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Kristallographische Bestimmung der Charaktere
der geschlossenen Lie’schen Gruppen

Von E. STIEFEL, Ziirich
Herrn H. Hopf zum 19. November 1944 in Dankbarkeit gewidmet.

In einer fritheren Arbeit') wurde gezeigt, dal die Struktur und Ver-
wandtschaft der geschlossenen Lie’schen Gruppen kristallographischen
Gesetzen unterliegt. Um dies noch genauer zu formulieren, nennen wir
im folgenden eine diskontinuierliche Bewegungsgruppe I” eines [-dimen-
sionalen euklidischen Raumes R!, welche durch Spiegelungen an (I — 1)-
dimensionalen Ebenen erzeugt wird (und ! linear unabhingige Trans-
lationen enthilt) kurz eine kaleidoskopische?) Gruppe.

Zwischen den geschlossenen halbeinfachen und einfach zusammen-
hingenden Lie’schen Gruppen G einerseits und den kaleidoskopischen
Gruppen andererseits besteht alsdann ein-eindeutige Zuordnung; speziell
bestimmt also jede kaleidoskopische Gruppe I' eine bis auf Isomorphie
eindeutig festgelegte Lie’sche Gruppe /. Die Gruppe I’ kann durch ihre
Spiegelebenen gegeben werden; es sind dies m Scharen von parallelen
dquidistanten Ebenen, welche das Diagramm der Lie’schen Gruppe G
bilden.

Da das Diagramm also die Struktur von G bestimmt, miissen sich alle
algebraischen und geometrischen Eigenschaften von G' aus ihm ablesen
lassen. Die nachfolgende Untersuchung behandelt eine spezielle Frage
dieser Art; es werden die Charaktere der irreduziblen Darstellungen der
Lie’schen Gruppe G' aus ihrem Diagramm errechnet. Dabei ist zu be-
tonen, daf3 wir auler des Diagramms keinerlei Eigenschaften von ¢ ver-
wenden; wir werden vielmehr die kaleidoskopische Gruppe vorgeben
und dann aus der Darstellungstheorie Eigenschaften der zugehorigen
Lie’schen Gruppe herleiten. In einigen Fillen gelingt es sogar, auf diese
Weise die Lie’sche Gruppe aus ihrem Diagramm zu konstruieren und die
Eindeutigkeit dieser Konstruktion nachzuweisen, was in der fritheren

1) ,,Uber eine Beziehung zwischen geschlossenen Lie’schen Gruppen
und diskontinuierlichen Bewegungsgruppen euklidischer Rdume und ihre
Anwendung auf die Aufzahlung der einfachen Lie’schen Gruppen.
Comm. Math. Helv. 14, S. 350—380.

2) Wir entlehnen diesen Namen dem bekannten Spielzeug, welches mit Hilfe von zu-
einander geneigten Spiegeln solche Gruppen im dreidimensionalen Raum praktisch
herstellt.
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Arbeit nur mit tiefliegenden Hilfsmitteln der Lie’schen Theorie moglich
war (vgl. § 2, Beispiel 1). Dieser Standpunkt ist besonders ratsam bei
den Lie’schen Ausnahmegruppen, die auf diese Weise einigermafBlen
handlich bearbeitet werden konnen. Die systematische Darstellungs-
theorie der Ausnahmegruppen soll spiter entwickelt werden; in der vor-
liegenden Arbeit wird nur die einfachste von ihnen als Beispiel fiir das
Grundsétzliche behandelt.

In § 1 wird die allgemeine Theorie auseinandergesetzt; sie schlieBt
sich an die Methode von H. Weyl an?), ist aber gegeniiber dieser insofern
elementar, als keinerlei Kenntnisse aus der Lie’schen Theorie benotigt
werden. Der Inhalt dieses § 1 sollte ohne Kenntnis der fritheren Arbeit
verstindlich sein; es sei noch darauf hingewiesen, dafl sich die in Nr.1
repetierten Tatsachen fiir eine konkret vorgelegte Gruppe der vier
Cartan’schen Klassen miihelos direkt verifizieren lassen. In Nr. 5 ist
das Schlufiresultat formuliert?). Der § 2 enthilt zwei typische Beispiele,
in § 3 endlich wird einiges nachgetragen, was zum Verstindnis des all-
gemeinen Gedankenganges nicht notwendig ist.

Es sei noch bemerkt, dal die Beschrinkung auf einfach zusammen-
héingende Gruppen unwesentlich und sogar eher ein Vorteil ist. Ist nim-
lich G mehrfach zusammenhingend, so liefert uns die Darstellungstheorie
der universellen Uberlagerungsgruppe von G einmal alle eindeutigen Dar-
stellungen von G, auBlerdem aber die mehrdeutigen, die sogenannten
Spin-Darstellungen.

§ 1. Die allgemeine Methode

1. Die zu einer geschlossenen halbeinfachen und einfach zusammen-
hingenden Lie’schen Gruppe G gehorige kaleidoskopische Gruppe I' wird
auf folgende Weise erhalten®): Man wihle in G eine abgeschlossene und
zusammenhingende Abel’'sche Untergruppe 7' von moglichst hoher
Dimension I. Man beweist®), da 7' direktes Produkt aus ! Kreisdrehungs-
gruppen ist und nennt daher 7' ein maximales Toroid in G. Es gilt nun
das wichtige Hauptachsentheorem (von E. Cartan). Das maximale Toroid

3) H. Weyl: Theorie der Darstellungen kontinuierlicher halbeinfacher
Gruppen durch lineare Transformationen, Kapitel IV, § 3. (Math. Zeitschrift
24, S. 377—396).

4) Vgl. auch H. Weyl, The classical groups (Princeton 1939).

5) Beweise in der unter 1) zitierten Arbeit (speziell § 2, Nr. 9 und fiir einfach zusammen-
hidngende Gruppen § 4).

8) Vgl. L. Pontrjagin, Topological groups (Princeton 1939).
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enthdilt zu jedem Element von G mindestens ewn konjugiertes’). Bei den
inneren Automorphismen von & durchliuft also 7' die ganze Gruppe G.

Wir betrachten nun speziell die inneren Automorphismen von G,
welche das Toroid 7' in sich iiberfiihren; sie ergeben eine endliche Gruppe
@ von Abbildungen von 7' auf sich, welche das Einselement e von G (das
ja auf T liegt) fest lassen.

Eine Umgebung von e in 7' konnen wir auf Koordinaten z,, z,,..., z;
beziehen. Dabei seien die Koordinaten von e alle Null. Man kann nun
dieses Koordinatensystem so wihlen, daBl gilt:

a) die Gruppenmultiplikation in 7' bedeutet Addition entsprechender
Koordinaten.

b) die Operationen von @ sind orthogonale Transformationen in den
Koordinaten z,, z,,..., z;.

Geometrisch kann man dies folgendermafien ausdriicken:

Wir bezeichnen den I-dimensionalen euklidischen Raum der Koordi-
naten z,, Z,,. .., z, mit R! Er ist der universelle Uberlagerungsraum
oder die ,,Abwicklung‘ des Toroids 7'. Dann gilt:

a’) die Gruppenmultiplikation in T wird zur Vektoraddition im R’

b’) Aus der Transformationsgruppe @ des Toroids T wird eine endliche
Gruppe ¥ von Drehungen und Drehspiegelungen des R!, welche den
Nullpunkt fest lift.

Ferner bilden die Punkte des R', welche e iiberlagern, ein Punktgitter y
in R!, welches wir das Einheitsgitter nennen.

Nach diesen Vorbereitungen konnen wir nun die Definition der zu G
gehorigen kaleidoskopischen Gruppe I' geben. I" ist die durch ¥ und die
Translationen von y erzeugte Transformationsgruppe des R'. Es wurde
in der fritheren Arbeit gezeigt:

¢) Die Spiegelebenen von I bilden m Scharen von parallelen und dquids-
stanten Ebenen und I' wird von diesen Spiegelungen erzeugt. Die
Dimension von Q betrigt n =1+ 2m.

d) Jede Ebenenschar enthilt eine Ebene durch den Nullpunkt und die
Spiegelungen an diesen m Ebenen durch den Nullpunkt erzeugen V.
Unter den m Ebenen gibt es | linear unabhdngige.

e) Das Einheitsgitter v entsteht, indem man I" auf den Nullpunkt ausibt.

’) Fir die volle unitire Gruppe ist dies in der Tat das elementare Hauptachsen-
theorem.
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f) Das Zentrum von G ist eine diskrete Teilmenge von T'; es entspricht
ihm im Uberlagerungsraum R' ein Punktgitter g,, welches eine Ver-
feinerung von y ist. Auferdem besteht g, genau aus den Punkten, durch
dve jede der m Scharen eine Ebene schickt.

Zur Illustration sei hier noch einmal das Diagramm der Gruppe von
allen unitdren dreireihigen Matrizen der Determinante -+ 1 hergesetzt.
Bisweilen ist es angezeigt, an Stelle der recht-
) winkligen Koordinaten x,, z,,..., ; schief-
T/ »  winklige y,, ¥,,..., ¥y, zu verwenden und zwar
als Grundvektoren ! primitive Translationen
des Gitters y zu nehmen. Die Eigenschaft b)
wird dann ungiiltig und ist zu ersetzen durch

b”) Die Operationen von ¥ sind ganzzahlige
lineare Transformationen in den Koordinaten

yl’ y2a' 0 yl‘

* Punkt von ¢,

¢ Punkt von y Der Beweis ergibt sich aus der Tatsache, dafl
—> primitiver Vektor von 7 wegen e) die Gruppe I' und daher auch ihre
Flg. 1 Untergruppe ¥ das Gitter y invariant 1a8t.
Jede Schar von Spiegelebenen des Diagramms kann im Koordinaten-
gystem durch eine Gleichung

G(xy, 95, ;) =c¢, §=1,2,...,m (1)

gegeben werden ; dabei durchlauft fiir ein festes j das absolute Glied ¢ alle
ganze Zahlen. Umgekehrt sind die Linearformen &, durch das Diagramm
eindeutig bis auf das Vorzeichen bestimmt, sobald ein Koordinaten-
system gewdihlt ist. Speziell haben im Koordinatensystem y,, v,,..., ¥,
alle Linearformen ¢, ganzzahlige Koeffizienten. Dies erkennt man am
schnellsten so: wegen f) geht durch den Endpunkt (1,0,...,0) des
ersten Grundvektors eine Ebene aus jeder Schar, dieser Punkt muf} also
fiir jedes j die Gleichung (1) erfiillen, somit

8,(1,0,...,0)=c¢

sein. Der erste Koeffizient von ¥, ist also ganz und dasselbe beweist man
analog von den iibrigen Koeffizienten.

