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Sur la théorie ergodique

Par FrEpiric Riesz, Szeged?!)

I.

La théorie ergodique découle, comme vous le savez certainement, d’'une
hypothése hardie et ingénieuse dont on s’est servi pendant une longue
période sans la justifier, et sous des formes variées, dans la théorie ciné-
tique de la matiére et plus généralement en mécanique statistique.
Le premier résultat définitif, de valeur pour le pur mathématicien,
était peut-étre le célébre théoréme de recurrence de Poincaré datant de
Pannée 1890; et méme les idées intuitives par lesquelles l'illustre géo-
meétre se laissait guider, devaient attendre encore une douzaine d’années
avant d’étre légitimées par la théorie de Lebesgue. Mais la renaissance de
la théorie ne date que de 1931, année ou, avec les théorémes de Neumann
et de Birkhoff, elle entre définitivement dans le cadre de ’analyse fonc-
tionnelle. C’est de ces théorémes et de quelques généralisations que je
vous parlerai.

Pour nous orienter, rappelons d’abord le modéle dont se sert Poincaré;
a part la dimension, c’est-ad-dire le nombre des variables qui est trés
élevé dans les problémes corpusculaires, ce modéle représente, on peut le
dire, le cas général. Considérons un liquide enfermé dans un vase de
forme invariable et qu’il remplit complétement. Supposons notre liquide
en mouvement stationnaire. Alors les molécules qui se trouvent dans une
certaine région a l'instant ¢y, rempliront, & chaque instant ¢, une région
de méme volume; c’est-a-dire que le passage d’un instant & 'autre n’est
qu'une transformation ponctuelle qui conserve le volume ou plus géné-
ralement la mesure. Il s’agit donc d’une famille de transformations
dépendant du temps ¢ et formant un groupe ou (si nous ne sommes pas
assez historiens pour nous intéresser au passé) formant un semi-groupe
tel que, en désignant par P, ce que devient le point P aprés un temps ¢,
on a, avec une écriture évidente, (P,), = P,,,; ou aussi, en désignant
par T, la transformation ponctuelle qui correspond & un intervalle de
temps égal 4 t,ona T,T, = T,,,. Alors le théoréme de Poincaré affirme
que pour presque tout point P, c’est-a-dire sauf peut-étre pour les points
d’un ensemble de mesure nulle, les trajectoires de P, = T',(P) retournent
une infinité de fois dans chaque voisinage du point P, et que ce fait sub-

1) L’Université de Genéve avait invité Monsieur Frédéric Riesz & faire deux confé-
rences au printemps 1944. L’auteur n’ayant pu s’y rendre en personne, nous sommes
heureux de pouvoir en publier le texte. La rédaction.
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siste lorsque, au lieu de ¢ continu, on ne regarde que la succession des
multiples ¢, = nt, d’'une unité de temps ¢,, choisie & volonté. Or, la théorie
moderne de l’intégration suggére de remplacer le vase et les voisinages
par des ensembles mesurables et il ne serait pas difficile d’adapter I’argu-
ment de Poincaré & ces nouvelles conditions.

Mais il y a encore un probléme plus profond qui se pose. En effet, le
théoréme ne nous dit rien concernant la fréquence des passages de notre
trajectoire dans le voisinage en question pendant que ¢ croit indéfiniment
ou, quand il ne s’agit que des instants discrets ¢, = nt,, de la valeur
moyenne du nombre des cas de passage. Rappelons I'exemple le plus
simple, celui ol une circonférence tourne avec une vitesse angulaire cons-
tante autour de son centre. Alors, ce que dit le théoréme de Poincaré
dans ce cas particulier est évident pour ¢ continu et il en est de méme
quant au probléme de la fréquence. D’autre part, dans le cas discontinu,
le théoréme de Poincaré n’est qu’une conséquence immédiate du fameux
,»Schachtelprinzip‘‘ de Dirichlet, tandis que le probléme de la fréquence se
résout par un théoréme beaucoup plus caché, concernant la répartition
uniforme des points F, = P, dans tous les cas ol ¢, est une fraction
incommensurable du temps de parcours de la circonférence entiére. Il
s’agit du théoréme de répartition uniforme, démontré autour de 1910 par
plusieurs auteurs et qui nous dit, que pour un arc quelconque de la cir-
conférence, la moyenne »/n ou » désigne le nombre de ceux des » premiers
P, qui sont situés sur l'arc envisagé, converge vers le rapport des lon-
gueurs de cet arc et de la circonférence entiére. M. Weyl qui s’est occupé
a plusieurs reprises, du théoréme et aussi de quelques généralisations et
leurs applications, entre autre dans une conférence faite, il y a justement
30 années, a la Société mathématique suisse et imprimée dans L’ Enseigne-
ment mathématique, en a donné une démonstration dans les Gottinger
Nachrichten de 1914 et dans les Mathematische Annalen, t. 77, qui nous
intéresse particuliérement au point de vue de notre sujet actuel. En voici
I'idée principale.

On voit immédiatement que le théoréme peut se mettre sous la forme
suivante.

Soit f(x) la fonction escalier de période 2z qui est égale & 1 et a 0
respectivement dans les intervalles (0, a) et (@, 2x), et soit § un nombre
irrationnel quelconque. Alors

hm—— 2 fxtké) = ff(t) dt . (1)
Ce n’est pas par manque d’attentlon que j’ai écrit I'intégrale au lieu de
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mettre simplement sa valeur a. En effet, la relation (1) est valable pour
une classe étendue de fonctions, entre autres pour toutes les fonctions de
période 27z qui sont intégrables au sens de Riemann sur les intervalles
finis. Cela vient de ce qu’elle se vérifie, par un calcul évident, pour les
fonctions e(mx) ou e(x) = e2"* et m est un entier, donc aussi pour les
polynomes trigonométriques de 2z x et enfin pour les fonctions dont nous
venons de parler, ce qu’on voit en les intercalant entre deux polynomes
trigonométriques dont les intégrales sur (0, 2x) différent aussi peu qu’on
voudra.

