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Harmonische Funktionen
und Randwertaufgaben in einem Komplex

Von Beno Eckmann, Lausanne

1, Es handelt sich um Verallgemeinerungen der folgenden bekannten
und elementaren Aufgabe ûber diskrete Funktionen.

A) Man betrachtet in einem endlichen Ausschnitt aus dem Quadrat-
gitter der Ebene eine réelle Funktion / der Eckpunkte. Jeder Eckpunkt
hat vier oder weniger Naehbarpunkte ; die Punkte mit vier Nachbaren
sind innere Punkte, die iibrigen Randpunkte des betrachteten Aus-
schnittes. In den Randpunkten gibt man die Werte von / vor; in den
innern Punkten soll man die Funktion so bestimmen, da8 ihr Wert gleieh
dem arithmetischen Mittel der vier Naehbarwerte ist. Mit Hilfe elemen-
tarer Sâtze der linearen Algebra zeigt man leicht, daB dies immer môglich
ist, und zwar auf eine einzige Art.

B) Wir ersetzen nun das Quadratgitter durch einen beliebigen
endlichen Streckenkomplex K. Unter den Nachbaren eines Eckpunktes
versteht man die Endpunkte der von ihm ausgehenden Kanten. In ge-
wissen Eckpunkten von K — ihre Gesamtheit heiBe R — seien die Werte
einer Funktion / der Eckpunkte beliebig vorgegeben; in den iibrigen
Eckpunkten — ihre Gesamtheit heiBe Q — soll man / so bestimmen, daB in
jedem Eckpunkt aus Q der Wert gleieh dem arithmetischen Mittel der
Naehbarwerte ist. Dabei braucht R nicht etwa aus „Randpunkten"
von K zu bestehen (in vielen Fallen hat es in K gar keinen Sinn, von
solchen zu sprechen) ; es handelt sich einfach um willkûrlich ausgewàhlte
Punkte von K. — A) ist offenbar ein Spezialfall von B).

Wir werden zeigen, daB auch dièse Aufgabe B) immer eine Lôsung
besitzt ; dièse Lôsung ist dann und nur dann eindeutig bestimmt, wenn die

Eckpunktmenge R, in welcher die Werte von f vorgegeben werden, aus
jeder Komponente des Streckenkomplexes K mindestens einen Eckpunkt
enthalt. Dies wird sich im folgenden als Spezialfall eines allgemeineren
Résultâtes ergeben.

C) Man kann nâmlich ein âhnliches Problem in einem endlichen Zellen-
komplex K beliebiger Dimension stellen. Man betrachtet darin eine réelle
Funktion / der p-dimensionalen Zellen (die man fûr p > 0 beliebig, aber
fest orientiert hat). Dièse Zellen seien irgendwie in zwei Klassen R und Q
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aufgeteilt ; man gibt die Werte von / fur die Zellen von R beliebig vor und
soll sie fur die Zellen von Q so bestimmen, daB in diesen eine gewisse
Mittelwertseigenschaft bezuglich der Nachbarzellen vorhanden ist.

Auch hier existiert immer eine Lôsung, und sie ist genau dann eindeutig
bestimmt, wenn R im Zellenkomplex K bestimmte geometrische Bedingungen
erftillt. Dies zu beweisen ist der Zweck der vorliegenden Zeilen; wir haben
dabei noch die in Frage stehende Mittelwertseigensehaft zu prâzisieren
und die richtigen geometrischen Bedingungen fur R anzugeben.

Unsere Fragestellung gehôrt offenbar in den Rahmen der kombina-
torischen Topologie und, weil sich die Mittelwertsforderung durch lineare
Gleichungen ausdruckt, der linearen Algebra; die Méthode, mit der wir
sie - behandeln, lâuft im wesentlichen auf eine orthogonale Projektion
in Vektorrâumen hinaus. Die Darstellung wird besonders kurz und
ubersichtlich, wenn man den Formalismus der Homologie- und Cohomo-

logietheorie mit reellen Koeffizienten benûtzt.

2, Im § 1 stellen wir die wichtigsten Elemente und Formeln dieser
Théorie, in einer fur uns geeigneten Form, zusammen. Im Mittelpunkt
stehen dabei die Zerlegungssâtze von Whitney1) und de Rham1). — In
einem Anhang besprechen wir eine Aufgabe, die direkt nichts mit den ein-

gangs genannten zu tun hat, aber in denselben Gedankenkreis gehôrt und
als einfaches Beispiel fur unsere Méthode der orthogonalen Projektion
dienen kann : die Bestimmung der elektrischen Stromverteilung in einem
Leiternetz auf Grund der KirchhoflFschen Regeln ; wir halten uns dabei
im wesentlichen an die von H. Weyl2) gegebene Lôsung.

