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Lineare Funktionale
in kompakten metrischen Raumen

Von WaLter NEF, Fribourg

In meiner Arbeit iiber ,,Die unwesentlichen Singularititen
der reguliren Funktionen einer Quaternionenvariabeln®?)
habe ich gezeigt (1. Teil), wie man in kompakten metrischen Rédumen auf
topologisch invariante Weise Stieltjessche Integrale definieren kann, Ich
bhabe dann, ohne einen Beweis anzugeben, einen auf solche Integrale sich t
beziehenden Satz verwendet, der eine Verallgemeinerung eines Satzes
von F. Riesz ist. Es ist das Ziel der vorliegenden Arbeit, diesen Satz zu
beweisen. Der Rieszsche Satz heiB3t?):

Es seien f (x) (k=1,2,3,...) abzihlbar viele fir a < x b stetige
reelle Funktionen. Die Grofen c, seien reelle Konstanten. Das Gleichungs-
system

b
fd[rX(-"C)]fic(x)==czc (k=1,2,3,...)

hat dann und nur dann eine Losung x(x), die in a < x < b von beschrink-
ter Schwankung ist, wenn eine positive Konstante F existiert, so daf fiir
jede natiirliche Zahl n und n beliebige reelle Konstanten &,,. .., 3, gilt:

n
—~

< F- max D fr(2)

n
X D ey
k=1

Es gibt dann eine Losung «(x), deren totale Variation auf {a,b> < F 1st.

Davon werden wir die folgende Verallgemeinerung beweisen, die wir
dann schlieBlich noch auf Quaternionenfunktionen iibertragen werden:

Satz 1. Es sei I ein kompakter metrischer Raum. f,(P)(k =1, 2, 3,...)
seien abzihlbar viele auf IN stetige reelle Funktionen. c, seten reelle Kon-
stante. Das Gleichungssystem

imfd[@w)]fk(P)mk (k=1,2,3,...)

1) C. M. H,, vol. 16, fasc. IV, pag. 284—304. Ich habe hier eine Berichtigung anzu-
bringen. Ich habe in dieser Arbeit von der zu integrierenden Funktion verlangt, da8 sie
gleichmaBig stetig sei. Es geniigt die Voraussetzung der Stetigkeit.

2) F. Riesz, Sur certains systémes d’équations fonctionnelles et 1’appro-

ximation des fonctions continwes. Comptes rendus des séances de 'académie des
sciences, t. 150 (1910), p. 674.
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hat dann und nur dann eine Liosung O (u), die auf M von beschrinkter
Schwankung ist, wenn eine positive Konstante F existiert, so daf fiir jede
natiirliche Zahl n und n beliebige reelle Konstanten 9,,..., 98, gilt:

£ 0, 0| <F- max iﬂkfk(m[ -
k=1 k=1

Es gibt dann eine Losung O (u), deren totale Variation auf IR < F st

Beweis: Das Kompaktum It ist stetiges Bild einer abgeschlossenen
nirgendsdichten Punktmenge D des Intervalls E: 0 < x <1, wobei
=0 und x =1 zu D gehoren?). Ist z ein Punkt von D und P sein
Bildpunkt in IR, so setzen wir P = o(z). Fir alle x c D setzen wir:

or (@) = fe(o(z)) (k=1,2,3,...) .

Damit haben wir auf D eine Menge von stetigen Funktionen definiert,
deren Definitionsbereich wir auf das Intervall 0 < # << 1 ausdehnen,
indem wir setzen:

¢y (r), wenn zxzcD

(@) ={ bld)—x x—alx)

b(w) . a(x) Pk (a’(x)) + b(CL') . a(x) Pk

@), W
wenn xc K —D.

Dabei sind die Funktionen a(x) und b(x) wie folgt erklirt: Die Komple-
mentdrmenge K — D der Menge D auf dem Intervall K ist auf der
Zahlengeraden offen, ist also die Vereinigungsmenge von abzidhlbar vielen
punktfremden offenen Intervallen. Ist nun xc £ — D, so ist a(x) der
Anfangs-, b(z) der Endpunkt desjenigen von diesen Intervallen, auf dem
x liegt. Es ist dann nach den Voraussetzungen des Satzes:

n n
S Orcr| < F-max| ¥ O ¢ (x)
k=1 auf E | k=1

fiir beliebiges n und beliebige Konstanten #,,..., d,. Also existiert
nach dem Rieszschen Satz eine auf E definierte Funktion «(x) von be-
schrinkter Schwankung, deren totale Variation < F ist und von der
Art, daB x

Jd[a(w)]mx):ck (k=1,2,3,...) (2)

1st.

