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Quaternionengeometrie und das Abbildungs-
problem der reguldaren Quaternionenfunktionen

Von Haxs HArELI, Ziirich

Einleitung

Herr Rud. Fueter hat in mehreren Arbeiten!) die Theorie der regulidren
Quaternionenfunktionen entwickelt. Unter einer Quaternionenfunktion
versteht man eine stetige Abbildung eines Bereiches H des vierdimen-
sionalen euklidischen Raumes auf einen Bildbereich H*, oder analytisch
die Zusammenfassung 4 reeller Funktionen der 4 Komponenten z, eines
unabhingigen variablen Quaternions xz =2’ ,7, zu einem abhingigen

variablen Quaternion 0
wzf(x):%uh(xo’ Ty, Xy, ) ip h=0,1,2,3.
(

Eine Quaternionenfunktion w wird differenziert, indem man jede Kom-
ponente differenziert.

ow ou, . .
7] d
Ly (h)y 0% (k)

Man nennt nun eine Quaternionenfunktion rechts- oder linksregulir,
wenn die u, stetige und stetig differenzierbare Funktionen der x, sind,
und die partiellen Ableitungen den Bedingungen

Swk i =0 oder X, w® =0 k=0,1,2,3.

%) (k)
geniigen. Diese Regularitdtsbedingung hat die Giiltigkeit des 1. und
2. Hauptsatzes?) zur Folge, und ist eine formale Ubertragung der Cauchy-

Riemannschen Differentialgleichungen der gewohnlichen Funktionen-
theorie.

1) Rud. Fueter, Die Funktionentheorie der Differentialgleichungen du=0
und 44u = 0 mit 4 reellen Variablen. Comm. Math. Helv., vol. 7, S. 307 (zitiert
als Fueter I).

Rud. Fueter, Uber die analytische Darstellung der reguliaren Funktionen
einer Quaternionenvariablen. Comm. Math. Helv., vol. 8, S.371 (zitiert als
Fueter II).

Rud. Fueter, Die Singularitaten der eindeutigen reguldren Funktionen
einer Quaternionenvariablen. Comm. Math. Helv., vol. 9, S.320 (zitiert als
Fueter I1I).

Rud. Fueter, Integralsatze fir reguldre Funktionen einer Quaternionen-
variablen. Comm, Math, Helv,, vol. 10, S, 306 (zitiert als Fueter IV).

2) R. Fueter, I S. 312 und S. 318,
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In der folgenden Arbeit soll untersucht werden, wie die Regularitits-
bedingung die Abbildung auszeichnet, die durch eine reguldre Quater-
nionenfunktion geleistet wird. In der Funktionentheorie der komplexen
Zahlen bedeuten die Cauchy-Riemannschen Differentialgleichungen Kon-
formitdt der Abbildung. In der Funktionentheorie der Quaternionen
haben die erweiterten Cauchy-Riemannschen Differentialgleichungen,
d. h. die Regularitatsbedingung, zur Folge, daBl sich die infinitesimale
Abbildung aus drei regulidr-konformen Abbildungen additiv zusammen-
setzt. Diese sind Spiegelungen an den imagindren Axen mit darauf-
folgenden Drehstreckungen. Sie konnen insbesondere durch Spiegelung
an der reellen Axe erhalten werden, wobei dann die rechts- oder links-
seitige Drehung einen Drehwinkel von 90° besitzt, je nachdem die Funk-
tion rechts- oder linksreguldr ist. Mit Beriicksichtigung dieser letzten,
allerdings starken Einschrinkung, kann man sagen: Die Abbildung durch
regulidre Quaternionenfunktionen ist im Infinitesimalen uneigentlich oder
antikonform, oder sie 148t sich aus drei solchen zusammensetzen.

Die rveguliren Quaternionenfunktionen sind also geometrisch das
Gegenstiick zu den nach F. Ringleb®) analytischen hyperkomplexen
Funktionen der Klassen C,, C; und C; im Korper der Quaternionen.
Insbesondere entsprechen den von H. Nisigak:*) untersuchten Quater-
nionenfunktionen der Klasse C, die regulidr-konformen Quaternionen-
funktionen, also die reguldren Spiegelungen und Umlegungen. Diese sind
in unserem Fall allerdings immer ganz linear.

