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Ein Beispiel zum
Randwertproblem der Variationsrechnung *)

Von Hans Biebi, Herzogenbuchsee

Das obgenannte Problem besteht in einem einfachen Spezialfalle darin,
durch zwei Punkte P und Q einer (xx, #2)-Ebene eine Kurve zu legen mit

Q

der Eigenschaft, da8 das Kurvenintegral § F(xlt x29xl9x2) dt ein
relatives starkes Minimum liefert.

Es hait sehr schwer, Beispiele zu finden, die man vollstândig durch-
rechnen kann, was bei der Fûlle von Bedingungen nicht verwunderlich
ist. Der Wert solcher Bemûhungen liegt darin, daB die hôchst verwickel-
ten Phànomene der allgemeinen Théorie ihre konkrete Verwirklichung
finden und sogar die Môglichkeit besteht, neuartige Erscheinungen fest-
zustellen.

Die vorliegende Arbeit befaBt sich mit drei verwandten Variations-
problemen, von denen das interessanteste den Kneserschen Ausnahme-
fall2) illustriert und zeigt, daB trotz der Abwesenheit singulârer Linien-
elemente beim Randwertproblem Komplikationen auftreten kônnen.
Die direkte Lôsungsmethode unseres Problems besitzt den Nachteil, daB

Extremalenbôgen, die a priori kein Minimum liefern, nicht sofort aus-
geschieden werden3). Dies kann vermieden werden, wenn man die Glei-
chungen der ausgezeichneten Extremalenschar x{ #t(£, x, |, r\) als

Abbildung deutet. Die Halbgeraden x konst; 0 < t < oo, Originale
der Extremalenbôgen in einer (ty «)-Ebene, bedecken dièse einfach und
lûckenlos. Durch passende Beschneidung der genannten Ebene (was
einer Einschrânkung der Abbildung gleichkommt) sucht man zu er-
reichen, daB mindestens ein gewisses Gebiet 0 der (xl9 a;2)-Ebene durch
die Bilder in gleicher Weise ausgefullt wird, so daB der AnschluB an den

l) Hauptliteratur: C. Carathéodory, Variationsrechnung, wird kûnftig unter G

zitiert. H. Bieri, Beispiele zum Randwertproblem der Variationsrechnung,
Diss. 1941, wird mit D zitiert. C sind die allgemeinen Bezeichnungen entnommen; die
spezielleren stammen vorwiegend aus 2>. Insbesonders bedeuten : t den Kurvenparameter,
r seinen Wert im Berûhrungspunkt mit der Enveloppe, Tt- sonstige ^-Werte, x den Schar-
parameter, der mit der Bichtung der Extremalen im Knotenpunkte verknûpft ist, § und r]
Rationalisierungsgrôfien. Aile Grofien der Bildebene werden, sobald der Abbildungssatz
im Spiele ist, ûberstrichen. (3in, (£of, %$ bedeuten die bekannten hyperbolischen Funk-
tionen.

*) C: 356, S. 294—295.
») C: 360, S. 297—302.
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Idealfall der Variationsrechnung erreicht ist4). Dièse Méthode fuBt auf
einem Satz liber die umkehxbar-eindeutige Abbildung zweier einfaeh-
zusammenhângender Gebiete aufeinander5).

Im ersten Abschnitt unserer Arbeit verallgemeinern wir ein bekanntes
Beispiel6) und gelangen sodann durch Spezialisation zu neuen Problemen,
die der Berechnung zugânglich sind. Im zweiten Abschnitt wird die aus-
gezeichnete Extremalenschar eines dieser Problème diskutiert.
Abschnitt 3 enthàlt die Analyse der Enveloppenbedingung. Es gelingt durch
Einfuhrung passender HilfsgrôBen, die lâstige Auflôsung einer Gleichung
dritten Grades zu umgehen. Viertens folgt die Diskussion der Enveloppe.
Kernstiick derselben ist der Nachweis ihrer Einfachheit im Sinne der
geometrischen Mengenlehre. Hier leistet der Abbildungssatz vorzugliche
Dienste. Der fiinfte Teil bringt die vollstândige Lôsung des Randwert-
problems. Zum SchluB werden zwei verwandte Beispiele gestreift und
einige Ergânzungen beigefugt.

