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Ein Beispiel zum
Randwertproblem der Variationsrechnung "

Von Hans Bieri, Herzogenbuchsee

Das obgenannte Problem besteht in einem einfachen Spezialfalle darin,
durch zwei Punkte P und @ einer (z,, x,)-Ebene eine Kurve zu legen mit

der Eigenschaft, daBl das Kurvenintegral fF(xl, %,,%,, ;) dt ein rela-
tives starkes Minimum liefert. P

Es hilt sehr schwer, Beispiele zu finden, die man vollstdndig durch-
rechnen kann, was bei der Fiille von Bedingungen nicht verwunderlich
ist. Der Wert solcher Bemiihungen liegt darin, da die hochst verwickel-
ten Phinomene der allgemeinen Theorie ihre konkrete Verwirklichung
finden und sogar die Moglichkeit besteht, neuartige Erscheinungen fest-
zustellen.

Die vorliegende Arbeit befaBt sich mit drei verwandten Variations-
problemen, von denen das interessanteste den Kneserschen Ausnahme-
fall?) illustriert und zeigt, daB trotz der Abwesenheit singuldrer Linien-
elemente beim Randwertproblem Komplikationen auftreten konnen.
Die direkte Losungsmethode unseres Problems besitzt den Nachteil, daf3
Extremalenbogen, die a priori kein Minimum liefern, nicht sofort aus-
geschieden werden?). Dies kann vermieden werden, wenn man die Glei-
chungen der ausgezeichneten Extremalenschar z; = z,(t, =, &, ) als
Abbildung deutet. Die Halbgeraden » = konst; 0 < ¢ < oo, Originale
der Extremalenbogen in einer (¢, »)-Ebene, bedecken diese einfach und
lickenlos. Durch passende Beschneidung der genannten Ebene (was
einer Einschrinkung der Abbildung gleichkommt) sucht man zu er-
reichen, daB mindestens ein gewisses Gebiet G der (z,, x,)-Ebene durch
die Bilder in gleicher Weise ausgefiillt wird, so daBl der Anschlufl an den

1) Hauptliteratur: C. Carathéodory, Variationsrechnung, wird kiinftig unter C
zitiert. H. Bieri, Beispiele zum Randwertproblem der Variationsrechnung,
Diss. 1941, wird mit D zitiert. C sind die allgemeinen Bezeichnungen entnommen; die
spezielleren stammen vorwiegend aus D. Insbesonders bedeuten: ¢ den Kurvenparameter,
7 seinen Wert im Beriihrungspunkt mit der Enveloppe, T'; sonstige ¢-Werte, x den Schar-
parameter, der mit der Richtung der Extremalen im Knotenpunkte verkniipft ist, § und 73
Rationalisierungsgré8en. Alle Gré8en der Bildebene werden, sobald der Abbildungssatz
im Spiele ist, iiberstrichen. Sin, Cof, Tg bedeuten die bekannten hyperbolischen Funk-
tionen.

%) C: 356, S. 294—295.

3) C: 360, S. 297—302.
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Idealfall der Variationsrechnung erreicht ist?). Diese Methode fufit auf
einem Satz iiber die umkehrbar-eindeutige Abbildung zweier einfach-
zusammenhéngender Gebiete aufeinander?).

Im ersten Abschnitt unserer Arbeit verallgemeinern wir ein bekanntes
Beispiel®) und gelangen sodann durch Spezialisation zu neuen Problemen,
die der Berechnung zuginglich sind. Im zweiten Abschnitt wird die aus-
gezeichnete Extremalenschar eines dieser Probleme diskutiert. Ab-
schnitt 3 enthilt die Analyse der Enveloppenbedingung. Es gelingt durch
Einfiihrung passender HilfsgroBlen, die ldstige Auflosung einer Gleichung
dritten Grades zu umgehen. Viertens folgt die Diskussion der Enveloppe.
Kernstiick derselben ist der Nachweis ihrer Einfachheit im Sinne der
geometrischen Mengenlehre. Hier leistet der Abbildungssatz vorziigliche
Dienste. Der fiinfte Teil bringt die vollstindige Losung des Randwert-
problems. Zum Schlul werden zwei verwandte Beispiele gestreift und
einige Erginzungen beigefiigt.

