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Sur la théorie ergodique

Par Frédéric Riesz, Szeged1)

I.
La théorie ergodique découle, comme vous le savez certainement, d'une

hypothèse hardie et ingénieuse dont on s'est servi pendant une longue
période sans la justifier, et sous des formes variées, dans la théorie
cinétique de la matière et plus généralement en mécanique statistique.
Le premier résultat définitif, de valeur pour le pur mathématicien,
était peut-être le célèbre théorème de récurrence de Poincaré datant de
Tannée 1890; et même les idées intuitives par lesquelles l'illustre
géomètre se laissait guider, devaient attendre encore une douzaine d'années
avant d'être légitimées par la théorie de Lebesgue. Mais la renaissance de
la théorie ne date que de 1931, année où, avec les théorèmes de Neumann
et de Birkhoff, elle entre définitivement dans le cadre de l'analyse
fonctionnelle. C'est de ces théorèmes et de quelques généralisations que je
vous parlerai.

Pour nous orienter, rappelons d'abord le modèle dont se sert Poincaré ;

à part la dimension, c'est-à-dire le nombre des variables qui est très
élevé dans les problèmes corpusculaires, ce modèle représente, on peut le

dire, le cas général. Considérons un liquide enfermé dans un vase de

forme invariable et qu'il remplit complètement. Supposons notre liquide
en mouvement stationnaire. Alors les molécules qui se trouvent dans une
certaine région à l'instant t0, rempliront, à chaque instant t, une région
de même volume; c'est-à-dire que le passage d'un instant à l'autre n'est
qu'une transformation ponctuelle qui conserve le volume ou plus
généralement la mesure. Il s'agit donc d'une famille de transformations
dépendant du temps t et formant un groupe ou (si nous ne sommes pas
assez historiens pour nous intéresser au passé) formant un semi-groupe
tel que, en désignant par Pt ce que devient le point P après un temps t,
on a, avec une écriture évidente, {Ps)t Ps+t> ou aussi, en désignant
par Tt la transformation ponctuelle qui correspond à un intervalle de

temps égal ht, on& T8Tt= T8+t. Alors le théorème de Poincaré affirme
que pour presque tout point P, c'est-à-dire sauf peut-être pour les points
d'un ensemble de mesure nulle, les trajectoires de Pt Tt(P) retournent
une infinité de fois dans chaque voisinage du point P, et que ce fait sub-

*) L'Université de Genève avait invité Monsieur Frédéric Riesz à faire deux
conférences au printemps 1944. L'auteur n'ayant pu s'y rendre en personne, nous sommes
heureux de pouvoir en publier le texte. La rédaction.
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siste lorsque, au lieu de t continu, on ne regarde que la succession des

multiples tn ntx d'une unité de temps tl9 choisie à volonté. Or, la théorie
moderne de l'intégration suggère de remplacer le vase et les voisinages

par des ensembles mesurables et il ne serait pas difficile d'adapter l'argument

de Poincaré à ces nouvelles conditions.
Mais il y a encore un problème plus profond qui se pose. En effet, le

théorème ne nous dit rien concernant la fréquence des passages de notre
trajectoire dans le voisinage en question pendant que t croît indéfiniment
ou, quand il ne s'agit que des instants discrets tn nt1, de la valeur

moyenne du nombre des cas de passage. Rappelons l'exemple le plus
simple, celui où une circonférence tourne avec une vitesse angulaire
constante autour de son centre. Alors, ce que dit le théorème de Poincaré
dans ce cas particulier est évident pour t continu et il en est de même

quant au problème de la fréquence. D'autre part, dans le cas discontinu,
le théorème de Poincaré n'est qu'une conséquence immédiate du fameux
,,Schachtelprinzip" de Dirichlet, tandis que le problème de la fréquence se

résout par un théorème beaucoup plus caché, concernant la répartition
uniforme des points Pn Ptn dans tous les cas où t± est une fraction
incommensurable du temps de parcours de la circonférence entière. Il
s'agit du théorème de répartition uniforme, démontré autour de 1910 par
plusieurs auteurs et qui nous dit, que pour un arc quelconque de la
circonférence, la moyenne v\n où v désigne le nombre de ceux des n premiers
Pk qui sont situés sur l'arc envisagé, converge vers le rapport des

longueurs de cet arc et de la circonférence entière. M. Weyl qui s'est occupé
à plusieurs reprises, du théorème et aussi de quelques généralisations et
leurs applications, entre autre dans une conférence faite, il y a justement
30 années, à la Société mathématique suisse et imprimée dans L'Enseignement

mathématique, en a donné une démonstration dans les Gôttinger
Nachrichten de 1914 et dans les Mathematische Annalen, t. 77, qui nous
intéresse particulièrement au point de vue de notre sujet actuel. En voici
l'idée principale.

On voit immédiatement que le théorème peut se mettre sous la forme
suivante.

Soit f(x) la fonction escalier de période 2n qui est égale à 1 et à 0

respectivement dans les intervalles (0, a) et (a, 2n)y et soit f un nombre
irrationnel quelconque. Alors

lim-1 S /(* + *«= ff(t) dt (1)
jfe—i 6

Ce n'est pas par manque d'attention que j'ai écrit l'intégrale au lieu de
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mettre simplement sa valeur a. En effet, la relation (1) est valable pour
une classe étendue de fonctions, entre autres pour toutes les fonctions de

période 2n qui sont intégrables au sens de Riemann sur les intervalles
finis. Cela vient de ce qu'elle se vérifie, par un calcul évident, pour les

fonctions e(mx) où e(x) e2nix et m est un entier, donc aussi pour les

polynômes trigonométriques de 2nx et enfin pour les fonctions dont nous
venons de parler, ce qu'on voit en les intercalant entre deux polynômes
trigonométriques dont les intégrales sur (0, 2n) diffèrent aussi peu qu'on
voudra.