Im § 2 geben wir der Aufgabe B) eine Form, die sich ohne weiteres im
Sinne von C) auf hôhere Dimensionen ubertragen lâBt, und formulieren
gleichzeitig eine àhnliche, zu C) duale Aufgabe. Dann beweisen wir fur
beide die Existenz von Lôsungen und bestimmen die geometrischen
Bedingungen, die fur die Eindeutigkeit der Lôsungen notwendig und hin-
reichend sind.

Die Idée, die genannten elementaren Aufgaben mit kombinatorisch-
topologischen Methoden zu behandeln und zu verallgemeinern, verdanke
ich einer Anregung von Herrn Prof. H. Hopf.

x) H. Whitney, On products in a complex, Armais of Mathematics 39 (1938),
397—432, besonders S. 430. — G. de Rham, Sur une décomposition des chaînes
d'un complexe, C. R. des séances de la Soc. Math. Suisse 1941 (Enseign. math. XXXIX,
1944), 7—8.

2) H. Weyl, Répartition de corriente en una red conductora, Revista mate-
mâtica Hispano-Americana 5 (1923), 153—164.
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§1.
3. K sei ein endlicher w-dimensionaler Zellenkomplex3). Seine Eck-

punkte oder O-dimensionalen Zellen bezeichnen wir mit x\ (i 1,..., oc°)

und fur p 1, 2,..., n seine ^-dimensionalen, beliebig (aber fest) orien-
tierten Zellen mit #f (i — 1,..., <xp).

Eine réelle p-dimensionale Kette (p sei eine der Zahlen 0, 1,..., n) ist
eine Linearform

A' 2«.*î

mit reellen Koeffizienten at in den a%, die hier als Unbestimmte auf-
gefaBt werden. Wir betrachten AP auch als Vektor (%,..., aaP) eines
reellen Vektorraumes 93P vom Rang ocp; die additive Grappe aller
^-dimensionalen Ketten bzw. die Vektorgruppe dièses Raumes bezeichnen

wir ebenfalls mit 33P.

Man kann mit diesem Begriff der Kette zweierlei zum Ausdruck
bringen. Entweder deutet man sie als geometrisches Oebilde, das aus

(orientierten) Zellen besteht, jede mit einer bestimmten reellen Vielfach-
heit genommen (wobei man fur p ^ 1 unter — xp die andere Orien-
tierung von xp versteht und es dasselbe bedeutet, da8 xp mit dem
Koeffizienten at wie dafi — xp% mit dem Koeffizienten — at auftritt). Oder

man deutet sie als Funktion f der p-dimensionalen Zellen, welche auf xv%

den Wert f(x*) at annimmt (oder auf — xp% den Wert — at, also eine

^ungerade" Funktion). Man beachte, daB dies lediglich zwei Moglich-
keiten sind, den rein algebraischen Begriff der Kette ,,anschaulieh" zu
interpretieren ; wir werden sie nach Bedarf heranziehen, ohne daB dies

am Operieren mit den Ketten etwas ândert.

4. p sei eine der Zahlen 1, 2,..., n. Der Rand rx^ der Zelle xp ist eine

(p—l)-dimensionale Kette, die aus den Randzellen von xp mit der
durch xp induzierten Orientierung „besteht44, d. h. in welcher dièse

Randzellen mit dem Koeffizienten + 1 auftreten, die ubrigen (p — 1)-
dimensionalen Zellen mit dem Koeffizienten 0 (der Rand rx\ einer
1-dimensionalen Zelle, d. h. einer geriehteten Kante #J ist die 0-dimen-
sionale Kette x°} — xQt, wenn x\ der Anfangs- und x® der Endpunkt dieser
Kante ist) ; sie ist also von der Porm

T xt — 2a Vtk xk V1/
A?=l

3) Vgl. P Alexandroff und H. Hopf, Topologie I (Berlin 1935), Kap III und VI. —
Oder H Seifert und W. ThrelfaJl, Lehrbuch der Topologie (Leipzig und Berlin 1934),
§67.
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Die Zahlen rflk (i 1, 2,. ..,<**; Je 1, 2,..., a*-1), die + 1, — 1

oder 0 smd, heifien Inzidenzzahlen des Komplexes K. Mit ihrer Hilfe
definiert man auch den Corand qoc^1 der Zelle x%"~* als ^-dimensionale
Kette

<xP

sie ,,besteht" aus denjenigen orientierten p-dimensionalen Zellen, auf
deren Rand x^T1 mit dem Koeffizienten + 1 auftritt. Wir bezeichnen
gelegentlich qx^T1 auch als Bûschel von x%~x.