8) Vgl. P. Alexandroff[H. Hopf, Topologie, I. Band, Berlin 1935, Kap.II, § 6,
Satz VI (8. 119).
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Nun seien die abzéhlbar vielen punktfremden offenen Intervalle,
deren Vereinigungsmenge die Menge E — D ist, mit o,, 05, 0,,... be-
zeichnet und es sei ay bzw. by, der Anfangs- bzw. Endpunkt von o),
(A=1,2,3,...).

Aus (2) folgt:

1 o by ” by,
[fd[a(x)]w(x)——g fd[a(x)]w(w)]+£fd[a(x)]w(x)=ck
0 T ey 5N

(3)
k=1,2,3,...).

Die in der eckigen Klammer stehende Differenz ist gleich 0. Denn da D
auf E nirgendsdicht ist, ist die Vereinigungsmenge der abgeschlossenen
Intervalle < a),b)> (A=1,2,3,...) mit £ = < 0,1 > identisch. Es
ist aber: '

by
[ d[a(2) 19x(2) = 02 ga(an) + B ga(b)
a)

(A1=1,2,3,..;k=1,2,3,...),

(4)

wo die «), )y Konstante sind. Denn die Funktionen ¢, (x) sind in den
Intervallen (a,, b)) linear. Ferner ist

Sliml+ial]<F.

Um das einzusehen, braucht man die «,, 8y nur aus ((1), (4)) zu be-
rechnen. Aus ((3), (4)) folgt:

[ ]

S{om@)+bm) | = k=1,2,3...

Nun sei 2' ein Mengensystem auf 9, das den Bedingungen 1. und 2. auf
Seite 286 der unter 1) zitierten Arbeit geniigt, und das der Definition des
Stieltjesschen Integrals auf M zugrunde gelegt sei. Ist u irgendeine zu X
gehorige Menge, so bezeichnen wir mit ¢—!(u) die Menge aller Original-
punkte aller Punkte der Menge u bei der Abbildung ¢. Wir setzen fiir
alle uc X' : - -

O(u) = XMW ay 4 X By,

A=1 Al=1
o0

oo
wo X bzw. X® iiber diejenigen Werte von A bzw. 4’ zu erstrecken
A=1 Ar=1

ist, fiir welche a) bzw. by, zu o~1(u) gehért. Dann gilt:
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1. @(u) ist in X totaladditiv.

2. O(u) ist auf MM von beschrinkter Schwankung und ihre totale
Variation ist < F.
3. Es ist

fdOwW] f(P)=c. (*k=1,2,3,...) .
m

Wir beweisen jetzt den Satz fiir Quaternionen:

Satz 2. Es set M ein Kompaktum. f,(P) (k= 1,2,3,...) seien ab-
zihlbar viele auf M stetige Quaternionenfunktionen. c, seien konstante
Quaternionen. Das Gleichungssystem

ly{d[@(u)] fo(P)=c,  (k=1,2,3,...)

hat dann und nur dann eine Losung O (u), die von beschrinkter Schwan-
kung ist, wenn eine positive Konstante F exustiert, so daf fiir jede natiirliche
Zahl n und n beliebige Quaternionen 9,,. .., 9, qilt:

S 0, fu(P)

k=1

n
SO cp
k=1

< F - max
auf P

Es gqibt dann eine Losung @(u), deren totale Variation auf N < 2F isth)

Beweis: Aus

:‘;mck < F.max é P fr | fiir alle 9,
k=1 auf M| k=1
folgt :
S 9| <F-max| &, f,| fir alle 9, ,
k=1 auf M| k=1
d. h. wenn
ﬂk:02+’:1 }c+i2 i+i3?9:;c >
fk = qu"{‘ ilﬁc‘f‘ izﬁc+ i3ﬁc
und

0 1 s ol | 2 a2 1 & 3
Cr = Cp 1 11 G+ 4 Cp + 13 G

4) Mit dieser Formulierung des Satzes berichtige ich einen Irrtum in der unter !) zitier-
ten Arbeit, wo ich sagte, daB die Voraussetzung nur fiir reelle Zahlen &, ..., ¢, erfiillt zu
sein brauche. Auf die Anwendung, die ich von dem Satz gemacht habe, hat dies keinen
Einflul. Ein Unterschied besteht auflerdem darin, da8 ich a. a. O. behauptete, ©® konne
so gewahlt werden, daB3 seine totale Variation < F sei. Das 1aBt sich durch direkte Ver-
allgemeinerung des Rieszschen Beweises auf den Fall der Quaternionen tatséchlich zeigen.
Der hier gegebene Beweis ist jedoch so viel einfacher, da@ ich ihn vorgezogen habe, trotz-
dem er nur auf die Schranke 2 F fiihrt, was fiir irgendwelche Anwendungen keinen Ein-
fluB ausiiben diirfte.
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ist : > [(79202 e+ e+ Bed) +
k=1
+ (— e+ el — Bk + k)i, +
+ (— Rk + T cq + Bk — Frer) iy +
+<~azcz——a;cz+0icz+0:«:9,)»'3] <
<Fmax | 34,7, d h
auf M k=1
0+ e+ i+ 9icl)| < F-max Eﬁkﬁ =
auf M| k=1
~ Fmax kE[(02f£+0ifi+ﬂi/§+ﬂif2)+
+ (= fe + Rfe — Nfi + 0 fi) i+
+ (— Rfe+0f + fp — 9ife)is +
+( 02-f2~02f2+0if£+02f2)ia] <
<2Fmax{max| ¥ ( R+ (i +KKE+%7K) |,
auf M| k=1