En réalité, comme l'a observé M. Khintchine, la relation (1) reste encore
valable, cette fois pour presque tous les x, sous l'hypothèse plus large de

l'intégrabilité au sens de Lebesgue, même pour les fonctions non bornées.

Mais, dans ce cas général, malgré l'énoncé extrêmement simple, la seule

voie par laquelle je peux l'approcher, et c'est ce que fait en réalité aussi
M. Khintchine, c'est de la considérer comme corollaire du plus achevé des

théorèmes ergodiques, savoir de celui de Birkhoff.
Avant d'en parler, rappelons encore brièvement un second exemple,

choisi dans la théorie des probabilités dénombrables. Il s'agit du fait,
découvert par M. Borel, que pour presque tout nombre réel, quand on
l'écrit en forme de fraction décimale infinie, les divers chiffres se

répartissent également à la limite, chaque chiffre admettant la fréquence

moyenne 1/10, et la moyenne arithmétique des chiffres successifs

convergeant vers 4^. Le premier de ces faits, dont le second n'est qu'un
corollaire, est impliqué par la formule

1 2/(2**)- (f{x)dx, (2)

analogue à (1), où l'on définit la transformation T, pour l'intervalle
(0, 1), par x 0, axa%az..., Tx 0, a2a3aA..., c'est-à-dire en supprimant

le premier chiffre décimal de la fraction x et où Tk désigne les

itérés de T. Pour fonction /(#), on n'aura qu'à choisir successivement les

fonctions caractéristiques des parties dixièmes de l'intervalle (0, 1),
c'est-à-dire les fonctions égales à 1 sur l'un de ces dixièmes et s'annulant
ailleurs. En réalité, la formule (2) est valable presque partout non seulement

pour ces fonctions, mais pour toute fonction intégrable au sens
de Lebesgue. C'est M. Raïkov qui a établi ce résultat dans un travail en
langue russe où, à ce que je peux juger en regardant les formules, il ne

fait en réalité qu'adapter à ce cas particulier une des démonstrations du
théorème de Birkhoff.
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La raison principale pour laquelle je viens de rappeler ce second

exemple, c'est que la transformation T qui y intervient, n'est pas biuni-
voque comme dans l'autre exemple et cela non seulement à cause de la
double écriture des fractions décimales finies, mais puisque son inverse
admet dix déterminations différentes.

Je pourrais encore citer, à titre d'analogie, un des premiers résultats de
la théorie des fonctions presque périodiques, c'est que toute fonction de
ce genre f(x) admet une valeur moyenne, ou d'une façon précise, que les

moyennes

±\'f(x+t)dt
o

tendent, pour T infini, vers une valeur constante déterminée. Mais il faut
me dépêcher pour arriver au théorème général qui est au bout de notre
ordre d'idées et que M. G. D. Birkhoff a établi en 1931, à la suite des
recherches de MM. Koopman et de Neumann, recherches auxquelles je
reviendrai dans ma seconde conférence.

Voici le théorème.

Soit donné un ensemble mesurable Q, de mesure finie ou infinie, la mesure
et l'intégrale correspondante étant définies d'après Lebesgue, ou plus généralement,

par rapport à une distribution de masses positives.
Cela étant, désignons par T une transformation ponctuelle univoque

(mais non nécessairement biunivoqué) de Q en soi-même et supposons que T
conserve la mesure au sens que, E étant un ensemble mesurable, TE son
transformé et Ef Vensemble des points P dont les images appartiennent à

TE, les ensembles E1 et TE admettent la même mesure. Alors, en partant
d'une fonction intégrable fx(P) et en posant fk(P) f1(Tk~1P), la moyenne
arithmétique des fonctions fx, /2,..., fn converge presque partout, pour
n-> oo, vers une fonction intégrable ç? (P), invariante (presque partout) par
rapport à T.

J'ai énoncé le théorème sous une forme un peu plus générale que l'a fait
son auteur, en particulier en ne me bornant pas à des transformations
biunivoques. D'ailleurs je pense qu'il ne serait pas difficile d'adapter le
raisonnement de M. Birkhoff à cette hypothèse plus générale qui m'était
suggérée par le théorème de M. Borel.

M. Birkhoff base la démonstration de son théorème, en substance, sur
le lemme suivant, qu'il applique sous une forme un peu différente et
auquel il arrive par un démembrement très subtil des ensembles qui
interviennent. Soit, pour une fonction donnée fi(P), E Vensemble des points P
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pour lesquels la limite supérieure des moyennes arithmétiques figurant dans
le théorème est positive. Alors

0. (3)I
II y a quelque temps, MM. Yosida et Kakutani ont réussi à remplacer,
dans ce lemme, la limite supérieure par la borne supérieure ; d'une façon
précise, l'ensemble E devra être caractérisé par le fait que, en ses points,
l'une au moins des sommes fx + /2 + * • * + fn admet une valeur positive.
C'est cette proposition (ou plutôt une qui lui est équivalente) qu'ils
appellent le ,,maximal ergodic theorem".

