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Kristallographische Bestimmung der Charaktere
der geschlossenen Lie'schen Gruppen

Von E. Stiefel, Zurich

Herrn H. Hopf zum 19. November 1944 in Dankbarkeit gewidmet.

In einer friiheren Arbeit1) wurde gezeigt, da8 die Struktur und Ver-
wandtschaft der geschlossenen Lie'schen Gruppen kristallographischen
Gesetzen unterliegt. Um dies noch genauer zu formulieren, nennen wir
im folgenden eine diskontinuierliche Bewegungsgruppe F eines Z-dimen-
sionalen euklidischen Raumes Rl, welche durch Spiegelungen an (l — 1)-
dimensionalen Ebenen erzeugt wird (und l linear unabhângige Trans-
lationen enthâlt) kurz eine kaleidoskopische2) Gruppe.

Zwischen den geschlossenen halbeinfachen und einfach zusammen-
hângenden Lie'schen Gruppen G einerseits und den kaleidoskopischen
Gruppen andererseits besteht alsdann ein-eindeutige Zuordnung ; speziell
bestimmt also jede kaleidoskopische Gruppe F eine bis auf Isomorphie
eindeutig festgelegte Lie'sche Gruppe G. Die Gruppe Fk&nn durch ihre
Spiegelebenen gegeben werden; es sind dies m Scharen von parallelen
àquidistanten Ebenen, welche das Diagramm der Lie'schen Gruppe G

bilden.
Da das Diagramm also die Struktur von G bestimmt, mussen sich aile

algebraischen und geometrischen Eigenschaften von G aus ihm ablesen
lassen. Die nachfolgende Untersuchung behandelt eine spezielle Frage
dieser Art ; es werden die Charaktere der irreduziblen Darstellungen der
Lie'schen Gruppe G aus ihrem Diagramm errechnet. Dabei ist zu be-

tonen, dafi wir auBer des Diagramms keinerlei Eigenschaften von G ver-
wenden; wir werden vielmehr die kaleidoskopische Gruppe vorgeben
und dann aus der Darstellungstheorie Eigenschaften der zugehôrigen
Lie'schen Gruppe herleiten. In einigen Fâllen gelingt es sogar, auf dièse
Weise die Lie'sche Gruppe aus ihrem Diagramm zu konstruieren und die

Eindeutigkeit dieser Konstruktion nachzuweisen, was in der friiheren

1) ,,tTber eine Beziehung zwischen geschlossenen Lie'schen Gruppen
und diskontinuierlichen Bewegungsgruppen euklidischer Râume und ihre
Anwendung auf die Aufzàhlung der einfachen Lie'schen Gruppen."
Comm. Math. Helv. 14, S. 350—380.

2) Wir entlehnen diesen Namen dem bekannten Spielzeug, welches mit Hilfe von zu-
einander geneigten Spiegeln solche Gruppen im dreidimensionalen Raum praktisch
herstellt.
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Arbeit nur mit tiefliegenden Hilfsmitteln der Lie'sehen Théorie môglich
war (vgl. § 2, Beispiel 1). Dieser Standpunkt ist besonders ratsam bei
den Lie'schen Âusnahmegruppen, die auf dièse Weise einigermaBen
handlich bearbeitet werden kônnen. Die systematische Darstellungs-
theorie der Ausnahmegruppen soll spâter entwickelt werden; in der vor-
liegenden Arbeit wird nur die einfachste von ihnen als Beispiel fur das

Grundsâtzliche behandelt.
In § 1 wird die allgemeine Théorie auseinandergesetzt ; sie schlieBt

sich an die Méthode von H. Weyl an3), ist aber gegeniiber dieser insofern
elementar, als keinerlei Kenntnisse aus der Lie'schen Théorie benôtigt
werden. Der Inhalt dièses § 1 sollte ohne Kenntnis der friiheren Arbeit
verstândlich sein ; es sei noch darauf hingewiesen, daB sich die in Nr. 1

repetierten Tatsachen fur eine konkret vorgelegte Gruppe der vier
Cartan'schen Klassen muhelos direkt verifizieren lassen. In Nr. 5 ist
das SchluBresultat formuliert4). Der § 2 enthàlt zwei typische Beispiele,
in § 3 endlich wird einiges nachgetragen, was zum Verstândnis des all-
gemeinen Gedankenganges nicht notwendig ist.

Es sei noch bemerkt, daB die Beschrànkung auf einfach zusammen-
hângende Gruppen unwesentlich und sogar eher ein Vorteil ist. Ist nâm-
lich G mehrfach zusammenhângend, so liefert uns die Darstellungstheorie
der universellen Ûberlagerungsgruppe von G einmal aile eindeutigen Dar-
stellungen von G, auBerdem aber die mehrdeutigen, die sogenannten
Spin-Darstellungen.

§ 1* Die allgemeine Méthode

1. Die zu einer geschlossenen halbeinfachen und einfach zusammen-
hangenden Lie'schen Gruppe G gehôrige kaleidoskopische Gruppe F wird
auf folgende Weise erhalten5) : Man wâhle in G eine abgeschlossene und
zusammenhàngende Abel'sche Untergruppe T von môglichst hoher
Dimension l. Man beweist6), daB T direktes Produkt aus l Kreisdrehungs-
gruppen ist und nennt daher T ein maximales Toroid in G. Es gilt nun
das wichtige Hauptachsentheorem (von E. Cartan). Das maximale Toroid

8) H. Weyl: Théorie der Darstellungen kontinuierlicher halbeinfacher
Gruppen durch lineare Transformationen, Kapitel IV, §3. (Math. Zeitschrift
24, S. 377—396).

4) Vgl. auch H. Weyl, The classical groupa (Princeton 1939).

•) Beweise in der unter x) zitierten Arbeit (speziell § 2, Nr. 9 und fur einfach zusammenhàngende

Gruppen § 4).

•) Vgl. L. Pontrjagin, Topological groupa (Princeton 1939).
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enthâlt zu jedem Elément von G mindestens ein konjugiertes1). Bei den
inneren Automorphismen von G durchlâuft also T die ganze Gruppe G.

Wir betrachten nun speziell die inneren Automorphismen von G,
welche das Toroid T in sich iïberfuhren; sie ergeben eine endliche Gruppe
0 von Abbildungen von T auf sich, welche das Einselement e von G (das
ja auf T liegt) fest lassen.

Eine Umgebung von e in T kônnen wir auf Koordinaten xx, x2,..., xt
beziehen. Dabei seien die Koordinaten von e aile Null. Man kann nun
dièses Koordinatensystem so wâhlen, dafi gilt:

a) die Gruppenmultiplikation in T bedeutet Addition entsprechender
Koordinaten.

b) die Operationen von 0 sind orthogonale Transformationen in den
Koordinaten xx, x2,..., xl.

Geometrisch kann man dies folgendermaBen ausdrùcken:

Wir bezeichnen den Z-dimensionalen euklidischen Raum der Koordinaten

xl9 x29..., xt mit Rl. Er ist der universelle Ûberlagerungsraum
oder die ,,Abwieklung" des Toroids T. Dann gilt:

a') die Gruppenmultiplikation in T wird zur Vektoraddition im Rl.

hr) Aus der Transformationsgruppe 0 des Toroids T wird eine endliche

Gruppe W von Drehungen und Drehspiegelungen des Rl, welche den

Nullpunkt fest lapt.

Ferner bilden die Punkte des Rl, welche e iiberlagern, ein Punktgitter y
in Rly welches wir das Einheitsgitter nennen.

Nach diesen Vorbereitungen kônnen wir nun die Définition der zu G

gehôrigen kaleidoskopischen Gruppe F geben. F ist die durch W und die
Translationen von y erzeugte Transformationsgruppe des Rl. Es wurde
in der frûheren Arbeit gezeigt:

c) Die Spiegelebenen von F bilden m Scharen von parallelen und âquidi-
stanten Ebenen und F wird von diesen Spiegelungen erzeugt. Die
Dimension von G betrâgt n l + 2m.

d) Jede Ebenenschar enihalt eine Ebene durch den Nullpunkt und die
Spiegelungen an diesen m Ebenen durch den Nulljntnkt erzeugen W.

Unter den m Ebenen gibt es l linear unabhangige.

e) Das Einheitsgitter y entsteht, indem man F auf den Nullpunkt ausUbt.

7) Fût die voile unitâre Gruppe ist dies in der Tat das elementare Hauptachsen-
theorem.
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f) Das Zentrum von G ist eine diskrete Teilmenge von T; es entspricht
ihm im Ûberlagerungsraum Rl ein Punktgitter gz, welches eine Ver-
feinerung von y ist. Aufierdern besteht gz genau aus den Punkten, durch
die jede der m Scharen eine Ebene schickt.

Zur Illustration sei hier noch einmal das Diagramm der Grappe von
allen unitàren dreireihigen Matrizen der Déterminante + 1 hergesetzt.

Bisweilen ist es angezeigt, an Stelle der recht-
winkligen Koordinaten xx, x2,..., xt schief-
winklige yl9 y2i..., yl zu verwenden und zwar
als Grundvektoren l primitive Translationen
des Gitters y zu nehmen. Die Eigenschaft b)
wird dann ungûltig und ist zu ersetzen durch

b/;) Die Operationen von W sind ganzzahlige
lineare Transformationen in den Koordinaten

• Punkt von gz
• Punkt von y j)er Beweis ergibt sich aus der Tatsache, da8

^^ primitiver Vektor von y wegen e) die Grappe p und daher auch ihre
Fig# 1 Untergruppe W das Gitter y invariant làBt.