En réalité, comme 1’a observé M. Khintchine, la relation (1) reste encore
valable, cette fois pour presque tous les x, sous ’hypothése plus large de
Pintégrabilité au sens de Lebesgue, méme pour les fonctions non bornées.
Mais, dans ce cas général, malgré I’énoncé extrémement simple, la seule
voie par laquelle je peux I’approcher, et c’est ce que fait en réalité aussi
M. Khintchine, c’est de la considérer comme corollaire du plus achevé des
théorémes ergodiques, savoir de celui de Birkhoff.

Avant d’en parler, rappelons encore briévement un second exemple,
choisi dans la théorie des probabilités dénombrables. Il s’agit du fait,
découvert par M. Borel, que pour presque tout nombre réel, quand on
P’écrit en forme de fraction décimale infinie, les divers chiffres se répar-
tissent également & la limite, chaque chiffre admettant la fréquence
moyenne 1/10, et la moyenne arithmétique des chiffres successifs con-
vergeant vers 43. Le premier de ces faits, dont le second n’est qu’un
corollaire, est impliqué par la formule

n—

X /(14> [f@) do. @)

k=0

analogue & (1), ou 'on définit la transformation 7', pour lintervalle
(0, 1), par = 0, a,a,a5. .., Tx = 0, a,a,a,. .., c’est-a-dire en suppri-
mant le premier chiffre décimal de la fraction x et ou T'* désigne les
itérés de 7. Pour fonction f(x), on n’aura qu’a choisir successivement les
fonctions caractéristiques des parties dixiémes de lintervalle (0, 1),
c’est-a-dire les fonctions égales & 1 sur I'un de ces dixiémes et s’annulant
ailleurs. En réalité, la formule (2) est valable presque partout non seule-
ment pour ces fonctions, mais pour toute fonction intégrable au sens
de Lebesgue. C’est M. Raikov qui a établi ce résultat dans un travail en
langue russe ou, & ce que je peux juger en regardant les formules, il ne

fait en réalité qu’adapter & ce cas particulier une des démonstrations du
théoréme de Birkhoff.
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La raison principale pour laquelle je viens de rappeler ce second
exemple, c’est que la transformation 7' qui y intervient, n’est pas biuni-
voque comme dans 'autre exemple et cela non seulement & cause de la
double écriture des fractions décimales finies, mais puisque son inverse
admet dix déterminations différentes.

Je pourrais encore citer, a titre d’analogie, un des premiers résultats de
la théorie des fonctions presque périodiques, c’est que toute fonction de
ce genre f(z) admet une valeur moyenne, ou d’une fagon précise, que les
moyennes

1 X
'T‘.‘ flx + t) dt

tendent, pour 7 infini, vers une valeur constante déterminée. Mais il faut
me dépécher pour arriver au théoréme général qui est au bout de notre
ordre d’idées et que M. G. D. Birkhoff a établi en 1931, & la suite des
recherches de MM. Koopman et de Neumann, recherches auxquelles je
reviendrai dans ma seconde conférence.

Voici le théoréme.

Soit donné un ensemble mesurable 2, de mesure finie ou infinte, la mesure
et Uintégrale correspondante étant définies d’aprés Lebesgue, ou plus généra-
lement, par rapport a une distribution de masses positives.

Cela étant, désignons par T wune transformation ponctuelle univogque
(mais non nécessairement biunivoque) de £2 en soi-méme et supposons que T
conserve la mesure au sens que, B étant un ensemble mesurable, TE son
transformé et E' Uensemble des points P dont les images appartiennent a
TE, les ensembles E' et TE admettent la méme mesure. Alors, en partant
d’une fonction intégrable f,(P) et en posant f, (P) = f,(T*1P), la moyenne
arithmétique des fonctions f,, f,,..., f, converge presque partout, pour
n—> oo, vers une fonction intégrable ¢ (P), invariante (presque partout) par
rapport a T.

J’ai énoncé le théoréme sous une forme un peu plus générale que I'a fait
son auteur, en particulier en ne me bornant pas & des transformations
biunivoques. D’ailleurs je pense qu’il ne serait pas difficile d’adapter le
raisonnement de M. Birkhoff & cette hypothése plus générale qui m’était
suggérée par le théoréme de M. Borel.

M. Birkhoff base la démonstration de son théoréme, en substance, sur
le lemme suivant, qu’il applique sous une forme un peu différente et au-
quel il arrive par un démembrement trés subtil des ensembles qui inter-
viennent. Soit, pour une fonction donnée f,(P), E U'ensemble des points P
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pour lesquels la limite supérieure des moyennes arithmétiques figurant dans
le théoréme est positive. Alors

Effl(P)> 0. (3)

Il y a quelque temps, MM. Yosida et Kakutani ont réussi & remplacer,
dans ce lemme, la limite supérieure par la borne supérieure; d’une fagon
précise, ’ensemble K devra étre caractérisé par le fait que, en ses points,
'une au moins des sommes f, 4+ f, + -+ + f, admet une valeur positive.
C’est cette proposition (ou plutét une qui lui est équivalente) qu’ils
appellent le ,, maximal ergodic theorem*.