Ce qui est nouveau dans la présente démonstration, c'est que le lemme
en question se déduit, par un artifice simple, du lemme tout élémentaire
que voici. Etant donnés n quantités réelles al9a29.. ,,anet un entier m<n,
considérons toutes les sommes ak + ak+1 -\- -• at de valeur positive,
formées d'éléments successifs dont le nombre des termes ne dépasse pas Ventier
m. Alors les ak figurant comme premiers termes dans Vune au moins de ces

expressions, ont leur somme positive.
Ce dernier lemme se démontre en quelques lignes. Pour faciliter le

langage, appelons termes favorables les ak en question et soit aki le
premier d'entre eux. Soit aki + ##* + u^ la plus courte parmi les sommes
issues de ce terme et de valeur > 0; alors les termes de cette somme sont
tous des termes favorables. En effet, s'il n'en était pas ainsi pour un de ces

termes, soit ak,, alors on aurait fl^ + "' +^x ^0 et par conséquent

0^ + •" + ak'-i > ®> contrairement à la convention faite. Pour
continuer, soit ak% le premier terme favorable parmi ceux qui restent et
ak2 + # * ' + ai% la somme la plus courte commençant par ak%. En
continuant de la même façon, nos sommes se composeront à la fip précisément

de tous les termes favorables. Notre lemme est donc démontré.
Voici comment on passe alors au ,,maximal ergodic theorem".

Désignons par E{m) l'ensemble des points P pour lesquels une au moins
des sommes l

est plus grande que 0. Les ensembles Eim) épuisent successivement
l'ensemble E qui figure au théorème. Donc, au lieu de (3), nous n'avons qu'à
vérifier l'inégalité analogue JO (4)

A cet effet, envisageons, pour chaque P, la somme des termes
favorables (au sens qui précède) de la suite finie
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(où nous avons remplacé n par n -\- m). Cette somme étant une fonction
positive et sommable de P, on obtient par intégration :

n-fw

v f/*(P)^O (5)

Ek désignant l'ensemble des points P pour lesquels fk(P) est un terme
favorable.

D'autre part, pour k^n, on a, évidemment TEk Ek_1,Ek — T~1Ek_1.
Comme de plus T conserve la mesure et donc aussi l'intégrale, les n
premières intégrales dans (5) admettent des valeurs égales, et comme
Ex E(m\ leur valeur commune est égale à l'intégrale qui figure dans (4).
Il n'en est pas nécessairement ainsi pour les m intégrales qui restent,
cepandant la valeur d'aucune d'elles ne dépasse celle de l'intégrale de

|/1(P)| sur Q entier. Il s'ensuit que

et enfin, en divisant par n et en faisant le passage à l'infini, on obtient
l'inégalité (4) qu'il fallait démontrer.

La démonstration du théorème de Birkhoff s'achève maintenant
comme il suit.

Soit Eap où oc > /?, l'ensemble des points P pour lesquels on a à la fois

1 n ^\
n 1

et

lim — £fk(P)< B (7)
n î

Supposons pour l'instant que Q soit de mesure finie, alors il en sera de
même de l'ensemble E^p qui est évidemment mesurable. Or ce dernier est
invariant par rapport à î7; en effet, en écrivant dans les formules (6) et
(7) TP à la place de P et n — 1 au lieu de n, les deux limites d'indétermination

ne seront pas changées.
L'ensemble Eap étant invariant, il pourra jouer le rôle de Q dans le

lemme que je viens de prouver et en appliquant celui-ci à la fonction
fi(P)—oc au lieu de /i(P), l'ensemble E du théorème coïncidera aussi

avec 2?a£. Par conséquent

I /1V / — I •
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De même, en remplaçant fx(P) par p — fi(P), on obtient

J [/S-/x(P)]^o
et par addition

J (p - «) è o

Mais cela contredit à l'hypothèse que oc > fi, excepté si 2?a£ est de mesure
nulle.

Faisons maintenant (oc, /?) parcourir les couples des nombres rationnels,
alors E* EE^p étant la réunion d'une infinité dénombrable
d'ensembles de mesure nulle, il sera lui-même de mesure nulle. C'est-à-dire

que la moyenne arithmétique des fonctions fk(P) converge presque
partout, savoir partout à l'exception de J7*, vers une limite déterminée
<p(P), finie ou infinie. Or, comme

/l(-p)

la fonction cp (P) sera intégrable grâce au théorème de Fatou; elle sera
donc finie presque partout.

Quand Q est de mesure infinie, nous n'avons qu'à montrer, avant
d'intégrer sur l'ensemble E^p, que ce dernier est toujours de mesure finie.
Nous avons besoin de ce fait pour pouvoir intégrer fx(P) — oc sur E^.
Supposons que oc > 0 ; en cas contraire on aurait (i < 0 et on pourrait
opérer avec — fx (P) — (— /?) au lieu de fx (P) — oc.