2. Nun sei eine stetige Darstellung D der Lie’schen Gruppe G vorgelegt.
Ihren Charakter bezeichnen wir mit y. Es ist dies eine Funktion in der
Gruppe G, deren Wert fiir ein bestimmtes Element 2 von G gleich der
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Spur der Matrix 4 (z) ist, welche x darstellt. y(x)ist eine Klassenfunktion,
das heilt hat denselben Wert fiir zwei konjugierte Elemente von G. Dies
folgt ja sofort aus

x(s71xs) = Spur [A(s1zs)] = Spur [4(s) 14 (x) 4(s)]
= Spur [4(x)] = g() .

Wegen des Hauptachsentheorems von Nr. 1 geniigt es daher vollstindig,
die Werte von y(x) fiir die Elemente = des Toroids 7' zu kennen; mit
anderen Worten: y ist eine Funktion y(z,, ,,..., z;) auf T oder im R’
Diese Funktion hat nun folgende wesentliche Eigenschaft:

Satz 1. y(x,, x,,..., x,) 18t automorph gegeniiber der Bewegungsgruppe
I', bleibt also ungedndert, wenn die Koordinaten einer Substitution von I'
unterworfen werden.

Zum Beweis ist zweierlei zu zeigen:

a) x(z,) ist automorph gegeniiber den Translationen des Gitters y.
Dies folgt einfach daraus, dafl zwei in bezug auf y dquivalente Punkte
dasselbe Element des Toroids 7' iiberlagern.

b) x(x,) ist automorph gegeniiber ¥'. Dies bedeutet, dafl y als Funktion
auf dem Toroid automorph gegeniiber den Operationen der Abbildungs-
gruppe @ ist. Um das zu verifizieren, miissen wir uns nur daran erinnern,
daB eine Abbildung von @ durch einen inneren Automorphismus von G
bewirkt wird, also jedes Element von 7' in ein konjugiertes iiberfiihrt. Fiir
konjugierte Elemente hat aber der Charakter denselben Wert.

Im folgenden verwenden wir nun auch das in Nr. 1 eingefiihrte Koor-
dinatensystem y,, ¥,,..., ¥, und fassen dementsprechend y als Funk-
tion der y,; auf. Die eben unter a) angefithrte Eigenschaft besagt dann,
daB x(y,) in allen Variabeln die Periode 1 hat. Es ist daher naheliegend

% (y,) in eine Fourierreihe zu entwickeln, das heiflt als Linearkombination
von Ausdriicken
e2m(qul+qwz+---+qwz) (2)

darzustellen. Dabei sind die ¢, ganze Zahlen. Um eine brauchbare Termi-
nologie zu haben, nennen wir (2) einen Elementarausdruck und fiihren
dem Setzer zuliebe eine Funktion e () ein durch

e(p) = &7 . (3)

Unser Elementarausdruck e(q; ¥, + - + ¢,%;) lautet in den z-Koordi-
naten e(p,x, +-- -+ p,x,;), wobei die p, nicht notwendig ganz zu sein

\
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brauchen. Den Vektor p mit den z-Koordinaten p,, p,,..., p, nennen
wir den Vektor des Elementarausdrucks®). Die Multiplikation zweier
Elementarausdriicke geschieht durch Addition ihrer Vektoren.

Es zeigt sich nun, daB y keine unendliche Fourierreihe, sondern ein
endliches trigonometrisches Polynom ist. Genauer:

Satz 2. y ist eine Linearkombination wvon endlich vielen Elementar-
ausdriicken mit positiven ganzen Koeffizienten.

Beweis: Es sei ¢ speziell ein Element des Toroids 7'. Da T eine ge-
schlossene Gruppe ist, konnen wir nach einem Satz von H. Weyl an-
nehmen, daB3 die Darstellungsmatrix A (¢) unitir sei. AuBerdem ist 7'
Abel’'sche Gruppe und daher sind die Matrizen A4 (f) alle miteinander
vertauschbar, kénnen also durch Ab#dnderung des Koordinatensystems
im Darstellungsraum simultan auf Diagonalgestalt gebracht werden.
Indem wir annehmen, dies sei geschehen, haben wir also

a, (¥;) @)
as
A4 () = %! - 0 ,

- ay (yj)

dabei sind die y, die Koordinaten von ¢ und » ist der Grad der Darstellung,
das heiflt die Dimension des Darstellungsraumes. Aus der Darstellungs-
bedingung
A(tt)) = A)A(t)
folgt
a,(y; + ?/;) = @ (¥;) a'k(?/;,‘) . (4)

(Wir erinnern daran, daBl die Gruppenmultiplikation in 7' einfach die
Koordinatenaddition bedeutet.) Setzen wir fiir einen Augenblick in einer
Variabeln y

fiu(y) = a;(0,0,...,0,9,0,0,...,0), =1,2,...,1, (5)

wobei das y rechts an der u-ten Stelle steht, so folgt aus (4)

fn(@ + Y) = fiu (W) fru(¥') -

Wegen der Stetigkeit der Darstellung D hat diese Funktionalgleichung
nur die Losung

8) Im y-Koordinatensystem hat er die kovarianten Komponenten g; (= skalare Pro-
dukte mit den Grundvektoren).
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fky,(y) = cpe(q[,cy) ’ (6)

¢, ist 0 oder 1, ¢, komplex. Da ferner bei der Darstellung das Eins-
element mit den Koordinaten 0, 0,...,0 in die Einheitsmatrix iiber-
gehen muf}, gilt

@(0,0,...,0) = f,,(0) =1,
also

=1, [feuly) =clq.y) . (7)

Aus (4) und der Definition (5) folgt weiter

ax(¥;) = (YD) Fea(¥2) - -« fra(y))
also

ax(y;) = e(q1y1 + 9292 + - + @Y) - (8)

Nun sind aber auch die a, automorph gegeniiber den Translationen des
Einheitsgitters y, miissen also in allen Variabeln die Periode 1 haben.
Daraus folgt, daf} die ¢; ganze reelle Zahlen sind. a,(y;,) ist also ein Ele-
mentarausdruck. Der Charakter y ist die Spur von 4 (¢) und daher eine
Summe von Elementarausdriicken (von denen einige iibereinstimmen
kénnen). Damit ist Satz 2 bewiesen.

Jetzt benutzen wir noch die Tatsache, daBl y gemdfl Satz 1 auch auto-
morph ist gegeniiber der Gruppe ¥. Es sei

l

x,.zzkza,.kx,’,, j=1,2,...,1 (9)
=1

eine Transformation von ¥. Nach Nr. 1, b bilden die a;, eine orthogonale
Matrix. Setzen wir daher

l
P;' :'kz Ak Pr > (10)
=1
so folgt
plx;+p2x;+---+p,x’l=p{x1+p;x2—{—-.-—}-p',x, . (11)

Sobald also der Elementarausdruck e(p,x, + '+ + p,x;) in yx ent-
halten ist, muB auch der Elementarausdruck e(p,x, + -+ + p};) mit
demselben Koeffizienten in y auftreten. Oder geometrisch ausgedriickt:
Ist p der Vektor eines in y enthaltenen Elementarausdrucks, so enthilt
¢ auch alle Elementarausdriicke, deren Vektoren durch Ausiiben von ¥
auf p entstehen. Wir nennen nun

% e(pr 2y + -+ i %y)
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eine automorphe Elementarsumme. Dabei ist die Summation iiber alle
Vektoren p zu erstrecken, welche aus einem gegebenen Vektor p, durch
Ausiiben der Gruppe ¥ entstehen. Ist N die Ordnung von ¥ und N, die
Ordnung der Untergruppe, welche p, fest 1iBt, so enthilt die Summe
genau N/ N, Elementarausdriicke. Wir haben damit gefunden:

Satz 3. Der Charakter y 1ist eine Linearkombination von automorphen
Elementarsummen mit ganzen positiven Koeffizienten.

3. Alternierende Elementarsummen

Essei e(qy, +- -+ ;1)) =e(p12, + -+ + p,x;) mit ganzen g; wie-
der ein Elementarausdruck. Es sei ferner f(z;) eine Linearkombination

von Elementarausdriicken mit ganzen (positiven oder negativen) Koef-
fizienten. Wir nennen f(x,) ein alternierendes Polynom, wenn jede un-
eigentliche®?) Transformation von ¥ Vorzeichendnderung von f(x;) be-
wirkt, jedoch jede eigentliche Bewegung von ¥ die Funktion invariant
laBt. Wie oben beweist man leicht, da wenn in f(x;) das Glied
le(pyxy + -+ + p;;) als Summand auftritt, dann auch das nach (10)
berechnete Glied + Ae(pix, + -+ 4 p)x;) auftreten muB, wobei das
Vorzeichen mit dem Vorzeichen der Determinante der Transformation
(9) tibereinstimmt.

Im folgenden setzen wir nun durchwegs voraus, dafl unser alternieren-
des Polynom

Ha;) = %Ake(pm% + 0t Puy)

in fertig ausgerechneter Form gegeben sei, das heifit keiner der Koef-
fizienten 4, soll Null sein und es sollen niemals zwei Exponentenreihen
Pr1> Pr2>- - -» Prg Ubereinstimmen. Wir verbieten speziell auch, dafl das
Polynom identisch verschwindet. Unter dieser Voraussetzung kann man
zeigen:

Satz 4. Es sei p der Vektor eines in dem alternierenden Polynom ent-
haltenen Elementarausdrucks. Wird dann die Gruppe ¥ auf p ausgeiibt, so
bleibt p nur bei der Identitit fest.

