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Quaternionengeometrie und das Abbildungs-
problem der regulâren Quaternionenfunktionen

Von Hans Hâfeli, Zurich

Einleitung
Herr Rud. Fueter hat in mehreren Arbeiten1) die Théorie der regulâren

Quaternionenfunktionen entwickelt. Unter einer Quaternionenfunktion
versteht man eine stetige Abbildung eines Bereiches H des vierdimen-
sionalen euklidischen Raumes auf einen Bildbereich H*, oder analytiseh
die Zusammenfassung 4 reeller Funktionen der 4 Komponenten xh eines

unabhangigen variablen Quaternions x 2J xhH zu einem abhângigen
variablen Quaternion ih)

w f(x) £uh(x0, xl9 x%, x3) ih h 0, 1, 2, 3
(*>

Eine Quaternionenfunktion w wird differenziert, indem man jede Kom-
ponente differenziert.

wik) _
dw

_ y duh i _ y u{h):
axk (A) axk {h)

Man nennt nun eine Quaternionenfunktion reehts- oder linksregulâr,
wenn die uh stetige und stetig differenzierbare Punktionen der xh sind,
und die partiellen Ableitungen den Bedingungen

jg w(k) ik 0 oder v ik wm 0 fc 0, 1, 2, 3
(*) (*)

genugen. Dièse Regularitatsbedingung hat die Gultigkeit des 1. und
2. Hauptsatzes2) zur Folge, und ist eine formale Ûbertragung der Cauehy-
Riemannschen Differentialgleichungen der gewohnlichen Funktionen-
theorie.

x) Rud. Fueter, Die Funktionentheone der Differentialgleichungen Au — 0
und AAu 0 mit 4 leellen Variablen Comm. Math. Helv., vol. 7, S. 307 (zitiert
als Fueter I).

Rud. Fueter, Ûber die analytische Darstellung der regulâren Funktionen
einer Quaternionenvanablen Comm Math. Helv., vol. 8, S. 371 (zitiert als
Fueter II).

Rud. Fueter, Die Singularitaten der eindeutigen regulâren Funktionen
einer Quaternionenvanablen Comm. Math. Helv., vol. 9, S. 320 (zitiert als
Fueter III).

Rud. Fueter, Integralsatze fur regulare Funktionen einer Quaternionen-
variablen. Comm. Math. Helv., vol. 10, S. 306 (zitiert als Fueter IV).

2) R. Fueter, I S. 312 und S» 318.
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In der folgenden Arbeit soll untersueht werden, wie die Regularitâts-
bedingung die Abbildung auszeichnet, die dureh eine regulâre Quater-
nionenfunktion geleistet wird. In der Funktionentheorie der komplexen
Zahlen bedeuten die Cauehy-Riemannschen Difîerentialgleichungen Kon-
formitàt der Abbildung. In der Funktionentheorie der Quaternionen
haben die erweiterten Cauehy-Riemannschen Differentialgleichungen,
d. h. die Regularitâtsbedingung, zur Folge, daB sich die infinitésimale
Abbildung aus drei regulàr-konformen Abbildungen additiv zusammen-
setzt. Dièse sind Spiegelungen an den imaginâren Axen mit darauf-
folgenden Drehstreckungen. Sie kônnen insbesondere durch Spiegelung
an der reellen Axe erhalten werden, wobei dann die reehts- oder links-
seitige Drehung einen Drehwinkel von 90° besitzt, je nachdem die Funk-
tion rechts- oder linksregulâr ist. Mit Beriicksichtigung dieser letzten,
allerdings starken Einschrânkung, kann man sagen: Die Abbildung durch
regulâre Quaternionenfunktionen ist im Infinitesimalen uneigentlich oder
antikonform, oder sie lâBt sich aus drei solchen zusammensetzen.

Die regulàren Quaternionenfunktionen sind also geometrisch das

Gegenstiick zu den nach F. Ringlebz) analytischen hyperkomplexen
Funktionen der Klassen Cl9 C2 und C3 im Kôrper der Quaternionen.
Insbesondere entsprechen den von H. Nisigalci*) untersuchten
Quaternionenfunktionen der Klasse Cx die regulâr-konformen Quaternionenfunktionen,

also die regulàren Spiegelungen und Umlegungen. Dièse sind
in unserem Fall allerdings immer ganz linear.

Bevor wir die Abbildung einer Quaternionenfunktion diskutieren
kônnen, mussen wir untersuchen, wie sich der Quaternionenkalklil ins
Geometrische iibertragen lâBt. Um die entsprechenden Bewegungen im
euklidischen vierdimensionalen Raum zu verstehen, geben wir in einem
ersten Abschnitt eine kurze Darstellung der analogen Bewegungen im
elliptischen dreidimensionalen Raum. Dabei halten wir uns im wesent-
lichen an die Gedankengânge von-P. Klein5), nur daB wir die Cliffordschen
Schiebungen direkt durch Einfuhrung von Biquaternionen herleiten
(nach E. Study spezielle duale Zahlen), und nicht auf dem Umweg uber
die komplexen Zahlen. Nach der Ûbertragung auf den vierdimensionalen
euklidischen Raum ist dann die Deutung der regulàren Abbildung nicht
mehr schwierig, sobald das Differential dw explizite als Funktion von dx
geschrieben wird.

8) F. Bingleb, Beitrâge zur Funktionentheorie in hyperkomplexen Syste-
menl. Palermo Rendiconti 57 (1933).

4) H. NÎ8igaki, Zur Théorie der Quaternionenfunktion. The Tohoku Mathe-
matical Journal, vol. 45 I (1938).

6) F. Klein, Zut Nieht-Euklidischen Géométrie. Math. Ann. Lpz. 37 (1890).
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1. Die Bewegungen des elliptischen Baumes

Wir fassen die Komponenten aQ, al9 a2, az eines Quaternions
a a0 + &iH + ^2*2 ~f~ azh a^s homogène oder projektive Koordinaten
eines Punktes A in einem dreidimensionalen Raume auf. Dabei sind

1, il9 i2, iz mit i\ %\ i\ — 1

die Quaternioneneinheiten, und die Komponenten aus dem Kôrper der
reellen Zahlen. Ferner identifizieren wir zwei Quaternionen a und Xa mit
reellem A âls nicht wesentlich verschieden. Dadurch ist jedem Punkt A
des dreidimensionalen Raumes eineindeutig ein Quaternion zugeordnet.

a <—> A (a)

Was entspricht nun bei dieser Zuordnung den Rechenoperationen der
Quaternionen geometrisch

Da wir projektive Géométrie treiben, sind die Operationen erster Stufe
nur als Linearverbindung zweier oder dreier Punkte erklârt. Ordnen wir
einem variablen Punkt X ein variables Quaternion x zu, so erhalten wir
in den beiden Fâllen die analytisehe Darstellung der Geraden bzw. der
Ebene.

x a + A6 x — a + Xb + /lcc X, jx réelle Parameter (1)

Fiihren wir dual zu den Punktkoordinaten Ebenenkoordinaten ein, so

wird jedem wesentlich verschiedenen Quaternion eineindeutig eine
Ebene zugeordnet, und die obigen Gleichungen stellen uns die Gerade,
bzw. den Punkt in Ebenenkoordinaten dar.

Wir bezeichnen mit

a a0 — axix — a2i2 — #3*3 das zu a konjugierte Quaternion,

s(a) a -\- a 2 a0 die Spur von a,
n (a) a • 5 al + a\ -f a\ + a\ die Norm von a, und mit

| a | + Vn(a) den Betrag von a.

Damit finden wir fur die Inzidenz eines Punktes X mit einer Ebene U :

s (u - x) 0

Dies ist nur eine skalare Gleichung, und aus der gewôhnlichen analy-
tischen Géométrie bekannt.
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Im Gegensatz dazu gibt es eine Quaternionengleichung, die eine
Gerade darstellt. Dabei wollen wir uns auf die Darstellung in Punkt-
koordinaten beschrànken, wie wir es auch im folgenden immer halten
werden. Wir formen (1) um und eliminieren A.

axb n{a)b -\- Xa n(b)
r - r ..,,.,.- Gerade durch die Punkte
bxa bnia) -f An(b) a
- T r - A(a) und B(b).axb=bxa ' v'

(2)

Die 4 Komponentengleichungen dieser Quaternionengleichung sind die
Gleichungen der Projektionen der Geraden auf die Koordinatenebenen.