Envisageons un sous-ensemble Er de Eap, de mesure finie, d'ailleurs
quelconque. Soit e\P) sa fonction caractéristique. Appliquons le ,,maximal

ergodic theorem" à la fonction gx{P) fi(P)—oce'(P) au lieu de

/j(P); alors, pour l'ensemble E qui correspond à <7i(P), on aura

J gAP) ^ o
E

et comme E! c E^ c E, il vient

J fi(P) ^«Je/(P) « mes E1
È E

Donc, à plus forte raison,

oc mes Ef ^ J | fx(P) \

d
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Cela nous dit que la mesure d'aucun sous-ensemble de mesure finie de

E^p ne dépasse la borne

et par conséquent Eap lui-même doit être de mesure finie.
L'invariance de la fonction <p(P), <p(TP) — tp(P), en découle

immédiatement en remplaçant, comme nous l'avons déjà fait, P par TP, c'est-
à-dire fk(P) par fk+i(P) et de plus n par n — 1 dans les moyennes
arithmétiques considérées, ce qui ne change pas la limite de ces moyennes.

Ajoutons enfin que dans le cas où Q est de mesure finie, il vient encore

par intégration terme à* terme (ce qui est permis dans ce cas grâce à

l'intégrabilité uniforme des termes)

Disons encore quelques mots sur la variante ,,intégrale" du théorème,
celle où l'on introduit un paramètre continu t et où les itérés Tk sont
remplacés par une famille Tt de tranformations avec T8 Tt T8+t. Le
théorème correspondant que je n'énonce pas en détail pour ne pas vous
fatiguer, se réduit aisément au cas discontinu et cela par un artifice dû
à MM. E. Hopf et Khintchine. Mais peut-être y a-t-il quelque intérêt
d'observer que, au lieu de cet artifice, les détails de la démonstration que
je viens de vous présenter, s'adaptent aussi immédiatement au cas
continu. Qu'il nous suffise aujourd'hui de formuler le lemme qui correspond,

pour t continu, à notre lemme élémentaire.

Etant donnée, sur Vintervalle (a,b), une fonction intégrable g(t), de plus
une longueur d ^>b — a, envisageons Vensemble e des valeurs tQ telles que
Vintégrale de g(t) prise de t0 jusqu'à t0 + h

> soit positive pour une au moins
des valeurs h <d. Alors Vintégrale de g(t) sur Vensemble e est aussi positive

ou 0.

Qu'il me soit permis d'attirer votre attention sur la relation intime
entre ce lemme et un autre dont je me suis servi, précisément au temps
de la découverte de M. Birkhoff, pour en déduire l'existence de la dérivée
des fonctions monotones ainsi qu'une inégalité importante de MM. Hardy
et Littlewood. En effet, soit O(t) l'intégrale de la fonction g(t) qui figure
dans notre lemme ci-dessus; alors celui-ci et l'autre ne sont que des

corollaires du théorème suivant.

Soit O(t) une fonction continue, définie dans Vintervalle (a, b) et

envisageons, pour d positif donné, Vensemble E des points t intérieurs à cet inter-
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valU et tels qu'il existe un tl avec t<t'<t + d,de sorte que 0{t) < G(t').
Alors Fensemble E est ouvert et pour les intervalles (ak, bk) dont il se

compose, on a 0(ak) ^0(bk).
Les diverses démonstrations de mon lemme d'autrefois dont je viens

de parler et vous en trouverez une dans ma conférence faite au Congrès de

Zurich en 1932, s'adaptent aussitôt au lemme actuel.
Enfin, en ce qui concerne les généralisations du théorème de Birkhoff,

on n'en connaît que très peu et je ne cite aujourd'hui que celle de M.
E. Hopf. Je me contente de l'énoncer pour le cas discontinu d'une
succession {Tk} et cela même sous une forme légèrement modifiée. Envisageons,

avec des notations évidentes, l'expression

(8)

(dans le cas de Birkhoff gk 1) où la fonction g^P) et avec elle les gk(P)
sont encore supposées essentiellement positives; quant à leur intégra-
bilité, on ne les suppose intégrables que sur les sous-ensembles de Q qui
sont de mesure finie. Soit Qr l'ensemble des points pour lesquels la série

Zgk(P) diverge. Alors le théorème affirme que l'expression (8) converge
presque partout sur Qf vers une fonction ^(P), invariante par rapport
à T et que de plus, lorsque gx(P) est intégrable sur Qf, on a

Le théorème s'établit par la même méthode que celui de Birkhoff et
c'est seulement la formule finale qui exige d'être vérifiée séparément.
Cela se fait par un calcul élémentaire de la théorie de Lebesgue et qui
consiste à décomposer Q ' en des ensembles En sur lesquels

(n— l)ô ^W(P)<nô

d'observer que les En sont invariants par rapport à T et d'en conclure,

par le ,,maximal ergodic theorem", que

En

Comme l'intégrale
S 9i(P)

229



est comprise évidemment entre les mêmes bornes, elle ne diffère de celle
de A (P) que par

à J 9i(P)

au plus; notre formule finale s'ensuit, après addition par rapport à n,
pour ô infiniment petit.

Observons d'ailleurs, que sous des conditions faciles à préciser et en
particulier, lorsque Q est de mesure finie, le théorème se réduit à un
corollaire de celui de Birkhoff.

Pour terminer cette première conférence, disons encore quelques mots
de ce qu'on appelle la transitivité métrique. Dans les applications, il est

parfois d'une grande importance de savoir si notre fonction limite est
constante ou d'une façon générale, de prouver que la transformation qui
change f(P) en f(TP), n'admet pas d'autre fonction invariante que des

constantes, bien entendu des constantes presque partout. On voit aussitôt

que pour qu'il en soit ainsi, il faut et il suffit que l'ensemble Q ne
puisse être décomposé en deux ensembles invariants presque partout par
rapport à T sans que l'un de ces ensembles soit de mesure nulle. C'est
cette propriété qu'on appelle la transitivité métrique de la transformation

T. En général, il n'est pas facile de la constater et dans la plupart
des applications, c'est une tâche qui attend encore d'être accomplie.