Ce qui est nouveau dans la présente démonstration, c¢’est que le lemme
en question se déduit, par un artifice simple, du lemme tout élémentaire
que voici. Etant donnés n quantités réelles a,, a,,. . ., a, et un entier m<<n,
considérons toutes les sommes a, + a,, , + - a, de valeur positive, for-
mées d’éléments successifs dont le nombre des termes ne dépasse pas Uentier
m. Alors les a, figurant comme premiers termes dans U'une au moins de ces
expressions, ont leur somme positive.

Ce dernier lemme se démontre en quelques lignes. Pour faciliter le
langage, appelons termes favorables les a, en question et soit a, le pre-
mier d’entre eux. Soit @, -+ ‘- + a; la plus courte parmi les sommes
issues de ce terme et de valeur > 0; alors les termes de cette somme sont
tous des termes favorables. En effet, 8’il n’en était pas ainsi pour un de ces
termes, soit a,,, alors on aurait a,, + - + a; = 0 et par conséquent
Ay, + *** + @ _, >0, contrairement a la convention faite. Pour con-
tinuer, soit a, le premier terme favorable parmi ceux qui restent et
@y, + *** + a;, la somme la plus courte commengant par a; . En con-
tinuant de la méme fagon, nos sommes se composeront & la fin précisé-
ment de tous les termes favorables. Notre lemme est donc démontré.
Voici comment on passe alors au ,,maximal ergodic theorem*.

Désignons par E™ ’ensemble des points P pour lesquels une au moins

des sommes .
= fx(P) (I =< m)
est plus grande que 0. Les ensembles K épuisent successivement 1’en-
semble K qui figure au théoréme. Donc, au lieu de (3), nous n’avons qu’a
vérifier I'inégalité analogue
JHh(Pyzo . (4)
E(m)

A cet effet, envisageons, pour chaque P, la somme des termes favo-

rables (au sens qui précéde) de la suite finie
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fl(P)" ° °’fn+m(P)

(ol nous avons remplacé n par n + m). Cette somme étant une fonction
positive et sommable de P, on obtient par intégration:

n+m

> [hPrzo0, (5)

k=1 Ej
E, désignant 1’ensemble des points P pour lesquels f,(P) est un terme
favorable.

D’autre part, pour k<n, on a évidemment TE ,=E, ,, E,=T'E,_,.
Comme de plus 7' conserve la mesure et donc aussi I'intégrale, les n pre-
miéres intégrales dans (5) admettent des valeurs égales, et comme
E, = E™ leur valeur commune est égale & I'intégrale qui figure dans (4).
Il n’en est pas nécessairement ainsi pour les m intégrales qui restent,
cepandant la valeur d’aucune d’elles ne dépasse celle de l'intégrale de
|1 (P)] sur Q entier. Il s’ensuit que

n‘fh(P) —+—m‘“f1(P)| =0
Em) Q
et enfin, en divisant par » et en faisant le passage a 'infini, on obtient
Iinégalité (4) qu’il fallait démontrer.

La démonstration du théoréme de Birkhoff s’achéve maintenant
comme il suit.

Soit B,g olt « > f, 'ensemble des points P pour lesquels on a a la fois

Hﬁ%ﬁ:mppa (6)

et '
lim — X, (P)< § - (7)

1

Supposons pour Iinstant que 2 soit de mesure finie, alors il en sera de
méme de 'ensemble g qui est évidlemment mesurable. Or ce dernier est
invariant par rapport & 7T'; en effet, en écrivant dans les formules (6) et
(7) TP a la place de P et » — 1 au lieu de n, les deux limites d’indéter-
mination ne seront pas changées.

L’ensemble E,g étant invariant, il pourra jouer le role de (2 dans le
lemme que je viens de prouver et en appliquant celui-ci 4 la fonction
f1(P) — & au lieu de f,(P), ’ensemble E du théoréme coincidera aussi
avec B,g. Par conséquent

j[fl(P)-——(X]EO .

Eaia
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De méme, en remplagant f,(P) par f — f,(P), on obtient

f[B—fHh®)]=o0
Eog

et par addition
j‘ (B —a)=0 .

Eqs

Mais cela contredit & ’hypothése que x > f, excepté si E,g est de mesure
nulle.

Faisons maintenant («, f) parcourir les couples des nombres rationnels,
alors E* = X E.,z étant la réunion d’une infinité dénombrable d’en-
sembles de mesure nulle, il sera lui-méme de mesure nulle. C’est-a-dire
que la moyenne arithmétique des fonctions f,(P) converge presque par-
tout, savoir partout & l’exception de E*, vers une limite déterminée
@ (P), finie ou infinie. Or, comme

1

v A P)' =/ =

n

fk(p)l ~ [

mP)‘ |

la fonction ¢ (P) sera intégrable grace au théoréme de Fatou; elle sera
donc finie presque partout.

Quand 2 est de mesure infinie, nous n’avons qu’a montrer, avant
d’intégrer sur 'ensemble E.g, que ce dernier est toujours de mesure finie.
Nous avons besoin de ce fait pour pouvoir intégrer f,(P)— « sur B g.
Supposons que x > 0; en cas contraire on aurait § < 0 et on pourrait
opérer avec — f,(P) — (— B) au lieu de f,(P) — «.

Envisageons un sous-ensemble £’ de E,g, de mesure finie, d’ailleurs
quelconque. Soit e’(P) sa fonction caractéristique. Appliquons le ,,maxi-
mal ergodic theorem‘‘ & la fonction ¢,(P) = f,(P) — xe'(P) au lieu de
f1(P); alors, pour 'ensemble E qui correspond & g,(P), on aura

jgl(P) go ]
E
et comme E'c E,gc E, il vient
.ffl(P) %aj‘e’(P)=ocmes E .
E E

Donge, a plus forte raison,

& mes E,§gf | H(P) | -
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Cela nous dit que la mesure d’aucun sous-ensemble de mesure finie de
E.g ne dépasse la borne
1 P
-;-f l f 1( ) I ’
Q

et par conséquent E,g lui-méme doit étre de mesure finie.