Jede Schar von Spiegelebenen des Diagramms kann im Koordinaten-
system durch eine Gleichung

1, x2,..., xt) c j 1, 2,..., m (1)

gegeben werden ; dabei durchlâuft fur ein festes j das absolute Glied c aile

ganze Zahlen. Umgekehrt sind die Linearformen &$ durch das Diagramm
eindeutig bis auf das Vorzeichen bestimmt, sobald ein Koordinaten-
system gewahlt ist. Speziell haben im Koordinatensystem y1, y%,..., y%

aile Linearformen êj ganzzahlige Koeffizienten. Dies erkennt man am
schnellsten so: wegen f) geht durch den Endpunkt (1,0,..., 0) des

ersten Grundvektors eine Ebene aus jeder Schar, dieser Punkt muB also
fur jedes j die Gleichung (1) erfullen, somit

sein. Der erste Koeffizient von $$ ist also ganz und dasselbe beweist man
analog von den iibrigen Koeffizienten.

2. Nun sei eine stetige Darstellung D der Lie'schen Gruppe 0 vorgelegt.
Ihren Charakter bezeichnen wir mit %. Es ist dies eine Funktion in der
Gruppe G, deren Wert fur ein bestimmtes Elément x von G gleich der
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Spur der Matrix A (x) ist, welche x darstellt. % (x) ist eine Klassenfunktion,
das heiBt hat denselben Wert fur zwei konjugierte Elemente von G. Dies
folgt ja sofort aus

Spur [A^xs)] Spur [A (s)-1 A (x) A (s)]

] X(x)

Wegen des Hauptachsentheorems von Nr. 1 geniigt es daher vollstândig,
die Werte von x(x) fur die Elemente x des Toroids T zu kennen; mit
anderen Worten: x ist eine Funktion %(#i, #2,..., a^) au^ ï7 °der im 22'.

Dièse Funktion hat nun folgende wesentliche Eigenschaft :

Satz 1. x(xi> X2>- - •» xi) ist ctutomorph gegenûber der Bewegungsgruppe
F, bleibt also ungeândert, wenn die Koordinaten einer Substitution von F
unterworfen werden.

Zum Beweis ist zweierlei zu zeigen:

a) x(xj) ist automorph gegenûber den Translationen des Gitters y.
Dies folgt einfach daraus, da6 zwei in bezug auf y âquivalente Punkte
dasselbe Elément des Toroids T iiberlagern.

b) x(xi) iQt automorph gegenûber W. Dies bedeutet, dafi x als Funktion
auf dem Toroid automorph gegenûber den Operationen der Abbildungs-
gruppe 0 ist. Um das zu verifizieren, mûssen wir uns nur daran erinnern,
da8 eine Abbildung von 0 durch einen inneren Automorphismus von G

bewirkt wird, also jedes Elément von T in ein konjugiertes ûberfûhrt. Fur
konjugierte Elemente hat aber der Charakter denselben Wert.

Im folgenden verwenden wir nun auch das in Nr. 1 eingefûhrte Koor-
dinatensystem yx, y%,..., yt und fassen dementsprechend x ^ Funktion

der yj auf. Die eben unter a) angefûhrte Eigenschaft besagt dann,
daB x(Vj) in allen Variabeln die Période 1 hat. Es ist daher naheliegend
X(Vj) in eine Fourierreihe zu entwickeln, das heiBt als Linearkombination
von Ausdrûcken

darzustellen. Dabei sind die q$ ganze Zahlen. Um eine brauchbare
Terminologie zu haben, nennen wir (2) einen Elementarausdruck und fûhren
dem Setzer zuliebe eine Funktion e (<p) ein durch

e(q>) e2JTiv (3)

Unser Elementarausdruck e(qx yx + ••• -f q^J lautet in den ^-Koordinaten

e(Pi xx -\ 1- Pixi), wobei die pi nicht notwendig ganz zu sein
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brauchen. Den Vektor p mit den #-Koordinaten ply p2,..., pt nennen
wir den Vektor des Elementarausdrucks*). Die Multiplikation zweier
Elementarausdrûcke geschieht durch Addition ihrer Vektoren.

Es zeigt sieh nun, daB % keine unendliche Fourierreihe, sondern ein
endKches trigonometrisches Polynom ist. Genauer:

Satz 2. x ist e^ne Linearkombination von endlich vielen Elementar-
ausdrUcken mit positiven ganzen Koeffizienten.

Beweis: Es sei t speziell ein Elément des Toroids T. Da T eine ge-
schlossene Gruppe ist, kônnen wir naeh einem Satz von H. Weyl an-
nehmen, daB die Darstellungsmatrix A(t) unitâr sei. AuBerdem ist T
Abel'sche Gruppe und daher sind die Matrizen A(t) aile miteinander
vertauschbar, kônnen also durch Abânderung des Koordinatensystems
im Darstellungsraum simultan auf Diagonalgestalt gebracht werden.
Indem wir annehmen, dies sei geschehen, haben wir also

dabei sind die yj die Koordinaten von t und v ist der Grad der Darstellung,
das heiBt die Dimension des Darstellungsraumes. Aus der Darstellungs-
bedingung

A{tt') A(t)A(t')
folgt

(Wir erinnern daran, daB die Gruppenmultiplikation in T einfach die
Koordinatenaddition bedeutet.) Setzen wir fur einen Augenblick in einer
Variabeln y

hpiy) «*(0, 0,..., 0, y, 0, 0,..., 0), ii 1, 2,..., l, (5)

wobei das y rechts an der ft-ten Stelle steht, so folgt aus (4)

Wegen der Stetigkeit der Darstellung D hat dièse Funktionalgleichung
nur die Lôsung

8) Im y-Koordinatensystem hat er die kovarianten Komponenten qj (— skalare Pro-
dukte mit den Grundvektoren).
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f*p{y) c^eiq^y) (6)

c^ ist 0 oder 1, q^ komplex. Da ferner bei der Darstellung das Eins-
element mit den Koordinaten 0, 0,..., 0 in die Einheitsmatrix uber-
gehen muB, gilt

ak(O,O,...,O) fkfl(O)=l,
also

<>=!> fkfl(y) eiq^y) (7)

Aus (4) und der Définition (5) folgt weiter

^kiVi) fki{yi)fk*(y*) • • • fkiiVi) >

also
h

Nun sind aber auch die afc automorph gegenuber den Translationen des

Einheitsgitters y, mussen also in allen Variabeln die Période 1 haben.
Daraus folgt, daB die q3 ganze réelle Zahlen sind. ak(yj) ist also ein Ele-
mentarausdruck. Der Charakter % ist die Spur von A (t) und daher eine
Summe von Elementarausdrucken (von denen einige ubereinstimmen
konnen). Damit ist Satz 2 bewiesen.

Jetzt benutzen wir noch die Tatsache, dafi % gemaB Satz 1 auch
automorph ist gegenuber der Gruppe W. Es sei

i
x, Za3kx'k, j= 1, 2,...,Z (9)

eine Transformation von W. Nach Nr. 1, b bilden die a3k eine orthogonale
Matrix. Setzen wir daher

v', 2,*,kVk (1°)

so folgt
Pi x'i + P2 X* H h Pi x'i V'i »i + 2>2 X2 H h P\ *i • (11)

Sobald also der Elementarausdruck e(p1x1 + "' + Pixi) in % ent-
halten ist, muB auch der Elementarausdruck e(p1x1 + ••• -f- p'i%i) mit
demselben Koeffizienten in % auftreten. Oder geometrisch ausgedrxickt :

Ist p der Vektor eines in % enthaltenen Elementarausdrucks, so enthalt
X auch aile Elementarausdrucke, deren Vektoren durch Ausûben von W

auf p entstehen. Wir nennen nun

(p)
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eine automorphe Elementarsumme. Dabei ist die Summation iiber aile
Vektoren p zu erstrecken, welehe aus einem gegebenen Vektor p0 durch
Ausûben der Gruppe W entstehen. Ist N die Ordnung von W und No die
Ordnung der Untergruppe, welche p0 fest lâBt, so enthâlt die Summe

genau NjN0 Elementarausdrucke. Wir haben damit gefunden:

Satz 3. Der Charakter x ist vw& Linearkombination von automorphen
Elementarsummen mit ganzen positiven Koeffizienten.

3. Alternierende Elementarsummen

Es sei e(q1y1 H h qlyl) e{p1x1 + ••• + ptxt) mit ganzen qj wie-
der ein Elementarausdruck. Es sei ferner f(xs) eine Linearkombination
von Elementarausdrucken mit ganzen (positiven oder negativen)
Koeffizienten. Wir nennen f{xj) ein alternierendes Polynom, wenn jede un-
eigentliche9) Transformation von W Vorzeichenânderung von f{Xj) be-

wirkt, jedoeh jede eigentliche Bewegung von W die Funktion invariant
làBt. Wie oben beweist man leicht, da6 wenn in f{x§) das Glied
%e(Pixi + "* + Vixi) als Summand auftritt, dann auch das nach (10)
berechnete Glied ± Ae(p[x1 + ••• -\- pfiXt) auftreten muB, wobei das
Vorzeichen mit dem Vorzeichen der Déterminante der Transformation
(9) ubereinstimmt.

Im folgenden setzen wir nun durchwegs voraus, da8 unser alternierendes

Polynom
ifri) HhelPkiXi ~\ h Pki*i)

(*)

in fertig ausgereehneter Form gegeben sei, das heifit keiner der
Koeffizienten Xk soll Null sein und es sollen niemals zwei Exponentenreihen
jPfci> Pk2>- - •' Pki ûbereinstimmen. Wir verbieten speziell auch, dafi das

Polynom identisch verschwindet. Unter dieser Voraussetzung kann man
zeigen :

Satz 4. Es sei p der Vektor eines in dem alternierenden Polynom ent-
haltenen Elementarausdrucks. Wird dann die Gruppe W auf p ausgeûbt, so
bleibt p nur bei der Identitat fest.

Beweis indirekt. Nach Nr. l,d wird W erzeugt durch die Spiegelungen
an den Diagrammebenen, welche durch den Nullpunkt laufen. Dièse
Ebenen teilen daher den Raum Rl in Fundamentalbereiche von W ein10).
Gibt es nun in W eine von der Identitat verschiedene Transformation,

9) d. h. Transformation von der Déterminante — 1.