II.
Dans ma première conférence, je vous ai présenté le théorème ergo-

dique de M. G. D. Birkhoff ; aujourd'hui je vous parlerai de celui de
M. J. de Neumann qui l'a devancé de quelques semaines. Dans sa forme
originale, ce théorème envisage, tout comme l'autre, les moyennes
arithmétiques <pn(P) des fonctions fk(P) qui viennent de fi(P) en itérant
la transformation ponctuelle T et en posant fk(P) f1(Tk~1P). Le
théorème envisage encore et tel n'était pas le cas chez M. Birkhoff, les

moyennes plus générales

± £/»(*) • (9)
n — m m+l

Cette fois-ci, la fonction fx(P) est supposée appartenir à la classe L2,
c'est-à-dire être intégrable ainsi que son carré ; ou plutôt, comme on admet
aussi des fonctions à valeurs complexes, que le carré de son module.
Alors le théorème en question affirme que, pour n — m -> oo, les fonctions

(pn et (pmn convergent ,,en moyenne" vers une limite cp(P)
déterminée presque partout; en formules

230



\<P(P) - <Pn(P) I2 - 0 j" \<p(P) - 9m<n(P) |» -> 0

Sans doute, le théorème, sous sa présente forme, paraît dire beaucoup
moins que celui de Birkhoff ; en effet il ne dit rien quant à la convergence
effective au sens ordinaire. Cependant, à part ce que le théorème suffit
pour les applications en Mécanique statistique, il présente aussi, comme
nous allons le voir, beaucoup d'intérêt au point de vue purement
mathématique. Tout d'abord, il ne faut pas oublier qu'il embrasse aussi le cas

général des moyennes du type (9), c'est-à-dire qu'il implique une sorte
de convergence uniforme par rapport aux indices. Bien plus, déjà la
première démonstration par Neumann ainsi que celle de M. Hopf qui la
suivit immédiatement, ne se servent que d'une seule conséquence de la
conservation de la mesure, conséquence observée indépendamment par
MM. Koopman et Carleman. C'est que le passage de f(P) à f(TP)
conserve l'intégrale du carré ou se qui revient au même, la norme ||/||
[Jl/I2] • Avec ce fait, le rôle dont jouit la transformation ponctuelle est

épuisé et les fonctions ne sont que des éléments d'un espace vectoriel du

type euclidien ou unitaire à un nombre fini ou une infinité de dimensions,
disons brièvement d'un espace de Hilbert réel ou complexe; le passage
de f(P) à f(TP) ne sera qu'une transformation linéaire qui conserve la

norme ||/|| ou ce qui revient au même, la distance ||/ — g\\, en d'autres
termes ce sera une transformation isométrique. Aussi n'était-il pas
difficile de s'apercevoir que cette hypothèse permet d'être grandement
élargie. Bientôt après les premières publications sur le sujet, en 1933 ou
1934, je me m'en souviens plus, la lecture du travail de M. Carleman m'a
suggéré une méthode de démonstration qui s'appliquait à une classe

étendue de contractions ; ce sont les transformations linéaires qui ne font
pas augmenter la distance. Mais à ce temps là, ma méthode me semblait

ne pas réussir pour toutes les contractions et comme d'autre part j'étais
presque sûr que les hypothèses pouvaient encore être élargies, je ne me
hâtais pas de publier ma démonstration. D'ailleurs elle se propageait par
des conversations et par correspondance et à la fin M. Hopf l'a
incorporée, seulement pour le cas isométrique, dans l'excellent facicule qu'il a

rédigé pour les ,,Ergebnisse der Mathematik". Aujourd'hui je sais que
la méthode embrasse toutes les contractions et qu'elle permet encore d'autres

généralisations. Je vous en parlerai tout à l'heure.
C'est en 1938, avant de compléter la démonstration dont je viens de

parler, que j'ai réussi, par une autre voie, à étendre le théorème à toutes
les contractions et à passer même aux espaces fonctionnels IP pour
lesquels le rôle de l'exposant 2 est joué par un nombre quelconque p > 1
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ou même, sous certaines hypothèses additionnelles, pour p=l.
Indépendamment et en même temps, les deux mathématiciens japonais: MM.
Yosida et Kakutani ont découvert la même méthode et l'ont même
formulée pour une classe d'espaces abstraits. Depuis lors, divers auteurs se

sont occupés du problème, donnant des démonstrations et des généralisations

nouvelles; citons entre autres MM. Carathéodory, Wiener et
Birkhoff fils, Garrett Birkhoff. L'argument, déjà très simple de ce dernier

m'en a suggéré, en 1941, un autre, d'ailleurs essentiellement différent,

d'une simplicité, à ce que je pense, difficile à surpasser. C'est de

cette démonstration que je veux tout d'abord vous parler.
Voici l'énoncé du théorème.