L’invariance de la fonction ¢(P), ¢ (TP) = ¢(P), en découle immé-
diatement en remplagant, comme nous I’avons déja fait, P par TP, c’est-
a-dire f,(P) par f;,,(P) et de plus n par » — 1 dans les moyennes
arithmétiques considérées, ce qui ne change pas la limite de ces moyennes.

Ajoutons enfin que dans le cas ol 2 est de mesure finie, il vient encore
par intégration terme i terme (ce qui est permis dans ce cas grice &
Pintégrabilité uniforme des termes)

bffp(P) =fo1(P) -

Disons encore quelques mots sur la variante ,,intégrale‘ du théoréme,
celle ol I'on introduit un paramétre continu ¢ et ol les itérés 7'* sont
remplacés par une famille 7', de tranformations avec 7,7, =T,,,. Le
théoréme correspondant que je n’énonce pas en détail pour ne pas vous
fatiguer, se réduit aisément au cas discontinu et cela par un artifice di
3 MM. E. Hopf et Khintchine. Mais peut-étre y a-t-il quelque intérét
d’observer que, au lieu de cet artifice, les détails de la démonstration que
je viens de vous présenter, s’adaptent aussi immédiatement au cas con-
tinu. Qu'’il nous suffise aujourd’hui de formuler le lemme qui correspond,
pour ¢ continu, & notre lemme élémentaire.

Etant donnée, sur Uintervalle (a, b), une fonction intégrable g (t), de plus
une longueur d < b — a, envisageons U'ensemble e des valeurs t, telles que
Dintégrale de g (t) prise de t, jusqu’a ty + h, soit positive pour une au moins
des valeurs h < d. Alors Uintégrale de g(t) sur U'ensemble e est aussi posi-
tive ou 0.

Qu’il me soit permis d’attirer votre attention sur la relation intime
entre ce lemme et un autre dont je me suis servi, précisément au temps
de la découverte de M. Birkhoff, pour en déduire 'existence de la dérivée
des fonctions monotones ainsi qu'une inégalité importante de MM. Hardy
et Littlewood. En effet, soit G'(t) 'intégrale de la fonction ¢(¢) qui figure
dans notre lemme ci-dessus; alors celui-ci et l’autre ne sont que des
corollaires du théoréme suivant.

Soit Q(t) une fonction continue, définie dans Uintervalle (a, b) et envi-
sageons, pour d positif donné, U'ensemble E des points t intérieurs a cet inter-
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valle et tels qu’il existe un t’ avec t < t' <t + d, de sorte que G (t) < G(t’).
Alors Uensemble E est ouvert et pour les intervalles (ay, b,) dont il se com-
pose, on a G(a,) <G (,).

Les diverses démonstrations de mon lemme d’autrefois dont je viens
de parler et vous en trouverez une dans ma conférence faite au Congrés de
Zurich en 1932, s’adaptent aussitot au lemme actuel.

Enfin, en ce qui concerne les généralisations du théoréme de Birkhoff,
on n’en connait que trés peu et je ne cite aujourd’hui que celle de M.
E. Hopf. Je me contente de I’énoncer pour le cas discontinu d’une suc-
cession { 7%} et cela méme sous une forme légérement modifiée. Envisa-
geons, avec des notations évidentes, I’expression

>

. (8)
s

1

(dans le cas de Birkhoff g, = 1) ou la fonction g, (P) et avec elle les g, (P)
sont encore supposées essentiellement positives; quant & leur intégra-
bilité, on ne les suppose intégrables que sur les sous-ensembles de 2 qui
sont de mesure finie. Soit 2’ I’ensemble des points pour lesquels la série
2 9. (P) diverge. Alors le théoréme affirme que I'expression (8) converge
presque partout sur Q' vers une fonction ¥ (P), invariante par rapport
a T et que de plus, lorsque g, (P) est intégrable sur Q’, on a

[ 0:(P) ¥(P) = [ f2(P) .

Le théoréme g’établit par la méme méthode que celui de Birkhoff et
c’est seulement la formule finale qui exige d’étre vérifiée séparément.
Cela se fait par un calcul élémentaire de la théorie de Lebesgue et qui
consiste & décomposer 2/ en des ensembles E, sur lesquels

n—1)8 <¥P)<nd,

d’observer que les E, sont invariants par rapport & T' et d’en conclure,
par le ,,maximal ergodic theorem‘‘, que

(n — 1)6j91(P) .S_j‘fl(P) =nd _f 9.(P) .
En Eqn Eyp

Comme ’'intégrale
| 9.(P) ¥ (P)

En
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est comprise évidemment entre les mémes bornes, elle ne différe de celle
de f,(P) que par
' 5]; 9. (P)

au plus; notre formule finale s’ensuit, aprés addition par rapport & =,
pour ¢ infiniment petit.

Observons d’ailleurs, que sous des conditions faciles & préciser et en
particulier, lorsque £ est de mesure finie, le théoréme se réduit & un
corollaire de celui de Birkhoff.