10) In der frùheren Arbeit ausfûhrlieh bewiesen (§ 2, Nr. 10, Satz 11).
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welche p fest lâBt, so kann p (vom Nullpunkt aus gezeichnet) nicht ins
Innere eines Fundamentalbereiches zeigen, mufi also in einer Spiegel-
ebene liegen. Die Spiegelung an dieser Ebene lâBt p fest und daher miïBte
nach obiger Betrachtung das alternierende Polynom mit dem Glied
%e(Pixi + "" + Vixi) au°h das Glied (— ^)e(p1x1 + ••• + ptXj) ent-
halten, was wir verboten haben.

In Zukunft nennen wir einen Vektor p, der nur bei der Identitât von
W fest bleibt, also ins Innere eines Fundamentalbereichs von W zeigt,
einen regularen Vektor.

Wie in Nr. 2 bilden wir nun unter Zugrundelegung eines regularen
Vektors p0 die alternierende Elementarsumme

S{xô) Z±e(p1x1+ ••• + plxl)
(v)

wobei die Summation ûber die JV Vektoren p zu erstrecken ist, welche
aus p0 durch W hervorgehen. (N Ordnung von W.) Dabei gilt das
obère oder untere Vorzeichen je nachdem, ob der betreffende Vektor p
durch eine eigentliche oder uneigentliche Transformation von W aus p0

hervorgegangen ist*). Eine alternierende Elementarsumme enthâlt also
im Gegensatz zur automorphen Elementarsumme immer genau N Glieder.
Sie verschwindet in jedem Punkt einer Spiegelebene von W (Diagramm-
ebene). Daraus folgt dann: Ist p die Anzahl der Spiegelebenen, welche
durch einen gegebenen Punkt von Rl gehen, so beginnt die Taylorent-
wicklung unserer Elementarsumme in diesem Punkt mit einer Form in
xx, x2,..., xl9 die mindestens vom Grad ju ist.

Analog zu Satz 3 haben wir nun unter Beriicksichtigung von Satz 4 :

Satz 5. Ein alternierendes Polynom ist Linearkombination von alter-
nierenden Elementarsummen mit ganzen (positiven oder negativen) Koef-
fizienten.

Orthogonalitât. Wir verwenden jetzt wieder das Koordinatensystem
y1^ Vit • •> Vi> dessen Grundvektoren primitive Vektoren des Einheits-
gitters y sind. Ist P das von diesen Vektoren aufgespannte Parallelepiped
und sind e{q1yl+ ~- + q%yl) beziehungsweise e(q[yx + -• • \
zwei Elementarausdriicke, so gilt offenbar

qflyl) dyx.. .dyl

Wegen (11) kann man statt dessen auch Pi,...,Pi fest halten und ûber aile
Bilder des Punktes (x19 o;2,..., o?j) vermôge der Gruppe W summieren.
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wobei der Wert 1 nur fur qx q[,..., ql q\ auftritt. Daraus folgt
leicht die fur zwei alternierende Elementarsummen giïltige Intégral-
formel

58(yi)S'(yi)dy1...dyl
0 fur 8(Vi) ^±Sf{y})

±N fur S{y3)= ±8/(yj)
(12)

(Man beachte, daB zwei alternierende Elementarsummen, die in einem
Elementarausdruck ûbereinstimmen, identisch sind.) Mit anderen
Worten

Satz 6. Die alternierenden Elementarsummen bilden ein orthogonales
Funktionssystem im Fundamentalparallelepiped P.

Pràzisierend muB hinzugesetzt werden, da8 man naturlich von zwei
Elementarsummen, die sich nur im Vorzeichen unterscheiden, nur eine
in das System aufzunehmen hat.

4. In der geschlossenen Lie'sehen Gruppe G kann eine invariante
Volumenmessung definiert werden. Dabei ist unter dem Ausdruck
„invariant^ folgendes zu verstehen:

Das Gruppenelement x durchlaufe eine meBbare Teilmenge M von G
und s sei ein festes Gruppenelement. Dann haben die von s x und xs
durehlaufenen Mengen dasselbe Volumen wie M.

Ist f(x) eine in ganz G definierte stetige Funktion, so lâBt sich das

Intégral J /
(0)

bilden, wobei dvx das invariant gemessene Volumenelement an der
Stelle x bedeutet. Wir benôtigen aber hier nur das Intégral einer Klassen-
funktion, also einer Funktion, welche in einer Klasse konjugierter Ele-
mente von G konstant ist. Nach dem Hauptachsentheorem von Nr. 1 ist
dièse Funktion bereits durch ihre Werte auf dem maximalen Toroid T
gegeben. Man wird daher erwarten dûrfen, daB man zur Berechnung von
J nur ein Intégral ûber T auszuwerten hat. Die nâhere Analyse in § 3

bestâtigt dièse Vermutung und zwar ergibt sich

dvx Sf{y,)e (Vj) àyx... dVl ; (13)
(G) (P)

P ist wieder das Parallelepiped der primitiven Vektoren von y; in der
Tat muB ja der Punkt im Rl dièses Parallelepiped durchlaufen, damit
das zugehôrige Gruppenelement das Toroid einmal durchlâuft. Die
Dichtefunktion Qiy^) kann auch als ,,Oberflâche" der Klasse konjugierter
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Elemente angesprochen werden, welche von dem Elément des Toroids
mit den Koordinaten yj ausgeht. Im § 3 werden wir finden

Q(y,)=II2[l — (U)

Dabei sind die &k die in Nr. 1 definierten ganzzahligen Linearformen,
welche die Spiegelebenen des Diagramms definieren. Die Funktion
verschwindet also in den Punkten der Diagrammebenen. Wegen

1 — cos 2 n &

fuhren wir noch die Funktion

à (y,)

oder

A(y,)= H

y^) 2 sin2 n \

n
J 2i sin 7t&k(

h(y^

(15)

(16)

ein und haben also

das heiBt die endgiiltige Formel

(17)
(G)

Aus (15) liest man ab: Ist fjt wieder die Anzahl der Diagrammebenen,
welche durch einen gegebenen Punkt des Rl gehen, so beginnt die

Taylorentwicklung von A (y3) in diesem Punkt mit einer Form vom
genauen Grad \x.

Nun beweisen wir

Satz 7. Die Funktion A(y3) ist ein alternierendes Polynom im Sinne
von Nr. 3.

Zunachst ist nâmlich die Dichtefunktion q{y3) automorph gegenùber
der gesamten kaleidoskopischen Gruppe F. Denn die Gruppe 0 von Ab-
bildungen des Toroids fiihrt, wie wir schon in Nr. 2 sahen, eine Klasse
konjugierter Elemente in sich iiber und q{yj) ist ja die Oberflàche einer
solchen Klasse.

Nun erhâlt man A (y/) im wesentlichen durch Wurzelziehen aus Q(y}),
also muB dièse Funktion bei einer Opération von F entweder unge-
àndert bleiben oder das Vorzeichen àndern. Die Formel (15) zeigt jetzt
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sofort, daB A (y^ bei einer Spiegelung an einer Diagrammebene #f(y,) c

das Vorzeichen ândert. Denn setzt man speziell einen Punkt ein, der
dieser Diagrammebene sehr nahe liegt, so ândert der Faktor sin n &t (y^)
das Vorzeichen, wâhrend die anderen Faktoren das Vorzeichen behalten.
Da nach Nr. 1 c die Spiegelungen an den Diagrammebenen F erzeugen,
ist A (y^) invariant bei jeder eigentlichen Bewegung von F und ândert
sein Vorzeichen bei jeder uneigentlichen. Da nun F auch von W und den
Translationen des Einheitsgitters y erzeugt wird, muB A (y^ automorph
sein gegenuber den Translationen von y und sich gegenuber W ebenfalls
alternierend verhalten.

Bei der Ausmultiplikation von (16) erscheint nun A{yi) als Summe

von Exponentialausdrûcken, welche wegen der Invarianz gegenuber
den Translationen von y Elementarausdriicke im Sinne von Nr. 2 sein

mussen. (Die Nenner 2 mûssen also beim Ausmultiplizieren verschwin-
den.) Damit ist ailes bewiesen.

Im § 3 werden wir noch das gesamte Volumen der Gruppe G also nach
(17) das Intégral

$\A{yi\*dy1...dyl
(P)

berechnen und dafur den Wert N Ordnung von W) finden. Daraus
kann man in Verschârfung von Satz 7 schlieBen

Satz 8. Die Funhtion A (y^) ist eine alternierende Elementarsumme.

(Bei der Ausmultiplikation in (16) mussen also genau N Glieder
stehen bleiben.)

Beweis. Da A(y^) nach Satz 7 alternierendes Polynom ist, gilt nach
Satz 5 eine Darstellung

-2Mffc(y,) (18)

mit ganzzahligen ak. Unter Berucksichtigung der Orthogonalitâts-
relationen von Nr. 3 Formel (12) ergibt sich daraus

(P) (k)

Wie wir eben zitiert haben, ist aber die linke Seite N und damit muB

(*)

sein, was wegen der Ganzzahligkeit der ak nur môglich ist, wenn aile
Zahlen ak verschwinden bis auf eine, welche ± 1 ist.
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6. Jetzt sollen die Charaktere Xk(x) der irreduziblen Darstellungen der
Lie'schen Gruppe G berechnet werden. x sei wieder das allgemeine
Elément von G.

Wir benutzen dazu die bekannten Orthogonalitâtsrelationen der Dar-
stellungstheorie nâmlich

10 filr i^k
\N fur i k

Zur zweiten Alternative in dieser Formel soll noch folgendes bemerkt
werden. Das Intégral des Quadrats des Betrages eines Charakters Xk(x)
ist sicher einmal fur aile Charaktere dasselbe. Setzt man speziell den
Charakter der Einsdarstellung ein (welche jedem Gruppenelement x die
Zahl 1 als einreihige Matrix zuordnet), so erkennt man, daB dièses

Intégral gleich dem gesamten Volumen von G ist. Dafur haben wir oben
den Wert N gefunden.