Etant donnés, dans Vespace de Hilbert, un élément fx et une contraction S9

la suite des moyennes arithmétiques

où fk 8k~1f1, converge vers un élément invariant <p, c'est-à-dire qu'il
existe un élément y 8<p tel que

\\v—pJho.
Plus généralement on a

\\<p — <Pm,n 11 -> 0 (n — m -> oo)

où 1

n — m s/»
m+1

Je suppose que vous connaissez les notations et les principaux faits
qui sont à la base de la théorie de l'espace de Hilbert et je ne rappelle que
deux d'entre eux dont nous aurons besoin. Le premier c'est l'inégalité du
triangle

\\t + g\\ £11/11 +II?Il
et le second la relation

II / + 9 II2 + II /-S'il2 2 || /||2 +2 || j-H». (10)

Cette relation s'établit par un calcul évident, mais je pense qu'il n'est

pas sans intérêt d'en indiquer aussi la source géométrique. La voici.
L'ensemble des combinaisons linéaires de / et g n'est, en réalité, qu'un
plan ordinaire de vecteurs et la relation (10) exprime tout simplement le
fait bien connu que dans un parallélogramme, la somme des carrés des

diagonales égale celle des carrés des côtés.
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Après ces préliminaires, envisageons l'ensemble convexe G formé par
toutes les combinaisons de la forme

9 Eckfk (11)
1

à coefficients non-négatifs et de somme 1. Soit p la borne inférieure des

normes \\g\\.
Les moyennes <pn et q?m,n appartiennent évidemment à l'ensemble G.

Nous allons voir que ||ç>n|| -» \i et ||ç>m>n|| -» fi lorsque n— ra->oo, ce

que nous exprimons aussi en disant que {<pn} et {cpm n} sont des suites
minimisantes. Comme

M?»,* || \\S™<pn-m\\ <S H^n-mll >

il suffit de considérer la suite {<pn}. Il faut donc montrer que, pour e

arbitraire > 0 et pour n suffisamment grand,

|| 9>nll </* + «•

A cet effet, soit d'abord gx un élément de G tel que

II 0i II </« + -£¦ (12)

et en partant de gx formons les analogues gk et fn de /„ et q>n. Dans

H Î9u,
écrivons pour gx le second membre de (11) et pour les autres gk substituons

les expressions qui résultent de ce second membre lorsqu'on y
applique les itérés de 8. Comme Zck 1, il est manifeste que l'expression

de \pn ainsi formée et celle de yn s'accordent dans leurs termes à partir
du rang v jusqu'au rang n et que par conséquent, les termes se détruisent
dans la différence q>n — ipn. Or les autres termes de cette différence,

en nombre 2(v—1), ont des coefficients ne dépassant pas— en module.

En somme

\\Vn-\>n\\£2{v-l)—\\fi\\<T (13)

pour n suffisamment grand. D'autre part, S étant une contraction,
l'hypothèse (12) relative à gx donne l'inégalité analogue pour les gk, donc
aussi pour ipn et enfin, par (13),
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ce qu'il fallait prouver.
Cela étant, on achève la démonstration en rappelant le fait que toute

suite minimisante converge vers un élément q>, le même pour toute telle
suite. Ce fait, bien connu et dont plusieurs auteurs se sont servis pour
établir le célèbre principe de Dirichlet, découle immédiatement de la
relation (10). En effet, soit flTi, g^a»• • • une ^e^e suite; alors comme la
moyenne arithmétique de gm et gn appartient évidemment à l'ensemble
0, on a || gm + gn\\ ^ 2 ^ et de là, en appliquant encore la relation (10)
à gm et gn on obtient

comme de plus 11 gm | | -> ju, \ \ gn \ | -> ju, il en résulte que

\\9m — 9n\\~+ 0,

ce qui assure la convergence de la suite. Bien plus, la réunion gl9 g[, g2,

g%,... de deux suites minimisantes {gk} et {g'k} étant manifestement du
même type, la limite q? est nécessairement la même pour les deux suites.

Appliqué en particulier aux suites {<pn} et {<pn+i S<pn}, ce fait assure
aussi l'invariance de (p et avec cela, le théorème est complètement
démontré.

La même méthode permet d'établir deux résultats plus généraux. Le
premier auquel la méthode s'applique d'une façon évidente, indique que
notre théorème reste valable quand on remplace l'espace de Hilbert par
un espace linéaire complet uniformément convexe, d'ailleurs quelconques.
On appelle ainsi les espaces linéaires pour lesquels la norme || / ||, obéissant

en outre aux règles usuelles comme || cf \\ \ c \ \ \ f \\ et l'inégalité
triangulaire satisfait encore à l'hypothèse que les suppositions
II/|| ^1 + e, || g || ^1 + e et \\f + g\\^2 entraînent que \\f-g\\
devient infiniment petit en même temps que £. Comme l'a montré
M. Clarkson, les espaces fonctionnels Lp appartiennent, pour p > 1,
à cette catégorie d'espaces ; mais il n'en est pas ainsi lorsque p 1.

Il convient de dire que sous certaines conditions additionnelles, le
théorème reste valable pour l'espace L1, mais on le démontre par une
méthode différente.

La seconde généralisation dont je veux parler, donnée par M. Dunford
dans le Duke Journal en 1939, envisage, au lieu d'une seule contraction
8, plusieurs contractions permutables entre elles. Pour fixer les idées, je
me bornerai au cas de deux contractions, S et U.
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En partant d'un élément donné fvl de l'espace L2, formoms les
éléments fl1k St~1Uk~1fin et leurs moyennes

1

*......,.'= {n_m){H,_mt) jst js+1a.*-

Lorsque n — m -> oo, n7 — m ' -> oo, ces moyennes convergent vers un
élément <p,

II <p — (Pm,n,m',n' 11 "> 0

e£ ce£ élément çp est invariant par rapport à 8 et U.