Beweis indirekt. Nach Nr. 1,d wird ¥ erzeugt durch die Spiegelungen
an den Diagrammebenen, welche durch den Nullpunkt laufen. Diese
Ebenen teilen daher den Raum R! in Fundamentalbereiche von ¥ einl®).
Gibt es nun in ¥ eine von der Identitidt verschiedene Transformation,

?) d. h. Transformation von der Determinante — 1.
10) In der fritheren Arbeit ausfiihrlich bewiesen (§ 2, Nr. 10, Satz 11).
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welche p fest 14Bt, so kann p (vom Nullpunkt aus gezeichnet) nicht ins
Innere eines Fundamentalbereiches zeigen, mufl also in einer Spiegel-
ebene liegen. Die Spiegelung an dieser Ebene 148t p fest und daher miiB3te
nach obiger Betrachtung das alternierende Polynom mit dem Glied
Ae(pyxy + -+ + p,x;) auch das Glied (— A)e(p;z, + -+ + p,x,) ent-
halten, was wir verboten haben.

In Zukunft nennen wir einen Vektor p, der nur bei der Identitit von
¥ fest bleibt, also ins Innere eines Fundamentalbereichs von ¥ zeigt,
einen reguldren Vektor.

Wie in Nr. 2 bilden wir nun unter Zugrundelegung eines reguldren
Vektors p, die alternierende Elementarsumme

S(z;) = (}iﬂ: e(py; + - 4+ pxy)
P

wobei die Summation iiber die N Vektoren p zu erstrecken ist, welche
aus po, durch ¥ hervorgehen. (N = Ordnung von ¥.) Dabei gilt das
obere oder untere Vorzeichen je nachdem, ob der betreffende Vektor p
durch eine eigentliche oder uneigentliche Transformation von ¥ aus p,
hervorgegangen ist*). Kine alternierende Elementarsumme enthéilt also
im Gegensatz zur automorphen Elementarsumme immer genau N Glieder.
Sie verschwindet in jedem Punkt einer Spiegelebene von ¥ (Diagramm-
ebene). Daraus folgt dann: Ist 4 die Anzahl der Spiegelebenen, welche
durch einen gegebenen Punkt von R’ gehen, so beginnt die Taylorent-
wicklung unserer Elementarsumme in diesem Punkt mit einer Form in
Xy, Xy,..., £, die mindestens vom Grad u ist.

Analog zu Satz 3 haben wir nun unter Beriicksichtigung von Satz 4:

Satz 6. Ein alternierendes Polynom ist Linearkombination von alter-
nierenden Hlementarsummen mit ganzen (positiven oder megativen) Koef-
fizienten.

Orthogonalitit. Wir verwenden jetzt wieder das Koordinatensystem
Y1, Yss---»> Yy, dessen Grundvektoren primitive Vektoren des Einheits-
gitters y sind. Ist P das von diesen Vektoren aufgespannte Parallelepiped

und sind e(q;9; + -* + ¢;9,) beziehungsweise e(giy: + - + 1))
zwei Elementarausdriicke, so gilt offenbar

(1‘!;3(913/14' gy ey + o +qy)dy, ... dy,

1
=je[(q1———q{)y1] dy;. . -!e[(Qz”"qlz)yz] dy, =0 oder 1,
0

*) Wegen (11) kann man statt dessen auch p,,...,p; fest halten und tber alle
Bilder des Punktes (z,;, Z;,..., ;) vermoge der Gruppe ¥ summieren.

173



wobei der Wert 1 nur fiir ¢, = ¢j,..., ¢, = ¢; auftritt. Daraus folgt
leicht die fiir zwei alternierende Elementarsummen giiltige Integral-
formel

— 0 far S(y;) # + 8 (y,
jS(yi)S,(yj)dyl"°dyl= for 514 (@) (12)

P + N far S(y;) = +8(y,)

(Man beachte, daB zwei alternierende Elementarsummen, die in einem
Elementarausdruck iibereinstimmen, identisch sind.) Mit anderen
Worten

Satz 6. Die alternierenden Elementarsummen bilden ein orthogonales
Funktionssystem im Fundamentalparallelepiped P.

Prézisierend mufl hinzugesetzt werden, da man natiirlich von zwei
Elementarsummen, die sich nur im Vorzeichen unterscheiden, nur eine
in das System aufzunehmen hat.

4. In der geschlossenen Lie’schen Gruppe G' kann eine invariante
Volumenmessung definiert werden. Dabei ist unter dem Ausdruck ,,in-
variant‘‘ folgendes zu verstehen:

Das Gruppenelement x durchlaufe eine meBbare Teilmenge M von G
und s sei ein festes Gruppenelement. Dann haben die von sx und zs
durchlaufenen Mengen dasselbe Volumen wie M.

Ist f(x) eine in ganz G definierte stetige Funktion, so 1iBt sich das
Integral J — j. #(2) d,

@

bilden, wobei dv, das invariant gemessene Volumenelement an der
Stelle x bedeutet. Wir bendtigen aber hier nur das Integral einer Klassen-
funktion, also einer Funktion, welche in einer Klasse konjugierter Ele-
mente von G konstant ist. Nach dem Hauptachsentheorem von Nr. 1 ist
diese Funktion bereits durch ihre Werte auf dem maximalen Toroid 7'
gegeben. Man wird daher erwarten diirfen, dafl man zur Berechnung von
J nur ein Integral iiber 7' auszuwerten hat. Die nihere Analyse in § 3
bestétigt diese Vermutung und zwar ergibt sich

J = _f f(z) dv, = j f(yne (y,) dyy. .. dy; ; (13)
(@) (P)

P ist wieder das Parallelepiped der primitiven Vektoren von y; in der
Tat muBl ja der Punkt im R’ dieses Parallelepiped durchlaufen, damit
das zugehorige Gruppenelement das Toroid einmal durchlduft. Die
Dichtefunktion g (y,) kann auch als ,,Oberfliche‘‘ der Klasse konjugierter
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Elemente angesprochen werden, welche von dem Element des Toroids
mit den Koordinaten y, ausgeht. Im § 3 werden wir finden

e(y;) =k{71 2[1—cos 2w P (y,)] - (14)

Dabei sind die 9, die in Nr.1 definierten ganzzahligen Linearformen,
welche die Spiegelebenen des Diagramms definieren. Die Funktion o(y;,)
verschwindet also in den Punkten der Diagrammebenen. Wegen

1—cos2nd,(y,) = 2sin?x &,(y,)

fiihren wir noch die Funktion

Ay) = 11 2i sin 7 0,(y) (15)
oder
A() = 1 |o(2) —o(— 2e0d) (16)

ein und haben also
e(y;) = 14(y)|?

das heillt die endgiiltige Formel

| f(@) dv, = [ f(y,) | 4(y)|* dy,. .. dy, . (17)
(@ (P)

Aus (15) liest man ab: Ist 4 wieder die Anzahl der Diagrammebenen,
welche durch einen gegebenen Punkt des R' gehen, so beginnt die
Taylorentwicklung von 4(y,) in diesem Punkt mit einer Form vom
genauen Grad p.

Nun beweisen wir

Satz V. Die Funktion A(y;) ist ein alternierendes Polynom tm Sinne
von Nr. 3.

Zunichst ist ndmlich die Dichtefunktion g(y;) automorph gegeniiber
der gesamten kaleidoskopischen Gruppe I'. Denn die Gruppe @ von Ab-
bildungen des Toroids fiihrt, wie wir schon in Nr. 2 sahen, eine Klasse
konjugierter Elemente in sich iiber und p(y;) ist ja die Oberfliche einer
solchen Klasse.

Nun erhélt man 4 (y;) im wesentlichen durch Wurzelziehen aus ¢ (y;),
also mufl diese Funktion bei einer Operation von I' entweder unge-
dndert bleiben oder das Vorzeichen dndern. Die Formel (15) zeigt jetzt
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sofort, dafl 4(y,) bei einer Spiegelung an einer Diagrammebene 9;(y,) =c
das Vorzeichen édndert. Denn setzt man speziell einen Punkt ein, der
dieser Diagrammebene sehr nahe liegt, so dndert der Faktor sin = 9, (y;)
das Vorzeichen, wihrend die anderen Faktoren das Vorzeichen behalten.
Da nach Nr. 1¢ die Spiegelungen an den Diagrammebenen I" erzeugen,
ist 4(y,) invariant bei jeder eigentlichen Bewegung von I' und dndert
sein Vorzeichen bei jeder uneigentlichen. Da nun I" auch von ¥ und den
Translationen des Einheitsgitters y erzeugt wird, muf3 4(y,) automorph
sein gegeniiber den Translationen von y und sich gegeniiber ¥ ebenfalls
alternierend verhalten.

Bei der Ausmultiplikation von (16) erscheint nun 4(y;) als Summe
von Exponentialausdriicken, welche wegen der Invarianz gegeniiber
den Translationen von y Elementarausdriicke im Sinne von Nr. 2 sein
miissen. (Die Nenner 2 miissen also beim Ausmultiplizieren verschwin-
den.) Damit ist alles bewiesen.

Im § 3 werden wir noch das gesamte Volumen der Gruppe ¢ also nach

(17) das Integral
L4t dy,... dy,

berechnen und dafiir den Wert N (= Ordnung von ¥) finden. Daraus
kann man in Verschirfung von Satz 7 schliefen

Satz 8. Die Funktion A(y;) 18t eine alternierende Elementarsumme.

(Bei der Ausmultiplikation in (16) miissen also genau N Glieder
stehen bleiben.)

Beweis. Da 4(y,) nach Satz 7 alternierendes Polynom ist, gilt nach
Satz 5 eine Darstellung

A(y;) = % @Sy (Y;) (18)

mit ganzzahligen a,. Unter Beriicksichtigung der Orthogonalitits-
relationen von Nr. 3 Formel (12) ergibt sich daraus

{14(y)|*dy,...dy, = N X af .
(P) (k)
Wie wir eben zitiert haben, ist aber die linke Seite = N und damit mufl
Sa=1
(k)

sein, was wegen der Ganzzahligkeit der @, nur moglich ist, wenn alle
Zahlen a, verschwinden bis auf eine, welche = + 1 ist.
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b. Jetzt sollen die Charaktere y,(x) der irreduziblen Darstellungen der
Lie’schen Gruppe G berechnet werden. « sei wieder das allgemeine
Element von G.

Wir benutzen dazu die bekannten Orthogonalitdtsrelationen der Dar-
stellungstheorie ndmlich
0 far + £k

dv, = .
(g) xi(x) 2 (2) dv, N fir i =k

(19)

Zur zweiten Alternative in dieser Formel soll noch folgendes bemerkt
werden. Das Integral des Quadrats des Betrages eines Charakters y,(x)
ist sicher einmal fiir alle Charaktere dasselbe. Setzt man speziell den
Charakter der Einsdarstellung ein (welche jedem Gruppenelement x die
Zahl 1 als einreihige Matrix zuordnet), so erkennt man, daf8 dieses In-
tegral gleich dem gesamten Volumen von G ist. Dafiir haben wir oben
den Wert N gefunden.