{âxb)0 \bxâ)Q {a2bz—azb2)x1-{-(azb1—a1bz)x2-\-{a1b2—a2b1)xz 0,

(âxb)! (bxâ)x (a2b3—azb2)x0 + (a3b0—a0b3)x2 + (a0b2—a2b0)xz 0,
(âxb)2 {bxâ)2 {axbz—azb1)xQ-\-(azbQ—aQb3)x1 + (aQb1—a1b0)xz 0,
(âxb)z {bxa)z (axb2—a2b1)xQ-\-{a2bQ—a0b2)x1 + (a0b1—a1b0)x2 0.

Wir erkennen in den Koeffizienten dieser 4 Projektionsgleichungen die
6 Plûckerschen Linienkoordinaten der Geraden im Raum. In der Folge
wurden die Quaternionen ôfters zur Darstellung der Liniengeometrie
verwendet6).

Mit Formel (2) sind wir zwangslâufig zu Rechenoperationen zweiter
Stufe gekommen. Wir wollen ihre geometrische Deutung an Hand der
Transformationen Tr und Tx durchfuhren, wobei wir dièse als Bewe-

gungen in einem festen Koordinatensystem auffassen.

Tajl diesem Zweck betrachten wir die Gerade durch den beliebigen Punkt
P(b) und den dazu speziellen Q(ba).

baxb =bxba->abx =bxa,
darauf Tr ausgeubt :

Dièse Gerade wird also durch Tr in sich tibergefùhrt; Tr erzeugt sie

geradezu. Tr bewegt jeden Punkt des Raumes auf einer Geraden.

6) A. Buchheim, The Messenger Math. 12—13 (1883—84).
P. Molenbroek, Anwendung der Quaternionen auf die Géométrie.

Leiden 1893.
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Die Gesamtheit dieser oo2 Geraden bildet eine lineare Kongruenz, wie
wir im folgenden zeigen werden.

Entsprechend erzeugt die Transformation T\ eine linksgeschraubte
lineare Kongruenz. Wir beschrànken uns in der Darstellung auf Tr, da die
Tt entsprechenden Resultate durch Symmetrieiïberlegung gewonnen werden

kônnen, und in der geometrischen Deutung von selbst wieder auf-
treten.

Wir fragen nun nach den bei Tr invarianten Elementen. Gibt es P(x),
so da8

qx xa (3)

bei reellem Proportionalitàtsfaktor q môglich ist? Aus obiger Gleichung
folgt sofort x - (q — a) 0, d. h. x und q — a mûBten Nullteiler sein.
Da die Quaternionenalgebra solche nicht besitzt, ist Gleichung (3) un-
môglich. Es gibt keine reellen Punkte, die von Tr in Ruhe gelassen
werden.

Nun fiïhren wir abstrakt imaginâre Punkte ein, denen wir die Bi-
quaternionen z — z0 -f ZiH + z2i2 + zzH zuordnen, wobei die Kompo-
nenten zQ, zx, z2, z3 dem Kôrper der komplexen Zahlen angehôren7).

Dabei soll i • ih ih • i gelten fur h — 0, 1, 2, 3. Wir bezeichnen mit

~z z0 — zxix — z2i2 — z%H ^as konjugierte Biquaternion,
2 z0 + z1i1 + z2i2 + zsis das komplex-konjugierte Biquaternion.

Unter Norm von z verstehen wir z -z; dies ist jetzt in der Regel eine

komplexe Zahl.
Jetzt fragen wir nach den Biquaternionen, die den imaginâren Fix-

punkten von Tr zugeordnet sind. Die Komponentengleichungen von (3)
geben uns ein homogènes Gleichungssystem mit schiefer Matrix. Dièses
besitzt nur dann nicht triviale Lôsungen, wenn seine Déterminante ver-
schwindet. Damit lâBt sich q und der Nullteiler q — a bestimmen.

ai ao~Q as — a2

<x2 — a3 ct0 — q dx

az a2 —ax % — q

7) E. Study, Amer. J. math. Baltimore 29 (1907).
W. R.Hamilton, Proc. R. Ir. Ac. Dublin 5 (1853).
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g2 — 2a0Q + n(a) 0 q a0 ± Val — n(a)

q a0 ± i Val + al + al

Die charakteristische Gleichung von Tr zerfâllt in die Ranggleichung
des Quaternions a ; q ist gleich dem auf eine Einheit reduzierten8)
Quaternion a. Damit ist der Nullteiler q — a gefunden.

Q — a ± i Val + al + al + a0 — a (4)

Das Biquaternion g — a hat rein imaginàren Skalar- und reellen
Vektorteil; Study fiihrt an dieser Stelle seine dualen Zahlen ein9).

Entsprechend sind die z der Fixpunkte gebaut. Da Tr eine Greraden-

kongrnenz in sich ûberfuhrt, muB es auf jeder ihrer Geraden mindestens
einen Fixpunkt geben. Da ihre zugeordneten Biquaternionen immer
Nullteiler sind, mûssen aile Fixpunkte auf der quadratischen Flâche F2

liegen. Somit gibt es auf jeder Geraden der Kongruenz genau zwei
Fixpunkte ; dièse sind die Treffpunkte der Geraden mit F2.

Wir betraehten die Kongruenzgerade durch P(b), und suchen ihre
Fixpunkte.

z b + Aba z b + Xâb

n(z) z-z n(b) + A (a+ 5) -n{b) + X2n{a) • n(b) 0

** ± i
n (a)

ba ,- x ba ,-z —-—— (a + À n (a) —— (a

Den beiden Fixpunkten sind komplex-konjugierte Biquaternionen zu-
geordnet.

Wir fassen die beiden zusammen, und schreiben mit Gleichung (4) die

Fixpunkte der Kongruenzgeraden durch P(b) bei Tr:
8) S. Wach8, Thèse, Géométrie projective quaternionienne, Bruxelles (1936).
9) E. Study, Géométrie der Dynamen, Leipzig (1903), S. 222, 595—596.

E. Study, unter 7).
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zr c(q — a)

wobei c irgend einen Punkt der Kongruenzgeraden bedeutet.
Dièse beiden Punkte sind naturlich auch bei der inversen Transformation

T~lm. x1 — x • â invariant.
Die Fixpunkte aller Kongruenzgeraden bilden nun die Gesamtheit der

bei Tr invarianten Punkte:
zr x(Q — â)

Dièse zerfàllt in zwei getrennte komplex-konjugierte Mengen. Da dièse
auch gegenuber î7"1 invariant sind, geniigen sie den beiden Gleichungen :

n(zr) 0, zr-a zr a

d. h. sie reprâsentieren zweiGeraden auf der nullteiligenFlàche F2. Dièse
beiden Geraden kônnen sich nicht schneiden, da sie hochimaginàr sind.
Sie gehôren einer der beiden erzeugenden Gteradenseharen der null-
teiligen Flâche an.

Dièse beiden bei Tr punktweise ruhenden Fixgeraden sind die Leit-
geraden der durch Tr erzeugten Linienkongruenz ; dièse ist also wirklich
linear.

Ganz entsprechende Ergebnisse haben wir bei der Transformation Tt.
Wir nennen die Geraden der Geradenschar auf F2, welcher die
Fixgeraden von Tr angehôren, die ,,Erzeugenden 1. Art", und entsprechend
die Geraden der andern Sehar die ,,Erzeugenden 2. Art". Dann sind die

invarianten Elemente bei
Tr: zr - a zr • a 2 Erzeugende 1. Art
Tx\ a - zt — â • zl 2 Erzeugende 2. Art

(5)

Die zugehôrigen Bewegungen nennen wir Schiebungen, und zwar
rechts- und linksseitige Schiebung. Wir uberblicken sie damit vôllig:

Bei einer Schiebung bewegt sich jeder Punkt des Raumes auf der-
jenigen Geraden, die man durch ihn legen kann, so da6 sie die beiden
Fixgeraden trifft.