Unter Benutzung der Volumenformel (17) kônnen wir dièse Relationen
nun schreiben

0 filr i ^ k
S Xt (y,) Xk(y}) I à (y}) |2 dyx... dyx

N fur i =k
Wir fiïhren zur Vereinfachung an Stelle der Charaktere die Charak-
teristiken ein

und haben dann

J
0 filr i ^
N fur i (21)

Die Charakteristiken bilden also ein orthogonales Funktionssystem im
Parallelepiped P.

Nun ist nach Satz 3 ein Charakter %h eine ganzzahlige Linearkombina-
tion automorpher Elementarsummen und A(y^) ist nacb Satz 7 alter-
nierendes Polynom, also ist die Charakteristik Xk nach ihrer Définition
(20) auch ein alternierendes Polynom und somit existiert nach Satz 5

eine Darstellung

^) J^^W (22)
w

mit ganzzahligen afcfi. Integrieren wir dies mitUnterstutzung der Formeln
(12) von Nr. 3, so ergibt sich

J Xk(y,) Xk{Vi) dyx.
(P)(P) (/*)

12 Commentaril Mathematici Helvetici



Konfrontation mit der zweiten Formel (21) ergibt

-S al 1

(m)

was wegen der Ganzzahligkeit der akfl wieder nur môglich ist, wenn aile

akfl verschwinden bis auf eines, welches ± 1 ist. Aus (22) folgt daim

Satz 9. Jede zu einer irreduziblen Darstellung gehorige Charakteristik
ist alternierende Elementarsumme.

Es gilt aber auch die Umkehrung

Satz 10, Jede alternierende Elementarsumme ist Charakteristik einer
irreduziblen Darstellung. (Abgesehen vom Faktor ± l.)

Dies folgt aus dem Satz von Peter-Weyl, welcher besagt, daB die
Charaktere %k{x) ein vollstândiges Funktionensystem im Gebiete der
Klassenfunktionen in 0 bilden. Es sei also etwa $(t/,) eine alternierende
Elementarsumme, welche keine (positiv oder negativ genommene)
Charakteristik ist. Die Funktion

ny)

ist eine endliche und stetige Funktion der Variabeln yx, y2,..., yt, da
nach Nr. 3 und Nr. 4 die Nullstellen des Nenners auch Nullstellen des

Zâhlers sind. AuBerdem ist /(t/^) automorph gegenuber den Translationen
des Einheitsgitters y, da Zâhler und Nenner dièse Eigenschaft haben;
/ (t/j) ist also Funktion auf dem Toroid. Endlich ist / (t/,) automorph gegenuber

W, da Zâhler und Nenner sich bei W alternierend verhalten (Satz 7),
also ist f(yj) als Funktion auf dem Toroid automorph gegenuber der
Transformationsgruppe 0.

Daraus schlieBt man11), daB f(yf) eine Klassenfunktion ist, oder besser

gesagt, daB in 0 eine Klassenfunktion existiert, welche auf dem Toroid
mit f(j/j) ùbereinstimmt. (Sie ist infolge des Hauptachsentheorems ein-
deutig bestimmt.) Wegen

n) In der frûheren Arbeit wurde nâmlich bewiesen (§ 4, Nr. 6), dafî zwei regulàre
Elemente auf dem Toroid dann und nur dann in bezug auf G konjugiert sind, wenn sie
durch eine Transformation von 0 auseinander hervorgehen. Um die sogenannten singu-
laren Elemente brauchen wir uns nicht zu kummern, da ihr Mafi Null ist ; sie spielen bei
der Intégration keine Bolle.
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(G)

(P) (P)
Sk(yt) dVl... dyx 0

miiBte dièse Klassenfunktion auf allen Charakteren orthogonal stehen,
also identisch verschwinden, was unmôglich ist.

Wir formulieren das SchluBresultat :

Es sei eine kaleidoskopische Gruppe F im euklidischen Eaum Rl gegeben,
welche von den Translationen des Gitters y und der endlichen Punktgruppe W

erzeugt sein moge. Man benutze ein Koordinatensystem yl9 y2,..., yl9
dessen Grundvektoren primitive Vektoren von y sind und bilde die alter-
nierende Elementarsumme

(W)

dabei sind die qt fest gewàhlte ganze Zahlen und die Summation ist ûber
aile Bildpunkte des Punktes (2/1,..., yt) vermôge der Gruppe W zu er-
strecken; das Vorzeichen jedes Terms stimmt mit dem Vorzeichen der
Déterminante der betreffenden Transformation von W ûberein.

Dann sind die Charaktere der irreduziblen Darstellungen der zu F ge-
hôrigen Lie'schen Gruppe G gegeben durch

Dabei wird A {y^ nach folgender Vorschrift berechnet :

Die Gleichungen der Spiegelebenen von F seien

K(Vi) c> fc 1,2,..., w

(c durchlâuft aile ganzen Zahlen) ; dann ist

k(yj). (24)

Das Vorzeichen in (23) kann leicht festgelegt werden, wenn man
beachtet, daB /(0, 0,..., 0) positiv sein muB, denn dies ist der Grad v
der Darstellung.
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6. Eigentlich mûBte nun die Formel (23) diskutiert und speziell durch
Ausfiihrung der Division die Zerlegung von x(Vj) *n automorphe Ele-
mentarsummen gegeben werden (Satz 3). Es wàre aber dazu eine Théorie
der gegeniiber W automorphen Funktionen notwendig analog zur Théorie
der symmetrischen Funktionen. Ich will daher nur den ersten Schritt in
dieser Richtung tun und zeigen, wie man die durch (24) gegebene Funk-
tion A (yj) im konkreten Fall am einfachsten als alternierende Elementar-
summe darstellt (Satz 8).

Zu diesem Zweek benôtigen wir einen Fundamentalbereich F der
Gruppe W. Bereits in Nr. 3 haben wir beim Beweis von Satz 4 erwàhnt,
daB F durch Spiegelebenen von W begrenzt wird ; jetzt brauchen wir aber
das schàrfere Résultat, daB F von genau l solchen Spiegelebenen begrenzt
wird. (l Dimension des Toroids und von Rl). Der Beweis folgt unter
Berûcksichtigung von Nr. ld aus dem élémentargeometrischen Hilfs-
satz, der nicht allzu schwer einzusehen ist:

Sind im Z-dimensionalen euklidischen Raum endlich viele (l—1)-
dimensionale Ebenen durch den Nullpunkt gegeben, unter denen es /
linear unabhângige gibt, so befindet sich unter den Bereichen, in welche
dièse Ebenen den Raum einteilen, mindestens einer, der von genau l
der Ebenen begrenzt wird.

In unserem Fall miissen aber aile dièse Bereiche als Fundamental-
bereiche von W kongruent sein, daher wird jeder von l Ebenen begrenzt.

Es seien also &1, &2,..., #j die zu den l Begrenzungsebenen von F ge-
hôrigen Linearformen, also

die Gleichungen der Wànde von F. Die noch freien Vorzeichen der
Formen êk seien dabei so gewâhlt, daB das Innere von F durch

gegeben ist. Die ûbrigen Linearformen ^+1)^+2).--)^m) welche im
Diagramm noch vorkommen, kônnen wir nun als Linearkombinationen
der bisherigen ansetzen:

*i(V,)= Z«ifc#k(yi), i l+l, i + 2,...,m. (25)

Hierin haben fur einen festen Wert i aile Koeffizienten <xik dasselbe
Vorzeichen. Denn bezeichnen wir mit Pk den Punkt des Fundamental-
bereichs, fur den gilt
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so ergibt Einsetzen dièses Punktes in (25)

ocik TFer£ wn #f in Pk

Es miissen aber aile Punkte Pk auf einer Seite der durch &£ 0 ge-
gebenen Spiegelebene liegen, da dièse nicht in F eindringt. Daher haben
die <xik einerlei Vorzeichen.

Durch geeignete Wahl der Vorzeichen der Linearformen #l+1,..., &m

kônnen wir daher erreichen, daB aile ocik positiv werden. Es gilt also »

Satz 10. Die Vorzeichen der m Linearformen &k{yj) des Diagramme
kônnen so gewâhlt werden, dafi aile Formen Linearkombinationen mit
positiven Koeffizienten von l unter ihnen sind. Die zu diesen l speziellen
Formen gehorigen Spiegelebenen durch den Nullpunkt begrenzen einen
Fundamentalbereich der Oruppe W.

Nun wâhlen wir fur einen Moment ein neues Koordinatensystem
f]li r\%,..., rjl durch die Transformationsformeln

%= *i(y,)> *= l,2,...,l (26)

In diesem neuen System haben also nach Satz 10 aile Linearformen
^iiVi) positive Koeffizienten. Zur Berechnung von A (y}5) in diesem neuen
Koordinatensystem verwenden wir die Formel (16) von Nr. 4 also

Bei der Ausmultiplikation erscheint hier speziell der Elementar-
ausdruck

m

e (#) mit # | J£ êk (^) (28)

Im ganzen aber entstehen 2m Elementarausdrucke mit Koeffizienten
± 1. Nun wissen wir aber nach Satz 8, daB das Résultat dieser

Ausmultiplikation eine alternierende Elementarsumme ist, daB also recht
viele unter diesen Posten sich wegheben miissen und nur N stehen bleiben
kônnen. Gerade der Term (28) kann sich aber mit keinem anderen auf-
heben. Denn in einem anderen Term e(ê') wird der Exponent êf erhalten,
indem von & einige der Formen i?fc(^i) abgezogen werden. Es ist also
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mindestens einer der Koeffizienten von êr kleiner als der entsprechende
von ê.