Unter Benutzung der Volumenformel (17) konnen wir diese Relationen
nun schreiben

S 0 far i+k
rm YA (y) 12 dy, ... dy, = :
(;)x,(y,) 1:(¥;) | A(y,) 12 dy, U=\ N far i —k

Wir fithren zur Vereinfachung an Stelle der Charaktere die Charak-
teristiken ein

X (y;) = x(y5) 4 (9)) (20)
und haben dann

5 X, (y) X (y) dy,...dy, =

(P)

0 far i#k

N fur i =k 1)

Die Charakteristiken bilden also ein orthogonales Funktionssystem im
Parallelepiped P.

Nun ist nach Satz 3 ein Charakter y, eine ganzzahlige Linearkombina-
tion automorpher Elementarsummen und 4(y;) ist nach Satz 7 alter-
nierendes Polynom, also ist die Charakteristik X, nach ihrer Definition
(20) auch ein alternierendes Polynom und somit existiert nach Satz 5
eine Darstellung

X (y;) = Zag, S, (y)) (22)
)
mit ganzzahligen a,, . Integrieren wir dies mit Unterstiitzung der Formeln
(12) von Nr. 3, so ergibt sich

J X (y) Xi(y) dyy.. . dy, =N X a’ip -
(P) (®)
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Konfrontation mit der zweiten Formel (21) ergibt

X ay, =1,
()

was wegen der Ganzzahligkeit der a,, wieder nur moglich ist, wenn alle
ay, verschwinden bis auf eines, welches = + 1 ist. Aus (22) folgt dann

Satz 9. Jede zu einer irreduziblen Darstellung gehorige Charakteristik
18t alternierende Elementarsumme.

Es gilt aber auch die Umkehrung

Satz 10. Jede alternierende Elementarsumme ist Charakteristrk einer
vrreduziblen Darstellung. (Abgesehen vom Faktor + 1.)

Dies folgt aus dem Satz von Peter-Weyl, welcher besagt, dafl die
Charaktere y,(z) ein vollstindiges Funktionensystem im Gebiete der
Klassenfunktionen in G bilden. Es sei also etwa S(y,) eine alternierende
Elementarsumme, welche keine (positiv oder negativ genommene)
Charakteristik ist. Die Funktion

S(y,)

ist eine endliche und stetige Funktion der Variabeln y,, v,,..., ¥,;, da
nach Nr.3 und Nr. 4 die Nullstellen des Nenners auch Nullstellen des
Zihlers sind. Auflerdem ist f(y,) automorph gegeniiber den Translationen
des Einheitsgitters ¢, da Zahler und Nenner diese Eigenschaft haben;
f(y;) ist also Funktion auf dem Toroid. Endlich ist f(y,) automorph gegen-
iiber ¥, da Zihler und Nenner sich bei ¥ alternierend verhalten (Satz 7),
also ist f(y,;) als Funktion auf dem Toroid automorph gegeniiber der
Transformationsgruppe @.

Daraus schlieft man'!), daB f(y,) eine Klassenfunktion ist, oder besser
gesagt, daBl in @ eine Klassenfunktion existiert, welche auf dem Toroid
mit f(y,) libereinstimmt. (Sie ist infolge des Hauptachsentheorems ein-
deutig bestimmt.) Wegen

11) In der fritheren Arbeit wurde namlich bewiesen (§ 4, Nr. 6), daB zwei regulire
Elemente auf dem Toroid dann und nur dann in bezug auf G' konjugiert sind, wenn sie
durch eine Transformation von ¥ auseinander hervorgehen. Um die sogenannten singu-
laren Elemente brauchen wir uns nicht zu kiitmmern, da ihr Maf8 Null ist; sie spielen bei
der Integration keine Rolle.
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[ H(@) 12 (%) do, —If (%) 2 (%) 1 A(w) |2 dyy. . . dy,

(@)
= [ 8(y;) Xi(y;) dyy. .. dy, = § S(y;) Se(y;) dyy...dy, =0
(P) (P)

miiBte diese Klassenfunktion auf allen Charakteren orthogonal stehen
also identisch verschwinden, was unmaoglich ist.

Wir formulieren das Schlufiresultat :

Es sei eine kaleidoskopische Gruppe I' im euklidischen Raum R gegeben,
welche von den T'ranslationen des Gitters y und der endlichen Punktgruppe ¥
erzeugt sein mdoge. Man benulze ein Koordinatensystem Yy, Ys,..., Yy,
dessen Grundvektoren primitive Vektoren von y sind und bilde die alter-
nierende Elementarsumme

S(g) = 3+ enimns )
()

dabei sind die q; fest gewdihlte ganze Zahlen und die Summation st iiber
alle Bildpunkte des Punktes (y,,..., y,) vermoge der Gruppe ¥ zu er-
strecken ; das Vorzeichen jedes Terms stimmt mit dem Vorzeichen der Deter-
minante der betreffenden Transformation von ¥ iiberein.

Dann sind die Charaktere der irreduziblen Darstellungen der zu I' ge-
horigen Lie’schen Gruppe G gegeben durch

S (y;)

2y = iA(y,) ’

(23)

Daber wird A(y;) nach folgender Vorschrift berechnet :

Die Gleichungen der Spiegelebenen von I' seren
(y;))=c, k=1,2,...,m
(¢ durchlduft alle ganzen Zahlen); dann ist

m
A(y,;) =11 2 4 sin w 9, (y;) . (24)
k=1

Das Vorzeichen in (23) kann leicht festgelegt werden, wenn man
beachtet, daB (0, 0,..., 0) positiv sein mufl, denn dies ist der Grad »
der Darstellung.
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6. Eigentlich miite nun die Formel (23) diskutiert und speziell durch
Ausfithrung der Division die Zerlegung von y(y,) in automorphe Ele-
mentarsummen gegeben werden (Satz 3). Es wire aber dazu eine Theorie
der gegeniiber ¥ automorphen Funktionen notwendig analog zur Theorie
der symmetrischen Funktionen. Ich will daher nur den ersten Schritt in
dieser Richtung tun und zeigen, wie man die durch (24) gegebene Funk-
tion 4 (y,) im konkreten Fall am einfachsten als alternierende Elementar-
summe darstellt (Satz 8).

Zu diesem Zweck benotigen wir einen Fundamentalbereich F der
Gruppe . Bereits in Nr. 3 haben wir beim Beweis von Satz 4 erwihnt,
daBl F durch Spiegelebenen von ¥ begrenzt wird; jetzt brauchen wir aber
das schirfere Resultat, dal ' von genau [ solchen Spiegelebenen begrenzt
wird. (I = Dimension des Toroids und von R'). Der Beweis folgt unter
Beriicksichtigung von Nr. 1d aus dem elementargeometrischen Hilfs-
satz, der nicht allzu schwer einzusehen ist:

Sind im [/-dimensionalen euklidischen Raum endlich viele (I — 1)-
dimensionale Ebenen durch den Nullpunkt gegeben, unter denen es !
linear unabhingige gibt, so befindet sich unter den Bereichen, in welche
diese Ebenen den Raum einteilen, mindestens einer, der von genau /
der Ebenen begrenzt wird.

In unserem Fall miissen aber alle diese Bereiche als Fundamental-
bereiche von ¥ kongruent sein, daher wird jeder von ! Ebenen begrenzt.

Es seien also ¢,, d,,. .., ¢, die zu den | Begrenzungsebenen von F ge-
horigen Linearformen, also

0k(y5):0a :1,2,-..,l

die Gleichungen der Winde von F. Die noch freien Vorzeichen der
Formen &, seien dabei so gewidhlt, dafl das Innere von F' durch

8.(y)>0, k=1,2,...,1

gegeben ist. Die iibrigen Linearformen 9, ,, 4,,,..., 4,, welche im
Diagramm noch vorkommen, kénnen wir nun als Linearkombinationen
der bisherigen ansetzen:

!
0i(y5)=kzaik0k(yj)a =141, 14 2,...,m. (26)
=1

Hierin haben fiir einen festen Wert 7 alle Koeffizienten «,, dasselbe Vor-
zeichen. Denn bezeichnen wir mit P, den Punkt des Fundamental-
bereichs, fiir den gilt
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=0==9._,=0, & =1, 0k+1:"':'9120,
so ergibt Einsetzen dieses Punktes in (25)
o = Wert von 9, in P, .

Es miissen aber alle Punkte P, auf einer Seite der durch &; = 0 ge-
gebenen Spiegelebene liegen, da diese nicht in F' eindringt. Daher haben
die «,, einerlei Vorzeichen.

Durch geeignete Wahl der Vorzeichen der Linearformen &,,,,..., %,

konnen wir daher erreichen, daB alle «,; positiv werden. Es gilt also

Satz 10. Die Vorzeichen der m Linearformen 8&,(y,) des Diagmmm_;g
konnen so gewdihlt werden, daf alle Formen Linearkombinationen mit
positiven Koeffizienten von | unter ihnen sind. Die zu diesen I speziellen
- Formen gehirigen Spiegelebenen durch den Nullpunkt begrenzen einen
Fundamentalbereich der Gruppe V.

Nun wihlen wir fiir einen Moment ein neues Koordmatensystem
N1 Na,- - ., B, durch die Transformationsformeln

Ni = ﬁi(yj)’ 52132,'-%1 . (26)
In diesem neuen System haben also nach Satz 10 alle Linearformen

9, (n;) positive Koeffizienten. Zur Berechnung von 4 (#,) in diesem neuen
Koordinatensystem verwenden wir die Formel (16) von Nr. 4 also

e R

Bei der Ausmultiplikation erscheint hier speziell der Elementar-
ausdruck

m
A(n;) = k1=71

e(d) mit o=1 S 0 (n) - (28)

k=1

Im ganzen aber entstehen 2™ Elementarausdriicke mit Koeffizienten
+ 1. Nun wissen wir aber nach Satz 8, dal das Resultat dieser Aus-
multiplikation eine alternierende Elementarsumme ist, daf also recht
viele unter diesen Posten sich wegheben miissen und nur N stehen bleiben
konnen. Gerade der Term (28) kann sich aber mit keinem anderen auf-
heben. Denn in einem anderen Term e ($#') wird der Exponent #' erhalten,
indem von ¥ einige der Formen &,(n;) abgezogen werden. Es ist also
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mindestens einer der Koeffizienten von &4’ kleiner als der entsprechende
von 3.

