Ubertragungsprinzip‘ aus seiner ,,Geometrie der Dynamen*,
Leipzig 1903.

R. Flichenlidufige Bewegungsvorginge. Betrachten wir nun ein Tripel
paarweis rechtwinkliger Achsen U;; 7 = 1, 2, 3, die sich in einem Punkt p
schneiden. Dieses ,,bewegte‘‘ Achsenkreuz soll von zwei reellen Para-
metern u, v abhingen. Dann ist uns durch diese Achsen

Qlj(u, v) ; QI’QI;C —_— (Sjk

ein zweigliedriger oder , flichenldufiger Bewegungsvorgang eines starren
Korpers & (u, v) gegeben, den wir uns an den U, befestigt denken. Dann
konnen wir die vollstindigen Differentiale d9; unserer Vektoren aus den
A, selbst zusammensetzen und finden so

dQI1 - QI2*[23 - "113.92, dgu‘z = SZI3-(21 - SII1~Qg, dﬂs = QI1~Qz - s112[31' (1)

Darin bedeuten die £, B
Q= w; + e, (2)

duale Pfaffsche Formen in %, v.
Ausfiibhrlich sehen die Gleichungen (1) so aus

da; = Gy03 — A3z, da; = Q03 — A30p + Q03 — 30,
da2 = (13602 _ (11603, dag a3w1 -_ (11 g + a3w1 -_— (11 wg , (3)

dag = 0,0, — A0, d0; = 0,03 — A0, + 0,03 — A0, .

Il

Fiir den Schnittpunkt p der U, gilt nach (1, 6)
6, S p X (l,- . (4)
Setzen wir fiir den Augenblick
dp = a,0; + 20, + G303, (5)

so folgt aus (4) durch Ableitung o, = ;.
Somit tritt an Stelle von (5)

dp = al_‘;1 + azaz + c(3—0‘—’3 . (6)
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3. Normalgeraden. Betrachten wir jetzt eine mit dem Achsenkreuz
der U, starr verbundene Gerade ® mit festen G,:

6 == QIIGI “l" QIgGg “I“ 213G3 . (7)

Durch Ableitung folgt mittels (2, 1)
d® = QI1(G'3~Qz - nga) ~+ QIz(GrQs - G3Ql) + Q[3(G2Q1 - Gl-Qz)- (8)

Fiir das vom dualen Punkt ® auf der Einheitskugel beschriebene duale
Flachenelement folgt

Gr[£2,025] + G2, Q1] + G52, 2,] . 9)

Daraus fiir seinen Realteil

g1l oz 3] + gl wzw,] + g3l wy w,] (10)
und den Dualteil

.(_71[002003] + 91([—6(—’2003] + [wza?,]) n (11)

Darin bedeuten die Punkte Reih-um-Vertauschung der Marken 1, 2, 3.
Setzen wir den Dualteil gleich Null, so erhalten wir die lineare Gleichung
in den Linienzeigern g,, g,
{Y(Ejgi + ¢;9;) =0 (12)
mit ’
¢y = [wyw4], ¢, = [wywy] + [wgwy],
ca = [wy0,], €= [wy0,] + [wg0,], (13)

E3 = [w,w,], ¢3= [510)2] + [w1az] .

Unter den eckigen Klammern in (9) — (13) verstehen wir dabei alter-
nierende Produkte der Pfaffschen Formen:

[adu + bdv, a’du + b'dv] = (ab’ — ba’) [du, dv] . (14)
Es ist nun leicht einzusehen, daf3 die Bedingung (12) folgende einfache
geometrische Bedeutung hat: ® beschreibt im allgemeinen eine zwei-
gliedrige Schar von Geraden und die Realitéit des zugehorigen dualen
Flachenelements besagt, dall die sogenannten ,,Brennebenen‘‘ durch die
Gerade ® in ihrer Schar (Tangentenebenen an die Brennflichen) zu-
einander rechtwinklig sind. Anders ausgedriickt: Es gibt eine ,,Normalen-
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schar‘‘ (Geraden, die eine Flidche rechtwinklig schneiden), die unsere
Schar in @ in erster Ordnung berithrt. Wir sprechen dann von einer
,,Normalgeraden‘‘ in ihrer Schar. Besteht eine Schar nur aus Normal-
geraden, so ist sie eine Normalenschar. Die lineare Gleichung (12) stellt
im allgemeinen einen ,linearen Komplex‘ oder ein ,,Gewinde'‘ von
Geraden dar, das A. RiBAucour (Paris C. R. 1876, S. 1347) in die Kine-
matik eingefithrt hat. Damit ist gezeigt: Fur eine reguldre) Stelle u, v
eines zweigliedrigen Bewegungsvorganges K (u, v) bilden die mit & starr
verbundenen Geraden &, die Normalgeraden ihrer Scharen beschreiben, das
Gewinde (13).

Fiir eine regulire Stelle') von K (u, v) konnen alle ¢,, ¢, nur dann ver-
schwinden, wenn w; = w; = w; = 0 ist, so dafl die unendlich kleinen
Bewegungen R (u, v) > K(u + du, v + dv) alle Schiebungen sind. Ein
dhnliches Ergebnis gilt auch, wenn man anstelle der ,,Normalgeraden‘
die ,,isotropen Geraden‘ treten lift, bei denen die Lote zu den Nach-
bargeraden der Schar ein Biischel bilden. %)

Wegen der hier benutzten Hilfsmittel aus der Liniengeometrie ver-
gleiche man auch das letzte Kapitel des ersten Bandes meiner ,,Vor-
lesungen iiber Differentialgeometrie‘.

1) d. h. es soll zwischen den £2; zwei linear unabhéngige geben.
?) Vgl. W. Blaschke, Archiv fir Math. u. Phys. (3) 17 (1911), S. 194—195.

(Eingegangen den 30. Oktober 1944.)
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