Definiert man den Rand der Kette Ap JJat xp und den Corand der
t

Kette Bv~x Z ftfc^I"1 lmear durch die Ausdrucke

aP aP-1

k=l i bk)

dann ist r eine lineare Abbildung von 93P in SB*-1, q die dazu ditale*) lineare
Abbildung von ^p~x in 93P. Die Rander der ^-dimensionalen Ketten bil-
den einen linearen Teilraum 5Rp"~1 r95^ von SB17"1, die Corander der
(p — l)-dimensionalen Ketten einen Teilraum 5R1> ^93i>~1 von 93P. Die
Ketten, deren Rand (Corand) 0 ist, heiBen ZyJclen (Cozyklen); sie
bilden einen linearen Teilraum 3^ von 23P (Jt^*"1 von S^"1), den Kern der
linearen Abbildung r (bzw. q).

Fur die Dimensionen 0 und n ergânzt man dièse Festsetzungen in der
folgenden naheliegenden und trivialen Weise : Fur p < 0 und p > n
bedeute 93P die Nullgruppe; als Rand einer O-dimensionalen und als
Corand einer w--dimensionalen Kette definiert man die Kette 0. Dann
ist 3° 93° und 3W 9371, ferner $R° g®-1 0 und W1 r$Bn+1= 0.

Es sind also in naturlicher Weise in den Vektorraumen 3$p (p
0, 1,..., n) je vier lineare Teilrâume W, W>, 3P und 3P ausgezeichnet;
fur sie gelten die Inklusionen

W> c 3* und n*>Œ3*>

4) Ist die lineare Abbildung l des Vektorraumes y$x m den Vektorraum 952 bezuglich
bestimmter Basen durch die Matrix L gegeben, so versteht man unter der zu l dualen
Abbildung X die bezuglich derselben Basen durch die transponierte Matrix L' gegebene
Abbildung von SB2 m 93i
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Denn fur jede Zelle x\ ist bekanntlich3) rrx\ — 0; rr und somit auch die
dazu duale lineare Abbildung q q bilden also aile Ketten auf 0 ab : Jeder
Rand ist ein Zyklus und jeder Corand ein Cozyklus. — In Nr. 5 werden
wir weitere Beziehungen zwischen diesen Teilrâumen aufstellen.

Zwei Ketten AP und Bp heiBen zueinander homolog, wenn ihre Diffe-
renz ein Rand, cohomolog, wenn ihre Differenz ein Corand ist. Man kann
93^ in Homologieklassen (Klassen untereinander homologer Ketten) und
ebenso in Cohomologieklassen zerlegen; das sind die Restklassen der
Vektorgruppe 33P nach der Untergruppe 3ip bzw. W. Unter der p-ten
Homologiegruppe des Komplexes versteht man die Restklassengruppe
von 3P nach 9îp, unter der p-ten Cohomologiegruppe diejenige von
3* naeh W.

5. Im Vektorraum %$p(p 0, 1,..., n) sei das skalare Produkt der
Ketten Ap 2X4 und A'v Z aixPi durch

i i

(3)
i==l

definiert; zwei Ketten, deren skalares Produkt 0 ist, heiBen orthogonal.
Es eilt nun6 aP

und

xk rxi — Zé xk rjil xl — r\ik
i=i

also

und fur zwei beliebige Ketten AP und Bp~x

q Bv-i-A» B*-1 - rA* (4)

Offenbar lieBe sich durch dièse Formel q definieren, wenn r durch (1)
gegeben ist, und ebenso r, wenn q durch (2) gegeben ist.

Aus (4) entnimmt man nun leicht wichtige Beziehungen zwischen den
vier Teilrâumen 9t*>, <RP, 3P und 3^ von 33*. Ist nâmlich Ap ein Zyklus,
dann ist

B*-1 • Ap B*-1 -rA*> 0 ;

und wenn fur aile Corânder qBp~x

çBv-i-A* 0
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ist, so mu6 Bp~x • rAp 0 sein fur aile B*-1, also rAp 0, d. h. Ap ist
ein Zyklus. Eine Kette Ap ist also genau dann ein Zyklus, wenn sie zu allen
Corandern qBp~x orthogonal ist. 3P ^ somit in 93P der totale zu 9tp

orthogonale Teilraum. Eine solche Beziehung zwischen linearen Teil-
raumen eines Vektorraumes ist bekanntlich symmetrisch (jedenfalls bei
dem hier zugrunde gelegten Skalarprodukt). Eine Kette Cp ist also genau
dann ein Corand, wenn sie zu allen Zyklen AP orthogonal ist. — Dieselben
Beziehungen bestehen naturlich zwischen Cozyklen und Randern.