Satz 11. Werden die Vorzeichen der m Formen 9,(y,) des Diagramms
gemdf Satz 10 gewdhlt, so wird die alternierende Elementarsumme A(y;)
durch den Elementarausdruck e(9) erzeugt, wober 9 die halbe Summe aller m
Formen 9, (y;) vst.

Die Konstruktion eines Fundamentalbereichs F' von ¥ gemif3 Satz 10
ist auch niitzlich, um die alternierenden Elementarsummen S(y;) von
(23) aufzustellen und zu ordnen. Wir erinnern ndmlich daran, da3 S(y;)
nach Nr. 3 durch einen regulidren Vektor p, gegeben ist; man wird ihn so
wihlen, dafl er (vom Nullpunkt aus angetragen) ins Innere von F weist,
um sicher zu sein, dafl man jede alternierende Elementarsumme nur ein-
mal erhilt. Fiir diese Rechnungen eignet sich das orthogonale Koordi-
natensystem der x; besser als das schiefe System der y,.

§ 2. Beispiele

1. Die kaleidoskopische Gruppe B,.

In einem euklidischen /-dimensionalen Raum R! sei ein kartesisches
Koordinatensystem x,, z,,..., x; gegeben. W sei der Wiirfel, dessen
Ecken die Koordinaten + 1 haben. Wir geben nun eine kaleidoskopische
Gruppe I' = B, durch ihre Spiegelebenen wie folgt.

a) Spiegelebenen durch den Nullpunkt
1. Sorte = Koordinatenebenen: z, =0, p=1,2,...,1
2. Sorte = Diagonalebenen von W : xz, + x, =0, pu<v,

b) die iibrigen Spiegelebenen sind parallel zu den Ebenen von a) und
zwar seien ihre Gleichungen

1. Sorte: z, = ¢ (c durchliuft die ganzen Zahlen)

2. Sorte: x, + x, = ¢ (c durchliuft die ganzen Zahlen).

Damit ist I" gegeben und wir miissen jetzt das Gitter y und die Punkt-
gruppe ¥ konstruieren, welche den Nullpunkt fest laft.

Nun wird nach § 1 Nr. 1e das Gitter y erhalten, indem man I" auf den
Nullpunkt ausiibt. Die Spiegelung an der Ebene x;, + x, = 1 fiithrt
zum Beispiel den Nullpunkt iiber in den Punkt mit den x-Koordinaten
(1,1,0,0,...,0), die Spiegelung an der Ebene x, = 1 fiihrt ihn iiber
in (2,0,0,0,...,0). So erkennt man, dafl wir in y auf alle Fille die
! Translationen haben
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e, =(2,0,0,0,...,0, 0, 0)
e =(1,1,0,0,...,0, 0, 0)
¢ =(0,1,1,0,...,0, 0, 0)
¢g =(0,0,1,1,...,0, 0, 0) (29)
ea=1(0,0,0,0,...,1,1,0)
e, =(0,0,0,0,...,0,1,1).

Es ist nicht allzu schwierig einzusehen, daBl dies sogar primitive
Translationen von y sind, dafl man also alle anderen Translationen von y
aus diesen ganzzahlig kombinieren kann. So hat man zum Beispiel

eg_el-—'———(—l,l,0,0,...,0,0) .

Dies ist der Punkt, in welchen der Nullpunkt durch die Spiegelung an
der Ebene z, — z; = 1 iibergeht. Oder

2¢;—e, =(0,2,0,0,...,0,0) usw.

Die Vektoren ¢,,e,,...,¢; bilden nun die Grundvektoren unseres

Koordinatensystems y,;, wir haben also folgende Transformations-
formeln

%y, =2y —+ Y,
Ys + Ys
Zy = Y3 + Y

8
]
Il

(30)

= Y+ Y
T, = Y -

Die Gruppe ¥ wird erzeugt durch die Spiegelungen an den unter a)
aufgefiihrten Ebenen durch den Nullpunkt. Dabei erzeugen die Spiege-
lungen der ersten Sorte eine Untergruppe, welche aus allen moglichen
Vorzeicheniinderungen der Variabeln z; besteht (Ordnung 2¢). Eine
Transformation dieser Untergruppe ist eigentlich oder uneigentlich,
je nachdem ob eine gerade oder ungerade Zahl von Vorzeichen gedindert
wird. Man erkennt nun leicht, dafl man nur noch alle Permutationen der
Variabeln z; hinzu nehmen muf}, um die volle Gruppe ¥ zu erhalten.
Thre Ordnung ist 2¢1!
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Jetzt grenzen wir nach dem Verfahren von Satz 10 einen Fundamental-
bereich F' von ¥ ab. Die Linearformen #,(z,;) unserer kaleidoskopischen
Gruppe I' lauten nach b)

o owy , o p=1,2,...,1
e =|, T (31)
Wir wiablen die ! Formen aus
P (z;) =
Py () = 2, — 7,

P (x;) = a3 — (32)

P (x) =2, — 2y,

und man verifiziert ohne Miihe, dal die iibrigen #,(y,) Linearkombina-
tionen dieser Speziellen mit positiven Koetfizienten sind. Somit ist ein
Fundamentalbereich F' gegeben durch

z2,>0, 2g—2,>0, 23— 2,>0,..., ;,—x,_;>0, (33)

das heiBt die x, miissen positiv und monoton wachsend sein. Satz 11
liefert uns nun die Funktion 4(x,;). Die halbe Summe aller Formen
¢, (x;) in (31) betrigt

=4, + 32, + 5y + - + (21— 1) 7] (34)
Nun miissen wir auf den Elementarausdruck e(#) die Gruppe ¥ ausiiben

und die 2!l! Posten alternierend addieren. Zuerst iiben wir die Unter-
gruppe aller Vorzeichendnderungen der x; aus, haben also zu bilden

| o £33+ -+ 21 —1)2 |
Ee‘e' P ls')

wobei die Summe iiber alle moglichen Vorzeichenwahlen in der ge-
schweiften Klammer zu erstrecken ist und das Vorzeichen ¢ positiv oder
negativ zu nehmen ist, je nachdem ob in der geschweiften Klammer eine
gerade oder ungerade Zahl negativer Zeichen steht. Diese Summe ist
aber nichts anderes als die Entwicklung des Produkts

(2¢)' sin mx, sin 3nwx, sin 5w x,...sin (21 — 1) nx, .

Auf dieses Produkt miissen nun noch die Permutationen der Variabeln
ausgeiibt werden; ein solcher Posten ist positiv oder negativ zu nehmen,
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je nachdem ob die Permutation gerade oder ungerade ist. Wir erhalten
also die Determinante

sin #x, sin 3nz, ...sin (21 — 1) &z,

sin ®x, sin 37z, ...sin (21— 1) nzx,
4 (x;) = (24) ; :

sin #x; sin 3zx,...sin (21— 1) =z,

Eine solche Determinante schreiben wir hinfort abgekiirzt
A(xz;) = (29)! | sinwz, sin 3nx;...sin (21— 1) nx,| , (35)

indem wir nur die j-te Zeile anschreiben.

Man kann dieses Resultat ohne die allgemeinen Sitze 10 und 11 veri-
fizieren, denn aus der urspriinglichen Definition von 4(x;) (§ 1, Nr. 4,
Formel 15) folgt ja

1

A(x;) = £ II 2¢sinnz, - Il 4sinx (v, 4 x,)sinz (¥, — 2,)
p=1 B<v

und man kann direkt nachrechnen, da3 dies mit (35) iibereinstimmt.

Unsere letzte Arbeit ist nun die Bestimmung der allgemeinen alter-
nierenden Elementarsumme S (x;). Zu diesem Zweck miissen wir einen
Vektor p, im Fundamentalbereich ¥ wihlen. Er habe die 2-Koordinaten
P1s Pss- - -, Py, Wobei also gemil (33) gelten mufl

0<p1<p2<"‘<pl. (36)

Die zugehorige Linearform p,z, + py2; + -+ + p,x, muBl auf die
y-Koordinaten umgerechnet werden:

P1%y + Doy + -+ D% = 1Y+ LY+ + QY

und dann die Bedingung formuliert werden, daf3 die ¢; ganzzahlig sind.
Die Transformationsformeln (30) ergeben

¢ =2p

g = P1 + P2

Q3 = p2 +p3 (37)
qiai= Pz + Pra

¢ = Pratnp -
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Die Ganzzahligkeit der g; bedeutet also, dafl die p; ganz oder halbganz
(d. h. die Hilfte einer ungeraden Zahl) sein miissen.

Die allgemeine alternierende Elementarsumme entsteht also, indem
wir auf den Elementardruck e(p,x; + psz, -+ -+ + p,z;) die Gruppe ¥
alternierend ausiiben. Die Rechnung verlduft genau gleich wie oben im
Fall von 4 (x;) und ergibt

S(z;) = (27)!|sin 2 p, 2, , sin 2w p,x,,...,sin 2ap, ;] . (38)

Zur Formulierung des Schlufiresultates fithren wir noch die Zahlen
2p; = n; ein, welche dann ganz, und zwar entweder alle gerade oder alle
ungerade sein miissen und finden:

Die Charaktere der zur kaleidoskopischen Gruppe B, gehorigen Lie-
schen Gruppe sind gegeben durch

|sin n, 7wz, , sin nyza;,..., sinn,wx; |

x (;) = ,  (39)

wobet die n; entweder alle gerade oder dann alle ungerade Zahlen sind, welche
der Bedingung

<, <n, < <My
geniigen.

Wir wollen noch zwei spezielle Darstellungen etwas weiter diskutieren.
Zunidchst nehmen wir an

n=1, ng=3,..., n_,=201—3, aber n;, =21+ 1.

Die Division der beiden Determinanten in (39) 148t sich dann ausfiithren
und liefert

2(z;) =1+ 2(cos2mx; +cos2may,+ - +cos2ma;). (40)

Der Charakter setzt sich also (wie nach Satz 3 zu erwarten) aus zwei
automorphen Elementarsummen zusammen, ndmlich aus der Elementar-
summe 1 und der durch e(z,) erzeugten Elementarsumme. Setzt man
den Nullpunkt in (40) ein, so erhilt man fiir den Grad der Darstellung
(Dimension des Darstellungsraumes) den Wert 217 4+ 1.