Es soll noch erwihnt werden, daBl unser Beispiel physikalische Be-
deutung hat. Deutet man nimlich @ als elektrostatisches Potential und
A als magnetisches Vektorpotential, so sind die Eulerschen Differential-
gleichungen (62) identisch mit den Bewegungsgleichungen eines Elektrons.

1. Nach einer naheliegenden Verallgemeinerung der Grundfunktion
des schon erwihnten Ausgangsproblems erhélt man das neue, sehr reich-
haltige Variationsproblem

((‘l[i + V@ i) dt = Extremum. (1)

@ ist ein Skalar, der Vektor U darf kein Gradient sein’). Unter Beriick-
sichtigung von -
n=A4 P°. TE] %) (2)
findet man als einfachste Hamiltonsche Funktion:

2H=(y) — A2 — D8, (3)
Aus 3 berechnen wir bequem die Legendresche Funktion:

F, =t 9 (4)

1) C: 358, S. 296.

5 D: §2, 8S.6—17, §6, S. 10.

8) C: 274, S. 232—233.

7) Ware etwa W = grad P,, so wﬁrdej"lli dt = I:pl dt vom Integrationsweg unab-
hingig sein und deshalb kein Extremum liefern. 64 reduzierte sich auf % = } grad .

8) C: 253—270, 8. 216—229.
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Ist demnach @ positiv semidefinit, so gibt es singulédre Linienelemente.
Endlich ist auch die WeierstraBsche Funktion leicht zu gewinnen:

&S = (D V_2(1 cos ») 8) . (5)

Das Extremum ist also ein Minimum. Komplikationen stellen sich nur
dann ein, wenn @ verschwindet.

(3) gestattet nach den Vorschriften der allgemeinen Theorie die Ab-
leitung der Differentialgleichungen fiir die Extremalen:

. . 94) od

T, =y;—A; 5 Y= [(?/)\_A)'a?‘}"‘_“] %)

. . . BAA 0A,

Z, =14 — Ai= (yp — 4)) = ax 52y ) +% ax ) (6)
. (94 0A; B(D

€= ox;,  ox) i+ g

Das System (6) kann vektoriell geschrieben werden:

f=72%grad® + [§, rot A | . (6a)

Es besitzt das Integral:
2=0¢ .9 (7)

Dieses wird fiir die folgenden Ausfithrungen von ausschlaggebender
Bedeutung sein.

- Nun gehen wir vom allgemeinen Problem zu den spezialisierten iiber.
Fiir A wihlen wir den allgemeinsten Vektor mit linearen Komponenten
in den z,, fiir @ den allgemeinsten quadratischen Ausdruck in den glei-
chen Variablen. Auf die Vorteile von Schiebung und Drehung zu ver-
zichten, wire unangebracht. Von den 4 kanonischen Formen, welche @
annehmen kann, verfolgen wir nur die Hauptform a,;2% 4 ay22 + ¢
weiter'?). Wegen rot U = (0, 0, a) erhilt man aus (69):

& = Gy T, -+ “;”2 (61)

8) C: 253—270, S. 216—229.

9) (6a) wird skalar mit ¥ multipliziert. Hernach 148t sich eine Integration ausfiihren.
Die dabei auftretende Konstante muf3 mit Riicksicht auf (3) den Wert Null besitzen.