La démonstration ne diffère presque en rien de la précédente et bien
entendu, elle reste aussi valable pour les espaces uniformément convexes.
Je ne veux ajouter qu'une seule remarque. Observons d'abord que, en
passant au langage géométrique, les ç>m>n,W'tW' sont les moyennes des

fi,k ^ui correspondent aux points (i, k) à coordonnées entières, comprises
dans certains rectangles que l'on fait croître indéfiniment. Ce que je
voudrais ajouter c'est que le rôle des rectangles pourra aussi être joué par
d'autres figures. Ainsi par exemple, le théorème subsiste pour chaque
suite de figures convexes Cn dont l'aire croît indéfiniment, tandis que le

quotient du périmètre par l'aire converge vers 0. La démonstration reste
toujours la même; c'est seulement l'évaluation (13) qui devra être
remplacée par la remarque évidente que le nombre des points (i, k) dont la
distance au contour est inférieur à une quantité fixée, divisé par l'aire
de la figure respective, devient infiment petit avec 1/n.

C'est le lieu ici de revenir au sujet de ma première conférence et de

vous indiquer en passant une seconde généralisation importante du théorème

de Birkhoff, due à M. N. Wiener. Il s'y agit d'étendre le théorème
au cas de plusieurs transformations ponctuelles du même type que celle

qui figure dans le théorème original et qui de plus sont permutables entre
elles, c'est-à-dire de la généraliser de la même façon que le théorème de

Dunford le fait pour celui de Neumann. Wiener commence par baser la
démonstration du théorème de Birkhoff sur un lemme qui n'est qu'un
simple corollaire du ,,maximal ergodic theorem" dont je vous ai parlé
dans ma première conférence, mais qui n'y est nullement équivalent et
qu'il établit indépendamment. Pour parfaire ce lemme, il le combine
avec le théorème de Neumann. Or, grâce peut-être à son imperfection, ce
lemme de Wiener a l'avantage de pouvoir être étendu au cas de plusieurs
transformations et en le combinant avec le théorème de Dunford, la
généralisation en vue sera accomplie. Je n'entrerai pas dans les détails,
vous les trouverez dans le Duke Journal de l'année 1939.

235



Permettez moi d'esquisser encore ma première démonstration du
théorème de Neumann, celle qui est reproduite, comme je l'ai déjà dit,
dans la monographie de M. Hopf, seulement pour le cas isométrique.
J'ai réussi à la perfectionner, il y a peu de temps, en collaboration avec
un de mes anciens élèves, M. Bêla de Sz. Nagy qui d'ailleurs vient de

rédiger, dans les mêmes ,,Ergebnisse", un excellent iacicule embrassant
les parties principales de la théorie de l'espace de Hilbert.

Nous envisageons deux sous-espaces de ce dernier. Le premier, soit
E\ se compose des éléments du type / — Sf et de leurs limites. Lorsque
/i appartient à cette classe, on pourra poser fx — f — 8f + h, avec
|| h || < e où e est arbitrairement petit. De là découle

donc

et par conséquent

pour n — m suffisamment grand. Donc q>mn -> 0

Le second sous-espace, E", se forme des invariants g de la contraction
8, 8g g. Lorsque fx g, on a évidemment <pmn g-> g

Le théorème sera donc démontré si l'on réussit à décomposer tout
élément fx, du type général, en f1 ft + fi, ces derniers appartenant
respectivement aux sous-espaces E' et E". Or, dans le cas où les invariants
de 8 coïncident avec ceux de la transformation adjointe 8*, les deux sous-

espaces sont orthogonaux et complémentaires. En effet, l'identité générale

(f-Sf,g)~(f9g-S*g)

qui vient immédiatement de la définition des transformations adjointes,
fait aussitôt voir que l'ensemble des éléments g qui sont orthogonaux à

E', c'est-à-dire à tous les / — Sf, est formé précisément par les invariants
de S*, ou alors, dans le cas actuel, par ceux de 8. Par conséquent, dans

ce cas, la décomposition exigée est évidente.
Ce que j'ai soupçonné depuis quelque temps et que nous avons réussi,

à la fin, à prouver par un calcul extrêmement simple qui aurait dû sauter
aux yeux dès le début, c'est que le cas envisagé a lieu, sans exception, pour
toute contraction 8»
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En effet, avec les notations habituelles, l'hypothèse g 8*g
entraîne que

et

donc

(Sg, 8g) - (Sg, g) - (g, Sg) + (g, g) || 8g ||« - || g \\\

Alors comme, par hypothèse, || Sg || ^ || g ||, on aura nécessairement

\\8g — g\\ O, g 8g9

ce qu'il fallait prouver.
En échangeant les rôles de 8 et 8*, il résulte que les deux catégories

d'invariants coïncident et avec cela le théorème est démontré.
Le raisonnement que je viens d'esquisser, s'étend entre autres aux

espaces fonctionnels IP où p > 1. Mais au point de vue général, sa

portée est beaucoup plus limitée que celle de la plupart des autres
méthodes. Le temps nous manque de les énumérer toutes et de comparer
leur efficacité. Je voudrais en mentionner une qui s'attache immédiatement

à l'ordre d'idées de tout à l'heure. Oublions pour l'instant que nous
avons réussi à prouver l'identité des invariants de 8 et $*. Cette proposition

serait même en défaut, si au lieu de nous borner à des contractions
nous nous contentions de supposer seulement que les transformations Sk

restent bornées dans leur ensemble, c'est-à-dire que || 8kf || ^ C \\ f \\

pour tous les / et tous les k. En particulier, cette hypothèse plus large
est souvent adoptée dans la théorie des probabilités et dans celle des

équations intégrales; consultez par exemple le Mémoire de M. Fréchet
dans les Quaterly Journal de 1934. La méthode développée par MM.
Yosida et Kakutani et par moi-même dans nos travaux de 1938
s'applique encore sous cette hypothèse plus générale. Mais c'est d'une autre
méthode que je veux parler.