Ferner berechnen wir noch die charakteristischen Wurzeln w,, w,,.. .,
wg;,; der Matrix, welche ein gegebenes Element x der Lie’schen Gruppe
darstellt. Wir kénnen annehmen, da x auf dem Toroid liegt, also etwa
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die Koordinaten z; habe. Ist dann r irgend eine ganze Zahl, so ist der
Wert des Charakters fiir das Element 2" die Summe der r-ten Potenzen
der w;. Nun hat 2" die Koordinaten rx, und daher folgt aus (40)

]+ g+ 4 gy = 14-2(cos 2arx, + cos 2arz, 4+ +cos 2mra;) .

Dies gilt fiir alle ganzen Zahlen r und liefert daher die Werte der w,. Man
erhilt:
Die charakteristischen Wurzeln w; sind die Zahlen

1, e(x;), e(—wxy), 7=1,2,...,1. (41)

Die charakteristischen Polynome der darstellenden Matrizen haben also
reelle Koeffizienten.

Die darstellende Matrix eines Elements x des Toroids ist nun nach
§ 1, Nr. 2 in einem geeigneten Koordinatensystem des Darstellungs-
raumes einfach die Diagonalmatrix, welche in der Hauptdiagonalen die
Zahlen (41) enthélt. Durch eine Koordinatentransformation im Dar-
stellungsraum kann man statt dessen auch die Darstellungsmatrix

1
0
cos 2y, —sin 2ma,
A(x) = sin 2@, cos 2ma, (42)
0 .
cos 2mx; —sin 2nux,
sin 2ma, cos 2nx,

erhalten; sie ist reell und orthogonal. Man kann nun nach einer Methode
von Schur!?) aus dem Charakter (40) allein nachweisen, dafl iiberhaupt
alle Gruppenelemente x (also auch die, welche nicht auf dem Toroid
liegen) in einem geeigneten Koordinatensystem des Darstellungsraumes
durch reelle Matrizen dargestellt werden. Da diese Matrizen sowieso als
unitdr angenommen werden koénnen, folgt nun, daB3 die darstellenden
Matrizen eine Gruppe O von orthogonalen Matrizen der Determinante
~+ 1 bilden. Unsere Lie’sche Gruppe G ist auf die Gruppe O durch die
Darstellung homomorph abgebildet; wir bestimmen noch den Kern
dieses Homomorphismus, also die Elemente von G, welche auf die Ein-
heit von O abgebildet werden. Es sind dies genau die Elemente z, fiir

13) @. Frobenius, I. Schur, Sitzungsberichte Preul, Akad. 1906.
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welche der Wert des Charakters (40) gleich dem Grad (21 4 1) der Dar-
stellung ist, und dies gibt die Elemente « des Toroids mit ganzzahligen
Koordinaten z; und ihre Konjugierten in G. Durch jeden Punkt mit
ganzzahligen z, im Raume R! unseres Diagramms geht aber eine Spiegel-
ebene aus jeder der Scharen b), welche wir am Anfang dieser Nummer
eingefiihrt haben. Daher gehort nach § 1, Nr. 1f jedes Element = des
Toroids mit ganzzahligen Koordinaten z; zum Zentrum der Lie’schen
Gruppe G und daher hat z iiberhaupt keine Konjugierten aufler sich
selbst.

Der Kern des Homomorphismus besteht also genau aus den Elementen
des Toroids mit ganzzahligen Koordinaten z;; er ist diskret in G und
daher hat die Bildgruppe O dieselbe Dimension wie G@. Die Dimension n
von G betrigt aber nach § 1 Nr. 1¢ » = I 4+ 2m wobei m die Anzahl der
Spiegelungsebenen von ¥ ist, welche durch den Nullpunkt laufen. In
unserem Falle ist

m=1-+ 2 ( ‘

2)=l2, also n=1021+1) .

O ist also eine Drehungsgruppe der Dimension [(2{ 4 1) im (27 + 1)-
dimensionalen Darstellungsraum, also notwendig mit der vollen
Drehungsgruppe dieses Raumes identisch. Wir haben also als Neben-
resultat erhalten:

Die zur kaleidoskopischen Qruppe B, gehirige Lie’sche Gruppe tst im
Kleinen zur vollen Drehungsgruppe O eines (21 + 1)-dimensionalen eukli-
dischen Raumes 1somorph.

Genauer gesagt ist sie die universelle Uberlagerungsgruppe von O.
In der fritheren Arbeit wurde umgekehrt gezeigt, daBl die Konstruktion
der zu O gehorigen kaleidoskopischen Gruppe (vgl. § 1, Nr. 1) eben B,
ergibt, wovon wir jetzt ausgegangen sind. Die Formel (39) ergibt also
die Charaktere von O als Funktionen der ,,Drehwinkel* z,, «,,..., ;.

Eine zweite spezielle Darstellung unserer Lie’schen Gruppe erhalten
wir durch die Wahl

n=2, np==4,..., n,=21. (43)

Auch in diesem Fall lift sich die Division der Determinanten in der
Formel (39) ausfithren und man erhilt den Charakter '

x(x;) = 2'cos mx, cos wx, -+ cOS X, . (44)

Der Grad der Darstellung ist 2!. Fiir die Elemente  des Toroids mit
ganzzahligen Koordinaten ist y(z,) = + 2!. Wir haben also hier keine
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eindeutige Darstellung der orthogonalen Gruppe O, sondern eine zwei-
deutige sogenannte Spindarstellung. Der bekannteste Fall ist I = 1, wo
sich die Darstellung der Drehungsgruppe im dreidimensionalen Raum
durch 2-reihige unitire Matrizen ergibt.

In analoger Weise wie hier die Gruppe O lassen sich die iibrigen klassi-
schen Gruppen — némlich die Drehungsgruppe in Ridumen gerader
Dimension, die unitdre Gruppe und die Komplexgruppe — diskutieren.

2. Die Ausnahmegruppe Q,.

Wir gehen aus von der kaleidoskopischen Gruppe in der Ebene, welche
durch das Diagramm von Fig. 2 gegeben ist. Man hat also [ = 2.

Zwei primitive Vektoren des Einheitsgitters y, welche das Koordinaten-
system y,, y, aufspannen, sind eingezeichnet. Fiir die Gleichungen der
Spiegelungsachsen liest man aus der Figur ab %

h=E ¥ =c¢ Hh= i+ yp=c
= —Ys=c¢ H=2y,+ y.=c¢
B= y =c¢ K= y+2y.=c,

¢ durchlauft jeweilen alle ganzen Zahlen.

Die Formen ¥,(y,) sind bereits so ge-
wihlt, daf} alle Linearkombinationen der
ersten beiden mit positiven Koeffizienten
sind. Fiir die halbe Summe aller Formen
erhalten wir

P=3y+2y,,

der Elementarausdruck e(3y, + 2y,) erzeugt also die Funktion 4(y,).

Wie in allen Fillen hexagonaler Symmetrie ist es nun bequem, die
rechtwinkligen Koordinaten xz; wie folgt zu wihlen: Wir betten unsere
Ebene R?, in welcher das Diagramm liegt, in einen 3-dimensionalen
Raum R?3 mit den kartesischen Koordinaten z,, z,, #; ein, und zwar
sollen die beiden Grundvektoren des y-Koordinatensystems im x-System

die Koordinaten
(1,0,—1) bzw. (0,1,—1)

erhalten. Wir haben also die Transformationsformeln

=W
xz' = Y2 (45)
g = —Y — Y2
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und die Punkte des R? sind durch die Relation

T+ 23+ ;=0 (46)
gekennzeichnet. Es folgt

h=2a, h=2,—=x, 4=23=x + 22z, (47)
und der Fundamentalbereich F' der Gruppe ¥ ist also durch

X, — x>0, 2,>0 (48)
gegeben.
Um nun die allgemeine alternierende Elementarsumme S(y,) aufzu-
finden, wihlen wir einen Vektor p im R?® mit den z-Koordinaten p,, p,,
p;. Seine Normalprojektion p’ auf den R? hat dann die Koordinaten

p;=2p1~—§2——p3, P = ——p1+;p2~p3’ p = ——701~——§72+2p3 _

(49)
Diesen Vektor p’ wihlen wir nun als Vektor des Elementarausdrucks,
der S(y,) erzeugt. p’ soll im Innern von F liegen, also mufl gemif (48)
gelten

Pri—P>0, P+ ps<2p,. (50)

Der zu p’ gehorige Elementarausdruck ist nun e(pjz; + pia, + pla,).
Setzt man hierin die Werte (49) ein, so ergibt sich wegen (46) auch ein-
fach e(pix;, + psxy + psx;). Die Umrechnung auf die y-Koordinaten
ergibt dafur e(q,y; + ¢.y.), wobei gemid den Transformations-
formeln (45)

¢ =P1—Ps> g2 = Ps— D3 (51)

ist. Die Forderung der Ganzzahligkeit der ¢, bedeutet also, daBl die
Differenzen der p,; ganzzahlig sind. Die Form & entspricht nach (47) dem
speziellen Fall p, = 3, p, = 2, p, = 0.