3P und Wp, und ebenso 3P und W sind also im Vektorraum 33* totale
zueinander orthogonale Teilraume. Folgendes Schéma stellt dièse Ver-
hàltnisse dar (unter der Annahme, da6 9SP 3-dimensional ist, und daB

W und !fifr 1-dimensional sind):

Eine Kette, deren Rand und deren Corand 0 ist, heifit harmonisch.
Die p-dimensionalen harmonischen Ketten bilden einen Teilraum §*>

von 95^, den Durchschnitt von 3P und 317 ; der totale zu <?)p orthogonale
Raum ist aufgespannt durch ${p und 5RP; $)p und 5R^ spannen den
Raum 3P auf, §>p und %{? den Raum 3P- Der Rang von $f ist die p-te
Bettische Zahl des Komplexes K; er ist gleich dem Rang der 2>-ten

Homologie- oder der p-ten Cohomologiegruppe von K, da beide zu $rf
isomorpli sind.

6. Wir deuten gelegentlich in dem in Nr. 3 erlauterten Sinne im
skalaren Produkt Ap • Àtp die eine der beiden Ketten als Funktion / der
^-dimensionalen Zellen xplf die andere als geometrisches Gebilde (Inte-
grationsbereich), das skalare Produkt Ap - Afp als Wert (oder Intégral)
der Funktion f auf diesem Bereich. Dann kann man die grundlegende
Formel (4) auch so aussprechen: qBp~x ist diejenige Funktion, welche
auf jeder Zelle xv% den Wert annimmt, welchen Bp~x auf dem Rand von
x\ hat. Oder auch: rAp ist diejenige Funktion, welche auf jeder Zelle
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a^""1 den Wert annimmt, welchen Ap auf dem Bûschel von #f 1 hat%

Und die Orthogonalitâtsbeziehung zwischen 3P und %ÎP(3P und 5R*>)

kônnen wir so formulieren : Die Zyklen sind dadurch charakterisiert, dafi
ihr Wert auf allen Bûscheln 0 ist, die Cozyklen dadurch, da/î ihr Wert auf
allen Rândern 0 ist ; die Zyklen sind quellenfreie, die Cozyklen wirbelfreie
Fwnktionen. Âhnlich lassen sich die Rânder und Corânder eharakterisieren :

sie haben auf allen Cozyklen bzw. Zyklen den Wert 0. Die harmonischen
Ketten sind quellen- und wirbelfrei.

7. Aus den Orthogonalitatsbeziehungen, die fur die ausgezeichneten
Teilraume in 33P bestehen, ergeben sich unmittelbar folgende Zerlegungs-
sâtze1) fur Ketten.

Jede beliebige Kette AP lâBt sich auf eine und nur eine Art zerlegen
in die Summe eines Zyklus Zv und eines Corandes, oder in die Summe
eines Cozyklus Cp und eines Randes, oder in die Summe einer
harmonischen Kette Hp, eines Corandes und eines Randes :

Ap Zp + qD*'1
Cp + rEp+1
Hp + qDp-x + rEp+l

Noch anders formuliert : Zu jeder Kette Ap gehôrt ein wohlbestimmter
Zyklus Zp derart, daB Ap—Zp zu $p orthogonal ist; Zp ist also die
Orthogonalprojektion von Ap in 3P- Ebenso gibt es eine wohlbestimmte
Orthogonalprojektion Cp von AP in 3P un^ Hp von Ap in §p, und ganz
allgemein eine Orthogonalprojektion Av0 von AP in irgendeinen linearen
Teilraum £p von 2K

8. Einige Bemerkungen.

a) Es ist leicht zu sehen, daB in den zwischen den ausgezeichneten Teil-
râumen von 95^ bestehenden Beziehungen viele wichtige Sâtze der kom-
binatorischen Topologie stecken (wenigstens ihr algebraischer Teil).

b) Man kann in den Vektorrâumen 93P das skalare Produkt zweier
Ketten Ap 2J a^ und Afp Z a^xÇ statt durch (3) mit Hilfe einer

i i
beliebigen positiv definitiven quadratischen Form £ wiiuiuj durch

i}

Ap • A'p 2 wu a, a\ (5)

definieren und, wenn die Randbildung r immer durch (1) mit den In-
zidenzzahlen rfik gegeben ist, den Corand q so festsetzen, daB die Formel
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(4) gilt. An allen iibrigen Betrachtungen, insbesondere an der Existenz
und der Eindeutigkeit der orthogonalen Projektion, ândert sich dann
nichts.

c) Wir betrachten gelegentlich Teilketten folgender Art. Kp sei das

p-dimensionale Gerxist von K, d. h. die Menge aller p-dimensionalen
Zellen6) von K. R sei ein Teil von Kp, d. h. bestehe aus einigen, beliebig
ausgewâhlten p-dimensionalen Zellen5). Wir sagen, eine Kette Ap liège
in R

Ap c R

wenn in Ap hôchstens Koeffizienten von Zellen aus R von 0 verschieden
sind. Die Zellen x% aus R spannen einen linearen Teilraum WR von 95P

auf ; daB Ap in R liegt, ist gleichbedeutend damit, daB der Vektor AP zu
WR gehôrt (Ap e 33^). Die Rânder und die Corânder der Ketten aus R
bilden lineare Teilràume rWR von W?-1 bzw. ^33^ von 5RP+1.