10) Die Nebenformen ® = a,, 2} + 2b,, und ® = 2b, 2, fithren wegen der Inhomoge-
nitdt auf Probleme, die wesentlich schwieriger zu berechnen sind. Die Nebenform ® =
konst endlich leitet auf das Integral %2 = konst gemaf (7).
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Dieses System besitzt das charakteristische Polynom
P(r) =1t — 2@y + Ay — %) + a1 0y - 1)

Es ist klar, daB die Verhiltnisse dann besonders einfach werden, wenn
die z; nur als Polynome in ¢ auftreten. Dies aber 148t sich erzwingen.
Man braucht blof zu verlangen, daB r = 0 vierfache Wurzel von
B (r) = 0 sein soll. Hernach sind die hierfiir hinreichenden Bedingungen

zu beachten. Nach Anwendung der perspektivischen Transformation

Ve

- ¥ sowie nach Abspaltung des fiir das Minimum bedeutungs-

Ve
a

losen Faktors

‘ wird die Grundfunktion auf die vereinfachte Form
F=U@zZ) - + VE: + oF°
[e= —1, 0 oder 4 1; rot ﬁr—(0,0,j:l)]

gebracht.
Mit dem Ansatz

x,=At*+ B2 +Ct+D; x,=Et3+Fi2+GQt+ E

2) (9)

geht man in das gemdfl (8) und (9) modifizierte System (6b) ein und
erhilt:

24+ Ct4+ D

1

_(D£6)
2

(10)
D+@ ,. Cr

7y = F —— T +Gt+H.

& hingt jetzt also nur von z, ab. Demzufolge ist der Knotenpunkt
P(2?, 0) in allgemeiner Lage. Der Parameter ¢ wird so normiert, daB P
fiir ¢ = 0 passiert wird. (7) entnehmen wir

&= Qf-sinx ; x)= Dk —cosx .
Es folgt:

H=0; D=22; C=@f.sinx; G=— Df.cosx.

11) Vergleiche E. Kamke, Differentialgleichungen I, Lésungsmethoden, Lésungen.
Leipzig 1942, 8, 32, S. 614—615.

12) Die Querstriche sind in der Folge weggelassen.
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SchlieBlich ist leicht zu sehen, daB die neuen Extremalen Spiegelbilder
der alten beziiglich der z,-Achse sind, wenn man in (10) die untern Vor-
zeichen nimmt und zugleich » durch # — » ersetzt. Es bedeutet also
keine Beeintrichtigung der Allgemeinheit, wenn nur der Fall rot A =
(0, 0, + 1) behandelt wird. Wir verlegen nun noch den Nullpunkt des
Koordinatensystems nach P und erhalten endgiiltig!?):

2 — D« cos x
T, = (Df{’-sinx-t-}—(l 2 ) 2
2 (11)
DL . sin % 2 — ®D%.cos x
x2=——d53”-cosx-t—————9-——2—————t2——(l 06 )t3

2. Wir wenden uns jetzt dem Variationsproblem
f(mi 4+ V(2® + 1) £) dt = Minimum

zu. Existenzgebiet ist die ganze (z,, «,)-Ebene. Gemél 4 sind alle Linien-
elemente positiv regulir, und nach 5 verschwindet ¢ nur ordentlich.
Vermittelst der Substitution 2} = Gin & gelingt die wurzelfreie Dar-
stellung der ausgezeichneten Extremalenschar!3). Es gilt:

(Sin & — Cof & cos x)
2

Cof & sin x o (Sin & — Cof £ cos )
2 6

t2

2, = Co]&-sinx-.t+

%, = — QCo| £ cos » -t —
t>=0 &>0!) (Abb. 1)

t3

sin §

r Sin§=*, Cos §=9%.

Abb. 1

12) Die Querstriche sind in der Folge weggelassen.
13) C: 266, S. 226.
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(112) stellt Teilbogen von Kubiken dar. Fat man den Gesamtverlauf
der gefundenen Kurven ins Auge, so ergeben sich nach elementaren
Rechnungen ein Scheitel in bezug auf die (z,)-Achse, zwei solche be-

ziiglich der z,-Achse sowie ein Doppelpunkt. Die zugehorigen t-Werte
lauten der Reihe nach:

po—__ Sel&sine o, VI (GinE—Gof £cos 4
! Giné —Cof&cosx * 2 ! Sin & — Co| £ cos »
i (12)
_— 2
T, =T, + V3V1+ (Giné Cof £ cos x)

Sin & — Cof £ cos x

Reelle Wendestellen sind keine vorhanden, denn der entsprechende
Parameterwert lautet

V' —[1 + (Gin & — Cof £ cos %)?]