Pour terminer cette premiére conférence, disons encore quelques mots
de ce qu’on appelle la transitivité métrique. Dans les applications, il est
parfois d’'une grande importance de savoir si notre fonction limite est
constante ou d’une fagon générale, de prouver que la transformation qui
change f(P) en f(TP), n’admet pas d’autre fonction invariante que des
constantes, bien entendu des constantes presque partout. On voit aussi-
tot que pour qu’il en soit ainsi, il faut et il suffit que I’ensemble £ ne
puisse étre décomposé en deux ensembles invariants presque partout par
rapport & 7' sans que 'un de ces ensembles soit de mesure nulle. C’est
cette propriété qu’on appelle la transitivité métrique de la transforma-
tion 7. En général, il n’est pas facile de la constater et dans la plupart
des applications, c’est une tache qui attend encore d’étre accomplie.

IT.

Dans ma premiére conférence, je vous ai présenté le théoréme ergo-
dique de M. G. D. Birkhoff; aujourd’hui je vous parlerai de celui de
M. J. de Neumann qui I’a devancé de quelques semaines. Dans sa forme
originale, ce théoréme envisage, tout comme l'autre, les moyennes
arithmétiques ¢, (P) des fonctions f,(P) qui viennent de f,(P) en itérant
la transformation ponctuelle 7' et en posant f,(P) = f,(T*1P). Le
théoréme envisage encore et tel n’était pas le cas chez M. Birkhoff, les
moyennes plus générales

un(P) = — 1 ¥ 1(P) . (9)

n—m gt

Cette fois-ci, la fonction f,(P) est supposée appartenir & la classe L2,
c’est-a-dire étre intégrable ainsi que son carré; ou plutét, comme on admet
aussi des fonctions & valeurs complexes, que le carré de son module.
Alors le théoréme en question affirme que, pour » — m — oo, les fonc-
tions ¢, et ¢, , convergent ,en moyenne* vers une limite ¢ (P) déter-
minée presque partout; en formules
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Sans doute, le théoréme, sous sa présente forme, parait dire beaucoup
moins que celui de Birkhoff; en effet il ne dit rien quant a la convergence
effective au sens ordinaire. Cependant, & part ce que le théoréme suffit
pour les applications en Mécanique statistique, il présente aussi, comme
nous allons le voir, beaucoup d’intérét au point de vue purement mathé-
matique. Tout d’abord, il ne faut pas oublier qu’il embrasse aussi le cas
général des moyennes du type (9), c’est-a-dire qu’il implique une sorte
de convergence uniforme par rapport aux indices. Bien plus, déja la pre-
miére démonstration par Neumann ainsi que celle de M. Hopf qui la
suivit immédiatement, ne se servent que d’une seule conséquence de la
conservation de la mesure, conséquence observée indépendamment par
MM. Koopman et Carleman. C’est que le passage de f(P) a f(7'P) con-
serve l'intégrale du carré ou se qui revient au méme, la norme ||f|| =

[fl flz]%. Avec ce fait, le role dont jouit la transformation ponctuelle est
épuisé et les fonctions ne sont que des éléments d’un espace vectoriel du
type euclidien ou unitaire & un nombre fini ou une infinité de dimensions,
disons briévement d’un espace de Hilbert réel ou complexe; le passage
de f(P) & f(TP) ne sera qu’une transformation linéaire qui conserve la
norme ||f|| ou ce qui revient au méme, la distance ||f — g||, en d’autres
termes ce sera une transformation isométrique. Aussi n’était-il pas dif-
ficile de s’apercevoir que cette hypothése permet d’étre grandement
élargie. Bientot aprés les premiéres publications sur le sujet, en 1933 ou
1934, je me m’en souviens plus, la lecture du travail de M. Carleman m’a
suggéré une méthode de démonstration qui s’appliquait & une classe
étendue de contractions; ce sont les transformations linéaires qui ne font
pas augmenter la distance. Mais & ce temps 13, ma méthode me semblait
ne pas réussir pour toutes les contractions et comme d’autre part j’étais
presque siir que les hypothéses pouvaient encore étre élargies, je ne me
hatais pas de publier ma démonstration. D’ailleurs elle se propageait par
des conversations et par correspondance et a la fin M. Hopf I'a incor-
porée, seulement pour le cas isométrique, dans I'excellent facicule qu’il a
rédigé pour les ,, Ergebnisse der Mathematik®. Aujourd’hui je sais que
la méthode embrasse toutes les contractions et qu’elle permet encore d’autres
généralisations. Je vous en parlerai tout & ’heure.

Cest en 1938, avant de compléter la démonstration dont je viens de
parler, que j’ai réussi, par une autre voie, & étendre le théoreme & toutes
les contractions et & passer méme aux espaces fonctionnels L? pour les-
quels le role de I’'exposant 2 est joué par un nombre quelconque p > 1
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ou méme, sous certaines hypothéses additionnelles, pour p=1. Indépen-
damment et en méme temps, les deux mathématiciens japonais: MM.
Yosida et Kakutani ont découvert la méme méthode et ’'ont méme for-
mulée pour une classe d’espaces abstraits. Depuis lors, divers auteurs se
sont occupés du probléme, donnant des démonstrations et des générali-
sations nouvelles; citons entre autres MM. Carathéodory, Wiener et
Birkhoff fils, Garrett Birkhoff. L’argument, déja trés simple de ce der-
nier m’en a suggéré, en 1941, un autre, d’ailleurs essentiellement diffé-
rent, d’'une simplicité, & ce que je pense, difficile & surpasser. C’est de
cette démonstration que je veux tout d’abord vous parler.
Voici I’énoncé du théoréme.

Etant donnés, dans Uespace de Hilbert, un élément f, et une contraction S,
la suite des moyennes arithmétiques

1 n
=g 2 h

ou f, = Sk-1f,, converge vers un élément invariant ¢, c’est-d-dire qu’il
existe un élément ¢ = S¢ tel que

llg —@ull > 0.
Plus généralement on a
¢ —@mnll >0 (n —m — o0) ,
ou
Pm,n = ’n—mmzﬂfk .