9. Anhang. Stromverteilung in einem Leiternetz.

K sei ein endlieher Streekenkomplex, Schéma eines elektrischen
Leiternetzes ; die (gerichteten) Kanten x) entsprechen den Dràhten.
wt > 0 sei der Ohmsche Widerstand von x\, et die auf x\ eingefuhrte
elektromotorische Kraft (eingeprâgte Spannung), gemessen im Sinne

von x\, st die Stromstârke auf x\, positiv genommen, wenn der Strom
in der Riehtung von x\ flieBt. Wir ordnen der Stromverteilung die Kette

s1 2 *< A

zu, den eingeprâgten Spannungen die Kette

A

wo e'i —— gesetzt ist. In 331 sei das skalare Produkt zweier Ketten

A1 und Afl durch t
A1 -Afl= 2 wi ai ai (6)

definiert (vgl. Nr. 8b).
Fur die Stromverteilung sind nun die Kirchhoffschen Regeln maB-

gebend. Die erste verlangt, daB in jedem Eckpunkt x\ die algebraische

5) Wird Kp (oder R) als Komplex betrachtet, so mufi man auch die Seiten dieser
Zellen dazu rechnen.
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Summe der gegen den Punkt flieBenden Strôme 0 sei; das bedeutet, da6
S1 auf allen Buscheln qx\ den Wert 0 hat, d. h. daB S1 ein Zyklus ist.
Die zweite besagt, daB auf jedem einfach geschlossenen, in bestimmtem
Sinn durchlaufenen Polygon in K die Summe der eingepràgten Span-

nungen gleich der Summe der Ohmschen Potentialabfâlle ist. Wir
ordnen einem solchen Polygon die Kette

P1 2 Pi A

zu, wo p{ nur dann ^ 0 ist, wenn x\ dem Polygon angehôrt, und zwar
pi -f 1 oder — 1, je nachdem der Durchlaufungssinn mit der Orien-
tierung von x) ubereinstimmt oder nicht; £ PiSiW{ ist dann die Summe

der Potentialabfâlle auf dem Polygon, £V%ei die Summe der einge-

pràgten Spannungen, beide gemessen ini Sinne des Polygons, und es soll

ai
Pi *i 2 Pi

sein, oder auch

also
P1 • (E1 — S1) 0

fur jedes Polygon P1. Nun lâBt sich aber bekanntlich6) der Raum 31
Zyklen ganz von Polygonen P1 aufspannen. Die Aufgabe, bei gegebenen
Stromquellen und Widerstànden den Strom so zu bestimmen, daB er den
beiden Kirchhoffschen Regeln geniigt, kann man also so formulieren:

Die Kette E1 der eingepràgten Spannungen ist gegeben ; man sucht einen

Zyklus S1 derart, da[5 E1 — S1 zum Raum 31 der Zyklen orthogonal ist.

Dièse Aufgabe besitzt aber immer eine und nur eine Lôsung : S1 ist die
Orthogonalprojektion von E1 in 31- Die Kirchhoffschen Bedingungen sind
also vertrâglich, und sie genûgen, um die Stromintensitâten in den ein-
zelnen Drâhten zu berechnen. Dièses Résultat wurde erstmals von
H. Weyl2) vollstândig bewiesen. —

Der Ûbergang von E1 zu S1 ist also eine orthogonale Projektion im
Vektorraum 931, somit eine lineare Abbildung

6) Jeder 1-dimensionale Zyklus ist Linearkombination mit reellen Koeffizienten von
Polygonen. Vgl. D. Kônig, Théorie der endlichen und unendlichen Graphen
(Leipzig 1936), S. 123, Satz 1.
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c*! a1

(mit vt3 —^-), und wenn man die Matrix u%3 oder vt3 kennt, so hat man

eine explizite Lôsung der Kirchhofïschen Aufgabe; man findet dièse

Matrix leieht in bekannter Weise mit Hilfe einer Basis des zu 31 totalen
orthogonalen Raumes 5R1. Wir wollen hier nur auf eine besondere Eigen-
schaft dieser Matrix hinweisen.