S =iy o Sin & — Cof & cos x

Von ganz besonderer Bedeutung fiir das Randwertproblem sind die

speziellen Extremalenbogen mit sin » = 0 sowie cos x = Ig & (Abb. 1).

3. In der allgemeinen Theorie wird die fundamentale Bedeutung der
0(,,

Grole A(t, ) = ——é%——%zl festgestellt'?). Bekanntlich sind die Null-

stellen von 4 = 0 mit dem Aufhéren des Extrems verkniipft. Unser
Beispiel liefert:
124 (t, x) = Cof &-t-4,(¢, =) ; (13)
A, = sin » (Sin & — Cof & cos x) t3 + 4 Cof & sin2 x - 12 +
+12Gin &sinx -t + 12 Cof &.

Wir beweisen den wichtigen

Hilfssatz 1: Zu jedem x aus den Intervallen
0 < » < arccos (ITg §): = < x < arccos (Tg &)

gibt es genau eine von Null verschiedene, positive und endliche Wurzel
t =1 von 4 = 0 (Abb. 2).

Zundchst sieht man, daf sin » und (Sin & — Co) & cos %) verschie-
dene Vorzeichen aufweisen miissen; denn die quadratische Gleichung

1) C: 266, S. 226.
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A, — sin % (Sin & — Co| & cos x) t3 = 0 besitzt keine positiven Wurzeln,

Hernach beniitzen wir die beiden Substitutionen

[

?/

Abbk. 2

_ k(=) | k? _
~ sinx ’ Cof £k + 3 Cin &k + 3Cof &
(sin 2 £ 0)

8Sm .

Sie transformieren 4, = 0 in die weit bequemere Form

cos?x +2Cpf&-m-cosx — (2Giné-m+1)=0.

Es folgen zwei Auflosungen von (15):

cos x=—Co[&-m L VYCo|2ém? 4 2Ciném + 1

sin2 x

(Sin & — Cof £ cos x) ’

m=—-
erginzt durch

dm _ sinx [Co| £ cos? x — 2 Sin £ cos x 4 Cof ]

dz 2 2 (Sin & — Cof & cos x%)?

dm _ k* [Gof £k + 6 Gin gk + 9Cof £]
dk ~ 8 (Coj £42 + 3G £k + 3Go] &)

268
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m ist eine eindeutige Funktion von ». Gemis (18) ist sie sogar monoton.
Nach (14) ist m auch eindeutige Funktion von k. Gema8 (19) ist Mono-
tonie auch in bezug auf k¥ vorhanden, was zur Folge hat, dafl eine ein-
deutige und monotone Umkehrfunktion ¥ = k (m) existiert. Dann aber
ist auch die Funktion ¥ = k(x) eindeutig und monoton. Damit ist der
Beweis fertig.

Aus (13) gewinnt man durch Ubergang zur Grenze:

lim 7= Ilm 7—> 4+ oo .
sin x=0 cos x=Ig &

Zusammenfassend stellen wir fest:

Durchlduft » das erste Intervall des Hilfssatzes, so wachsen m und %k
monoton von 0 auf 4 oco. Durchlduft aber » das zweite Intervall, so
sinken m und k monoton von Null auf — co. Im ersten Fall ist in (16)
das obere Vorzeichen giiltig, im zweiten das untere. Wie verhilt sich
7 = 7(x)? Fiir den Gebrauch des Abbildungssatzes ist die Eindeutigkeit
ausreichend, und auch die vorbereitende Enveloppendiskussion gelingt
ohne weitere Daten.