Es soll noch erwàhnt werden, daB unser Beispiel physikalische Be-
deutung hat. Deutet man nàmlich 0 als elektrostatisches Potential und
% als magnetisches Vektorpotential, so sind die Eulerschen Differential-
gleichungen (6a) identisch mit den Bewegungsgleichungen eines Elektrons.

1. Nach einer naheliegenden Verallgemeinerung der Grundfunktion
des schon erwâhnten Ausgangsproblems erhalt man das neue, sehr reich-
haltige Variationsproblem

Ç(91* + dt Extremum. (1)

0 ist ein Skalar, der Vektor 21 darf kein Gradient sein7). Unter Beruck-
sichtigung von

9 «+<P*-y!j 8) (2)

findet man als einfachste Hamiltonsche Funktion :

2H (X) - 2t)2 - * 8) (3)

Aus 3 berechnen wir bequem die Legendresche Funktion:

F, 0k 8) (4)

4) C : 358, S. 296.
6) D : § 2, S. 6—7, § 6, S. 10.
6) C : 274, S. 232—233.
7) Wâre etwa 51 grad <P19 so wûrde fytxdt — J (pxdt vom Integrationsweg unab-

hângig sein und deshalb kein Extremum liefern. 6« reduzierte sich auf ï J grad <P.

8) G: 253—270, S. 216—229.
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Ist demnach 0 positiv semidefinit, so gibt es singulâre Linienelemente.
Endlich ist auch die WeierstraBsche Funktion leieht zu gewinnen :

cos v) 8) (5)

Bas Extremum ist also ein Minimum. Komplikationen stellen sich nur
dann ein, wenn 0 verschwindet.

(3) gestattet nach den Vorschriften der allgemeinen Théorie die Ab-
leitung der Differentialgleichungen fur die Extremalen:

Xi~ \dxt dxx)XX+ 2 dx,
•

Das System (6) kann vektoriell geschrieben werden:

(6)

rôtît]

Es besitzt das Intégral:
P 0 •)

(6a)

(7)

Dièses wird fur die folgenden Ausfuhrungen von ausschlaggebender
Bedeutung sein.

Nun gehen wir vom allgemeinen Problem zu den spezialisierten ûber.
Fiir 31 wâhlen wir den allgemeinsten Vektor mit linearen Komponenten
in den x{, fur 0 den allgemeinsten quadratischen Ausdruck in den glei-
chen Variablen. Auf die Vorteile von Schiebung und Drehung zu ver-
zichten, wâre unangebracht. Von den 4 kanonischen Formen, welche 0
annehmen kann, verfolgen wir nur die Hauptform anx\ + «22^2 + c

weiter10). Wegen rot % (0, 0, a) erhâlt man aus (6a) :

an +
x% 22 ^2 ~~~ 1

(6 b)

8) c : 253—270, S. 216—229.
9) (6a) wird skalar mit i multipliziert. Hernach lâfit sich eine Intégration ausfûhren.

Die dabei auftretende Konstante mufi mit Rûcksicht auf (3) den Wert Null besitzen.
10) Die Nebenformen $ — anx\ -f 2b2x2 und <P 2b1x1 fûhren wegen der Inhomoge-

nitât auf Problème, die wesentlich schwieriger zu berechnen sind. Die Nebenform <P «=*

konst endlich leitet auf das Intégral x2 konst gemàfi (7).
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Dièses System besitzt das eharakteristische Polynom

$ (r) =r*-r* (au + a22 - a») + an a22 «)

Es ist klar, daB die Verhâltnisse dann besonders einfach werden, wenn
die xi nur als Polynôme in t auftreten. Dies aber lâBt sich. erzwingen.
Man braucht bloB zu verlangen, da8 r 0 vierfache Wurzel von
*P (r) 0 sein soll. Hernach sind die hierfur hinreichenden Bedingungen

«22 0 ; an a2 > 0 (8)

zu beachten. Nach Anwendung der perspektivischen Transformation
Vc

x sowie nach Abspaltung des fur das Minimum bedeutungs-X

losen Faktors
Vc

wird die Grundfunktion auf die vereinfachte Form

(Q)
[ e - 1, 0 oder + 1 ; rot I (0, 0, ± 1)]

gebracht.
Mit dem Ansatz

xx At* + Bt2 + Ct + D; x2 Et* + Ft2 + Gt + E

geht man in das gemâB (8) und (9) modifizierte System (6b) ein und
erhâlt :