max | 3 (— 9 fi + Kfs — %fi + %S5 |,

auf M

Y

[

max | ¥ (—Rfi +Kfi + %R —%f) |,

auf M

max | ¥ (= Oife — %fi + ifi + AR || - (5)

ae
[y

Diese Ungleichung (5) ist also fiir eine beliebige natiirliche Zahl
n und n beliebige Quaternionen ¥,,..., ?, erfiillt,

Nach dieser Umformung der Voraussetzungen von Satz 2 fragen wir

auf Grund des Satzes 1 nach den Bedingungen fiir die Losbarkeit des
Gleichungssystems

ﬁyd[@(‘u)] fP)=c, (k=1,2,3,...) (6)
durch eine Quaternionenfunktion

O (u) = O%u) 4 1,0 (u) + 1,0%u) + 1,03%u) ,
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deren totale Variation auf IR hochstens gleich einer vorgegebenen
Konstanten G ist. Zerlegen wir (6) in Komponenten, so folgt:

fd[@“] fe ~fd[@1] f;—fd[@‘z] f,g_{ d[6°] f2 =
m o3 0 W

fd[@"] fi +ﬁfd 01 f¢ +f i[6?] f2 —-'( A[0°] f2 = ¢t
d[0°]fi —|d[0] fi + [d[6*] fo + [d[€°] fi = &2
ghf[ 1f nf[ ]f+®[[ ]f“}([ 11

.fd[@o] fi +fd [61] f2 —fd[@z] I +Jd[@3] fo—a
M P &
k=1,2,3,...). ()

My, M,, M,, M, seien vier mit IR homdomorphe kompakte metrische
Réume und IR* ihre Vereinigungsmenge. Zwischen IR} und jedem der
4 Kompakta I, zeichnen wir je einen festen Homoomorphismus o; aus
(3=20,...,3). Es sei 0/(P) der dem Punkte P c I, vermoge o; ent-
sprechende Punkt in 9R. Wir definieren auf IM* die folgenden stetigen
Funktionen:

fi(0o(P)) , wenn P c I,

0 . "‘fl:(o'l(P)) , ) Pc,
7 (F) = —~ fi(o:(P)) , - P c I,
— fi(05(P)) , - Pc IR,
f;(GO(P)) ’ ’ Pcﬂﬁo

1 . fi (o (P)) , ’ PcM,
PelF) = filos(P)) , ., Pc,
— fi(as(P)) , ” Pcin,

k=1,2,3,...) .

fl?(o'o )) ’ 2] PCﬂﬁo

2 ) ,k(al )) ) %) Pcml
(pk(P)— fk(02(P)) ’ 2 PCimz
fk(03 )) ’ T} PCﬂRa

fk(GO(P) ’ ) Pcmo

3(P)___ fk(al(P)) ’ 9 PCiml
PR T (), . Pc®

R (as(P)) , ,, PcW
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Wir fragen jetzt nach den Bedingungen fiir die Existenz einer total-
additiven Funktion I'(x) von beschrankter Schwankung auf IR*, deren
totale Variation hochstens gleich einer gegebenen Konstanten G ist, und
fir die gilt:

(AT lei=c @=0,..,3; k=1,2,3,..). (8
me

Notwendig und hinreichend ist nach Satz 1, da8 fiir jede natiirliche
Zahl n und 47 beliebige reelle Zahlen ¢},..., 8} (I = 0,... 3) gilt:

Diese Bedingung ist aber identisch mit (5), falls @ = 2F ist, und also
fir G = 2F erfullt. Also hat (8) eine Losung I'(u) auf IMM*, deren totale
Variation << 2F ist.

Auf IR definieren wir nun die totaladditiven Mengenfunktionen

O (u) = I'(o7*(p))  (j=0,...3).
Die Summe der totalen Variationen dieser 4 Funktionen ist <{ 2F, und

aus (8) folgt, daB die @/(u) die Gleichungen (7) befriedigen. Setzen wir
also

O(n) = O%u) + 1,0 (u) + 1,0%(u) + 1,0%u) ,
80 ist

Smfd[@(:u)]fk(P)zck (k=172:3a°"),

und die totale Variation von @ (u) ist hochstens gleich 2F, w. z. b. w.

(Eingegangen den 28. August 1944.)
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