Jetzt miissen wir auf unseren Elementarausdruck e(p,z; + p,x, +
ps;) die Gruppe ¥ alternierend ausiiben. ¥ wird erzeugt durch die
Spiegelungen an den 6 Achsen durch den Nullpunkt, wie sie die Fig. 2
zeigt. Die Gruppe hat die Ordnung 12. Im Raume R? erzeugen nun die
drei Spiegelungen an den Achsen

192=O, 05:0, 06=0
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des R? in dieser Ebene R? einfach die Permutationen der Koordinaten
Xy, Ty, 3. Fiigt man die Spiegelung am Nullpunkt hinzu, so erhilt man
die volle Gruppe ¥. Diese Spiegelung am Nullpunkt ist in R? eine eigent-
liche Transformation, sie fithrt unseren Elementarausdruck in
e(— P1X; — P&y — P3x3) liber. Somit haben wir in §(x;) den Term

e(p1; + P2z + P3x3) + e(— Py %y — Py — P3y)

= 2¢08 27 (P, 2y + Py + P3s)
und erhalten

S(z;) = 2 cos 2 7 (P, &, + Pay + P3x;) + Perm. (z,, x,, x3)

wobei die Abkiirzung in naheliegender Weise bedeuten soll, daBl die
iibrigen Terme aus dem Hingeschriebenen durch Permutation von
Zy, Xy, ¥, hervorgehen sollen und das Vorzeichen durch die Signatur
der Permutation gegeben ist. Die Charaktere der Lie’schen Ausnahme-
gruppe sind also

o8 27 (P, &, + Po %y + P3%3) + Perm. (¥, x,, )
cos 2m(3x; + 2x,) + Perm. (x,, 2y, ;)

x () = (52)

Dabei sind die p,; irgendwelche Zahlen mit ganzzahligen Differenzen,
welche die Ungleichungen

Pr—P>0, P+ Py <2p,

erfiillen. Um den Grad » der Darstellung zu berechnen, mufl man die
x; in (52) gegen Null streben lassen. Man erhélt

1
Y =190 (p1=D2) (Pe—Ds) (P3=Dy) (2P1—Pa—D3) (2Py—p3—P1) (2P3—P1—D2)

(53)

Um jede Darstellung nur einmal zu erhalten, kann man etwa p; = 0
withlen. p, und p, sind dann ganze Zahlen, welche den Ungleichungen

P1=> P2 » P1<2py

geniigen, also positiv sind. In Figur 3 sind die Grade der ersten Dar-
stellungen und die zugehorigen Werte von p, und p, angegeben.
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§ 3. Volumenberechnung in einer geschlossenen Lie’schen Gruppe

In diesem Abschnitt miissen wir uns in vollem Umfang auf frither
publizierte Resultate stiitzen (vgl. FuBnote !)); die folgenden Fufinoten
beziehen sich auf die Paragraphen und Nummern dieser fritheren Arbeit.

1. G sei wie immer eine geschlossene halbeinfache und einfach zu-
sammenhingende Lie’sche Gruppe, = das allgemeine Element und e das
Einselement, ferner sei 7' das fest gewidhlte maximale Toroid in G von
der Dimension /. In einer Umgebung U (e) des Einselementes in G seien
kanonische Koordinaten erster Art z,, z,,..., z, eingefithrt. (n ist die
Dimension von ¢.) Die Gruppenmultiplikation innerhalb U (e) ist also
in erster Approximation die Koordinatenaddition. Ist a ein beliebiges
Element von G (nicht notwendigerweise in U (e)), so ist der innere

Automorphismus
x—>alzra=2xa (54)

fiir Elemente « aus U (e) eine lineare Transformation

n
/ ~
Ty = X A%y . (55)
k=1
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Thre Matrix bezeichnen wir mit 4,. Diese Matrizen bilden die adjungierte
lineare Gruppe von G .

Man kann nun die kanonischen Koordinaten speziell so wihlen'3), daf3
einmal das Toroid 7' durch

Ty = Xpyg="""=2,=0

gekennzeichnet ist. Die Koordinaten x,, x,,. .., x; sind dann die bisher
immer verwendeten Koordinaten auf 7', in welchen die Gruppenmulti-
plikation in T genau die Addition bewirkt. Sodann kann man ferner
erreichen, daB3 die Matrizen 4, orthogonal sind und daf3 die Matrix 4,,
welche zu einem Element ¢ von 7' gehort, folgende spezielle Gestalt hat

E,
D, 0 )
B it D. — cos 2Py (¢;) — sin 2m P, (¢;)
N D, ’ * 7 \sin 279, () cos 2y (t;))
0 "
D, (56)

Dabei ist noch E, die l-reihige Einheitsmatrix und die ¢, sind genau die
Linearformen in den Koordinaten t,, ¢,,..., ¢, des Elements ¢, welche
wir zu Beginn dieser Arbeit (§ 1, Nr. 1, Formel 1) eingefiihrt haben und
welche die Spiegelebenen des Diagramms festlegen!4).

2. Als weiteres Hilfsmittel brauchen wir den Wirkungsraum W der
Nebengruppen des Toroids 7'. Er entsteht, indem man jede Nebengruppe
2T als Punkt X eines Raumes auffafit, der vermittelst des Umgebungs-
begriffes in G in naheliegender Weise zu einem topologischen Raum W
gemacht wird. 7 selbst, also die Nebengruppe e7', liefert einen speziellen
Punkt E dieses Raumes. Jedes Element a von G ergibt eine Trans-

formation f(X) = (@) T (57)

von W in sich und daher kann G auch als Transformationsgruppe von W
aufgefaBt werden. Die Elemente a von G mit

foll) =E
bilden die Isotropiegruppe von W. Sie ist mit T' identisch.

13) Friihere Arbeit § 2, Nr. 3.

14) Tn der fritheren Arbeit (§ 2, Nr. 3, Formel 4) fehlt der Faktor 2 z, weil wir damals
die Zahl 1 als MaB des vollen Winkels 360° benutzt haben. Aus verschiedenen Griinden
wurde jetzt aber das gewohnliche analytische Bogenmal verwendet.
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Nehmen wir in @ speziell ein Element x aus U (e) mit
Ty =Xy ="' =2,=0,

so bilden die Punkte X = 7T von W eine Umgebung U (£) des Wirkungs-
raumes. Wir konnen daher «,,, %,.,,..., 2, als Koordinaten in der
Umgebung U (Z) von W verwenden. Wir bestimmen noch die Trans-
formationen der Isotropiegruppe in diesen Koordinaten. Sei also ¢ ein
beliebiges Element von 7' und X der eben eingefiihrte allgemeine Punkt
von U(E). Esist

f(X) = taT = (bt T .

Die Koordinaten von ¢ x¢~! berechnen sich nach (54) und (55), indem man
die Matrix 4;* von (56) auf die Koordinaten von x ausiibt. Die ersten [
Koordinaten von txi-! sind also wieder Null, wdhrend die iibrigen

Ty1se e, Xy AUS Xy q,..., %, durch die orthogonale Transformation
D, -1
0
D,
0 .
D,,

hervorgehen. Wir halten fest: Die Transformationen der Isotropiegruppe
im Wirkungsraum W sind in den gewéhlten Koordinaten in U (X) lineare
orthogonale Transformationen.

3. Nun kommen wir zur Definition der Volumenmessung in G'. Inner-
halb der Umgebung U (e) soll das Volumen euklidisch, das hei3t durch

das Integral
{dz,dz,. . .dx, (58)

gemessen werden. Haben wir jedoch ein Volumen v innerhalb einer Um-
gebung U (s) eines beliebigen Elementes s von G zu messen, so bestimmen
wir statt dessen das Volumen der Menge s—'v, welche dann in U (e)
liegen wird und durch die Linkstranslation s~ aus v hervorgeht. Man
hitte statt dessen ebenso gut die Rechistranslation nehmen, das heil3t
v$~1 messen konnen. Um dies einzusehen, hat man nur zu zeigen: Ist v
speziell ein Volumen in U (e), so hat ava—' dasselbe Mal3 wie v. (a = be-
liebiges Element von G.) Dies ist aber richtig, da die inneren Auto-
morphismen von @ nach den Uberlegungen von Nr. 1 innerhalb U (e)
orthogonale Transformationen sind.
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Analog definieren wir eine Volumenmessung im Wirkungsraum W.
Innerhalb U (E) sei die Volumenmessung wieder euklidisch also durch

das Integral
fdx, day,, ... d, (59)

gegeben. Soll jedoch ein Volumen V innerhalb einer Umgebung U (S)
eines beliebigen Punktes S von W gemessen werden, so messen wir statt
dessen das Volumen von f~*(V), wobei f eine Transformation der in W
definierten Transformationsgruppe ist, welche E in § iiberfithrt. Zu.
zeigen ist, da3 das MaB3 von f~1(V) nicht von der Wahl von f abhingt.
Aquivalent mit dieser Behauptung ist, daB eine Transformation der
Isotropiegruppe die Volumina innerhalb U () invariant 1a8t. Dies folgt
wieder aus der in Nr.2 nachgewiesenen Orthogonalitit der Trans-
formationen der Isotropiegruppe.

Eine Bemerkung wire noch iiber die Volumenmessung auf 7' zu
machen. Die Koordinaten z,, #,,..., «, sind ja auf ganz 7T definiert.
(Wir benutzen wieder die Abwicklung von 7' in den euklidischen Raum
R?; die Koordinaten eines Elementes von T sind dann die Koordinaten
des entsprechenden Punktes im Grund-Parallelepiped P des Einheits-
gitters y im R’). Da nun die Gruppenmultiplikation in 7' genau die
Koordinatenaddition ist, sind die Linkstranslationen innerhalb 7' ge-
wohnliche euklidische Translationen des R?, das heifit an jeder Stelle von
T (nicht nur in U (e)) ist die Volumenmessung durch das Integral

fdx,dz, ... dx,
gegeben.

4. Nun sind wir in der Lage, das Volumen v, der gesamten Gruppe G
zu ermitteln. Wir benutzen zu diesem Zweck gerade die Einteilung von @
in Nebengruppen von 7'. Genauer gehen wir so vor: Es sei AV irgend eine
kleine meBbare Menge innerhalb der Umgebung U (E) des Wirkungs-
raumes W. Ihr allgemeiner Punkt sei X und z,, #,,,,..., , seien seine
Koordinaten. Dem Punkt X von W ordnen wir das Element x von G zu
mit den Koordinaten

xlzxz'::"':xl:(); xl+1,xl+2,...,mn-

Die Elemente x bilden eine Menge Av in G'. Auf sie iiben wir die durch
die Elemente ¢t von T' bewirkten Rechtstranslationen aus. Jedes Element x
durchlduft dabei eine Nebengruppe von T'. Awv iiberstreicht bei diesen
Rechtstranslationen eine in Nebengruppen gefaserte Menge v, deren
Volumen offenbar

195



v=A4V (dz,...dz,
(1)

betrigt. Dabei wurde obige Bemerkung iiber die Volumenmessung auf
dem Toroid benutzt. Um nun die ganze Gruppe G' auszufegen, iiben wir
auf » noch die Linkstranslationen von G aus. Sei v/ = av eine solche
durch Linkstranslationen aus v hervorgehende Menge; sie hat nach
Definition der Volumenmessung in G dasselbe Volumen wie v. Die
Menge »’ ist nun auch in Nebengruppen von 7' gefasert; diese Neben-
gruppen — als Punkte von W aufgefat — erfiillen die Menge
AV =f,(4V), welche nach Definition der Volumenmessung in W
dasselbe Mafl wie AV hat. Also ist auch

v/ = AV’ [ da,...dx, .
()
Uberstreicht nun v’ die Gruppe @, so iiberstreicht 4V’ den Wirkungs-
raum W und daher ergibt sich fiir das Volumen von ¢

Py == Voj dz,...dz, , (60)
« (T)

wobei V, das Gesamtvolumen des Wirkungsraumes bedeutet.