Die Fixgeraden sind schon durch den Vektorteil von a bestimmt.
x1 x • a und xr x • (A + a) haben somit die selben Erzeugenden.
(A reell.) Der Realteil gibt den Betrag der Schiebung an, wàhrend der
Vektorteil die Richtung festlegt.

Somit lauten aile rechts- bzw. linksseitigen Schiebungen mit fester
Richtung a :
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Tr(a) : s' x(A + c,
A, a réelle Parameter

T^a): xf=^ + a)

Dabei sind zwei Schiebungen derselben Art in der Regel nicht ver-
tauschbar.

Tr(a) • Tr(b) ^ Tr(b) • Tr(a)

Die allgemeinste Transformation ï7, welche F2 in sich uberfuhrt, er-
halten wir nun durch Zusammensetzung von Tr und T%\ dièse ist ver-
tauschbar :

T Tr(a) • 2^(6) 2^(6) • Tr(a): x! (p + b)x(X + a)

Da die nullteilige Flâche F2 sowohl bei Tr wie bei Tx in sich ûber-
gefûhrt wird, so wird sie es auch bei 2\ Dabei bleiben nur die 4 Schnitt-
punkte der festen Erzeugenden von Tr und Tt invariant. Dièse sind
paarweise konjugiert, und kônnen daher je durch eine réelle Gerade
verbunden werden. Das sind die beiden einzigen Geraden, welche T in
sich uberfuhrt. Wir bezeichnen sie als Axen (a1? a2), und nennen die

zugehôrige Bewegung Schraubung. Die beiden Schraubenaxen sind wind-
schiefe, in bezug auf F2 konjugierte Geraden.

Wir kônnen die Transformation T ohne Einschrânkung der Allgemein-
heit in der Form xr (fi + a) x (h -\- a) schreiben. Dabei ist ein
spezielles Koordinatentetraeder zugrunde gelegt, so da8 eine der
Schraubenaxen durch den Eckpunkt P(l, 0, 0, 0) lauft.

Wie sehen nun dièse Schraubenaxen aus? Wir schneiden die Fix-
geraden von Tr mit denen von Tt (5), und erhalten die Fixpunkte von T.

âzl zra Fixpunkte der Axe ax.
a zt zra Fixpunkte der Axe a2

Da zr — x(q — a) und zt (q — a)x, so finden wir

a(q — a)x x{q — â)a

a(q — a)x x(q — â)a

und damit die Gleichungen der beiden Axen :

Û! : âx xa
a2 : ax xa
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Gibt es mm spezielle Transformationen, so dafi eine der Axen punkt-
weise festbleibt? Dies ist nur môglich, wenn Tx die Schiebung der Axen-
punkte, welche Tr bewirkt hat, wieder rùckgàngig macht. Da der Betrag
der Schiebung nur vom Realteil abhângt, mu8 also gelten:

f* + a0 ± U + «o) •

Die zugehôrigen Bewegungen nennen wir Rotationen. Wir haben
3 Fâlle:

1. X ix, Tai: x'=(X + a)x(X + a).

Dabei bleibt die Axe ax punktweise fest ; sie liegt in der Ebene x0 0.
Die Axe ct2 wird in sich verschoben. Wir kônnen die zugehôrige Bewegung
sowohl als Rotation um die Axe al5 wie auch als Translation langs der
Axe û2 auffassen.

2. A + ii — 2 a0 Tù2: x' - (A + à) x (A + a)

Dabei bleibt die Axe a2 punktweise fest; sie làuft durch die Ecke

P(l, 0, 0, 0). Jetzt wird die Axe ax in sich verschoben, und wir kônnen
die Bewegung entsprechend als Rotation um a2 oder Translation langs
ûx interpretieren.

3. A ix a0 0, Tai(l2: x' axa âxa.

Diesmal bleiben beide Axen punktweise fest. Wie wir spàter zeigen (8),
ist die zugehôrige Bewegung eine Drehung oder Translation vom
Betrage n.

Durch Zusammensetzung von Tai und Taz kann die allgemeine Translation

T erzeugt werden.

T : xr (fx + a) x (A + a) (k + 5) (v + a) x (v + a) (k + a)

kv + 2aov + 1
2 kv — 1

[A
k — v

' k + v -\- 2aQ

Wir erhalten infolgedessen die allgemeine Schraubenbewegung auf zwei
Arten: Entweder als Zusammensetzung einer rechts- und einer links-
seitigen Schiebung, oder als Zusammensetzung einer Rotation um die
Axe ûx und einer Rotation um die Axe ct2.

T TrTt= Ta± Ta2 (6)
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Wie bewegt sich dabei ein Punkt P(c), der nicht auf einer der beiden
Schraubenaxen liegt?

Tr bewegt P auf einer reehtsseitigen Kongruenzlinie, und Tx jeden
ihrer Punkte auf einer linksseitigen Kongruenzlinie. Das ergibt eine ein-
parametrige Schar rechtsseitiger Kongruenzlinien, welche eine Regel-
flâche bildet. Auf dieser muB es auch eine Schar linksseitiger Kongruenzlinien

geben, da bei einer Schraubung die beiden erzeugenden Schiebun-

gen vertauschbar sind. Dièse Regelflâche hat die Gleichung:

x {ji + a) c (A + a) (7)

Dièse Flâche kann wegen (6) aueh als doppelte Rotationsflâche um die
Axen ax und <x2 aufgefaBt werden. Fur jeden neuen Punkt Pr(c'), der
nicht auf einer der Kongruenzlinien von P liegt, erhalten wir eine neue
Regelflâche. Dièse einparametrige Flâchenschar hat, euklidisch gesehen,
die Gestalt von einschaligen Hyperboloiden, welche in der Nâhe der
einen Axe dièse schlauchartig umhullen, sich dann aufweiten, um xiber
ein elliptisches Paraboloid sich wieder um die andere Axe zu legen.

Um nun die uneigentlichen Transformationen zu finden, welche die

nullteilige Flâche F2 in sich iiberfuhren, brauchen wir nur die spezielle
uneigentliche Transformation

Tu : x'=z

zu betrachten. Ihr entspricht eine Spiegelung an der Ebene x0 0 oder
am Punkte P(l, 0, 0, 0). Dabei werden die beiden Erzeugendenscharen
der nullteiligen Flâche vertauscht. Durch Zusammensetzung von Tu mit
Tr und Tt bekommen wir aile uneigentlichen Transformationen. Diesen

entsprechen die Umlegungen und Spiegelungen9*).
Nun wollen wir die nullteilige Flâche F2 als tjundamental" auszeichnen,

und in bezug auf sie im Klein-Cayleysohen Sinn eine Metrik einfuhren10).
Dabei wird unser Punktraum zum dreidimensionalen elliptischen Raum.
Die bisher betrachteten Transformationen fuhren die MaBflâche in sich
iiber. Ihnen entsprechen jetzt also die starren Bewegungen und
Umlegungen. Insbesondere werden wir zeigen, daB bei einer Schiebung jeder
Punkt des Raumes um denselben Betrag bewegt wird. Somit haben die
Geraden der von Tr und Tx erzeugten Kongruenzen, die ja durch Schie-

9a) F. Klein, Vorlesungen ûber Nichteuklidische Géométrie, Berlin (1928),
S. 113.

10) F. Klein, Zur Nichteuklidischen Géométrie, Math. Ann. Lpz. 37 (1890).
A. Cayley, The London Edinb. Dublin Phil. Mag. (4) 6 (1853).
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bung ineinander ubergehen, imilier denselben Abstand, obwohl sie wind-
schief smd. Wir bezeichnen sie als Chffordsche Parallelen 1. Art bzw
2. Art11). Die durch Schraubung erzeugten Regelflachen (7) nennt man
Cliffordsche Flaehen. Sie besitzen langs îhrer Erzeugenden eine zweifache
Parallelverschiebung in sich selbst, und gleichen somit euklidischen
Ebenen; umgekehrt sind sie in doppelter Weise Rotationsflachen, was uns
an Kreiszylinder erinnert In ihnen kommt die vollstandige Dualitat der
elliptischen Géométrie am schonsten zum Ausdruck.

Bevor wir die Entfernung zweier Punkte definieren konnen, mussen
wir d$n Begriff des Doppelverhaltnisses erklaren.