Satz 11. Werden die Vorzeichen der m Formen &k{yj) des Diagramms
gema/5 Satz 10 gewâhlt, so wird die alternierende Elementarsumme â(yj)
durch den EUmentarausdruck e (ê) erzeugt, wobei $ die halbe Summe aller m
Formen

Die Konstruktion eines Fundamentalbereichs F von W gemâB Satz 10

ist auch mitzlieh, um die alternierenden Elementarsummen S(yi) von
(23) aufzustellen und zu ordnen. Wir erinnern nàmlich daran, daB S(yi)
nach Nr. 3 durch einen regulâren Vektor p0 gegeben ist ; man wird ihn so

wâhlen, daB er (vom Nullpunkt aus angetragen) ins Innere von F weist,
um sicher zu sein, daB man jede alternierende Elementarsumme nur ein-
mal erhâlt. Fur dièse Rechnungen eignet sich das orthogonale Koordi-
natensystem der xi besser als das schiefe System der yj.

§ 2. Beispiele

1. Die kaleidoskopische Gruppe Bt.
In einem euklidischen Z-dimensionalen Raum Rl sei ein kartesisches

Koordinatensystem xl9 x2,..., xl gegeben. W sei der Wurfel, dessen

Ecken die Koordinaten ± 1 haben. Wir geben nun eine kaleidoskopische
Gruppe F Bt durch ihre Spiegelebenen wie folgt.

a) Spiegelebenen durch den Nullpunkt
1. Sorte Koordinatenebenen : x^ 0, ^ 1,2,...,/
2. Sorte Diagonalebenen von W ; xv ± x^ 0, ju < v,

b) die ûbrigen Spiegelebenen sind parallel zu den Ebenen von a) und
zwar seien ihre Gleichungen

1. Sorte : x^ c (c durchlauft die ganzen Zahlen)
2. Sorte: xv ± xfl c (c durchlauft die ganzen Zahlen),

Damit ist F gegeben und wir mussen jetzt das Gitter y und die Punkt-
gruppe W konstruieren, welche den Nullpunkt fest lâBt.

Nun wird nach § 1 Nr. le das Gitter y erhalten, indem man F auf den

Nullpunkt ausubt. Die Spiegelung an der Ebene xx + x2 1 fuhrt
zum Beispiel den Nullpunkt ûber in den Punkt mit den #-Koordinaten

(l,l,0,0,...,0), die Spiegelung an der Ebene xx 1 fuhrt ihn uber
in (2, 0, 0, 0,..., 0). So erkennt man, daB wir in y auf aile Fàlle die

l Translationen haben
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d -(2, 0, 0, 0,..., 0, 0, 0)

e2 =(i, î, o, o,..., o, o, o)

e3 =(0, î, î, o,..., o, o, o)

e4 (o, o, 1, 1,..., o, o, o)

e*-i= (o, o, o, o,..., 1,1,0)
e, -(o, o, o, o,..., o, 1, i)

Es ist nicht allzu schwierig einzusehen, da6 dies sogar primitive
Translationen von y sind, da6 man also aile anderen Translationen von y
aus diesen ganzzahlig kombinieren kann. So hat man zum Beispiel

Dies ist der Punkt, in welchen der Nullpunkt durch die Spiegelung an
der Ebene x2 — xx 1 ubergeht. Oder

2e2 — cx (0,2,o,o,...,0,0) usw.

Die Vektoren ei,e2,...,£i bilden nun die Grundvektoren unseres
Koordinatensystems yj9 wir haben also folgende Transformations-
formeln

*i 22/i +2/2
#2 =2/2+2/3
^3 V* +2/4

(30)

y1-1+y 1

Die Gruppe W wird erzeugt durch die Spiegelungen an den unter a)

aufgefuhrten Ebenen durch den Nullpunkt. Dabei erzeugen die Spiegelungen

der ersten Sorte eine Untergruppe, welche aus allen môglichen
Vorzeichenànderungen der Variabeln xi besteht (Ordnung 2*). Eine
Transformation dieser Untergruppe ist eigentlich oder uneigentlich,
je nachdem ob eine gerade oder ungerade Zahl von Vorzeichen geàndert
wird. Man erkennt nun leicht, daB man nur noch aile Permutationen der
Variabeln xi hinzu nehmen muB, um die voile Gruppe W zu erhalten.
Ihre Ordnung ist 2*1
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Jetzt grenzen wir nach dem Verfahren von Satz 10 einen Fundamental-
bereich F von W ab. Die Linearformen #&(#,) unserer kaleidoskopischen
Gruppe F lauten nach b)

*(*) /«- 1, 2,...,Z
jU<V

V ;

Wir wâblen die l Formen aus

#2 (a;,)

(32)

\xj) — %i

und man verifiziert ohne Mûhe, da8 die iibrigen #fc(y^) Linearkombina-
tionen dieser Speziellen mit positiven Koeffizienten sind. Somit ist ein
Fundamentalbereich F gegeben durch

x1>0, x2 — #!>(), xz — a?a>0,..., xx — xl_1>0, (33)

das heiBt die xj miissen positiv und monoton wachsend sein. Satz 11

liefert uns nun die Funktion A(xj). Die halbe Summe aller Formen
iï^Xj) in (31) betrâgt

* |[x1 + 3o;2 + 5a:3+ ••• + (21— 1) xt] (34)

Nun mûssen wir auf den Elementarausdruck e(ê) die Gruppe W ausuben
und die 2ll\ Posten alternierend addieren. Zuerst ùben wir die Unter-
gruppe aller Vorzeichenanderungen der xi aus, haben also zu bilden

wobei die Summe iiber aile môglichen Vorzeichenwahlen in der ge-
schweiften Klammer zu erstrecken ist und das Vorzeichen e positiv oder

negativ zu nehmen ist, je naehdem ob in der geschweiften Klammer eine

gerade oder ungerade Zahl negativer Zeiehen steht. Dièse Summe ist
aber nichts anderes als die Entwieklung des Produkts

sin Snx2 sin 6nxz.. .sin (21— 1) nxl

Auf dièses Produkt miissen nun noch die Permutationen der Variabeln
ausgeûbt werden; ein solcher Posten ist positiv oder negativ zu nehmen,

184



je nachdem ob die Permutation gerade oder ungerade ist. Wir erhalten
also die Déterminante

sin nxx sin 3nxl sin (21 — 1) nxx
sin nx% sin %nx2 sin (21 — 1) nx2

sin nxl sin 3nxl sin (21 — 1) nxl

Eine solehe Déterminante schreiben wir hinfort abgekurzt

A (Xj) (2i)11 sin nXj sin Snx^ sin (21 — 1) nx^ (35)

indem wir nur die j-te Zeile anschreiben.
Man kann dièses Résultat ohne die allgemeinen Sâtze 10 und 11 veri-

fizieren, denn aus der urspriinglichen Définition von A(Xj) (§1, Nr. 4,
Formel 15) folgt ja

i
A (Xj) ± n 2i sin nx^ • 77 4 sin n (xv + x^) sin n (xv — x^)

und man kann direkt nachrechnen, daB dies mit (35) ubereinstimmt.
Unsere letzte Arbeit ist nun die Bestimmung der allgemeinen alter-

nierenden Elementarsumme S(xj). Zu diesem Zweck miissen wir einen
Vektor p0 im Fundamentalbereich F wâhlen. Er habe die #-Koordinaten
Pu P2>- - -î Pi-> wobei also gemâB (33) gelten muB

0 < Pi < P2 <

Die zugehôrige Linearform pxxx +
y-Koordinaten umgerechnet werden:

H h

< Pi (36)

Pixi

H h

und dann die Bedingung formuliert werden, daB die qi ganzzahlig sind.
Die Transformationsformeln (30) ergeben

=2Pl
Pi +P2
P2 +PZ

qi-i= P1-2

(37)
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Die Ganzzahligkeit der q3 bedeutet also, dafi die p3 ganz oder halbganz
(d. h. die Hâlfte einer ungeraden Zahl) sein mûssen.

Die allgemeine alternierende Elementarsumme entsteht also, indem
wir auf den Elementardruck e(p1x1 + p2x2 + * * * + Vixi) die Gruppe W

alternierend ausûben. Die Rechnung verlâuft genau gleich wie oben im
Fall von A (x3) und ergibt

S(x3) (2i)'|sin 2utp1x9 sin 2np2x3,..., sin 2nplx}\ (38)

Zur Formulierung des SehluBresultates fiïhren wir noch die Zahlen
2p3 ni ein, welche dann ganz, und zwar entweder aile gerade oder aile
ungerade sein miissen und finden :

Die Charaktere der zur kaleidoskopischen Gruppe Bt gehorigen Lie-
schen Gruppe sind gegeben durch

| sin nxnx3 sin n27zx} smnl7tx
sin nXj sin ZitXj sin (21 —

(39)

wobei die n3 entweder aile gerade oder dann aile ungerade Zahlen sind, welche

der Bedingung
0 < nx < n2 < • • • < nl

genûgen.

Wir wollen noch zwei spezielle Darstellungen etwas weiter diskutieren.
Zunâchst nehmen wir an

nx 1, w2 3,..., n^x 21 — 3, aber nx 2 l + 1

Die Division der beiden Determinanten in (39) l&Bt sich dann ausfûhren
und liefert

%(x3) 1 + 2 (cos 2 n xx + cos 2 n x2 + • • • + cos 2 n xt) (40)

Der Charakter setzt sich also (wie nach Satz 3 zu erwarten) aus zwei
automorphen Elementarsummen zusammen, nâmlich aus der Elementarsumme

1 und der durch e(xx) erzeugten Elementarsumme. Setzt man
den Nullpunkt in (40) ein, so erhâlt man fur den Grad der Darstellung
(Dimension des Darstellungsraumes) den Wert 2 l -f 1.