5. Etwas schwieriger ist nun die Losung unserer Hauptaufgabe,
niamlich die Berechnung des Integrals einer Klassenfunktion in G'. Wir
geben zunichst eine Formel fiir das Volumenelement an einer Stelle s
von @, wobei s ein regulires Element der Gruppe @G sei'®). Nach dem
Hauptachsentheorem (§ 1, Nr.1) gibt es auf dem Toroid 7' ein zu s

konjugiertes Element ¢, also
. .8 =uatat. (61)

Nun konstruieren wir eine Umgebung von s auf die folgende Weise:
x sei wieder ein Element aus U (e), dessen ! erste Koordinaten ver-

schwinden :
xl’:xz::"':xl:().

7 sei ein Element des Toroids in U (e). Dann beschreibt
8’ = (ax) (tr) (@x)™?

é,ine Umgebung von s. Um Volumenberechnungen in U (s) durchzu-
filhren, miissen wir nach Definition die Linkstranslation s~* ausiiben:

18) Vgl. frithere Arbeit § 2, Nr. 1.
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s1s’ = s lgxtraxla?,
und durch Einsetzen von (61)

818/ = atlxtraxla1.

Fiir die Volumenberechnung ist es ferner gleichgiiltig, wenn wir noch
den inneren Automorphismus a ausiiben:

8" = a1(s1s')a = tlxtrxt = (t1xt) (v) (z71) . (62)

Die drei Klammern rechts sind Elemente in U (e), wir berechnen ihre
Koordinaten.

Was zunichst (¢-1xt) anbelangt, so miissen wir die Formeln (54) bis
(56) anwenden und erhalten

1. bis l-te Koord. = 0 .

(I 4+ 1)-te Koord. = x;,, cos 2w 9, (t;) — x,,.58In 27w P, (I))

(I + 2)-te Koord. = z,,,sin 2w &, (t;) + x,.,cos 273, (t))
: (63)

(n — 1)-te Koord. = z,_, cos 2 &, (t;)— x,sin 2z 9, (t;)

n-te Koord. = x,_,sin 2xn 8, (¢;) + x,cos 2xn 3, (¢;) .

]

Dabei bedeuten ¢,,,,...,t, die Koordinaten von ¢. Die Koordinaten
des zweiten Faktors v in (62) bezeichnen wir mit 7,, 7,,..., 7;; die
Koordinaten des Elements x im dritten Faktor mit =z, ;, 2,.5,..., Z,.
Da die Gruppenmultiplikation in erster Approximation die Koordinaten-
addition ist, haben wir abgesehen von Gliedern hoherer Ordnung fiir
die Koordinaten von s¢” in (62)

1-te Koord. = 1,
2-te Koord. = 71,

I-te Koord. = T,
(I 4 1)-te Koord. = z,,, (cos 2 w &, (t;) — 1) — s8I0 2 7w F, (¢;)
(I + 2)-te Koord. = z,,,sin 2 &, (t;) + 2, (cos 2w, (¢;) — 1)

(n — 1)-te Koord. = x,_, (cos 2 n 9, (t;) — 1) — =, sin 2 = &,, (t;)
n-te Koord. = x,_,sin 2z &, (¢;) + x, (cos 2xn 9, (¢;) —1) .

I
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Durch Bilden der Funktionaldeterminante erhalten wir unser gesuchtes
Volumenelement an der Stelle s -

dv, = o(¢;) dv,. . .d7, - dx, ... dx, (64)

wobei zur Abkiirzung eingefithrt wurde
m
o(t,)y =IT2(1—cos2n &, (¢)) . (65)
k=1

Ferner ist dx,,,...dz, nach (59) das Volumenelement an der Stelle £
des Wirkungsraumes W oder auch das Volumenelement dV, an der
Stelle 4 = f,(£) von W. Endlich kénnen wir dz,...dr, auch als das
Volumenelement dt,. . .dt;, des Toroids an der Stelle ¢ auffassen. Damit
erhalten wir die angekiindigte Formel fiir das Volumenelement von ¢

an der Stelle s = ata—1:
d’b‘s == Q(t’) dVA dtl. .. dtz » (66)

Zur Integration in G benutzen wir nun die Einteilung von @ in Klassen
konjugierter Elemente. Die Beschrinkung auf regulire Elemente von ¢
stort dabei nicht, da die singuléiren Elemente eine Menge vom Mafl Null
bilden, also bei der Integration keine Rolle spielen. Ferner brauchen wir
noch einen Fundamentalbereich der Transformationsgruppe @ von 7
(vgl. § 1, Nr. 1), wie er in der fritheren Arbeit'®) konstruiert wurde. Er ist
eine Punktmenge in 7'. Zu jedem reguliren Element von G gibt es dann
im Inneren K dieses Fundamentalbereiches genau ein Konjugiertes.

Jetzt konstruieren wir eine Abbildung des topologischen Produkts
KxW in die Gruppe @ hinein. Es sei also ¢ ein Element von K und 4 ein
Punkt von W. Es ist also A eine Nebengruppe a7 von 7. Dann ordnen
wir dem Paar (¢, 4) das Element s = ata~! von G zu. Es ist zunédchst zu
zeigen, dafl s nicht von der Wahl des Elements a in der Nebengruppe 4
abhingt. Sei also ¢’ = at’ mit ¢’ in 7' ein anderes Element in dieser
Nebengruppe. Dann folgt

s’ =a'tl@’y 1 =at'tt’V)a ! =atar=s.

Dabei wurde benutzt, daB 7' eine Abel’sche Gruppe ist.

Bei dieser Abbildung ist die Bildmenge die Menge R aller reguldren
Elemente von . Wir zeigen nun, dal unsere Abbildung von KxW auf
R ein-eindeutig, also topologisch ist. Zu diesem Zweck bemerken wir,
daB8 R einfach zusammenhingend ist, denn G ist einfach zusammen-

16) § 4, Nr. 6.
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hingend und die Entfernung der singuliren Elemente vermag an dieser
Tatsache nichts zu éndern, da die Menge der singuliren Elemente drei
Dimensionen weniger hat als G. Somit geniigt es nach dem Monodromie-
prinzip nachzuweisen, daB unsere Abbildung im Kleinen ein-eindeutig
ist. Seien also t’ und a’ benachbart zu ¢, @ und sei

a’t' (@) = ata™1.

¢t und ¢’ sind also konjugiert in G und da beide dem Innern K des Fun-
damentalbereichs angehéren, folgt ¢’ = ¢ also

a’t(a’y1 = ata?
(ata’)t = t(aa’) .

a~1la’ ist also mit ¢ vertauschbar, gehort daher dem Normalisator N, von ¢
an. Da a—'a’ beliebig nahe am Einselement e liegt, muB dieses Elemene
sogar in der zusammenhingenden Komponente N von N, liegen, welcht
e enthilt. Nun ist aber ¢ regulires Element, also stimmt N, mit 7' iiber-
ein'’) und daher gehoren a¢ und a’ derselben Nebengruppe von 7' an,
womit alles bewiesen ist.

Vermoge dieser topologischen Abbildung kénnen wir eine Integration
iiber G' auch auffassen als Integration iiber KxW. Hilt man in KxW
das Element von K fest und variiert den Punkt von W, so iiberstreicht
der Bildpunkt in G genau einmal eine Klasse konjugierter Elemente.

Sei nun eine Klassenfunktion f(s) in G gegeben. Fiir ihr Integral er-
halten wir nun nach (66)

jf(s) dv, = j‘ f(s) dv, = _’ () e (¢;) AV, dby. . .dt,
KxW)

() (ExW) (
= | f(t;) o (t;) - dt,...dt,- [dV, .
(K) (W)

Also, wenn wieder V, das Volumen des Wirkungsraumes W bedeutet

(&) dv,= Vo J{t)e(t)dt...dt,. (67)
(&) (X)

Bezeichnen wir die Integrationsvariabeln auf dem Toroid wieder mit
Zy, Xq,..., X;, 50 ergibt sich also

j f(x)dv, =V, j f(x);) o (x;) d;. . . da; . (68)
@) (K)

17) Friithere Arbeit § 2, Nr. 1.
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6. Nun wollen wir die Volumenmessung in G etwas abdndern, indem
wir alle Volumina mit dem universellen Faktor N/V, multiplizieren.
Dabei sei N wie frither die Ordnung der Transformationsgruppe @ des
Toroids. Wir verzichten darauf, diese Abdanderung explizit anzudeuten,
schreiben also einfach statt (68)

fHx)dv, = N f(z,) o (;) d,. . .dx, . (69)
@ (K)
K war Fundamentalbereich von @; das Toroid setzt sich aus N solchen
Fundamentalbereichen zusammen und daher haben wir auch

jf(x) dv, = jf(xj) o (x;) da,...dz; .

(@ ()

Endlich fithren wir an Stelle der orthogonalen Koordinaten x; noch die
Koordinaten y; ein, welche ! primitive Vektoren des Einheitsgitters y
als Grundvektoren haben. Schreiben wir dann

(g)f(x ) dv, = j'f(yf (y;) Ay, . . . dy, , (70)

(wobei P das Parallelepiped der Grundvektoren ist), so haben wir die
Determinante der y, nach den x; unterschlagen. Dies ist gleichgiiltig,
da es auch nur die Multiplikation aller Volumina mit einem konstanten
Faktor bedeutet. Unter Beriicksichtigung von (65) ist damit die Formel
(13) von § 1 Nr. 4 hergeleitet.

Nun miissen wir noch diesen Abénderungen in der Formel (60) fiir das
gesamte Volumen Rechnung tragen. Wir erhalten jetzt

'Uoz N j‘dyl"'dyl - .N 3
(P)

was in § 1 Nr. 4 ganz entscheidend verwendet wurde.

(Eingegangen den 17. August 1944.)
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