Nach S. Wachs12) versteht man unter dem Doppelverhaltnis der
4 Quaternionen a, b, c, d den Ausdruck:

(abcd) (a — c)(a — d)-1 {b — d)(b — c)-1.

Dies ist eine formale Naehbildung des Doppelverhaltnisses bei kom-
plexen Zahlen, und lafit sich aus der von Staudtschen Définition der
harmonischen Punkte bei einem vollstandigen Vierseit ableiten. Dièse
Définition ist wohl gegenuber Tr, nicht aber gegenuber Tx invariant.

Wir beschranken uns auf den Spezialfall, daB die 4 Quaternionen auf
einer Geraden liegen, da wir ja bei unserer MaBbestimmung immer nur
lineare Gebilde verwenden. Dann zeichnen wir zwei Grundpunkte, etwa
a und b, aus; dièse bestimmen die Gerade, und dann folgt fur c und d:

c a + ^i& d a + A26

Unter dem Doppelverhaltnis verstehen wir nun îm gewohnlichen Sinn
den Quotienten von Ax und A2 :

(abcd) 4- (a — c) (a — d)-1 (b—d) (b — c)
An

-1

Dièses Doppelverhaltnis ist fur réelle Punkte eine réelle Zahl, und in
unserm erweiterten Raum also hochstens eine komplexe Zahl. Es bleibt
somit gegenuber allen betrachteten Transformationen invariant.

Man sieht sofort, daB sich die so definierten Doppelverhaltnisse multi-
plikativ zusammensetzen.

n) W K Chfford, Proc London Math Soc (1) 4 (1873)
E Study, Nichteukhdische und Liniengeometne, Jahrb Dtsch Math Ver 11

(1902)
W Vogt, Synth Théorie d Chff Parallelen und der hnearen Linienorter

des elliptischen Raumes, Leipzig (1909)
12) siehe bei 8)

10 Commentarii Mathematici Helvetici



Beh.: (abce) (abcd) • (abde)
Bew.: (a—c) (a—e)-1 {a—c) (a—d^ia—d) (a—e)-1

Nun definieren wir die Entfernung zweier Punkte P(a) und P(b) in
bekannter Weise :

E{a,b) ^-
2

wobei wir unter z! und z" die DurchstoBpunkte der Geraden durch P(a)
und P(b) mit der fundamentalen Flâche F2 verstehen. Die MaBkonstante

wâhlen wir —, um mit der euklidisehen Winkelmessung vôllige Ûber-

èinstimmung zu haben. So werden uns dieselben Ausdriicke, die hier die
Entfernungen messen, im euklidisehen vierdimensionalen Raum die
Winkel darstellen.

Nun wollen wir die Entfernungsfunktion explizite aufstellen. Zur
Vereinfaehung der Rechnung bestimmen wir die Entfernung des Punktes
P(a) vom speziellen Punkt P(l, 0, 0, 0); der allgemeine Fall wird dann
ohne weiteres auf diesen zurûckzufuhren sein.

x X + a Gerade durch P(a) und P(l, 0, 0, 0).

n(x) A2 + 2a0A + n(a) 0 Schnitt mit F2.

l12 -ao±i Val + a\ + a\

(laz'z") —

—ao—iVa\+a\+a\ n(a)

|(la2Z)| 1

Das Doppelverhâltnis ist eine komplexe Zahl vom Betrage 1, und
somit: „(1 az'z e~l(p cos <p — % sin <p

n(a) n(a) n(a) 2 2

tg
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Nun wird E(la) ^-ln (laz'z") =4rln e~iq> 4r
2 2

E{la) — arc cos -,—r arc tg
2 \a\ u,0

Da der Punkt P(a) durch Schiebung aus dem Punkt P(l, 0, 0, 0)
hervorgeht, haben wir mit obiger Formel auch den Betrag der Schiebung
gefunden, die der Multiplikation mit a entspricht. Dieser ist in der Tat
nur vom Realteil abhângig. Wir heben der spâtern Anwendung wegen
speziell hervor:

Ist der Realteil eines Quaternions a null, so stellt uns x1 xa oder

xr — ax eine rechts- oder linksseitige Schiebung vom Betrage-^-dar(8).2

Nun wollen wir die Entfernung zweier beliebiger Punkte P(a) und
P(b) berechnen. Dièse ist nur vom Doppelverhâltnis (abz'z") abhângig,
und dièses ist unsern Transformationen gegenûber invariant. Wir kônnen
also mit Tr oder Tx die beiden Punkte starr so verschieben, daB der eine,
etwa a, in den Punkt P(l, 0, 0, 0) fâllt. Damit ist der allgemeine Fall
auf unsern Spezialfall zurûckgefûhrt.

E(a, 6) E(1, ba) arc cos
|

^__^ arc cos

E(a, b) arc cos

bâ\ 2\a\ \b\
s (ad)

2|o| \b\

Um die metrischen Verhâltnisse besser zu ûberblicken, betrachten wir
die Kugelschar um den allgemeinen Punkt P(a). Wir bezeichnen den

Kugelradius mit r, und verlangen :

E(a, x) — r. Dies ergibt bei variablem r die Kugelschar um P(a).

(ax + ~xa)2 in(a)n(x) • cos2r.

Die Flâchenschar ist gegenûber xr axa natûrlich invariant, da dies
eine Rotation um die Axe P(a)P(l, 0, 0, 0) bedeutet. Euklidisch ge-
sehen, haben wir eine Schar von Rotationsellipsoiden um dièse Axe, die
ûber ein Rotationsparaboloid (wenn die Flâche die Ebene x0 0 be-

rûhrt) in Rotationshyperboloide ûbergehen, bis dièse die zu P(a) in
bezug auf F2 polare Ebene doppelt uberdecken.

Betrachten wir speziell die Kugelschar um den Punkt P(l, 0, 0, 0):
a^ n(x) • cos2r.
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Dièse hat dasselbe Aussehen, wie eine euklidische Kugelschar um
diesen Punkt. Gehen wir von den homogenen zu affinen Koordinaten
ûber, indem wir die Ebene xQ 0 als unendlich fern auszeichnen,

so erhalten wir:

Die Transformation xT axa stellt also sowohl die Gruppe der
elliptischen wie der euklidischen Drehungen um den Punkt P(l, 0, 0, 0)
dar. Die Komponenten von a sind in letzterem Fall die Eulerschen
Parameter der Drehung13).

Dièse Darstellung der euklidischen Drehungen um einen festen Punkt
wurde direkt zu einer neuen Begrundung der Quaternionentheorie ver-
wendet14).

Nun sollten wir in entsprechender Weise die elliptische Winkelmessung
analytisch durchfûhren. Wir dispensieren uns davon, da sich dièse nicht
von der euklidischen unterscheidet, insbesondere aber, da wir hier keine

vollstàndige Darstellung der dreidimensionalen elliptischen Géométrie
geben wollen, und wenden uns nun den Bewegungen im vierdimensio-
nalen euklidischen Raum zu.

2. Die Bewegungen im euklidischen vierdimensionalen Raum

Wir denken uns einen dreidimensionalen elliptischen Raum und ver-
binden diesen mit einem Punkt 0 auBerhalb. Dadurch entsteht eine vier-
dimensionale Mannigfaltigkeit. In dieser wàhlen wir als MaBflâche die

nullteilige MaBflâche F2 des elliptischen Raumes. Dièse ist in unserer

18) W. R.Hamilton, Proc. R. Ir. Ac. Dublin (1) 3 (1847).
13) A. Cayley, The Lond. Edinb. Dublin Phil. Mag. (3) 26 (1845).
14) F, Klein und A. Sommerfeld, Ûber die Théorie des Kreisels. Math. Ann.

Leipzig 39 (1891).
E. Study, Die Hauptaâtze der Quaternionentheorie. Mitt. naturw. Ver. Neu-

vorp. 31 (1899—1900).
W. Fr. Meyer, Zur Théorie der Drehungen und Quaternionen. Z. Math.