Die Matrix einer orthogonalen Projektion ist bekanntlich immer
symmetrisch, wenn man sich auf eine orthogonale und normierte Basis

von 93X bezieht. Wegen unserer Wahl des skalaren Produkts (6) bilden
die x\ keine solche Basis, wohl aber die Vektoren

le1

In dieser Basis haben S1 und E1 die Komponenten ~8t Vwt st und
_ g
e. Vwt Ci —-i=-, und es ist

Vwt
ai

mit symmetrischer Matrix ul3 uJt. Also wird

_ ai c

wobei vt3 vn ist. /ti der expliziten Lôsung st £ vl3e} ist also vl3 eine

symmetriçche Matrix. Darin kommt eine intéressante Symmetrie zwi-
schen Strom und Spannung zum Ausdruck: Fuhrt man in x] die Span-

nung 1 ein und sonst iiberall 0, so ist die in x\ auftretende Stromstàrke
gleich derjenigen, die in x) auftritt, wenn man in x\ die Spannung 1 ein-
fuhrt und sonst iiberall 0.

§2.

10. Wir gehen nun zu der Behandlung von Randwertaufgaben uber,
wie sie in der Einleitung genannt wurden: man sucht in einem Komplex
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diskrete Funktionen (Ketten), welche gewisse Mittelwertseigenschaften
haben und gleichzeitig Randbedingungen erfûllen.

Um an die Aufgabe B) aus Nr. 1 anzuknûpfen, betrachten wir einen
Streckenkomplex K und teilen seine Eckpunkte in zwei Klassen R und Q
ein. Wir suchen eine Funktion der Eckpunkte x0{, d. h. eine Kette
A0 £ a{ x\, welehe in den Eckpunkten aus R vorgegebene Werte hat

und in denen von Q dem ,,Mittelwertsatz gemigt"; letzteres besagt, daB

etwa im Punkt #° mit den Nachbaren x\, x\,..., x\

(l — 1) ax a2 + as + • • • + ax
sein soll, oder

a2 — ax + az — ax + • • • + al — at 0

Nun ist aber der Rand des Biischels von x\

rQx\ x\ - x\ + x\ - x\ +• • •+ x° ~ ^
und der Wert7) von A0 auf yqx\

A0 • rqx\ — a2 — ax + az — ax-\- • • • -\- al — ax

Die Giiltigkeit des Mittelwertsatzes in einem Punkte bedeutet also, dafi
A0 auf dem Rand des Bûschels dièses Punktes den Wert 0 hat. Die Werte
der Kette A° sind also in -B gegeben und sollen in Q so bestimmt werden,
daB der Wert von A0 auf dem Rand des Biischels eines jeden Punktes
von Q gleich 0 ist. Gibt es eine solche Kette, und ist sie eindeutig
bestimmt

11. Wir wollen dieselbe Frage sogleich fur eine beliebige Dimensions-
zahl stellen (Aufgabe C) aus Nr. 1) und werden sie in dieser allgemeinen
Form béantworten.

K sei ein beliebiger w-dimensionaler Zellenkomplex, p eine der Zahlen
0, 1,..., n. Die Zellen x\ des p-dimensionalen Gerûstes Kp seien irgend-
wie in zwei Klassen R und Q eingeteilt, wobei Q nicht leer sei.

C) Die Werte einer p-dimensionalen Kette Ap seien in R vorgegeben
und sollen in Q so bestimmt werden, dafi der Wert von Ap auf dem Rand
des Bûschels einer jeden Zelle x\ van Q gleich 0 sei :

Ap -rQX7? 0

7) Das Skalarprodukt soll in diesem Paragraphen immer durch die Einheitsform (3)
definiert sein. Man kônnte aile tlberlegungen mit sinngemâften Ânderungen auch mit
einem andern Skalarprodukt durchfûhren.
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Auf Grund von (4) kann man dièse Forderung umformen und erhàlt

AP-rQXÏ^ qAp • £#£ rQAp- x\ 0

fur aile Zellen x\ von Q. Wir spalten noch Ap auf in die Summe

A* Bp + Cp

einer (gegebenen) Kette Bp c R und einer (gesuchten) Kette Cp c Q

und formulieren schlieBlieh die Aufgabe kurz so:

C) A* J3*> in 2? und rgii» 0 in Q.

Eine naheliegende Variante dieser Aufgabe erhàlt man durch Ver-
tauschung von r und q, nàmlich

C) ^ - Bp in iî, und qrA* 0 in Q ;

dies bedeutet, daB die Kette Ap, deren Werte in R vorgegeben sind, in
Q auf dem Bûschel eines jeden Randes qrx? den Wert 0 haben soll.

Die aufgestellten Forderungen drucken Mittelwertseigenschaften aus;
sie kônnen aber auch so ausgelegt werden, daB gewisse von Ap abge-
leitete Ketten lokal harmoniseh (quellen- und wirbelfrei) sind. So gilt
bei der Aufgabe C) fur jede Zelle x\ von Q

rqAp - xï 0
also

d. h. qAp ist in Q quellenfrei; wirbelfrei ist qAp ohnehin ùberall, da es

ein Cozyklus ist. Analog ist bei C') rAp in Q wirbelfrei (und ûberall
quellenfrei).