(10)

0 hângt jetzt also nur von xx ab. Demzufolge ist der Knotenpunkt
P{x\, 0) in allgemeiner Lage. Der Parameter t wird so normiert, daB P
fur t 0 passiert wird. (7) entnehmen wir

x\ <2>^«sin x ; ic\ 0%2* — cos «
Es folgt:

H 0 ; D x\ ; C <P# • sin ^ ; G - ^ • eos «

11 Vergleiche JE7. Kamke, Différentialgleichungen I, Losungsmethoden, Losungen.
Leipzig 1942, 8, 32, S. 614—615.

12) Die Querstriche sind in der Folge weggelassen.
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SchlieBlich ist leicht zu sehen, daB die neuen Extremalen Spiegelbilder
der alten beziiglich der a^-Aehse sind, wenn man in (10) die untern Vor-
zeichen nimmt und zugleich x durch n — x ersetzt. Es bedeutet also

keine Beeintrâchtigung der Allgemeinheit, wenn nur der Fall rot %

(0, 0, -f 1) behandelt wird. Wir verlegen nun noch den Nullpunkt des

Koordinatensystems nach. P und erhalten endgiiltig12) :

Xl &%* • sin x t +

x2 - 0* cos X-1

(x°i — *? • cos *)

t2 - A_i x)
t*

(11)

2. Wir wenden uns jetzt dem Variationsproblem

J + dt Minimum

zu. Existenzgebiet ist die ganze (xl9 o;2)-Ebene. GemâB 4 sind aile Linien-
elemente positiv regulàr, und nach 5 verschwindet (5 nur ordentlich.
Vermittelst der Substitution xl ®m I gelingt die wurzelfreie Dar-
stellung der ausgezeichneten Extremalenschar13). Es gilt:

xx

x2 —

sin x ' t -\-

cos ^ • « —

(Sin f — Œof f cos «)

Gof £ sin «

0 £ > 0 (Abb. 1)

(Sin | — dof g cos x)
6

(lia)

Abb. 1

12) Die Querstriehe sind in der Folge weggelassen.
18) G : 266, S. 226.
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(lla) stellt Teilbôgen von Kubiken dar. Fafit man den Gesamtverlauf
der gefundenen Kurven ins Auge, so ergeben sich nach elementaren
Rechnungen ein Scheitel in bezug auf die (#2)-Achse, zwei solche be-
zuglich der a^-Achse sowie ein Doppelpunkt. Die zugehôrigen £-Werte
lauten der Reihe nach :

rri /tt i

dof £ • sin x T
Sin £ — Cof £ cos x ' s

1/3 |/1 + (Sin £ - &o| £ cos #)s

/1 + (S

Sin
5tn

£-
£ — 6

-(£of
^of £ ce

£cos 7

)S Xf

(12)

Sin £ — (£of | cos «

Réelle Wendestellen sind keine vorhanden, denn der entsprechende
Parameterwert lautet

T -T"" l ©in £ — Œof f cos x

Von ganz besonderer Bedeutung fiir das Randwertproblem sind die
speziellen Extremalenbôgen mit sin k 0 sowie cos # Xq £ (Abb. 1).

3. In der allgemeinen Théorie wird die fondamentale Bedeutung der

GrôBe A(t,x)= ^V **'
festgestellt13). Bekanntlich sind die Null-

0 (t, x)
stellen von A 0 mit dem Aufhôren des Extrems verknûpft. Unser
Beispiel liefert:

12 A ($,x) Œof S't'A^ttx) ; (13)

Ax sin x (Sin £ — Gof I cos x) tz + 4 Gof f sin2 « • t2 +
+ 12 Sin f sin x • * + 12 Œof f

Wir beweisen den wichtigen

Hillssatz 1 : Zu jedem x aus den Intervallen

0 < x < arccos (Xq f ; jr < x < arccos (2g £)

gibt es genau eine von Null verschiedene, positive und endliche Wurzel
t t von A 0 (Abb. 2).