Phys. Leipzig 55 (1907).
Anmerkung : Die hier zitierte Literatur ist nicht vollstàndig, und sollte nur die Schriften

bezeichnen, in denen sich die betreffenden Darstellungen zum erstenmal finden. Wir ver-
weisen auf den Enzyklopàdie-Artikel III ABU. Système geometrischer Analyse, und
vor allem auf die franzôsische Ausgabe Encyclopédie des sciences mathématiques pures et
appliquées I 5 Nombres complexes, wo besonders der zahlentheoretische Standpunkt ein-

genommen wird.
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vierdimensionalen Mannigfaltigkeit eine einmal ausgeartete, quadra-
tische, nullteilige Flâche und erzeugt deshalb eine euklidische Metrik.
Der dreidimensionale elliptische Raum wird zur unendlich fernen Hyper-
ebene unseres vierdimensionalen euklidischen Raumes. In diesem gibt es

durch jeden seiner Punkte einen dreidimensionalen MaBkegel oder
Minimalkegel, nâmlich die Verbindung des Punktes mit der MaB-
flàche F2. Dieser Minimalkegel ist fur ein dreidimensionales Geraden-
bûndel das allgemeinste quadratische Gebilde. Die Géométrie dièses

Geradenbiindels ist also elliptisch.
Damit haben wir den euklidischen vierdimensionalen Raum einge-

fûhrt und ihn gleich zum dreidimensionalen elliptischen in Beziehung
gesetzt. Wir kônnen nun ohne weiteres die in letzterem bekannten Be-

wegungen ubertragen. Sie werden uns jetzt die Drehungen und Dreh-
streckungen um einen festen Punkt ergeben.

Im folgenden wollen wir die Komponenten eines Quaternions a als
Koordinaten eines Punktes P(a) in einem rechtwinkliggradlinigen
Koordinatensystem auffassen. Damit ist jedem Quaternion eineindeutig
ein Punkt des vierdimensionalen euklidischen Raumes zugeordnet.
Beschrânken wir uns wieder auf wesentlich verschiedene Quaternionen,
so entspricht diesen die Gesamtheit der Geraden durch den Ursprung.
Die Gerade durch P(a) und den Ursprung 0 nennen wir die Radiale B(a).
Die Géométrie dieser Radialen stimmt mit der im ersten Abschnitt be-
trachteten elliptischen Punktgeometrie vôllig iïberein.

Wir werden nun die Bewegungen eines Punktes untersuchen, indem
wir zuerst die Bewegung seiner Radialen betrachten und erst dann die
diskrete Punktbahn ermitteln.

Wir betrachten wiederum die Transformationen Tr und Tl9 und
setzen dièse dann zusammen. Wie bewegt die Transformation x! xa
einen beliebigen Punkt P(x) des Raumes?

Die Radiale R (x) wird um den Ursprung uni den Winkel <p arc cos y-^r
\a\

gedreht und die Entfernung des Punktes P(x) vom Ursprung 0 mit \a\
multipliziert. Die Drehbewegung ist aber nur dann eben, wenn die
Schiebung in allen Zwischenlagen dieselbe Richtung besitzt, wenn also
das Verhaltnis ax : a2 : a3 konstant bleibt. Betrachten wir a als variablen
Parameter av, so muB dieser proportional von 1 nach a wachsen.

av 1 + X {a — 1) O^Kl. (9)

Dann bewegt sich R(x) in einer Ebene. Dièse nennen wir rechtsseitige
Kongruenzebene durch R(x). Sie schneidet den Minimalkegel in zwei
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konjugierten Geraden. Die einzelnen Punkte von B(x) beschreiben bei
monoton wachsendem X ebene Spiralen.

Auf dem Minimalkegel n(z) 0 liegen eine rechts- und eine links-
geschraubte erzeugende Ebenenschar. Tr fiïhrt letztere in sich ûber,
wâhrend zwei konjugierte Ebenen der rechtsgeschraubten Schar fest
bleiben. Die Ebenenkongruenz durch 0 besteht nun aus sàmtlichen
Ebenen, die dièse beiden imaginâren Erzeugenden in zwei Geraden
treffen. Damit ûberblicken wir die Tr entsprechenden Bewegungen,
welche wir wiederum rechtsseitige Schiebungen nennen.

Ist insbesondere n (av) 1, so behalten die Punkte ihren Abstand vom
Ursprung bei. Wir haben dann eine Drehung um den Ursprung, und wenn
noch (9) erfullt ist, Kreisbogen als Bahnkurven.

Entsprechend liefert uns die Transformation T% die linksseitigen
Schiebungen bzw. Drehungen.

Die rechts- und linksseitigen Drehungen haben jetzt auBer der Iden-
ditàt noch die Spiegelung am Ursprung gemeinsam.

Dièse kann also sowohl durch rechts- wie durch linksseitige Drehung
um 180° erzeugt werden.

Durch Zusammensetzung von Tr und Tl erhalten wir die allgemeinen
Drehstreckungen und Drehungen um 0.

xr axb. (10)

Die linksseitige Ebenenkongruenz durch 0 wird rechtsseitig auf einem
Cliffordschen Kegelraum gedreht, und umgekehrt. Die einzelnen Punkte
werden dabei mit \a\\b\ gestreckt. Die Drehbewegung der einzelnen
Ebenen besitzt eine kontinuierlich ândernde Drehaxe; d. h. eine gedrehte
Ebene hat mit der ursprûnglichen nur den Ursprung gemeinsam. Die
Drehung ist immer noch schraubenartig.

Ist n(a) n(b) 1, so stellt uns (10) die Gesamtheit der Drehungen
um den Ursprung dar.

In beiden Fâllen werden zwei zueinander senkrecht stehende Ebenen

(die eine besteht aus sàmtlichen Normalen, die man im Ursprung auf
die andere errichten kann) in sich ûbergefûhrt. Dièse beiden Ebenen
sind die Axenflâchen des Cliffordschen Kegelraumes. In ihnen ist die

Bewegung eine ebene Drehung.
Betrachten wir im speziellen die Transformation

x1 axa-1 (11)
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Hier bleibt die eine Axenflâche punktweise fest, wâhrend die andere
um den doppelten Betrag gedreht wird. Die invariante Ebene geht dureh
den Punkt P(a) und die xQ-Axe. Die zugehôrige Bewegung nennen wir
eine Rotation im engern Sinn. Jede Drehung kann durch zwei spezielle
Rotationen ersetzt werden. Gleichung (11) stellt uns bei freiem a die
Gesamtheit der Drehungen um die #0-Axe dar.

Betrachten wir nun die allgemeine lineare Transformation, so haben
wir folgende Einteilung :

x1 -- axb n(a)n(b) 1 starre Transformation um 0,
xr axb + c Àhnlichkeitstransformation,
x! (ax + b) (ex -\- d)'1 konforme Transformation15).

Dabei achtet man bei den entsprechenden Bewegungen nur auf
Anfangs- und Endlage.

Die uneigentlichen Transformationen erhalten wir, indem wir die
eigentlichen mit der speziellen uneigentlichen Transformation xf x
zusammensetzen.

So erhalten wir die Spiegelungen und uneigentlichen Bewegungen.
Insbesondere làBt sich auch die Spiegelung an der ayAxe so zusammensetzen.

x1 ~x Spiegelung an der #0-Axe
x1 ij'xij, 7 1,2,3. Spiegelung an der a^-Axe

Dièse làBt sich also durch eine Spiegelung an der xo-Axe und darauf
folgender beidseitiger Rotation lângs der a^a^-Ebene um 90° erzeugen.

Gerade dièse Spiegelungen und ihre Zusammensetzungen werden uns
im folgenden beschàftigen.

3. Die regulâren Quaternionenfunktionen und das Differential

Unter einer Quaternionenfunktion w verstehen wir die Zusammen-
fassung von vier reellen Funktionen uh der Komponenten x0, xl9 x2, xz
eines variablen Quaternions x zu einem abhângig variablen Quater-
nion w.

w ^^(x^x^x^x^ij,, h 0, 1,2,3.16)
(h)

15) E.Study, Math, papers Chicago Congress (1893).
Anmerkung : Die im ersten Abschnitt zitierten Arbeiten behandeln in der Regel auch

die Bewegungen im vierdimensionalen euklidischen Eaum, und wurden deshalb nicht
mehr erwàhnt.

16) R. Fueter, I S. 308.
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Von den uh verlangen wir weiter, da8 sie stetig und stetig partiell
differenzierbar sind.