Je suppose que vous connaissez les notations et les principaux faits
qui sont & la base de la théorie de I’espace de Hilbert et je ne rappelle que
deux d’entre eux dont nous aurons besoin. Le premier c’est I'inégalité du
triangle

Wi+gll =11+ 1gll

et le second la relation

Wf+gl2+1f—gli*=21F11"+21lgl®. (10)

Cette relation s’établit par un calcul évident, mais je pense qu’il n’est
pas sans intérét d’en indiquer aussi la source géométrique. La voici.
L’ensemble des combinaisons linéaires de f et g n’est, en réalité, qu’un
plan ordinaire de vecteurs et la relation (10) exprime tout simplement le
fait bien connu que dans un parallélogramme, la somme des carrés des
diagonales égale celle des carrés des cotés.
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Aprés ces préliminaires, envisageons 1’ensemble convexe G formé par
toutes les combinaisons de la forme

g = léck fr (11)

a coefficients non-négatifs et de somme 1. Soit x la borne inférieure des
normes ||g||.

Les moyennes ¢, et ¢,,,, appartiennent évidemment & I’ensemble G.
Nous allons voir que ||g,|| — u et ||@,, ,|| > u lorsque % —m — oo, ce

que nous exprimons aussi en disant que {¢,} et {¢,, ,} sont des suites
mintmisantes. Comme

@mnll =11 8" @omll = |l @a-m | »

il suffit de considérer la suite {¢,}. Il faut donc montrer que, pour & arbi-
traire > 0 et pour » suffisamment grand,

Heall <p4e.

A cet effet, soit d’abord g, un élément de G tel que
&€
loll<p+ 4 (12)

et en partant de g, formons les analogues g, et y, de f, et ¢,. Dans
1 n
Vo= 2 i >

écrivons pour g, le second membre de (11) et pour les autres g, substi-
tuons les expressions qui résultent de ce second membre lorsqu’on y
applique les itérés de S. Comme 2 ¢, = 1, il est manifeste que 1’expres-
sion de y, ainsi formée et celle de ¢, s’accordent dans leurs termes & partir
du rang » jusqu’au rang n et que par conséquent, les termes se détruisent
dans la différence @, —y,. Or les autres termes de cette différence,

en nombre 2(»—1), ont des coefficients ne dépassant pas _'}z_ en module.
En somme 1 .
lon—wnll <20 — D |l hll <5 (13)

pour n suffisamment grand. D’autre part, § étant une contraction,
I’hypothése (12) relative & g, donne I’inégalité analogue pour les g, , done
aussi pour y, et enfin, par (13),

233



N @all =1 @n —wull + Hwall <we+ e,

ce qu’il fallait prouver.

Cela étant, on achéve la démonstration en rappelant le fait que toute
suite minimisante converge vers un élément ¢, le méme pour toute telle
suite. Ce fait, bien connu et dont plusieurs auteurs se sont servis pour
établir le célébre principe de Dirichlet, découle immédiatement de la
relation (10). En effet, soit g,, g,,... une telle suite; alors comme la
moyenne arithmétique de g,, et g, appartient évidemment & 1’ensemble
G,onallg,+ 9.1l =2puet dela, en appliquant encore la relation (10)
a g, et g, on obtient

I 9m —9all> = 211 gull® + 2 ]| gall® — 4 u* ;

comme de plus || g,.|| = &, || g.|| = &, il en résulte que

“gm—“g'n“"’> O’

ce qui assure la convergence de la suite. Bien plus, la réunion g¢,, g, g,
g5, - . de deux suites minimisantes {g,} et {g;} étant manifestement du
meéme type, la limite ¢ est nécessairement la méme pour les deux suites.
Appliqué en particulier aux suites {¢,} et {¢,., = S¢,}, ce fait assure
aussi 'invariance de ¢ et avec cela, le théoréme est complétement
démontré.

La méme méthode permet d’établir deux résultats plus généraux. Le
premier auquel la méthode s’applique d’une fagon évidente, indique que
notre théoréme reste valable quand on remplace I’espace de Hilbert par
un espace linéaire complet uniformément convexe, d’ailleurs quelconques.
On appelle ainsi les espaces linéaires pour lesquels la norme || f ||, obéis-
sant en outre aux régles usuelles comme || ¢f || = | ¢ ||| f || et I'inégalité
triangulaire satisfait encore & I’hypothése que les suppositions
Ifll=1+e, |[gll=1+4¢ et ||f+g]|| =2 entrainent que |[f—g||
devient infiniment petit en méme temps que £. Comme l’a montré
M. Clarkson, les espaces fonctionnels L? appartiennent, pour p > 1,
a cette catégorie d’espaces; mais il n’en est pas ainsi lorsque p = 1.
Il convient de dire que sous certaines conditions additionnelles, le
théoréme reste valable pour l’espace L!, mais on le démontre par une
méthode différente.

La seconde généralisation dont je veux parler, donnée par M. Dunford
dans le Duke Journal en 1939, envisage, au lieu d’une seule contraction
S, plusieurs contractions permutables entre elles. Pour fixer les idées, je
me bornerai au cas de deux contractions, S et U.
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En partant d’un élément donné f,,, de I'espace L2, formoms les é1é-
ments f,,, = S8*-1U*-1f, | et leurs moyennes

1 n n;
wm,'n;m',n’ - (n L m) (n/ - m/) z 2 f‘i,k .

t=m+1 k=m’+1

Lorsque » — m —>o0, n' — m’ — oo, ces moyennes convergent vers un
élément g,
@ — Pmn;mne [| >0,

et cet élément @ est invariant par rapport @ S et U.