4. (14) und (17) gestatten nun eine iiberraschend einfache Darstellung
der Enveloppe in der Form

_ (Cof £4% 4 6 Cin £k 4 6 Co §)

xr, =
k
2 : (20)
20 = v[—Cof & con o LRLEEH I EMERH 1201 D) ]
Besonders z, ist leicht zu diskutieren. Nach der Kettenregel
d d dk dm
de ~ dk dm dx
folgt: "
da Coj £(6 — &?) , m
i T S A i v (21)

Die Stelle k2 = 6 ist kritisch. Gemaf$ (16) sind 2 Werte von x zugeordnet,
die wir mit »] bezeichnen. Es gilt (Abb. 3):
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Im Imtervall 0 < x< % mit 0< k< V6 ist d:c1>0

. %F < n < arccos (3G &) ,, Ve<k<oo . <0

t}) .7I<%<9€; tH) 0>k>—]/€u —-— <0

’ %y < % < arccos (Ig &) ,,~l/(—i>k>—oo,, —>0.

Abb. 3
m z, - F oo ; im 2z, - F oo ;
k=+o0 k>+ oo
. dx dx
lim =2 = lim —2-> o0 .
sin x=0 d" cos x=Tg & d%

In allen Intervallen ist demnach x, eine monotone Funktion von .
Dies reicht hin zur Behauptung, da die Enveloppe aus 4 einfachen Teil-
bogen besteht.

(20) entnimmt man noch: lim |z,]|— co. Fiir die weitere Diskussion
7> 0

aber ist diese Form nicht zu gebrauchen.
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Im Beriithrungspunkt mit der Enveloppe berechnet sich die Steigung

der betreffenden Extremalen zu —5—2— , die Steigung der Enveloppe zu
1jt=1
a4z, . Zwischen z;/,_, und d; besteht Proportionalitit. Der
dz, : dx»
Proportionalitatsfaktor 148t sich ermitteln, weil %Z—l bekannt ist. Man
findet:
. 3 sin »x (Cof £k2 + 4 Gin &k + 4 Cof &)
£, = — e
&y = — (Co| & cos % + z,)
de ~ UV X o X7 Finx (Co) £42 I 4 Gin £k + 4Co] &
dx,

B NP

Unter Beniitzung von (21) und (22) folgt miihelos, dal der Ausdruck
yp -y nur gerade fiir k2 = 6 verschwindet. Die Enveloppe besitzt also
Spitzen. Dafl es die einzigen sind, kann aus

dzy _ 7T k
de, ~ 3 Cof £k 4 4 Sintk + 4Cof &

«(Cof Ecosx + ;) (23)

abgelesen werden. Diese Spitzen wenden sich dem Knotenpunkte zu.
Die mit den obgenannten singuliren Punkten behafteten Extremalen
nennen wir Spitzentriger (E*).

Im Spezialfalle Gin & = 0 gelingt nach erheblichem Rechenaufwand
mit elementaren Hilfsmitteln der Nachweis, dafl je zwei zusammen-
gehorige Bogen auller der Spitze keinen gemeinsamen Punkt besitzen
und die Enveloppe somit einfach ist'4). Zwecks Bewiltigung des allge-
meinen Falles niitzen wir nun den Abbildungssatz aus. Man benotigt ver-
schiedene Hilfssiitze.

Hilfssatz 2 : Das Bild (11%) ist unberandet.

Beweis : Es muB} gezeigt werden, da@l die ganze (z,, x,)-Ebene von den
Extremalen (11%) liickenlos iiberdeckt wird. Bei festem xz, = x} gilt:

14) Man fithrt einen Schnitt parallel zur x,-Achse. Dadurch werden 2 k-Werte fest-
gelegt mit der Eigenschaft k,-k, = 6. Man setzt: ky = V6.k; ky = V6.5 (0<k=<1).

dx,

P ermdoglicht den Nachweis, da die Enveloppe als
1

Die vollstéindige Diskussion von

Ganzes einfach ist.
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—Gof ésinx + VR

“ = TGinE —Goléoos (24)
R = Gof2 £sin? » 4 227 (Sin & — Cof & cos »)
. — Qof? £sin? »
(1) = 3 (S € — Gof £ cos ) (25)
. x, Co)2 &-8in2 x Co) &sin - R*%
Ta = t[—(ioi §eosx — o+ 6 (Sin & — Co] & cos x) + 6 (Sin & — Cof & cos x) ]