Zunàchst sieht man, da8 sin x und (Sin £ — (£of £ cos x) verschiedene

Vorzeichen aufweisen mûssen; denn die quadratische Gleichung
______
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Ax — sin x (Sin f — (£of f cos x) tz 0 besitzt keine positiven Wurzeln.
Hernach benûtzen wir die beiden Substitutionen

t k(x)
sin x ' <EoUP+ 3

(sin ;

Sin 1-k + 3Œof

Sie transformieren zJx 0 in die weit bequemere Form

cos2 x + 2 (£of I • m • cos « — (2 Sin f • m + 1) 0

Es folgen zwei Auflôsungen von (15) :

cos x — Êof | • m ± ]/(£oî2 f m2 + 2 Sin fm+1
sin2 x

m

ergânzt durch
2 (Sin | — (£of | cos *) j

dm _ sin^ [(£of f cos2 x — 2 Sin f cos « -f Gof |]
~dx~~~~2 2 (Sin | — Œof Icos«)2

6 Sin 9 (£of

(14)

(15)

(16)

(17)

(18)

(1»)
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m ist eine eindeutige Funktion von x. GemâB (18) ist sie sogar monoton.
Nach (14) ist m auch eindeutige Funktion von k. GemâB (19) ist Monotonie

auch in bezug auf k vorhanden, was zur Folge hat, daB eine
eindeutige und monotone Umkehrfunktion k k (m) existiert. Dann aber
ist auch die Funktion k k(x) eindeutig und monoton. Damit ist der
Beweis fertig.

Aus (13) gewinnt man durch Ûbergang zur Grenze:

lim t Km r -> + °o •
sin x=0 cos x=$gf

Zusammenfassend stellen wir fest:

Durchlâuft x das erste Intervall des Hilfssatzes, so wachsen m und k
monoton von 0 auf + oo. Durchlâuft aber x das zweite Intervall, so

sinken m und k monoton von Null auf — oo. Im ersten Fall ist in (16)
das obère Vorzeichen giiltig, im zweiten das untere. Wie verhâlt sich

r r(x)1 Fur den Gebrauch des Abbildungssatzes ist die Eindeutigkeit
ausreiehend, und auch die vorbereitende Enveloppendiskussion gelingt
ohne weitere Daten.

4, (14) und (17) gestatten nun eine ûberraschend einfache Darstellung
der Enveloppe in der Form

x x\X2 T 1

(M

Co f £•cos >

®tn
k

fi + 6C

(Œof l&2 + 12 Sin f k H- 1 2 £of f 1
J

(20)

Besonders xx ist leicht zu diskutieren. Nach der Kettenregel

d d dk dm
dx dk dm dx

îolgt :

dxx £oU(6—F) dk dmt -* ; ^ -^'--
Die Stelle k2 6 ist kritisch. GemâB (16) sind 2 Werte von x zugeordnet,
die wir mit x* bezeichnen. Es gilt (Abb. 3):
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Im Intervall 0 < x < x? mit 0 < k < V$ ist -^ > 0
dx

„ xf < x < arccos (Xq £) „ V§ < k < oo „ -^î<o

n < x < x2 " dx

x* < x < arccos (2g £) „ -l/ë > A > — oo „ -^ > 0

arcsin (-

Abb. 3

Km x1

sin x=0
lim

^î "^ -F

In allen Intervallen ist demnach xx eine monotone Funktion von x.
Dies reicht hin zur Behauptung, daB die Enveloppe aus 4 einfachen Teil-
bôgen besteht.

(20) entnimmt man noch: lim |#2|->oo. Fur die weitere Diskussion

aber ist dièse Form nicht zu gebrauchen.
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Im Beruhrungspunkt mit der Enveloppe berechnet sich die Steigung
o

der betreffenden Extremalen zu -
or

die Steigung der Enveloppe zu
1 t=T

j—^. Zwischen xi\t=x und -=-*- besteht Proportionalitât. Der
dx^ ' QjK

dx
Proportionalitâtsfaktor lâBt sich ermitteln, weil -—^- bekannt ist. Man

findet :

3 sin x ((£of Çk2 + 4 Stn f & + 4 Çof £)
xx — ¦

1

cos

dx,
__ __

Cof | (Jb2 — 6)

Unter Benutzung von (21) und (22) folgt muhelos, da8 der Ausdruck
\p ' x nur gerade fiir Je2 6 verschwindet. i)ie Enveloppe besitzt also

Spitzen. DaB es die einzigen sind, kann aus

dx2 x k
dxx 3 Œof |ifc2 + 4 Stn f Jb + 4 Gof

• (Œof I cos k + xx) (23)

abgelesen werden. Dièse Spitzen wenden sich dem Knotenpunkte zu.
Die mit den obgenannten singulâren Punkten behafteten Extremalen
nennen wir Spitzentrâger ((£*).