Ferner berechnen wir noch die charakteristischen Wurzeln col9 (oi9...,
go21+1 der Matrix, welche ein gegebenes Elément x der Lie'schen Gruppe
darstellt. Wir kônnen annehmen, daB x auf dem Toroid liegt, also etwa
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die Koordinaten x$ habe. Ist dann r irgend eine ganze Zahl, so ist der
Wert des Charakters fur das Elément xr die Summe der r-ten Potenzen
der cot. Nun hat xr die Koordinaten rxj und daher folgt aus (40)

o}rt + œ\~\- (- cor2l+1 1 + 2(cos 27rr#1-|-cos 2nrx2-\- ••• -f-eos 2nrxl)

Dies gilt fur aile ganzen Zahlen r und liefert daher die Werte der cot. Man
erhàlt :

Die charakteristischen Wurzeln cot sind die Zahlen

1, e{xt), e(—x,)9 y 1, 2, —, Z (41)

Die charakteristischen Polynôme der darstellenden Matrizen haben also
réelle Koeffizienten.

Die darstellende Matrix eines Eléments x des Toroids ist nun nach
§ 1, Nr. 2 in einem geeigneten Koordinatensystem des Darstellungs-
raumes einfach die Diagonalmatrix, welche in der Hauptdiagonalen die
Zahlen (41) enthàlt. Durch eine Koordinatentransformation im Dar-
stellungsraum kann man statt dessen auch die Darstellungsmatrix

/' 0 \
(42)

\

cos 2tzx1

sin 2nxx

0

— sm

cos

2tzx1

2nxx

cos 2 n xt — sin * n &x i

sin 2tïx1 cos 2nxl

erhalten; sie ist reell und orthogonal. Man kann nun nach einer Méthode
von Schur12) aus dem Charakter (40) allein nachweisen, daB uberhaupt
aile Gruppenelemente x (also auch die, welche nicht auf dem Toroid
liegen) in einem geeigneten Koordinatensystem des Darstellungsraumes
durch réelle Matrizen dargestellt werden. Da dièse Matrizen sowieso als
unitâr angenommen werden kônnen, folgt nun, daB die darstellenden
Matrizen eine Grappe 0 von orthogonalen Matrizen der Déterminante

+ 1 bilden. Unsere Lie'sche Gruppe G ist auf die Gruppe 0 durch die
Darstellung homomorph abgebildet; wir bestimmen noch den Kern
dièses Homomorphismus, also die Elemente von G, welche auf die Ein-
heit von 0 abgebildet werden. Es sind dies genau die Elemente x, fur

12) G. Frobenius, I. Schur, Sitzungsberiehte Preufi. Akad. 1906.
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welche der Wert des Charakters (40) gleich dem Grad (21 -f 1) der Dar-
stellung ist, und dies gibt die Elemente x des Toroids mit ganzzahligen
Koordinaten xs und ihre Konjugierten in G. Durch jeden Punkt mit
ganzzahligen xé im Raume jR1 unseres Diagramms geht aber eine Spiegel-
ebene aus jeder der Seharen b), welche wir am Anfang dieser Nummer
eingefïihrt haben. Daher gehôrt nach § 1, Nr. If jedes Elément x des

Toroids mit ganzzahligen Koordinaten xi zum Zentrum der Lie'schen
Gruppe G und daher hat x iiberhaupt keine Konjugierten auBer sich
selbst.

Der Kern des Homomorphismus besteht also genau aus den Elementen
des Toroids mit ganzzahligen Koordinaten xê\ er ist diskret in G und
daher hat die Bildgruppe 0 dieselbe Dimension wie G. Die Dimension n
von G betrâgt aber nach § 1 Nr. le n l -\- 2m wobei m die Anzahl der
Spiegelungsebenen von W ist, welche durch den Nullpunkt laufen. In
unserem Falle ist

m l + 2 I I P also n 1(21 + 1)

0 ist also eine Drehungsgruppe der Dimension 1(21 -f 1) im (21 -f- 1)-
dimensionalen Darstellungsraum, also notwendig mit der vollen
Drehungsgruppe dièses Raumes identisch. Wir haben also als Neben-
resultat erhalten:

Die zur Jcaleidoskopischen Gruppe Bx gehôrige Lie'sche Gruppe ist im
Kleinen zur vollen Drehungsgruppe 0 eines (2Z+ l)-dimensionalen eukli-
dischen Raumes isomorph.

Genauer gesagt ist sie die universelle Oberlagerungsgruppe von O.
In der fruheren Arbeit wurde umgekehrt gezeigt, daB die Konstruktion
der zu O gehôrigen kaleidoskopischen Gruppe (vgl. § 1, Nr. 1) eben Bt
ergibt, wovon wir jetzt ausgegangen sind. Die Formel (39) ergibt also
die Charaktere von O als Funktionen der ,,Drehwinkel" x19 x2,..., xx.

Eine zweite spezielle Darstellung unserer Lie'schen Gruppe erhalten
wir durch die Wahl

n± 2, n, 4,..., nt 21. (43)

Auch in diesem Fall lâBt sich die Division der Determinanten in der
Formel (39) ausfuhren und man erhâlt den Charakter

%(Xj) 2l cos 7txx cos tïx2 - • • cos nxx. (44)

Der Grad der Darstellung ist 2l. Fur die Elemente x des Toroids mit
ganzzahligen Koordinaten ist %(xû)= ± 2l. Wir haben also hier keine
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eindeutige Darstellung der orthogonalen Gruppe O, sondern eine zwei-
deutige sogenannte Spindarstellung. Der bekannteste Fall ist l 1, wo
sich die Darstellung der Drehungsgruppe im dreidimensionalen Raum
durch 2-reihige unitàre Matrizen ergibt.

In analoger Weise wie hier die Gruppe O lassen sich die ubrigen klassi-
schen Gruppen — namlich die Drehungsgruppe in Râumen gerader
Dimension, die unitâre Gruppe und die Komplexgruppe — diskutieren.

2. Die Ausnahmegruppe G2.

Wir gehen aus von der kaleidoskopischen Gruppe in der Ebene, welche
durch das Diagramm von Fig. 2 gegeben ist. Man hat also l 2.

Zwei primitive Vektoren des Einheitsgitters y, welche das Koordinaten-
system yx, y2 aufspannen, sind eingezeichnet. Fur die Gleichungen der
Spiegelungsachsen liest man aus der Figur ab

yx

=c #4

=c ^?6=

Fig. 2

c durchlàuft jeweilen aile ganzen Zahlen.
Die Formen ^fc(^) sind bereits so ge-
wàhlt, dafi aile Linearkombinationen der
ersten beiden mit positiven Koeffizienten
sind. Fur die halbe Summe aller Formen
erhalten wir

& 3 yx + 2 y2

der Elementarausdruck e (3 yx -j- 2 y2) erzeugt also die Funktion
Wie in allen Fallen hexagonaler Symmetrie ist es nun bequem, die

rechtwinkligen Koordinaten xi wie folgt zu wâhlen: Wir betten unsere
Ebene R2, in welcher das Diagramm liegt, in einen 3-dimensionalen
Raum Rz mit den kartesischen Koordinaten xl9 x2, xz ein, und zwar
sollen die beiden Grundvektoren des y-Koordinatensystems im ^-System
die Koordinaten

(1,0,-1) bzw. (0,1,-1)

erhalten. Wir haben also die Transformationsformeln

xx

— Vi —

(45)
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und die Punkte des R2 sind durch die Relation

Xi + x2 + xz 0 (46)
gekennzeichnet. Es folgt

#i *2> $2=x1 — x2, $ 3x1 + 2x2 (47)

und der Fundamentalbereich F der Gruppe W ist also durch

xx — x2 > 0 x2 > 0 (48)
gegeben.

Um nun die allgemeine alternierende Elementarsumme $(£/,) aufzu-
finden, wâhlen wir einen Vektor p im j?3 mit den #-Koordinaten ply p2,
pz. Seine Normalprojektion p' auf den R2 hat dann die Koordinaten

/ Vi P2 P3 t P1 + P2P3 1 PiPi + p*
Pi 3 P2 3 Pz 3 •

(49)

Diesen Vektor p7 wâhlen wir nun als Vektor des Elementarausdrucks,
der S(yi) erzeugt. p7 soll im Innern von F liegen, also mufi gemâfi (48)
gelten

Pi — P2>0, Px + P3<2p2'

Der zu p; gehôrige Elementarausdruck ist nun e(p[x1 + p2x2 + 2>3

Setzt man hierin die Werte (49) ein, so ergibt sich wegen (46) auch ein-
fach e(p1x1 + p2x2 + p$xz). Die Umreehnung auf die y-Koordinaten
ergibt dafur e(q1y1 + q2y2), wobei gemëB den Transformations-
formeln (45)

ist. Die Forderung der Ganzzahligkeit der q^ bedeutet also, daB die
DifiEerenzen der pj ganzzahlig sind. Die Form & entspricht nach (47) dem

speziellen Fall px 3, p2 2, pz 0.
Jetzt mûssen wir auf unseren Elementarausdruck e(p1x1 -f- p2x2 +

p3x3) die Gruppe W alternierend ausiiben. W wird erzeugt durch die
Spiegelungen an den 6 Achsen durch den Nullpunkt, wie sie die Fig. 2

zeigt. Die Gruppe hat die Ordnung 12. Im Raume Rz erzeugen nun die
drei Spiegelungen an den Achsen
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des R2 in dieser Ebene R2 einfach die Permutationen der Koordinaten
#i> X2> ^3- Fugt man die Spiegelung am Nullpunkt hinzu, so erhâlt man
die voile Grappe W. Dièse Spiegelung am Nullpunkt ist in R2 eine eigent-
liche Transformation, sie fûhrt unseren Elementarausdruck in
e(—Pix1 — p2%2 — Pzxz) ûber. Somit haben wir in 8(x3) den Term

c(— p1x1 — p2x2 —
2 cos 2 n {p1x1 + p2x2 + p3#3)

und erhalten

S(x3) 2 eos 2 n {pxxx + p2x2 + p3x3) ± Perm. (xl9 x2, xz)

wobei die Abkûrzung in naheliegender Weise bedeuten soll, da8 die
ùbrigen Terme aus dem Hingeschriebenen durch Permutation von
#i>#2 5#3 hervorgehen sollen und das Vorzeichen durch die Signatur
der Permutation gegeben ist. Die Charaktere der Lie'schen Ausnahme-

gruppe sind also

cos 2n(p1x1 + p2x2 + p3a?3) ± Perm. (xx, x2, x3)

cos 2n(3xx -f 2 x2) ± Perm. (x1, a:2, xs)
(52)