La démonstration ne différe presque en rien de la précédente et bien
entendu, elle reste aussi valable pour les espaces uniformément convexes.
Je ne veux ajouter qu'une seule remarque. Observons d’abord que, en
passant au langage géométrique, les ¢, ., - SONt les moyennes des
fi x qui correspondent aux points (z, k) & coordonnées entiéres, comprises
dans certains rectangles que l'on fait croitre indéfiniment. Ce que je
voudrais ajouter c’est que le role des rectangles pourra aussi étre joué par
d’autres figures. Ainsi par exemple, le théoréme subsiste pour chaque
suite de figures convexes C, dont l'aire croit indéfiniment, tandis que le
quotient du périmétre par I'aire converge vers 0. La démonstration reste
toujours la méme; c’est seulement 1’évaluation (13) qui devra étre rem-
placée par la remarque évidente que le nombre des points (2, k) dont la
distance au contour est inférieur & une quantité fixée, divisé par l'aire
de la figure respective, devient infiment petit avec 1/n.

C’est le lieu ici de revenir au sujet de ma premiére conférence et de
vous indiquer en passant une seconde généralisation importante du théo-
réme de Birkhoff, due & M. N. Wiener. 1l s’y agit d’étendre le théoréme
au cas de plusieurs transformations ponctuelles du méme type que celle
qui figure dans le théoréme original et qui de plus sont permutables entre
elles, c’est-a-dire de la généraliser de la méme fagon que le théoréme de
Dunford le fait pour celui de Neumann. Wiener commence par baser la
démonstration du théoréme de Birkhoff sur un lemme qui n’est qu’un
simple corollaire du ,,maximal ergodic theorem‘ dont je vous ai parlé
dans ma premiére conférence, mais qui n’y est nullement équivalent et
qu’il établit indépendamment. Pour parfaire ce lemme, il le combine
avec le théoréme de Neumann. Or, grice peut-étre & son imperfection, ce
lemme de Wiener a I'avantage de pouvoir étre étendu au cas de plusieurs
transformations et en le combinant avec le théoréme de Dunford, la
généralisation en vue sera accomplie. Je n’entrerai pas dans les détails,
vous les trouverez dans le Duke Journal de ’année 1939.
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Permettez moi d’esquisser encore ma ‘premiére démonstration du
théoréme de Neumann, celle qui est reproduite, comme je 1'ai déja dit,
dans la monographie de M. Hopf, seulement pour le cas isométrique.
J’ai réussi & la perfectionner, il y a peu de temps, en collaboration avec
un de mes anciens éléves, M. Béla de Sz. Nagy qui d’ailleurs vient de
rédiger, dans les mémes ,,Ergebnisse’‘, un excellent facicule embrassant
les parties principales de la théorie de I’espace de Hilbert.

Nous envisageons deux sous-espaces de ce dernier. Le premier, soit
E’, se compose des éléments du type f — Sf et de leurs limites. Lorsque
f. appartient & cette classe, on pourra poser f, = f—8f -+ h, avec
[| 2 || < & ol ¢ est arbitrairement petit. De 14 découle

. Sm+1f___Sn+1f 1 n %
pmn = n—m Ta T k=§+1Sh’

done

2
lomnll < L

et par conséquent
|| @m,n | = 26

pour n — m suffisamment grand. Donc ¢,, ,— 0.

Le second sous-espace, E”, se forme des invariants g de la contraction
8,89 = g. Lorsque f, =g, on a évidemment ¢, , =g—>¢.

Le théoréme sera donc démontré si 1’on réussit & décomposer tout
élément f,, du type général, en f, = f, + f/, ces derniers appartenant
respectivement aux sous-espaces £’ et E”. Or, dans le cas ou les invariants
de 8 coincident avec ceux de la transformation adjointe S*, les deux sous-
espaces sont orthogonaux et complémentaires. En effet, I'identité générale

(f—A8f,9) = (f, g — S*9)

qui vient immédiatement de la définition des transformations adjointes,
fait aussitot voir que ’ensemble des éléments g qui sont orthogonaux &
E’, c’est-a-dire & tous les f — Sf, est formé précisément par les invariants
de S*, ou alors, dans le cas actuel, par ceux de S. Par conséquent, dans
ce cas, la décomposition exigée est évidente.

Ce que j’ai soupgonné depuis quelque temps et que nous avons réussi,
a la fin, & prouver par un calcul extrémement simple qui aurait di sauter
aux yeux dés le début, c’est que le cas envisagé a lieu, sans exception, pour
toute contraction S.
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En effet, avec les notations habituelles, ’hypothése g = S*g en-
traine que

(S9,9) = (9,8%9) = (9,9) = || g ||?
et

(9.89) = (S*g9,9) =1l gI?,
done

| Sy —gll>= (89 —g,89—9) =
= (S¢g,89) — (S9,9)— (9, 89) + (¢,9) = || Sg lI2— | g ||

Alors comme, par hypotheése, || Sg|| = || g||, on aura nécessairement

| Sg—gll=0, g==8yg,
ce qu’il fallait prouver.

En échangeant les roles de S et S*, il résulte que les deux catégories
d’invariants coincident et avec cela le théoréme est démontré.