Bevor wir die Abbildung einer Quaternionenfunktion diskutieren
konnen, miissen wir untersuchen, wie sich der Quaternionenkalkiil ins
Geometrische iibertragen 1i8t. Um die entsprechenden Bewegungen im
euklidischen vierdimensionalen Raum zu verstehen, geben wir in einem
ersten Abschnitt eine kurze Darstellung der analogen Bewegungen im
elliptischen dreidimensionalen Raum. Dabei halten wir uns im wesent-
lichen an die Gedankenginge von F. Klein®), nur da3 wir die Cliffordschen
Schiebungen direkt durch Einfithrung von Biquaternionen herleiten
(nach E. Study spezielle duale Zahlen), und nicht auf dem Umweg iiber
die komplexen Zahlen. Nach der Ubertragung auf den vierdimensionalen
euklidischen Raum ist dann die Deutung der reguldren Abbildung nicht
mehr schwierig, sobald das Differential dw explizite als Funktion von dx
geschrieben wird.

3) F. Ringleb, Beitrige zur Funktionentheorie in hyperkomplexen Syste-
men I. Palermo Rendiconti 57 (1933).

4) H. Nisigaki, Zur Theorie der Quaternionenfunktion. The Tohoku Mathe-
matical Journal, vol. 45 I (1938).

§) F. Klein, Zur Nicht-Euklidischen Geometrie. Math. Ann. Lpz. 37 (1890).
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1. Die Bewegungen des elliptischen Raumes

Wir fassen die Komponenten a,, a,, a,, @a; eines Quaternions
a = a, + a,t; + ayi, + a51, als homogene oder projektive Koordinaten
eines Punktes 4 in einem dreidimensionalen Raume auf. Dabei sind

1,6y, 05,6, mit @==4=—1,

die Quaternioneneinheiten, und die Komponenten aus dem Korper der
reellen Zahlen. Ferner identifizieren wir zwei Quaternionen ¢ und Aa mit
reellem A Als nicht wesentlich verschieden. Dadurch ist jedem Punkt A
des dreidimensionalen Raumes eineindeutig ein Quaternion zugeordnet.

a<— Aa).

Was entspricht nun bei dieser Zuordnung den Rechenoperationen der
Quaternionen geometrisch ?

Da wir projektive Geometrie treiben, sind die Operationen erster Stufe
nur als Linearverbindung zweier oder dreier Punkte erkldrt. Ordnen wir
einem variablen Punkt X ein variables Quaternion z zu, so erhalten wir
in den beiden Fillen die analytische Darstellung der Geraden bzw. der
Ebene.

x=a -+ Ab x=a -+ Ab 4+ pc 1, p reelle Parameter (1)

Fithren wir dual zu den Punktkoordinaten Ebenenkoordinaten ein, so
wird jedem wesentlich verschiedenen Quaternion eineindeutig eine
Ebene zugeordnet, und die obigen Gleichungen stellen uns die Gerade,
bzw. den Punkt in Ebenenkoordinaten dar.

Wir bezeichnen mit

a = Qy— @5, — Gyiy — Uyl das zu a konjugierte Quaternion,
s(@)=a-+a=2a, die Spur von a,
n(@) =a-a=a+ a4 al+ a2 die Norm von a, und mit
la| = + Vn(a) den Betrag von a.

Damit finden wir fiir die Inzidenz eines Punktes X mit einer Ebene U :
s(u-x)=0.
Dies ist nur eine skalare Gleichung, und aus der gewdhnlichen analy-

tischen Geometrie bekannt.
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Im Gegensatz dazu gibt es eine Quaternionengleichung, die eine
Gerade darstellt. Dabei wollen wir uns auf die Darstellung in Punkt-
koordinaten beschrinken, wie wir es auch im folgenden immer halten
werden. Wir formen (1) um und eliminieren 2.

@b + 4a n(b) Gerade durch die Punkt
n(a) + An(b) erade durch die Punkte ()
xa

axh =
boa = A d B(b
axh = (a) un (b).

c-n G~l§

H

Die 4 Komponentengleichungen dieser Quaternionengleichung sind die
Gleichungen der Projektionen der Geraden auf die Koordinatenebenen.