Dabei sind die p0 irgendwelche Zahlen mit ganzzahligen Differenzen,
welche die Ungleichungen

Vi — V2> 0, Pi + 2^3<2P2

erfullen. Um den Grad v der Darstellung zu bereehnen, mu8 man die

x} in (52) gegen Null streben lassen. Man erhâlt

î2q(Pi-P*) (P2-P3) (P3-P1) (2Pi~P2-Pz) (2P2-P3-P1)

(53)

Um jede Darstellung nur einmal zu erhalten, kann man etwa p3 0

wàhlen. 2>i und ^2 sm(i dann ganze Zahlen, welche den Ungleichungen

Pl>P2 Pl<2P2

genûgen, also positiv sind. In Figur 3 sind die Grade der ersten Dar-
stellungen und die zugehôrigen Werte von px und p2 angegeben.
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Fig.3

§ 3. Volumenbereehimng in einer geschlossenen Lie'schen Gruppe

In diesem Abschnitt mxissen wir uns in vollem Umfang auf fruher
publizierte Resultate stiitzen (vgl. FuBnote *)); die folgenden FuBnoten
beziehen sich auf die Paragraphen und Nummern dieser fruheren Arbeit.

1. G sei wie immer eine geschlossene halbeinfache und einfach zu-
sammenhângende Lie'sche Gruppe, x das allgemeine Elément und e das
Einselement, ferner sei T das fest gewâhlte maximale Toroid in G von
der Dimension l. In einer Umgebung U (e) des Einselementes in G seien
kanonische Koordinaten erster Art xl9 x%9.. .9 xn eingefiïhrt. (n ist die
Dimension von 6?.) Die Gruppenmultiplikation innerhalb U(e) ist also

in erster Approximation die Koordinatenaddition. Ist a ein beliebiges
Elément von G (nicht notwendigerweise in U(e)), so ist der innere
Automorphismus

x -> a~x x a x (54)

fur Elemente x aus U (e) eine lineare Transformation

(55)
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Ihre Matrix bezeichnen wir mit Aa. Dièse Matrizen bilden die adjungierte
lineare Oruppe von G.

Man kann nun die kanonischen Koordinaten speziell so wâhlen13), daB
einmal das Toroid T durch

Xl+1 — Xl+2 " ' Xn 0

gekennzeichnet ist. Die Koordinaten xl9 x2,..., x% sind dann die bisher
immer verwendeten Koordinaten auf T, in welchen die Gruppenmulti-
plikation in T genau die Addition bewirkt. Sodann kann man ferner
erreichen, daB die Matrizen Aa orthogonal sind und daB die Matrix At,
welche zu einem Elément t von T gehôrt, folgende spezielle Gtestalt hat

/jp \

\

mit Dk [
sm2 7i&k(t3) cos

(56)

Dabei ist noch jBj die Z-reihige Einheitsmatrix und die êk sind genau die
Linearformen in den Koordinaten tl912,..., tx des Eléments t, welche

wir zu Beginn dieser Arbeit (§ 1, Nr. 1, Formel 1) eingefûhrt haben und
welche die Spiegelebenen des Diagramms festlegen14).

2. Als weiteres Hilfsmittel brauchen wir den Wirkungsraum W der

Nebengruppen des Toroids T. Er entsteht, indem man jede Nebengruppe
xT als Punkt X eines Raumes auffaBt, der vermittelst des Umgebungs-
begriffes in G in naheliegender Weise zu einem topologischen Raum W

gemacht wird. T selbst, also die Nebengruppe eî7, liefert einen speziellen
Punkt E dièses Raumes. Jedes Elément a von G ergibt eine Trans-
formation

fm(X) {ax)T (57)

von W in sich und daher kann G auch als Transformationsgruppe von W

aufgefaBt werden. Die Elemente a von G mit

fa(E) E

bilden die Isotropiegruppe von W. Sie ist mit T identisch.

13) Fruhere Arbeit § 2, Nr. 3.

14) In der fruheren Arbeit (§ 2, Nr. 3, Formel 4) fehlt der Faktor 2 n, weil wir damais
die Zahl 1 als Ma8 des vollen Wmkels 360° benutzt haben. Aus verschiedenen Grunden
wurde jetzt aber das gewohnhche analytische BogenmaB verwendet.

1Q3
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Nehmen wir in G speziell ein Elément x aus U (e) mit

xx x2 • • • xx 0

so bilden die Punkte X xT von TT eine Umgebung U (E) des Wirkungs-
raumes. Wir kônnen daher xl+1, xl+2,..., xn als Koordinaten in der
Umgebung U(E) von W verwenden. Wir bestimmen noeh die Trans-
formationen der Isotropiegruppe in diesen Koordinaten. Sei also t ein
beliebiges Elément von T und X der eben eingefùhrte allgemeine Punkt
von V(E). Es ist

ft(X) txT

Die Koordinaten von txtr1 berechnen sich nach (54) und (55), indem man
die Matrix Aj1 von (56) auf die Koordinaten von x ausiibt. Die ersten l
Koordinaten von txt"1 sind also wieder Null, wâhrend die iibrigen
x\+i > • • • xn aus xi+i » • • • > xn durch die orthogonale Transformation

D9

hervorgehen. Wir halten fest : Die Transformationen der Isotropiegruppe
im Wirkungsraum W sind in den gewâhlten Koordinaten in U (E) lineare
orthogonale Transformationen.

3. Nun kommen wir zur Définition der Volumenmessung in G. Inner-
halb der Umgebung U(e) soll das Volumen euklidisch, das heiBt durch
das Intégral

jdxxdx2.. *dxn (58)

gemessen werden. Haben wir jedoeh ein Volumen v innerhalb einer
Umgebung U(s) eines beliebigen Elementes s von G zu messen, so bestimmen
wir statt dessen das Volumen der Menge s^v, welche dann in U(e)
liegen wird und durch die Linkstranslation s*1 aus v hervorgeht. Man
hâtte statt dessen ebenso gut die Rechtstranslation nehmen, das heiBt
vs~* messen kônnen. Um dies einzusehen, hat man nur zu zeigen: Ist v

speziell ein Volumen in U(e), so hat a va*1 dasselbe MaB wie v. (a
beliebiges Elément von G.) Dies ist aber richtig, da die inneren Auto-
morphismen von G nach den Ûberlegungen von Nr. 1 innerhalb U(e)
orthogonale Transformationen sind.
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Analog definieren wir eine Volumenmessung im Wirkungsraum W.
Innerhalb U(E) sei die Volumenmessung wieder euklidisch also durch
das Intégral

}dxl+1dxl+2 dxn (59)

gegeben. Soll jedoch ein Volumen V innerhalb einer Umgebung U(8)
eines beliebigen Punktes 8 von W gemessen werden, so messen wir statt
dessen das Volumen von /~1(F), wobei / eine Transformation der in W
definierten Transformationsgruppe ist, welche E in 8 uberfùhrt. Zu.
zeigen ist, daB das Ma6 von /~1(F) nicht von der Wahl von / abhângt.
Âquivalent mit dieser Behauptung ist, daB eine Transformation der
Isotropiegruppe die Volumina innerhalb U{E) invariant lâBt. Dies folgt
wieder aus der in Nr. 2 nachgewiesenen Orthogonalitât der Trans-
formationen der Isotropiegruppe.

Eine Bemerkung wâre noch uber die Volumenmessung auf T zu
machen. Die Koordinaten xly x2,..., xt sind ja auf ganz T definiert.
(Wir benutzen wieder die Abwicklung von T in den euklidischen Raum
Rl; die Koordinaten eines Elementes von T sind dann die Koordinaten
des entsprechenden Punktes im Grund-Parallelepiped P des Einheits-
gitters y im Rl). Da nun die Gruppenmultiplikation in T genau die
Koordinatenaddition ist, sind die Linkstranslationen innerhalb T ge-
wôhnliche euklidische Translationen des Rl, das heiBt an jeder Stelle von
T (nicht nur in U(e)) ist die Volumenmessung durch das Intégral

^dxxdx2 dxx
gegeben.

4. Nun sind wir in der Lage, das Volumen v0 der gesamten Gruppe 0
zu ermitteln. Wir benutzen zu diesem Zweck gerade die Einteilung von G

in Nebengruppen von T. Genauer gehen wir so vor : Es sei A V irgend eine
kleine meBbare Menge innerhalb der Umgebung U(E) des Wirkungs-
raumes W. Ihr allgemeiner Punkt sei X und xx, xl+1,..., xn seien seine
Koordinaten. Dem Punkt X von W ordnen wir das Elément x von G zu
mit den Koordinaten

X% X% * • • Xt 0 ; %i+i t #J+2 • • • xn '

Die Elemente x bilden eine Menge A v in G. Auf sie iiben wir die durch
die Elemente t von T bewirkten Rechtstranslationen aus. Jedes Elément x
durchlâuft dabei eine Nebengruppe von T. Av iiberstreicht bei diesen
Rechtstranslationen eine in Nebengruppen gefaserte Menge v, deren
Volumen offenbar
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v A V j* dxx... dxt
(T)

betràgt. Dabei wurde obige Bemerkung iiber die Volumenmessung auf
dem Toroid benutzt. Um nun die ganze Gruppe G auszufegen, ùben wir
auf v noch die Linkstranslationen von G aus. Sei vr av eine solche
durch Linkstranslationen aus v hervorgehende Menge; sie hat nach
Définition der Volumenmessung in G dasselbe Volumen wie v. Die
Menge vf ist nun auch in Nebengruppen von T gefasert; dièse Neben-

gruppen — als Punkte von W aufgefaBt — erfullen die Menge
AV fa(AV), welche nacb Définition der Volumenmessung in W
dasselbe Mafi wie A V hat. Also ist auch

v' AV$c
(T)

tïberstreicht nun vr die Gruppe so ùberstreicht AV den Wirkungs-
raum W und daher ergibt sich fur das Volumen von G

v0 70J dxx. ..dxlf (60)
{T)

wobei Fo das Gesamtvolumen des Wirkungsraumes bedeutet.