Oublions donc, je le répète, l'identité des invariants de 8 et de 8* et
envisageons, outre E' et E/;, les deux sous-espaces analogues, disons Fr
et F", qui correspondent à la transformation $*. Nous avons vu — et
notre calcul s'adapte aussi à l'hypothèse plus générale dont nous venons
de parler — que la limite ç? existe lorsque /x appartient soit à E! soit à

E" et que <p 0 dans le premier cas et q> fx dans le second; les mêmes
faits subsistent pour Ff et F" par rapport à 8*. De là il découle aussitôt
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que F' et F" n'ont aucun élément commun sauf / 0. Aussi, comme
nous l'avons vu, les sous-espaces Er et Elr sont orthogonaux et
complémentaires; de même Fr et Ffl\ Pour achever la démonstration, nous
n'avons qu'à montrer que tout élément / est de la forme / /' + /" où

/', /;/ (orthogonaux ou non, cela ne fait rien) appartiennent respectivement

à Er et E". Or supposons le contraire. Il existerait, comme nous le

savons, un élément g ^ 0, orthogonal à la fois à Er et En et par
conséquent, compris à la fois dans Fl et Frr, contrairement au fait que,
comme nous venons de le voir, ces deux sous-espaces n'ont, outre 0,
aucun élément commun. Ainsi le théorème est démontré.

Cette façon de compléter mon essai de démonstration est dû à un autre
de mes collaborateurs, M. Lorch2), de l'Université Columbia à New-York.
Sa démonstration de notre théorème ou plutôt d'un théorème qui le

généralise, se trouve dans le Bulletin de la même société, de l'année 1939.

Dans ce qui précède, je viens de l'adapter au cas de l'espace de Hilbert ;

grâce à la structure particulière de cet espace le raisonnement devient
plus simple que dans le cas général envisagé par Lorch. Là il s'agit des

espaces réflexifs; ce sont les espaces de Banach qui sont les conjugués de

leurs espaces conjugués; au lieu d'expliquer ces termes, qu'il nous suffise
de dire que les espaces uniformément convexes ne sont qu'un cas bien
particulier des espaces réflexifs. Observons encore que, dans le cas

général, Lorch est obligé de se reporter à un théorème de M. Banach dont
la vérification fait appel au principe de Zermelo d'après lequel tout
ensemble peut être bien ordonné.

Quand on veut aller encore plus loin, une des tâches les plus intéressantes

est de regarder ce que devient notre théorème quand on passe du
rôle des itérés Sk à un semi-groupe de contractions et cela sans les supposer
permutables. Déjà le problème le plus simple dans cette direction, à savoir:
si le théorème de Dunford reste valable lorsque S et U ne sont plus
permutables, montre les difficultés que présente la voie dans laquelle nous
voulons entrer. Il sera intéressant de voir, avec M. Garrett Birkhoff,
comment ces difficultés, sans être vaincues, peuvent néanmoins être
tournées.

Etant données des contractions, en nombre fini ou infini, permutables
ou non, parmi lesquels l'identité, envisageons l'ensemble des produits, à

2) D'ailleurs, si cela vous intéresse, Lorch est suisse romand par sa mère et c'est
ici à Genève qu'il a reçu son éducation primaire. Boursier de voyage pendant l'année
1934/35, il vint en Europe pour travailler sous ma direction et le principal produit
de cette collaboration est un Mémoire sur la résolution spectrale des transformations
autoadjointes non bornées, inséré en 1936 dans les Transactions de la société
mathématique d'Amérique.
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un nombre quelconque de facteurs, que l'on en peut déduire. Formons
toutes les ,,moyennes" au sens général de ces produits S, c'est-à-dire
toutes les transformations du type

U c.8, + c2S2 + ••• + cnSn (c, ^ 0, Zc, 1)

et convenons de dire que g est un conséquent de / toujours s'il existe une
moyenne U qui transforme / en g. Alors, pour chaque élément fixé /0, ses

conséquents convergent vers un élément déterminé <p la convergence
ayant alors le sens suivant: à tout conséquent fx et à tout e positif, on
peut assigner un conséquent /2 de f1 de sorte que 11 y — / 11 < e pour
tout conséquent / de /2.

La démonstration qu'en donne Garrett Birkhoff n'envisage que
l'espace de Hilbert, cependant, par une modification légère, on pourra la
faire embrasser tous les espaces Lp où p > 1. Faute de temps je
n'entrerai pas dans les détails. D'ailleurs, le théorème cité n'est qu'une seule

pièce dans la riche collection de généralisations pénétrantes que M.
Garrett Birkhoff, à lui seul et en collaboration avec M. Alaoglu, viennent
de recueillir au cours de ces dernières années.

(Reçu le 5 août 1944.)
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