Dann existieren die 16 partiellen Differentialquotienten

duh
__ (k) h

dxk
~~ h ' Je

0, 1,2,3

Wir beschrànken uns in dieser Arbeit auf die Funktionen, deren
Wronskische Funktionaldeterminante nicht identisch verschwindet.

Solche Funktionen bezeichnet man vom Range 4.

Es sei H ein endliches Gebiet des vierdimensionalen, euklidischen
Raumes, in welehçm die uh definiert sind und den obigen Bedingungen
entspreehen. Dann bildet jede Funktion vom Range 4 das Gebiet H topo-
logiscb auf ein Bildgebiet H* ab.

Eine Quaternionenfunktion wird differenziert, indem man jede Kom-
ponente differenziert.

Sw _ w(k) _ v */*> i
°xk (h)

Damit erhalten wir das Differential

dw £ w{k) dxk

Der Zuwachs der Funktion ist von der Fortsehreitungsrichtung ab-

hângig. Die Abbildung ist im Infinitesimalen zentro-affîn.
Nun definiert man nach R. Fueter17) regulâre Quaternionenfunktionen,

indem man verlangt, daB die u^ gewisse lineare partielle Differential-
gleichungen erfùllen. Dièse sind formale Ûbertragungen der Cauehy-
Riemannschen Differentialgleichungen und zerfallen wegen der Nicht-
kommutativitàt der Quaternionen in zwei Système.

Regularitâtsbedingung :

Xw(*>** 0, (13) Eik^{k) 0, Jfc 0...3. (14)
(*) (*)

Diejemgen Funktionen, welche die Gleichungen (13) erfiillen, nennt
man rechtsregulàre Quaternionenfunktionen; diejenigen, welche die
Gleichungen (14) erfiillen, linksregulâre.

Ist eine Funktion sowohl rechts- wie linksregulàr, so nennt man sie

zweiseitig-regular.

17) R. Fueter, I S. 310.
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Durch die Regularitâbsbedingung werden die Funktionen einge-
sehrânkt. Kennt man 3 partielle Ableitungen in einem Punkt, so ist da-
mit die 4. bestimmt. Das Différential ist spezialisiert.

3

dw — v w{k) ik dx0 + w(1) dxj -f- w{2) dx2 + w{z) dx3

Die zentro-affine Abbildung ist eine spezielle. Ist dièse geometrisch
ausgezeichnet, und besteht ein Zusammenhang mit den konformen Ab-
bildungen? Letzteres lâBt sich vermuten, da die Regularitâtsbedingung
in die Cauchy-Riemannschen Differentialgleichungen entarten kann.

Wir packen dièse Fragen an, indem wir zunâchst untersuchen, unter
welchen Bedingungen die durch eine regulâre Quaternionenfunktion
vermittelte Abbildung im Infinitesimalen konform wird.

4. Die infinitésimal konîorme Abbildung

Wir betrachten im Definitionsbereich einer regulàren Quaternionenfunktion

W F(X) einen festen Punkt P. In diesem sind die partiellen
Ableitungen W{k) konstant, und wir schreiben:

W<°> D ; W(1> A ; W^ B ; W<3) C

Die infinitésimale Umgebung des Punktes P wird linear abgebildet.

dW D dX0 + A dXx + BdX2 + C dX3

Durch die Regularitâtsbedingung wird dièse lineare Transformation
eingeschrânkt. Wir begnugen uns mit der Darstellung der rechtsregulâren
Funktionen. Die entsprechenden Resultate fiir linksregulâre werden wir
durch Symmetrieiiberlegungen ohne weiteres erhalten.

Rechtsregularitât (13) im Punkte P:

Damit erhalten wir die spezielle Transformation

dW — (Aix + Bi2 + Ciz) dX0 + A dXx + B dX2 + C dXz (15)

Die infinitésimale Abbildung besitzt nur noch 12 freie Parameter und
die zugehôrige Matrix hat die Gestalt:
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Ail
Ao-
A3-
A2 -

VBi
V B3

~B0
- Bx

+ c3

-c.
+ Ci
— Go

Ao
At
A2
A3

Bo

Bi
B%

B3

co
Ci
c,
c3

(16)

Nun fragen wir nach den Bedingungen, die erfullt sein mûssen, damit
die Abbildung konform wird. Dièse sind genau dieselben, welche die
Transformation (15) zur Àhnlichkeitstransformation machen. Dazu aber
ist notwendig und hinreiehend, daB in der Matrix (16) die Produkte von
je zwei Spalten verschwinden und die Quadrate aller Spalten gleich groB
sind. Damit erhalten wir 9 Konformitàtsbedingungen :

s(AB) s(AC) s(BG) 0 (17a)

s(i2~B + %ZU) A «foX + izC) B 8(%1T+ i2TÎ) (7 0, (17b)

n(A) n(B) n(C) n(Ai1 + Bi2 + Ciz) (17e)

Da die Matrix (16) dureh die Regularitâtsbedingung spezialisiert ist,
mûssen wir untersuchen, ob dièse 9 Bedingungen unabhângig und mit-
einander vertrâglich sind. Wir werden zeigen, daB bereits die

Bedingungen (17a) und (17b) Konformitât vermitteln, und (17e) zur Folge
haben. Um die Rechnung zu vereinfachen, spalten wir in W den Links-
faktor A ab.

W=Aw, X Wik) ik A £ w<k) ik 0 (18)
(*) (*)

Die Funktion w ist dann immer noch rechtsregulàr, und w{1) 1 in P.
Leistet w eine konforme Abbildung, so auch W, da die Multiplikation mit
A eine Drehstreekung bedeutet.

Wir verlangen nun von der Funktion w, daB ihre Ableitungen im
Punkte P den Bedingungen (17a) und (17b) genligen. Dièse vereinfachen
sich folgendermaBen, wobei wir die entsprechenden Ableitungen mit
kleinen Buchstaben bezeichnen:

b0 C0 60C0 + b^l + 62C2 + 63C3 0

h + c3 0

b0c3 — bx — 6xc2 + 62ci — &3co 0
9

— b0c2 — bxcz + 62c0 + 63^ — Ci 0

18) B.Fueter,! S. 312.
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Dièse 6 Gleichungen verringern die 12 freien Parameter der infinitesi-
malen Abbildung auf 6, und wegen der speziellen Wahl von a kann die
Transformationsmatrix (16) somit durch 2 Parameter, etwa bx und 62,

dargestellt werden. Wir erhalten:

- bt b2 bl + bl-b3 i-6,-6îC C C6Cl-~bT=T ' Ci~ 6,-1 ' ~ 63-I ' C3-~6*-

Daraus erfolgt sofort:

n(b) n(c) n^^ + ^2 + ^3) n(a) l

Mit Gleichungen (17a) und (17b) ist auch (17e) erfûllt. Die Regularitàts-
bedingung ersetzt also 3 Konformitâtsbedingungen. Damit erhalten wir
die Matrix der konformen Abbildung, welche die regulàre Quaternionen-
funktion im Punkte P leistet.

f

h hu1u2

K

0

>lVi-b\-bi
bl+bt

bl+bl

~bl

1

0

0

0

0

h

K

+1/1-«-H

6,

-6ÎH-

0

.+ 1/1-6J-

-6*1/1-6^-1
bl+bl

-b2

\

//

(18)

Nun fragt es sich, ob die Regularitâtsbedingung, die doch aus 4 reellen
Bedingungsgleichungen besteht, nicht uberhaupt 4 Konformitâtsbedingungen

àquivalent ist. Dann mûBte jede Âhnlichkeitstransforma-
tion den Regularitâtsbedingungen (13) oder (14) genugen. Das ist nicht
der Fall. Um das einzusehen, betrachten wir die lineare Abbildung

dw ddxQ + ctdx1 + bdx2 + cdxz

wobei wir uns wieder auf den Fall a 1 beschrânken.
Die Abbildung soll konform sein. Wegen der speziellen Wahl von a

wird dann die lineare Transformation sogar orthogonal, und ihre zu-
gehôrige Matrix lautet :
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1 0

0 6X

A

- Vbl+bl-4 0

Die Regularitàtsbedingung

d — (aix -f bi2 + ci3)
ist nicht erfullt.