Le raisonnement que je viens d’esquisser, s’étend entre autres aux
espaces fonctionnels L? ou p > 1. Mais au point de vue général, sa
portée est beaucoup plus limitée que celle de la plupart des autres
méthodes. Le temps nous manque de les énumérer toutes et de comparer
leur efficacité. Je voudrais en mentionner une qui s’attache immédiate-
ment & l’ordre d’idées de tout & ’heure. Oublions pour l'instant que nous
avons réussi & prouver l'identité des invariants de S et S*. Cette propo-
sition serait méme en défaut, si au lieu de nous borner & des contractions
nous nous contentions de supposer seulement que les transformations S¥
restent bornées dans leur ensemble, c’est-a-dire que || S¥f|| < C || f ||
pour tous les f et tous les k. En particulier, cette hypothése plus large
est souvent adoptée dans la théorie des probabilités et dans celle des
équations intégrales; consultez par exemple le Mémoire de M. Fréchet
dans les Quaterly Journal de 1934. La méthode développée par MM.
Yosida et Kakutani et par moi-méme dans nos travaux de 1938 s’ap-
plique encore sous cette hypothése plus générale. Mais c’est d’une autre
méthode que je veux parler.

Oublions dong, je le répéte, I'identité des invariants de S et de S* et
envisageons, outre K’ et E”, les deux sous-espaces analogues, disons F'’
et F”, qui correspondent & la transformation S*. Nous avons vu — et
notre calcul s’adapte aussi & I’hypothése plus générale dont nous venons
de parler — que la limite ¢ existe lorsque f, appartient soit & £’ soit &
E’ et que ¢ = 0 dans le premier cas et ¢ = f, dans le second ; les mémes
faits subsistent pour F'/ et F” par rapport & 8*. De 14 il découle aussitot
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que F’ et F” n’ont aucun élément commun sauf f = 0. Aussi, comme
nous I'avons vu, les sous-espaces £’ et E” sont orthogonaux et com-
plémentaires; de méme F’ et F”. Pour achever la démonstration, nous
n’avons qu’a montrer que tout élément f est de la forme f=f'-+4 f” ou
f’, f” (orthogonaux ou non, cela ne fait rien) appartiennent respective-
ment & E’ et E”. Or supposons le contraire. Il existerait, comme nous le
savons, un élément g # 0, orthogonal & la fois & E’ et E” et par con-
séquent, compris & la fois dans F' et F”, contrairement au fait que,
comme nous venons de le voir, ces deux sous-espaces n’ont, outre 0,
aucun élément commun. Ainsi le théoréme est démontré.

Cette fagon de compléter mon essai de démonstration est di & un autre
de mes collaborateurs, M. Lorch?), de I’Université Columbia & New-York.
Sa démonstration de notre théoréme ou plutot d’un théoréme qui le
généralise, se trouve dans le Bulletin de la méme société, de ’année 1939.
Dans ce qui précéde, je viens de ’adapter au cas de I'espace de Hilbert;
grice a la structure particuliére de cet espace le raisonnement devient
plus simple que dans le cas général envisagé par Lorch. La il s’agit des
espaces réflexifs; ce sont les espaces de Banach qui sont les conjugués de
leurs espaces conjugués; au lieu d’expliquer ces termes, qu’il nous suffise
de dire que les espaces uniformément convexes ne sont qu’un cas bien
particulier des espaces réflexifs. Observons encore que, dans le cas
général, Lorch est obligé de se reporter & un théoréme de M. Banach dont
la vérification fait appel au principe de Zermelo d’aprés lequel tout en-
semble peut étre bien ordonné.

Quand on veut aller encore plus loin, une des taches les plus intéres-
santes est de regarder ce que devient notre théoréme quand on passe du
rdle des itérés S* & un semi-groupe de contractions et cela sans les supposer
permutables. Déja le probléme le plus simple dans cette direction, & savoir:
si le théoréme de Dunford reste valable lorsque S et U ne sont plus per-
mutables, montre les difficultés que présente la voie dans laquelle nous
voulons entrer. Il sera intéressant de voir, avec M. Garrett Birkhoff,
comment ces difficultés, sans étre vaincues, peuvent néanmoins étre
tournées.

Etant données des contractions, en nombre fini ou infini, permutables
ou non, parmi lesquels ’identité, envisageons 1’ensemble des produits, a

?2) D’ailleurs, si cela vous intéresse, Lorch est suisse romand par sa meére et c’est
ici & Gendve qu’il a regu son éducation primaire. Boursier de voyage pendant ’année
1934/35, il vint en Europe pour travailler sous ma direction et le principal produit
de cette collaboration est un Mémoire sur la résolution spectrale des transformations
autoadjointes non bornées, inséré en 1936 dans les Transactions de la société mathé-
matique d’Amérique.
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un nombre quelconque de facteurs, que 'on en peut déduire. Formons
toutes les ,,moyennes‘‘ au sens général de ces produits S, c’est-a-dire
toutes les transformations du type

U=c¢8 4¢84+ ¢, 8, (c; =0,2c;,=1)

et convenons de dire que g est un conséquent de f toujours §’il existe une
moyenne U qui transforme f en g. Alors, pour chaque élément fixé f,, ses
conséquents convergent vers un élément déterminé ¢ la convergence
ayant alors le sens suivant: & tout conséquent f, et & tout ¢ positif, on
peut assigner un conséquent f, de f, de sorte que ||p —f|| < e pour
tout conséquent f de f,.

La démonstration qu’en donne Garrett Birkhoff n’envisage que 1'es-
pace de Hilbert, cependant, par une modification légére, on pourra la
faire embrasser tous les espaces L? o p > 1. Faute de temps je n’en-
trerai pas dans les détails. D’ailleurs, le théoréme cité n’est qu’une seule
piéce dans la riche collection de généralisations pénétrantes que M.
Garrett Birkhoff, a lui seul et en collaboration avec M. Alaoglu, viennent
de recueillir au cours de ces derniéres années.

(Regu le 5 aolit 1944.)
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