Im Spezialfalle Stn I 0 gelingt nach erheblichem Rechenaufwand
mit elementaren Hilfsmitteln der Nachweis, daB je zwei zusammen-
gehôrige Bôgen auBer der Spitze keinen gemeinsamen Punkt besitzen
und die Enveloppe somit einfach ist14). Zwecks Bewâltigung des allge-
meinen Pâlies niitzen wir nun den Abbildungssatz aus. Man benôtigt ver-
schiedene Hilfssâtze.

Hilîssatz 2 : Das Bild (lla) ist unberandet.

Beweis: Es muB gezeigt werden, daB die ganze (xl9 a:2)-Ebene von den
Extremalen (lla) luckenlos uberdeckt wird. Bei festem xx x\ gilt:

14) Man fûhrt einen Schnitt parallel zur a;2-Achse. Dadurch werden 2 A;-Werte fest-

gelegt mit der Eigenschaft kvk2 6. Man setzt: kx Vê^k; k2 yè-k
Die vollstàndige Diskussion von -—¦ ermôglicht den Nachweis, daÛ die Enveloppe als

Ganzes einfach ist.
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R Cop £ sin2 * + 2^(Stn f - Œof £ cos

2 (Sin f - Œof f cos *)

cos«) + 6 (Sin * - ttof f cob

Fur jedes x aus dem Intervall arcsin (Cof I"1) < n ^ ^ ist a?1 positiv-
definit, fur jedes h aus dem Intervall arcsin (— (£of I"1) ^ k ^ 2 ;t
negativ-definit. Positive a;1-Werte liefern ferner die Intervalle 0 < x <
arcsin ((£of |-1) sowie n<x< arcsin (— (£of I"1). Bei geeigneter Wahl
von t liefern die gleichen Intervalle aber auch négative a^-Werte. Eine
obère Schranke fur | ^1 existiert nicht. Also dûrfen wir in (24) xt als un-
abhangigen und unbeschrànkten Parameter einfuhren.

In der Folge muB darauf geachtet werden, da6 in (24) weder t noch R
negativ ausfallen15).

oc. x{^0
Im Intervall arcsin (Gof I"1) > x > x** ist x2, mit dem untern Vor-

zeichen versehen, eine eindeutige und stetige Funktion von x mit dem
Randwert x**. Im Intervall x**<x< arcsin (— dof I"1) ist x2, mit
dem obern Vorzeichen versehen, eindeutig und stetig.16)

fi. x\ < 0

Im Intervall arcsin (— (Sof iT1) > x > x*** ist x2, wenn man nur das

obère Vorzeichen berucksichtigt, eindeutig und stetig mit dem Randwert

#***. Im Intervall «***<«< 2n + arcsin ((£of I"1) ist x% mit
dem untern Vorzeichen eindeutig und stetig17).

Ferner ist lim |#2|->oo
cos x=Ï9 §

x\ beliebig

x2 kann demnach bei beliebigem x\ jeden Wert annehmen, w. z. b. w.

16) Genaue Analyse aller Teilintervalle zwecks Klarstellung der Vorzeichenfrage ist
notwendig.

i«j x** ist diejenige Wurzel von R — 0, die sich fur x\ 0 auf 0 reduziert.
17) x*** ist diejenige Wurzel von R 0, die sich fur x\ 0 auf » reduziert.
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Hilfssatz 3 : Die Enveloppe besitzt keinen Selbstberûhrungspunkt.

Wâre nâmlich ein solcher vorhanden, so muBten sich zwei Extremalen
beriihren. Im Berùhrungspunkt mit der Abszisse x\ fânde man eine

gemeinsame Tangente vor. Die Steigung derselben, die wir mit p be-
zeichnen, nâhme fur zwei verschiedene x denselben Wert an. Nun aber
beweisen wir, da8 p in den allein in Frage kommenden Intervallen des
Hilfssatzes 1 eine monotone Funktion von x ist. (lla) wird entnommen:

x2 [(£of | cos h + (Eof f sin x • t + \ (Sin £ — £of f cos

xx (£of f sin x + (Sin £ — (£of £ cos h) £

(Sin £ — Gof £ cos x) t2 2 (#J — (£of £ sin « • £)

Auch (24) wird noch benutzt, und man erhâlt den einfachen Ausdruck

(£oF £ cos x 4- x,
P ^RYz

der noch durch

(28)

(27)

dp _ ± Cof £ sin x [ (^ + Sin £)2 + 1]

ergânzt wird. In den kritischen Intervallen wechselt -/- sein Vorzeichen& dx
nicht, w. z. b. w.