(26)

Fiir jedes » aus dem Intervall arcsin (Cof &1) < » < & ist x, positiv-
definit, fiir jedes » aus dem Intervall arcsin (— Coj &) <x < 2=
negativ-definit. Positive z,-Werte liefern ferner die Intervalle 0 < » <
arcsin (Cof £&1) sowie n < »x < arcsin (— Cof &1). Bei geeigneter Wahl
von ¢ liefern die gleichen Intervalle aber auch negative x,-Werte. Eine
obere Schranke fiir | z,| existiert nicht. Also diirfen wir in (24) z, als un-
abhingigen und unbeschrinkten Parameter einfiihren.

In der Folge muBl darauf geachtet werden, daB in (24) weder ¢ noch R
negativ ausfallen?®).

x x>0 .

Im Intervall arcsin (Cof &1) > »x > »** ist z,, mit dem untern Vor-
zeichen versehen, eine eindeutige und stetige Funktion von » mit dem
Randwert z;*. Im Intervall »** < x < arcsin (— Cof &) ist z,, mit
dem obern Vorzeichen versehen, eindeutig und stetig.!®)

B. x1 <0 .

Im Intervall arcsin (— @of &) > » > »*** ist x,, wenn man nur das
obere Vorzeichen beriicksichtigt, eindeutig und stetig mit dem Rand-
wert 2y **. Im Intervall »*** < x < 27 4 arcsin (Cof &) ist z, mit
dem untern Vorzeichen eindeutig und stetig!?).

Ferner ist lim |z,]—>o00 .
cos x=Tg &
z} beliebig

z, kann demnach bei beliebigem 21 jeden Wert annehmen, w. z. b. w.

16) Genaue Analyse aller Teilintervalle zwecks Klarstellung der Vorzeichenfrage ist
notwendig.

18) %** ist diejenige Wurzel von R = 0, die sich fiir 2} = 0 auf 0 reduziert.
17) x*** ist diejenige Wurzel von R = 0, die sich fiir } = 0 auf x reduziert.
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Hilfssatz 3: Die Enveloppe besitzt keinen Selbstberiihrungspunkt.

Wire niamlich ein solcher vorhanden, so miiiten sich zwei Extremalen
berithren. Im Beriihrungspunkt mit der Abszisse z! finde man eine
gemeinsame Tangente vor. Die Steigung derselben, die wir mit p be-
zeichnen, ndhme fiir zwei verschiedene » denselben Wert an. Nun aber
beweisen wir, dafl p in den allein in Frage kommenden Intervallen des
Hilfssatzes 1 eine monotone Funktion von x ist. (11*) wird entnommen:

% _ [Co]&cosx 4 Qo &sinzx-t 4 §(Sin & —Cof & cos x) 2]

x, Co) &£sinx + (Sin& —Cof £ cos ») ¢

(Sin & — Co| & cos %) 12 = 2 (] — Cof & sin » - 1) .
Auch (24) wird noch beniitzt, und man erhilt den einfachen Ausdruck

Co) £cos x + x,

der noch durch

dp + Cof &sin » [ (z] + Gin &)2 + 1]

dx = R (28)
erginzt wird. In den kritischen Intervallen wechselt % sein Vorzeichen

nicht, w. z. b. w.
Hilfssatz 4: Die Enveloppe besitzt keinen Knotenpunkt.
Beweis : Wir nehmen folgende Zerlegung der (¢, »)-Ebene vor (Abb. 3):

Qi ;o < x<aresin (Cof &) ; 0<t<+

ae ’ ; TSt< oo
G, :aresin (Co) &) <x<mx; 0=<¢t<oo

Gs: n<x<uxn ; 0<t<r<
3 GS : . o 1<t< oo
- Gi : xf <x<arcsin(—Cof&Y); 0<t<7
e ' ; TSt< oo
G, s arcsin(—Coj &) <x<2x; 0=<t<oo
o Gé: 0= <1 ;s 0<t<g¢
‘lae - 1 ; TSt< oo

18 Commentarii Mathematici Helvetici 273



Sodann wird der Abbildungssatz auf jedes einzelne Gebiet ange-
wendet!8).