12. Wir wenden uns zuerst der Aufgabe C) zu und behaupten zunâchst,
daB sie immer mindestens eine Lôsting Ap besitzt.

Beweis. 93^ und 33g seien die Râume der p-dimensionalen Ketten
aus R bzw. Q (vgl. Nr. 8 c); sie sind zueinander orthogonal und spannen
den ganzen Raum 93P auf.

Die Kette Bp ç $^ ist gegeben. Wir betrachten statt Ap die Kette
Cp e 93q als Unbekannte; sie hat die Bedingung
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zu erfullen, oder

rg(Bp + Cp)-Dp 0

fur aile Dp e 93g. Gleichbedeutend damit ist naeh (4)

g(Bp + Cp)- gDp 0

fur aile Dpe 93g, d. h. gBp + gCp soll zu p93g orthogonal sein, wobei
gCp selbst zu g93g gehôrt. Dièse Bedingung lâBt sich aber immer
erfullen, und sie bestimmt gCp eindeutig: gCp ist die Orthogorvalprojektion
von — gBp in den Raum @93g c 9lp+1.

Dièse Orthogonalprojektion ist, da sie in g 93g liegt, tatsàchlich Corand
mindestens einer Kette Oc 93g. Es gibt also immer eine Lôsung Cp

(oder Ap); sie ist aber im allgemeinen nicht eindeutig bestimmt.

13, Man ersieht aber aus dem eben Gesagten unmittelbar, daB die
Lôsung Cp (oder Ap) der Aufgabe C) genau dann eindeutig bestimmt ist,
wenn der Bereich Q folgende Eigensehaft hat: Fur zwei Ketten
Cp, Cl c 93g folgt aus gCp gCl stets Cp= C*. D. h. aus Cp e 93g,

gCp 0 folgt Cp 0; es gibt in Q aufier 0 keinen Cozyklus.
Genau gleich geht man bei der Aufgabe C') vor. Sie bestimmt rCp

eindeutig als Orthogonalprojektion von —rBp in r93g; dadurch wird
Cp (oder Ap) dann und nur dann eindeutig bestimmt, wenn es in Q aujier
0 keinen Zyklus gibt.

Fur die Eindeutigkeit sind also geometrische Eigenschaften des Berei-
ches Q maBgebend. Da R und Q komplementar sind, kônnen wir sie auch
als solche von R formulieren.

Im Falle C) lautet die Eigensehaft: der Durchschnitt von 3)g mit
3* ist 0

_

das bedeutet, daB die totalen dazu orthogonalen Ràume 93jj und %{p den

ganzen Raum 93P aufspannen

93^ + $R* 3$*> (7)
Im Falle C'):

oder ^93^ + Wp 93^ (8)
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Die Formel (7) besagt, daB jede p-dimensionale Kette, insbesondere

jede Zelle x* sich nur durch einen Rand von einer Kette aus R unter-
scheidet, also daB jede Zelle xv% einer Kette aus R homolog ist ; (8) besagt,
daB jede Zelle x?% einer Kette aus R cohomolog ist

Die Làsung der Aufgabe C) bzw. C) ist genau dann eindeutig be-

stimmt, wenn jede Zelle x\ von Kp einer Kette aus R homolog bezw.

cohomolog ist.

Anschaulich gesprochen muB also der Bereich R, m welchem die
Werte vorgegeben werden, genugend groB sein: jede Zelle x\ soll sich
mit einer Kette aus R ,,verbinden" lassen (d. h. mit dieser zusammen
den Rand bzw. Corand einer Kette bilden).

14. Spezialfalle.

a) In der Dimension p n laBt sich wegen 9ln 0 die Bedingung (7)

nur durch R — Kn befriedigen, womit die Aufgabe C) ihren Smn verliert.
Aber auch ohne (7), d. h. unter Verzicht auf die Eindeutigkeit, ist sie in
dieser Dimension trivial, da jede Kette An die Forderung rqAn 0
erfullt. — Entsprechendes gilt fur C') in der Dimension p 0.

b) Von Interesse ist dagegen C) fur p 0, wobei man naturlich die
Dimension n von K ^ 1 voraussetzt. LaBt man in K die Zellen der
Dimension > 1, die hier gar keine Rolle spielen, weg, so handelt die
Aufgabe von einem Streckenkomplex und geht uber in B).

Wir wollen zeigen, daB m diesem Falle (p 0, n ^ 1) die Formel (7)

93^ + 5Ro 3}° (7)°

mit der folgenden Eigenschaft aquivalent ist:
Der Bereich R enthalt aus jeder Komponente von K mindestens einen

Eckpunkt. (Unter den Komponenten von K versteht man die grôBten
Teilkomplexe von K, in denen sich je zwei Eckpunkte durch einen
Kantenweg verbinden lassen; sie bestehen aus lauter verschiedenen
Zellen.)