Hilfssatz 4: Die Enveloppe besitzt keinen Knotenpunkt.

Beweis: Wir nehmen folgende Zerlegung der (t, #)-Ebene vor (Abb. 3) :

x? < K < arcsin (Gof r1) ; 0 < « < t

G%

G",

arcsin

arcsin(—

0<i<oo
0<<<t
t<«<oo
0<«<t
t<«<oo
0<t<oo
0<t<r
t < « < oo

18 Commentera Mathematici Helvetlci 273



Sodann wird der Abbildungssatz auf jedes einzelne Gebiet ange-
wendet18).

Sâmtliche Gebiete sind einfach-zusammenhàngend ; denn die Rânder
setzen sich aus Teilstlicken von Halbgeraden x konst sowie Teilbôgen
der Kurve A (t, x) 0 zusammen, welch letztere nach Hilfssatz 1 ein-
fach ist.

- *?—r^ verschwindet nur auf den krummlinigen Ràndern.

Es lassen sich immer Punkte angeben, die nicht Bilder von Punkten
ans irgend einem Gebiet G^ sein kônnen. Solche ,,Nichtbilder" sind z. B.
aile Punkte mit negativer Abszisse fur G2, aile Punkte mit positiver
Abszisse fur G5, aile Punkte rechts von Sx fur G% und G%, aile Punkte
links von £2 fur G% und G%. Vermittelst eines Beweisverfahrens, das in
meiner Dissertation ausfûhrlich dargestellt ist, lâBt sich zeigen, da8 aile
Bilder von Randern zu den Rândern der zugeordneten Bilder gehôren19).

Wir fuhren jetzt noch Schnitte parallel zur ^2-Achse im Abstand

xx x\. Sie definieren in den Intervallen des Hilfssatzes 1 je 2 ^-Werte,
die mit Hilfe von (20), (14) und (16) berechnet werden kônnen. In beiden

Intervallen ist -~ negativ définit, und p nimmt somit monoton ab (ver-

gleiche (28)). Die Krûmmung der in Betracht fallenden Extremalen-
bôgen bezûglich der #rAchse ist genau bekannt (vergleiche (12)). Wiirde
jetzt x2 als Funktion von x in einem Teilintervall von 0 < x < arcsin
((Eof I""1) abnehmen oder in einem Teilintervall von n < x < arcsin
(— do] I"1) zunehmen, so mufiten sich benachbarte Kurven schneiden.
Dies stlinde aber im Widerspruch zum Verhalten der Funktion A (t, x)

18) Vergleiche D : § 6, S. 58—59.
i») D : § 6, S. 26—28.
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im Innern der Gebiete G% und auf den Rândern x x* Dièse Tatsache
erlaubt den SchluB, daB Enveloppe und Spitzentrâger auBer den Spitzen
keine gemeinsamen Punkte besitzen.

Aile Voraussetzungen des Abbildungssatzes sind also erfullt, so daB

jedes Teilgebiet G\ in der (xx, #2)-Ebene sein einfaeh-zusammenhangendes
und umkehrbar-eindeutiges Abbild besitzt20).

Nachdem die Eigenschaften aller Rânder erkannt sind, durfen wir
behaupten, daB G[ und G% jeweilen auf derselben Seite der Enveloppe
liegen und daB die Gebietskomplexe (G* + @l) sowie (G£ + 6?") ein-
eindeutig auf einfach-zusammenhàngende Gebiete G^ und G^ abgebildet
werden. Je zwei zugeordnete Enveloppenbôgen spielen dabei die Rolle
des einfachen Randes.