Sin§=vz, Cos&=v3
2 = 3%

Abb. 4

Siamtliche Gebiete sind einfach-zusammenhingend; denn die Rénder
setzen sich aus Teilstiicken von Halbgeraden » = konst sowie Teilbsgen
der Kurve 4 (t, ) = 0 zusammen, welch letztere nach Hilfssatz 1 ein-
fach ist.

0 (2, )

a(t, »)

Es lassen sich immer Punkte angeben, die nicht Bilder von Punkten
aus irgend einem Gebiet () sein konnen. Solche ,,Nichtbilder¢ sind z. B.
alle Punkte mit negativer Abszisse fiir G,, alle Punkte mit positiver
Abszisse fiir G5, alle Punkte rechts von S, fiir G¢ und G¢, alle Punkte
links von S, fiir Gf und G¢. Vermittelst eines Beweisverfahrens, das in
meiner Dissertation ausfithrlich dargestellt ist, a8t sich zeigen, daf} alle
Bilder von Réndern zu den Rédndern der zugeordneten Bilder gehoren!®).

Wir fiihren jetzt noch Schnitte parallel zur z,-Achse im Abstand
x, = x;. Sie definieren in den Intervallen des Hilfssatzes 1 je 2 »-Werte,
die mit Hilfe von (20), (14) und (16) berechnet werden kénnen. In beiden
Intervallen ist % negativ definit, und p nimmt somit monoton ab (ver-
gleiche (28)). Die Kriimmung der in Betracht fallenden Extremalen-
bogen beziiglich der x;-Achse ist genau bekannt (vergleiche (12)). Wiirde
jetzt z, als Funktion von » in einem Teilintervall von 0 < x < arcsin
(€of &) abnehmen oder in einem Teilintervall von # < % < arcsin
(— Co] &) zunehmen, so miiBiten sich benachbarte Kurven schneiden.
Dies stiinde aber im Widerspruch zum Verhalten der Funktion 4 (¢, %)

verschwindet nur auf den krummlinigen Réndern.

18) Vergleiche D: § 6, S.58—59.
19) D: §6, S.26—28.
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im Innern der Gebiete G und auf den Rindern x = x_ . Diese Tatsache
erlaubt den Schluf3, dal Enveloppe und Spitzentriger auller den Spitzen
keine gemeinsamen Punkte besitzen.

Alle Voraussetzungen des Abbildungssatzes sind also erfiillt, so daB
jedes Teilgebiet G5 in der (x,, z,)-Ebene sein einfach-zusammenhéngendes
und umkehrbar-eindeutiges Abbild besitzt??).

Nachdem die Eigenschaften aller Ridnder erkannt sind, diirfen wir
behaupten, daB G und G¢ jeweilen auf derselben Seite der Enveloppe
liegen und daB die Gebietskomplexe (Gy + Gg) sowie (Gy + () ein-
eindeutig auf einfach-zusammenhingende Gebiete G und G%, abgebildet
werden. Je zwei zugeordnete Enveloppenbogen spielen dabei die Rolle
des einfachen Randes.