In der Tat folgt aus dieser Eigenschaft sofort (7)°. Denn ist x°t ein be-

liebiger Eckpunkt, so enthalt nach Voraussetzung R aus seiner
Komponente einen Eckpunkt x®\ es gibt einen Kantenweg, der von x°} nach
x°} fuhrt, und wir ordnen ihm die Kette W zu, in welcher die Kanten
dièses Weges den Koeffizienten + 1 oder — 1 haben (je nach der Orien-
tierung), die ubrigen Kanten den Koeffizienten 0. Dann ist
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Jeder Eckpunkt x°4 ist also einem Eckpunkt x® aus R homolog, d. h. (7)°
ist erfûllt.

Es sei umgekehrt (7)° erfûllt. Daim ist jeder Eckpunkt x°{ aus Q einer
Kette XQ aus R homolog :

x°i X° + rY1

Kt sei die Komponente von K, die aÇ enthàlt. Y1 lâBt sieh zerlegen in
Y\ + ï^2 9 wobei Y\ hôchstens Kanten aus Kx, Y\ keine Kanten aus Kx
enthâlt. Analog zerfâllt XoczR in X* + X°2, und es ist

x» X°t + rY\

Daraus ersieht man, daB X\ ^ 0 ist; denn in einem O-dimensionalen
Rand rY\ x°{ — Xj ist, wie man ganz leicht erkennt, die Summe der
Koeffizienten 0. Da X\ ^ 0 in R und in Kx liegt, enthâlt also R
mindestens einen Punkt aus Kx, somit aus jeder Komponente von K,

Damit ist die in der Einleitung (Nr. 1) beziiglich der Aufgabe B) auf-
gestellte Behauptung vollstândig bewiesen.

c) p sei beliebig. Wenn R leer ist, also keine 3,RajKlwerte" vorgegeben
werden, so lautet in C) die Forderung fur die gesuchte Kette Ap

tqAv 0

Da 9l#+1 und 3P+1 orthogonal sind, also kein Corand auBer 0 gleichzeitig
ein Zyklus ist, ist dies dann und nur dann erfûllt, wenn qAp 0 ist: C)
bedeutet in diesem Falle einfach, daB Av ein Cozyklus ist. Eindeutigkeit
ist natûrlich im allgemeinen nieht vorhanden; die Lôsungen bilden den

ganzen Raum 3P- —Analog bedeutet C'), wenn R leer ist, daB AP ein
Zyklus ist.

d) Wir betrachten in einem Streckenkomplex die Aufgabe C') fur
p n — 1 ; man sucht eine Kette A1, die fur jede Kante x] von Q auf
orx] den Wert 0 hat (grx] besteht aus sâmtlichen in den Endpunkten
von x\ angebrachten Kanten, auBer x) selbst, aile gegen dièse End-
punkte gerichtet; A1 • gro^ stellt also den gesamten FluB von A1 in die
Kante x% dar). Bezûglich der Eindeutigkeit wollen wir hier von der
Bedingung % p ^ Q

ausgehen; die Kanten von Q sollen also einen Streckenkomplex bilden,
in dem es keine 1-dimensionalen Zyklen gibt. Bekanntlich8) erhàlt man

8) Vgl. in dem unter 6) zitierten Buch Kap. IV, § 3 (die erste Bettische Zahl heiBt dort
Zusammenhangszahl) tmd Kap. IX, § 3.
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einen derartigen Teilkomplex von K immer durch Weglassen von 61 ge-
eigneten Kanten (wo 61 die erste Bettische Zahl von K ist, oder der
Rang von 31)? at>er nicht von weniger als 61 Kanten. Eindeutigkeit der
Lôsung ist also immer dann vorhanden, wenn R ein solches System von
b1 geeigneten Kanten enthâlt, und sicher dann nicht, wenn R aus weniger
als 61 Kanten besteht.

Die letzte Bedingung gilt iibrigens ganz allgemein: n und p seien

beliebig, bp sei die p-te Bettische Zahl von K ; dafïïr, daB die Lôsung
von C) oder C;) eindeutig bestimmt ist, ist notwendig, dafi R mindestens

aus bp Zellen besteht. Denn aus (7) oder aus (8) folgt sofort, daB der Rang
von 93^ mindestens gleich demjenigen von §p (sogar von ^p bzw. 3P) ^ '¦>

aber der Rang von 93^ ist gleich der Anzahl der in R enthaltenen
2>-dimensionalen Zellen.

e) Eine weitere notwendige Bedingung fur die Eindeutigkeit der
Lôsungen von C) erhàlt man aus (7) durch Randbildung: Der Rand
jeder Zelle x\ muss ganz auf R liegen5). — Fur p 0 ist dièse
Bedingung inhaltslos.

(Eingegangen den 15. September 1944.
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