Es ist noch ersichtlich, daB die beiden Enveloppenteile mit k > 0

beziehungsweise k ^ 0 punktfremd sind; denn die Abszisse von Sx ist

[Rgchisschraffiept ImksschraffiertGi+Gs+Gil

Abb. 5

20) Dasselbe gilt naturlich auch fur aile Gebiete Oj sowie fur O2 und O5. Es ist bemer-

kenswert, dafi ausgerechnet die Verwendung aller Extremalenbogen mit t > r, die fur
das eigentliche Randwertproblem ausfallen, die vollstândige Diskussion der Enveloppe
gestattet.
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die obère Schranke aller a^-Werte mit k ^ 0, die Abszisse von 82 untere
Schranke aller a^-Werte mit k < 0, und Sx liegt links von 82 21).

Damit ist der Beweis vollstàndig.22)

5. Nach umstândlicher Vorarbeit kônnen wir nun den folgenden Satz
formulieren :

Satz : Das zur Grundfunktion F 2t i + V[x\ + 1 x2 gehôrige Rand-
wertproblem hat in der ganzen (xl9 #2)-Ebene Lôsungen und zwar im
Innern zweier Spitzen genau 2, auf deren Rand und im gesamten
Restgebiet genau 1 (Abb. 5).

Fur gewôhnliche Punkte ist ein Kommentar uberflussig. Was die
Spitzen betrifft, muB man wissen, da8 im Kneserschen Ausnahmefall,
der hier eben vorliegt, die Minimumseigenschaft in zu P konjugierten
Punkten erhalten bleibt2).

Will man den Abbildungssatz nur einmal anwenden, so ist das ur-
sprungliehe Gebiet G zu beschneiden. Zur tatsâchlichen Lôsung des

Randwertproblems ist aber die Kenntnis des neu auftretenden Randes
nicht nôtig23).

Die gestaltlichen Verhàltnisse unseres Problems sind weitgehend von
der Lage des Knotenpunktes abhângig. Neben dem trivialen Spezialfalle
Qin f 0 ist der andere mit Sin £ y2 (£of ^ |/3? k < 0 der
Berechung zugânglich.. Abb. 4 vermittelt eine ungefâhre Vorstellung.

6. Es ist naheliegend, unter der Wurzel auch x\ — 1 und x\ zu setzen.
Die zwei neuen Beispiele sind von der Variationsrechnung aus gesehen
nicht besonders intéressant24), weisen aber doch einige Feinheiten auf.
Beziiglich des ersten sind in allen Formeln Qin I und Gof I zu ver-
tauschen. Sowohl m als auch k sind nach oben beschrânkt, was fort-
wâhrend ausgenutzt wird. Schnitte parallel zur #2-Achse definieren nur
einen Wert von k, der unterhalb der Schranke liegt. Dieser gluekliche
Umstand ermôglicht direkte und vollstândige Diskussion der Enveloppe.
Dièse Kurve weist mindestens eine Wendestelle auf. Im zweiten Beispiel
lôst man A^t, x) 0 mit der Substitution t k • ï\. Hier bietet auch

â?x
die Berechnung von -j-£ keine unûberwindbaren Schwierigkeiten. Man

findet, dafi die Enveloppe immer nach derselben Seite gekrummt ist25).

21) Vergleiehe (20) und die Monotonie von xx.
22) Die Singularitât in P kann durch Einfûhrung neuer Parameter beseitigt werden

(Vergleiehe D, §6, S. 27. (29)).
28) Bei gegebener Abszisse hat man einfach die Ordinate mit (20) zu vergleichen.
**) Es liegen die gleichen Verhâltnisse vor wie beim Problem der Rotationsflâche

kleinster Oberflache.
26 Sie ist in bezug auf JFgeodâtisch konvex.
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Was geschieht, wenn 0y* durch — &y* ersetzt wird? GemâB (5) wird
das Extremum zu einem Maximum. Es ist deshalb einfacher, mit
F 0Vi* ]/i2 — 9t£ zu beginnen. Man berechnet:

ï 1 grad 0 — [x rot 3t]

Dièses System entsteht aus (6a) durch die Parametertransformation
t — t, und nach der Ersetzung von k durch — x bleibt in (11) xx un-
verândert, wâhrend x2 das Vorzeichen wechselt.

Es mtiBte intéressant sein, Beispiele durchzurechnen, wo der Vektor
rot 31 sowohl nach oben als auch nach unten zeigt. Vermutlich entdeckte
man theoretisch intéressante Erscheinungen.

(Eingegangen den 22. Oktober 1944.)
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