Verlangen wir aber nur die Gultigkeit einer Komponentengleichung,
so sind die andern drei auch sofort erfullt.

Zum Beispiel: d0 ax -\- b2 + cz

Da d0 ax 0 ist, erhalten wir c3 — 62, womit die orthogonale
Matrix in die Matrix (18) der regulâren konformen Abbildung ûbergeht.
Dièse ist also eine einmal spezialisierte orthogonale Abbildung. Damit
ist gezeigt :

Drei der vier Regularitâtsgleichungen kônnen durch drei beliebige
Orthogonalitàtsbedingungen ersetzt werden, wâhrend die vierte Regu-
laritàtsgleichung die Abbildung spezialisiert.

Was ist die geometrische Bedeutung dieser vierten Regularitàts-
gleichung, oder wie ist die konforme Abbildung ausgezeichnet, welche
die regulare Funktion W F(X) im Punkte P leistet?

Die Abbildung ist sieher àhnlich, und zwar speziell. Jede àhnliche
Abbildung lafit sich aber dureh direkte Zusammensetzung einer rechts- und
einer linksseitigen Schiebung (10) erzeugen. Damit muB sich dW, je nach-
dem die Transformationsdeterminante positiv oder negativ ist, auf eine
der folgenden beiden Weisen darstellen lassen.

dW MdXN oder dW MdXN

Welche dieser Darstellungen ist mit der Regularitàtsbedingung ver-
trâglich, und wie formuliert sich jetzt die vierte Regularitâtsgleichung
analytisch
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Aub dW MdXN Mgt:

W(k) MikN und £ W{k)ik M £ ikNik — 2 MN 19)

<*) (*)

Dièses Produkt kann nur mit M oder N verschwinden.
Eine regulare konforme Abbildung ist also immer eine uneigentliehe

Âhnlichkeitstransformation, d. h. eine Spiegelung an der X0-Axe gefolgt
von einer Âhnlichkeitstransformation.

Aus dW MdXN folgt: (20)

M~ikN und £ W<k)ik M Z~ik Nik
(*) (*)

entsprechend

E H Wik) v ik M\ N=±M0N
(*> (fc)

Die infinitésimale Abbildung dW MdX N ist rechtsregulâr, wenn
der Realteil von N verschwindet, linksregulâr, wenn der Realteil von M
verschwindet. Damit hat die vierte Regularitâtsgleichung eine Form
gefunden, die sich unmittelbar geometrisch iïbersetzen làBt.

Wir wollen vorher noch zeigen, daB die 9 Konformitàtsgleichungen (17)
in dieser Schreibweise enthalten sind, und die Faktoren M und N
explizite durch die Ableitungen von W ausdrucken.

dW — {Ah + Bi2 + Ciz) dX0 + AdXx + BdX2 + CdXz MdXN

Durch Vergleich der Ableitungen erhalten wir die 4 Quaternionen-
gleichungen

— Ai1 — Bi2 — Ciz M N
A MlxN,
B M12N
C Ml3N.

Von diesen 16 reellen Gleichungen benôtigen wir 7 zur Bestimmung
der unabhângigen Komponenten von M und N, wâhrend die andern 9 den
Konformitàtsgleichungen (17a, 17b, 17e) àquivalent sind.

Durch Rechtsmultiplikation mit ik und Addition ergibt sich die be-
kannte Regularitâtsbedingung :

kNik 0 d.h. N0 0

E. Fueter, I S. 308.
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Dureh Linksmultiplikation mit ik und Addition erhalten wir N selber
bis auf einen Proportionalitâtsfaktor:

JS ikMlh N= 4:M0N ixA — Aix + i2B — Bi2 + i3C — Ciz.
<*)

N ^-^ &A —Aix + i%B — Bit + izC -Ciz) (21)

Ist N bekannt, so lâfit sich M aus jeder der 4 Gleichungen berechnen.

M AN~HX BN~H2 CN~HZ (— Aix — Bi2 — CiJN-1. (22)

Da N den Faktor -=^- besitzt, diirfen wir den Realteil von Jkf beliebig

wàhlen. Wir brauchen also fur M und N genau 7 Gleichungen, und somit
stellt (22) noch 9 weitere Bedingungsgleichungen fur die Ableitungen dar.
Dièse sind mit den Konformitàtsbedingungen (17a, 17b, 17e) identisch.

Es folgt sofort:

n(A) n(B) n(C) n{Ai1 + Bi2 + Giz)

Ferner folgt etwa aus der Gleichung AN~1i1 BN~xi2 :

weil tf-i ^=^
Durch Linksmultiplikation mit A und B erhalten wir

~BANix n(B) Ni2 > ~BAN n(B) Niz

ABNi2 n(A) Nix > ABN - n(A) Ni3

und somit wegen n(A) n(B)

(ZB + ~BA) N 0 also s (AB) 0

Àuf entsprechende Weise zeigen wir die Existenz der andern Gleichungen

(17a) und (17b).
Die Umkehrung beweisen wir, indem wir M und N aus den Ableitungen,

welche den Konformitàtsbedingungen genûgen, berechnen. Dièse
Ableitungen kennen wir fur den Spezialfall a 1. Auf diesen ist die Dar-
stellung (20) aber sofort zuruckfuhrbar.
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dW Adw Amdxn MdxN

Ist m und n bekannt, so ist damit auch M und N berechnet.

M Am, N n.

m und n erhalten wir aus (21) und (22), wenn wir fur die Ableitungen
die speziellen Werte der regulârkonformen Abbildung (18) einsetzen.

n j^- (2 (63 — c2) h + 2 (cx - az) i2 + 2 (aa - 6X) i3)

Da wir tiber den Realteil von m beliebig verfugen dûrfen, wàhlen wir
m0 ^ und finden somit:

1+v^i—6;—&;.

und i^0

Setzen wir dièses n in (22) ein, so sind aile 4 Gleichungen erfùllt. Wir
erhalten :

•
26,

n(n)

Damit ist auch M gefunden :

\-Vl-b\-b\
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dW
No
Mo
Mo

MdXN
0,
0,

^0= 0,

Damit haben wir folgenden Satz ûber die konforme Abbildung20)
durch eine regulàre Quaternionenfunktion bewiesen:

1. Satz. Eine regulàre Quaternionenfunktion W F(X) bildet die
infinitésimale Umgebung des Punktes P konform ab, wenn sich das Diffe9-
rential dW im Punkte P in der Form

schreiben lâflt, dabei ist
wenn W rechtsregulâr ist,
wenn W linksregular ist, und
wenn W beidseitig regulâr ist.

Der geometrische Inhalt dièses Satzes ist offensichtlich. Die Abbildung
ist eine uneigentliche Drehstreckung, d. h. eine Spiegelung an der reellen
Axe, gefolgt von einer Drehstreckung. Dièse setzt sich aus einer rechts-
und einer linksseitigen Schiebung zusammen. Das Verschwinden des
Realteiles von M oder N besagt, dafi die Drehung der entsprechenden
Schiebung einen Drehwinkel von 90° besitzt (8).

Der Satz 1 entsprechende geometrische Satz lautet also:

2. Satz. Bildet eine regulàre Quaternionenfunktion W F (X) die
infinitésimale Umgebung eines Punktes P konform ab, so ist die Abbildung
eine uneigentliche Drehstreckung ; zu dieser gehort eine rechtsseitige Drehung
um 90°, wenn W rechtsregulâr ist, eine linksseitige Drehung um 90°, wenn
W linksregular ist, und eine links- und rechtsseitige Drehung um 90°, wenn
W beidseitig regulâr ist.

Damit ûberblicken wir die infinitésimal konforme Abbildung vôllig,
und wenden uns der allgemeinen infinitesimalen Abbildung zu, die durch
eine regulàre Quaternionenfunktion geleistet wird.