Es ist noch ersichtlich, daB3 die beiden Enveloppenteile mit & > 0
beziehungsweise k£ < 0 punktfremd sind; denn die Abszisse von S, ist

[Rechtsschraffiert Gi+G.+B}, linksschraffiert: Gi+Gs+Gil

Abb. b5

20) Dasselbe gilt natiirlich auch fir alle Gebiete G{ sowie fiir G, und Gy. Es ist bemer-
kenswert, daB ausgerechnet die Verwendung aller Extremalenbdgen mit ¢ > 7, die fir

das eigentliche Randwertproblem ausfallen, die vollstindige Diskussion der Enveloppe
gestattet.
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die obere Schranke aller x,-Werte mit k£ > 0, die Abszisse von S, untere
Schranke aller z,-Werte mit k£ < 0, und S, liegt links von §, 21).
Damit ist der Beweis vollstindig.22)

5. Nach umstéindlicher Vorarbeit konnen wir nun den folgenden Satz
formulieren:

Satz: Das zur Grundfunktion F = N + V(2 + 1)£2 gehorige Rand-
wertproblem hat in der ganzen (z,, z,)-Ebene Losungen und zwar im
Innern zweier Spitzen genau 2, auf deren Rand und im gesamten
Restgebiet genau 1 (Abb. 5).

Fiir gewohnliche Punkte ist ein Kommentar iiberfliisssig. Was die
Spitzen betrifft, muBl man wissen, dafl im Kneserschen Ausnahmefall,
der hier eben vorliegt, die Minimumseigenschaft in zu P konjugierten
Punkten erhalten bleibt2).

Will man den Abbildungssatz nur einmal anwenden, so ist das ur-
spriingliche Gebiet G' zu beschneiden. Zur tatséchlichen Losung des
Randwertproblems ist aber die Kenntnis des neu auftretenden Randes
nicht notig?).

Die gestaltlichen Verhiltnisse unseres Problems sind weitgehend von
der Lage des Knotenpunktes abhéingig. Neben dem trivialen Spezialfalle
Gin & =0 ist der andere mit Siné =y2, Cof E=y3, k£ <0 der
Berechung zuginglich. Abb. 4 vermittelt eine ungefihre Vorstellung.

6. Es ist naheliegend, unter der Wurzel auch 22 — 1 und 2} zu setzen.
Die zwei neuen Beispiele sind von der Variationsrechnung aus gesehen
nicht besonders interessant 2*), weisen aber doch einige Feinheiten auf.
Beziiglich des ersten sind in allen Formeln Gin & und Cof & zu ver-
tauschen. Sowohl m als auch k sind nach oben beschriankt, was fort-
wiahrend ausgeniitzt wird. Schnitte parallel zur x,-Achse definieren nur
einen Wert von k, der unterhalb der Schranke liegt. Dieser gliickliche
Umstand ermoglicht direkte und vollsténdige Diskussion der Enveloppe.
Diese Kurve weist mindestens eine Wendestelle auf. Im zweiten Beispiel

16st man 4, (¢, ¥) = 0 mit der Substitution = = &k - T',. Hier bietet auch
2
die Berechnung von ‘—id—;?- keine uniiberwindbaren Schwierigkeiten. Man
1

findet, daB die Enveloppe immer nach derselben Seite gekriimmt ist?®).

1) Vergleiche (20) und die Monotonie von z;,.

2?) Die Singularitét in P kann durch Einfithrung neuer Parameter beseitigt werden
(Vergleiche D, § 6, S. 27. (29)).

23) Bei gegebener Abszisse hat man einfach die Ordinate mit (20) zu vergleichen.

) Es liegen die gleichen Verhiltnisse vor wie beim Problem der Rotationsfliche
kleinster Oberfliche.

%) Sie ist in bezug auf P geodatisch konvex.
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Was geschieht, wenn @% durch — @* ersetzt wird? Gemil (5) wird
das Extremum zu einem Maximum. KEs ist deshalb einfacher, mit

F= @%. V3 — Az zu beginnen. Man berechnet:
¥=1grad & — [z, rot UJ.

Dieses System entsteht aus (6a) durch die Parametertransformation
t = — t, und nach der Ersetzung von x» durch — »x bleibt in (11) #, un-
veriandert, wihrend z, das Vorzeichen wechselt.

Es miiBte interessant sein, Beispiele durchzurechnen, wo der Vektor
rot A sowohl nach oben als auch nach unten zeigt. Vermutlich entdeckte
man theoretisch interessante Erscheinungen.

(Eingegangen den 22. Oktober 1944.)
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