5. Etwas schwieriger ist nun die Lôsung unserer Hauptaufgabe,
namlich die Berechnung des Intégrais einer Klassenfunktion in G. Wir
geben zunàchst eine Formel fur das Volumenelement an einer Stelle s

von G, wobei s ein regulares Elément der Gruppe G sei15). Nach dem

Hauptachsentheorem (§ 1, Nr. 1) gibt es auf dem Toroid T ein zu s

konjugiertesElément t, also

Nun konstruieren wir eine Umgebung von s auf die folgende Weise:

x sei wieder ein Elément aus U(e), dessen l erste Koordinaten ver-
sohwinden :

xx x% - xl 0

r sei ein Elément des Toroids in U (e). Dann beschreibt

8f (ax) (tr) {ax)-1

eine Umgebung von s. Um Volumenberechnungen in U(s) durchzu-
fuhren, mûssen wir nach Définition die Linkstranslation s~l ausûben :

w) Vgl. frûhere Arbeit § 2, Nr. 1.
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s~1sf — 8~1axtxx~1a~'i

und durch Einsetzen von (61)

Fur die Volumenberechnung ist es ferner gleichgûltig, wenn wir noch
den inneren Automorphismus a ausiiben:

s" a-^-V) a t^xtrx-1 (t^xt) (t) (x-1) (62)

Die drei Klammern rechts sind Elemente in U(e), wir berechnen ihre
Koordinaten.

Was zunâchst (t^xt) anbelangt, so mùssen wir die Formeln ^54) bis
(56) anwenden und erhalten

1. bis l-te Koord. 0

(l -f V)-te Koord. xl+1 cos 2 n &x (t3) — xl+2 sin 2 n td>1 (t3)

(l + 2)-te Koord. xl+1 sin 2nêx (t}) + xl+2 cos 2nê1 (t,)
(63)

(n — \)4e Koord. xn__x cos 2 n êm (t3) — xn sin 2 jz #m (^)
n-te Koord. «:„_! sin 2nêm (t3) + o:w cos 2nd'm (t3)

Dabei bedeuten ^, ^2,..., tt die Koordinaten von t. Die Koordinaten
des zweiten Faktors t in (62) bezeichnen wir mit rl9 r2,..., t,; die

Koordinaten des Eléments a; im dritten Faktor mit o;I+lJ xl+2,..., a;n.

Da die Gruppenmultiplikation in erster Approximation die Koordinaten-
addition ist, haben wir abgesehen von Gliedern hôherer Ordnung fur
die Koordinaten von sfr in (62)

\4e Koord. =- rx

24e Koord. t2

14e Koord. Tj

(i! + l)4e Koord. a:z+1 (cos 2 jr ^ («,) — 1) — xl+2 sin 2 rc ^ («,)

a;l+1 sin 2 tt *x ($,) + ^1+2 (cos 2niïx (t3) — 1)

(n — l)4e Koord. «n-1 (cos 2 7r ^m (^) — 1) — a:n sin 2nïïm (t3)

n4e Koord. =- xn_x sin 2 n &m (t3) + xn (cos 2 jt ^>m (^) — 1)
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Durch Bilden der Funktionaldeterminante erhalten wir unser gesuchtes
Volumenelement an der Stelle s :

dv8 o(^) dr1... drl • dxl+1... dxn (64)

wobei zur Abkûrzung eingefuhrt wurde

Q{t,) 112(1—coa 2 n#k(tf)) (65)

Ferner ist dxl+1.. .dxn nach (59) das Volumenelement an der Stelle E
des Wirkungsraumes W oder auch das Volumenelement dVA an der
Stelle A /a(^) von TF. Endlich kônnen wir dT^. ,dxl aueh als das

Volumenelement dtx... d^ des Toroids an der Stelle t auffassen. Damit
erhalten wir die angekundigte Formel fur das Volumenelement von G

an der Stelle s ata~1:
dvs g (£,) d F^ dtx... d^ (66)

Zur Intégration in G benutzen wir nun die Einteilung von G in Klassen

konjugierter Elemente. Die Beschrânkung auf regulâre Elemente von G

stôrt dabei nicht, da die singularen Elemente eine Menge vom Ma8 Null
bilden, also bei der Intégration keine Rolle spielen. Ferner brauchen wir
noeh einen Fundamentalbereich der Transformationsgruppe 0 von T
(vgl. § 1, Nr. 1), wie er in der fruheren Arbeit16) konstruiert wurde. Er ist
eine Punktmenge in T. Zu jedem regulâren Elément von G gibt es dann
im Inneren K dièses Fundamentalbereiehes genau ein Konjugiertes.

Jetzt konstruieren wir eine Abbildung des topologischen Produkts
K* W in die Gruppe G hinein. Es sei also t ein Elément von K und A ein
Punkt von W. Es ist also A eine Nebengruppe aT von ï7. Dann ordnen
wir dem Paar (t, A) das Elément s atar1 von G zu. Es ist zunâchst zu
zeigen, daB s nicht von der Wahl des Eléments a in der Nebengruppe A
abhângt. Sei also af at! mit t' in. T ein anderes Elément in dieser

Nebengruppe. Dann folgt
~xs' a't(ar)-* ait'tt'-1) a-1 ata

Dabei wurde benutzt, daB T eine Abel'sche Gruppe ist.
Bei dieser Abbildung ist die Bildmenge die Menge R aller regulâren

Elemente von G. Wir zeigen nun, daB unsere Abbildung von Kx W auf
R ein-eindeutig, also topologisch ist. Zu diesem Zweck bemerken wir,
daB R einfach zusammenhàngend ist, denn G ist einfach zusammen-

M) § 4, Nr. 6.
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hângend und die Entfernung der singulâren Elemente vermag an dieser
Tatsache nichts zu ândern, da die Menge der singulâren Elemente drei
Dimensionen weniger hat als G. Somit genûgt es nach dem Monodromie-
prinzip nachzuweisen, da6 unsere Abbildung im Kleinen ein-eindeutig
ist. Seien also tr und a' benachbart zu t>a und sei

aV(a')-1 ata~1

t und t' sind also konjugiert in G und da beide dem Innern K des Fun-
damentalbereichs angehôren, folgt tf — t also

a'Ka')-1 ata-1

(a^a^t t(a-xaf)

a~xaf ist also mit t vertauschbar, gehôrt daher dem Normalisator Nt von t
an. Da a~xar beliebig nahe am Einselement c liegt, mu8 dièses Elemene

sogar in der zusammenhàngenden Komponente N't von Nt liegen, welcht
e enthâlt. Nun ist aber t regulàres Elément, also stimmt Nrt mit T iiber-
ein17) und daher gehôren a und af derselben Nebengruppe von T an,
womit ailes bewiesen ist.

Vermôge dieser topologischen Abbildung kônnen wir eine Intégration
ûber G auch auffassen als Intégration iïber KxW. Hait man in K*W
das Elément von K fest und variiert den Punkt von W, so uberstreicht
der Bildpunkt in G genau einmal eine Klasse konjugierter Elemente.

Sei nun eine Klassenfunktion f(s) in G gegeben. Fur ihr Intégral er-
halten wir nun nach (66)

$^ J f(8)dva= H f(t3))Q(t,)dVAdt1...dtl
(G) (KxW) (KxW)

- $f{t,)Q{t,)-dt1...dtr $dVA.
(K) (W)

Also, wenn wieder Fo das Volumen des Wirkungsraumes W bedeutet

vs= Fo $f(t,)e(ti)dt...dtl. (67)
(G)

Bezeichnen wir die Integrationsvariabeln auf dem Toroid wieder mit
xl9 x2,..., %i, so ergibt sich also

J
(0)

f(x) dvx V0$ f(x,) q (x,) dxx. ..dxt. (68)
(K)

17) Fruhere Arbeit § 2, Nr. 1.
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6. Nun wollen wir die Volumenmessung in G etwas abàndern, indem
wir aile Volumina mit dem universellen Faktor N/VQ multiplizieren.
Dabei sei N wie frùher die Ordnung der Transformationsgruppe 0 des

Toroids. Wir verziehten darauf, dièse Abânderung explizit anzudeuten,
schreiben also einfaeh statt (68)

(G)
f(x)dvx N //(#,) q (xj)dx1. ..dxt. (69)

K war Fundamentalbereich von 0 ; das Toroid setzt sich aus N solchen
Fundamentalbereichen zusammen und daher haben wir auch

$f(x)dvx= $f(xi)Q(xi)dx1...dxl
G) (T)(T)

Endlich fiihren wir an Stelle der orthogonalen Koordinaten xô noch die
Koordinaten ys ein, welche l primitive Vektoren des Einheitsgitters y
als Grundvektoren haben. Schreiben wir dann

(70)ff(x) dvx J/(y,) q (y,) dyx... dyt
{G) (P)

(wobei P das Parallelepiped der Grundvektoren ist), so haben wir die
Déterminante der yj nach den xj unterschlagen. Dies ist gleichgûltig,
da es auch nur die Multiplikation aller Volumina mit einem konstanten
Faktor bedeutet. Unter Berûcksichtigung von (65) ist damit die Formel
(13) von § 1 Nr. 4 hergeleitet.

Nun mûssen wir noch diesen Abânderungen in der Formel (60) fur das

gesamte Volumen Rechnung tragen. Wir erhalten jetzt

vo N $dy1...dyl N

was in § 1 Nr. 4 ganz entscheidend verwendet wurde.

(Eingegangen den 17. August 1944.)
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