5. Die allgemeine infinitésimale Abbildung
Jede lineare Quaternionenfunktion l(x) lâBt sich in einer der beiden

Formen darstellen:

/(x) mx xnx -f- w2 xn2 + ms xn3 + m^xn^
oder

l(x) mx ~xnx + m2xn2 + mz~xn% + màxnA

20) Da es nur uneigentlich konforme regulàre Abbildungen gibt, und somit eine Ver-
weehslung unmôglieh ist, sprechen wir im folgenden schlechthin von konformen
Abbildungen.
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Dabei diirfen die m oder die n beliebig, aber linear unabhângig21),
gewàhlt werden. Die allgemeine lineare Abbildung ist also eine Summe

von vier eigentlichen oder uneigentlichen konformen Abbildungen.
Nun stellt sich die Frage, ob die durch eine regulâre Quaternionen-

funktion W vermittelte infinitésimale Abbildung

— (Aix + Bi2 + Ci9) dX0 + AdX± + BdX2

immer als Summe von regular-konformen Abbildungen erhalten werden
kann. Zu diesem Zweck stellen wir dW, das uns hier als Funktion der
Komponenten von dX gegeben ist, explizite als Funktion von dX dar.
Das ist leicht môglich. Aus

22)

folgt fur die andern Komponenten

0)

Damit erhalten wir dW als Funktion von dX.

dW aX ix H dX i2 H

(23)

Jeder dieser Summanden ist fur sich schon regulàr. Die infinitésimale
Abbildung ist in der Tat eine Summe von regular-konformen Abbildungen,

und zwar erhalten wir mit drei Abbildungen schon den allgemeinen
Fall. Wir kônnen demnach von den drei konformen Komponenten der
Abbildung sprechen; dièse selber ist natiirlich in der Regel nicht mehr
konform. Die konformen Komponenten sind spezielle Abbildungen; sie

gehen durch einseitige Schiebung aus den Spiegelungen um die imaginâren
Axen hervor. Dies sehen wir sofort, wenn wir (23) umformen.

dW

Nun ist nach (12) x' ijXi§ eine Spiegelung an der a^-Axe. Die
infinitésimale Abbildung lâBt sich somit aus den drei Spiegelungen um

21) W. R.Hamilton, Proc. R. Ir. Ac. Dublin (1) 8 (1864).
22) R. Fueter, I S. 308.
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die imaginâren Axen zusammensetzen. Dabei folgt jeder Spiegelung eine

linksseitige Schiebung, wenn die Funktion rechts-regulàr ist.
Schreiben wir noch fur die Koeffizienten der Komposition

Bi2 + Ch p Aix + CH _ Aix + Bi2
~ ' 2

~~
2 ^w ' 2 ' 2

so erhalten wir als endgliltige Form fur das Difïerential:

dW Bix dXix + 8i2 dXi2 + Ti3 dXi3

Die Ableitungen W{k) lassen sich mit B, 8 und T sofort berechnen,
und genugen naturlich der Regularitàtsbedingung.

W<o) — B — S — T
W<» (B — 8—T)ix,

(8—T—B)i2,
(T—B—S)i3.

Entsprechendes folgt sofort fur linksregulàre Funktionen. Dièse Dar-
stellung kônnen wir geradezu als neue Formulierung der Regularitàtsbedingung

ansehen.

3. Satz. Eine Quaternionenfunktion W F(X) ist im Punkte P
rechtsregular, wenn sich daselbst dW in der Form

dW Bixd~Xix + Si2dXi2 + Ti3dXi3
darstellen lafit,

linksregulâr, wenn sich daselbst dW in der Form

dW ixdXixB + i2dXi2S + i3dXi3T

darstellen la/it, und
beidseitigregular, wenn als weitere Bedingung noch

erfûllt ist.

Daraus làBt sieh die geometrische Kennzeichnung der infinitesimalen
Abbildung, welche eine regulàre Quaternionenfunktion im Punkte P
leistet, muhelos ablesen.

Eine infinitésimale Hyperkugel um P geht in ein infinitésimales
Hyperellipsoid liber, dessen Axen mit B, 8 und T beschrànkt sind.
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Die Abbildung ist linear und setzt sich aus konformen zusammen.
Darûber wissen wir:

4. Satz. Jede durch eine regulare Quaternionenfunktion vermittelte
Abbildung der infinitesimalen Umgebung des Punktes P Ut/it sich aus drei
regulâr-konformen Abbildungen additiv zusammensetzen. Dièse entstehen

aus den drei Spiegelmigen an den imaginâren Axen durch linksseitige
Schiebung, wenn die Funktion rechtsregulâr ist, und durch rechtsseitige
Schiebung, wenn die Funktion linksregulâr ist. Ist die Funktion beidseitig-
regulâr, so sind die konformen Komponenten auch schon beidseitig regular.

Dièse allgemeine infinitésimale Abbildung artet offensichtlich in eine
konforme aus, wenn zwei ihrer Komponenten verschwinden. Die so er-
haltenen konformen Abbildungen besitzen nur 4 Parameter, wâhrend
die allgemeinsten regulâren konformen Abbildungen (20) deren 6 besitzen.

dW MiQd~XiôN, mit Nj 0 oder if, 0, j 0, 1, 2, 3.

Dièse kônnen immer aus der Spiegelung an der #0-Axe erhalten werden;
wobei eine der Schiebungen einen Drehwinkel von 90° besitzt (8).

Die 6 wesentlichen Konformitâtsbedingungen lauten jetzt :

sÇâRii) s(TRi1) 0

s (RS i2) s (TS i2) 0

s(RT i3) s (STiz) 0

Nun wenden wir uns absehlieBend der Frage zu, wann eine regulare
Quaternionenfunktion ein ganzes Gebiet konform abbildet.

6. Die konformen regulâren Quaternionenfunktionen
Vermittelt eine regulare Quaternionenfunktion in jedem Punkte ihres

Regularitâtsbereiches eine konforme Abbildung, so nennen wir die
Funktion konform.

Beispiele soleher konformer Funktionen erhalten wir, wenn wir die
linearen Funktionen der infinitesimalen konformen Abbildung auf den

gesamten Regularitâtsbereich ausdehnen. Dabei lassen sich die fur die
infinitésimale Abbildung geltenden Sâtze ohne weiteres ubertragen.

W MXN mit No 0

Die Funktion ist im ganzen endlichen iî4 regular. Die Abbildung setzt
sich aus einer Spiegelung des Gesamtraumes an der x0 Axe und darauf
folgender links- und rechtsseitiger Schraubung zusammen, wobei letztere
einen Drehwinkel von 90° besitzt.
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tîben wir nach dieser Abbildung noch eine Translation aus, so wird die
Konformitàt sicher nicht zerstôrt. Wir behaupten, daB die so ent-
stehenden Abbildungen die allgemeinsten regulâr-konformen Abbildun-
gen sind.

W MXN + L, mit No 0

Nach einem Satz von Liouville23) sind die konformen Abbildungen im
jft4 immer Kollineationen, also hôchstens gebrochene lineare Funktionen.

w ¦= (a~x -f- b) (ex -f d)~x

Die Funktion w hat fur x —c~xd einen Pol 1. Ordnung. Aus der
Reihenentwicklung24) der regulâren Quaternionenfunktionen folgt aber,
daB eine isolierte Singularitàt mindestens ein Pol 3. Ordnung ist. Somit
kann die Funktion w nicht regulàr sein.

Dies sehen wir auch sofort durch Bildung der Ableitungen :

wik) (a __ (ax 4- b) (ex -f d)"1 c) %h (ex + d)'1

s (ex) + 2dn\ f °«><*> H 2 (a - (ax + b) (ex + d)~i c)J n(ex + d)

J£w{k)ik kann nur auf der Hyperebene s(ex)= —2d0 verschwinden.
(*>

Es gibt also kein vierdimensionales Gebiet, in dem w regulâr ist. Die
linearen regulâren Quaternionenfunktionen sind also immer ganz linear.
Daraus folgt fur die konformen regulâren Quaternionenfunktionen:

5. Satz. Bildet eine regulâre Quaternionenfunktion ein vierdimensionales
Gebiet konform ab, so ist die Funktion ganz linear :

W MXN + L, N0 0 oder M0 0

Dabei versehwindet der Realteil von M, N oder von beiden, je naehdem die
Funktion W links-, rechts- oder beidseitigregular ist.

(Eingegangen den 7. August 1944.)

28) G. Monges et Hachette, Applications de l'analyse à la géométrie, Nouv.
éd. annotée p. Liouville, Paris (1850).

24) M. Fueter, III S. 329.
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