(@xb)y = (bxa), (@3by—azby)x, + (agh;—a,by) %+ (a,b,—azb,)xy = 0,
(@zb), = (bza); (@b, “‘aabz)xo (@300 —aoba)xz‘i'(aobz"—azbo)x:s =0,
(@xb); = (bxa), (a,b, b1) %o + (@30, b3) %1 + (@gb;—aybg) 3 = 0,
(@xb), = (bxa), (“1b2—‘a2 )xo+(“2bo—ao 2) 1 + (@b —a, bg) x, = 0.

Wir erkennen in den Koeffizienten dieser 4 Projektionsgleichungen die
6 Plickerschen Linienkoordinaten der Geraden im Raum. In der Folge
wurden die Quaternionen ofters zur Darstellung der Liniengeometrie
verwendet®).

Mit Formel (2) sind wir zwangsldufig zu Rechenoperationen zweiter
Stufe gekommen. Wir wollen ihre geometrische Deutung an Hand der
Transformationen 7', und 7', durchfiihren, wobei wir diese als Bewe-
gungen in einem festen Koordinatensystem auffassen.

¥ =za x’
x

T,: _ T,:

x
z =2 a z

QISE

I

Zu diesem Zweck betrachten wir die Gerade durch den beliebigen Punkt
P (b) und den dazu speziellen @ (ba).

xb

|
S

bx

Sy
S
Il
SN
°"|
a |

x ra

darauf 7', ausgeiibt :

/

x za .

H
SN

ba'

Ql
QI
QI

SN

' a=

Q1
SN

Diese Gerade wird also durch 7, in sich iibergefiihrt; 7', erzeugt sie
geradezu. 7', bewegt jeden Punkt des Raumes auf einer Geraden.

8) A. Buchheim, The Messenger Math. 12—13 (1883—84).
P. Molenbroek, Anwendung der Quaternionen auf die Geometrie.
Leiden 1893.
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Die Gesamtheit dieser co? Geraden bildet eine lineare Kongruenz, wie
wir im folgenden zeigen werden.

Entsprechend erzeugt die Transformation 7', eine linksgeschraubte
lineare Kongruenz. Wir beschranken uns in der Darstellung auf 7', da die
T, entsprechenden Resultate durch Symmetrieiiberlegung gewonnen wer-
den konnen, und in der geometrischen Deutung von selbst wieder auf-
treten.

Wir fragen nun nach den bei 7', invarianten Elementen. Gibt es P(x),
so daB

0x = Za (3)

bei reellem Proportionalitdtsfaktor p moglich ist? Aus obiger Gleichung
folgt sofort - (9 —a) = 0, d. h. x und p — a miiiten Nullteiler sein.
Da die Quaternionenalgebra solche nicht besitzt, ist Gleichung (3) un-
moglich. Es gibt keine reellen Punkte, die von 7', in Ruhe gelassen
werden.

Nun fithren wir abstrakt imagindre Punkte ein, denen wir die Bi-
quaternionen z = z, + 2,9, + 23%3 + 23%; zuordnen, wobei die Kompo-
nenten z,, z,, 23, 23 dem Korper der komplexen Zahlen angehoéren?).

Dabei soll ¢ -2, =1, ¢ gelten fir A =0, 1, 2, 3. Wir bezeichnen mit

nl
I

2o — 210; — 2313 — 2305  das konjugierte Biquaternion,

Z = 2y + 2181 + 2% + %3¢,  das komplex-konjugierte Biquaternion.

Unter Norm von z verstehen wir z - z; dies ist jetzt in der Regel eine
komplexe Zahl.

Jetzt fragen wir nach den Biquaternionen, die den imagindren Fix-
punkten von 7T, zugeordnet sind. Die Komponentengleichungen von (3)
geben uns ein homogenes Gleichungssystem mit schiefer Matrix. Dieses
besitzt nur dann nicht triviale Losungen, wenn seine Determinante ver-
schwindet. Damit 148t sich ¢ und der Nullteiler o — @ bestimmen.

Gy —@ — @ — G — O3
a a, — a —a
ool 3 ' | =(e* —2a,0+n(@) =0,
@y — @3 Ay —Q &,
@y @2 — 0 Ay —Q

7) E. Study, Amer. J. math. Baltimore 29 (1907).
W. R. Hamilton, Proc. R, Ir. Ac. Dublin 5 (1853).
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0 — 280 +n(@ =0, pg=a+Va—n(@),
0 =aoj:il/a§+a§+a§ .

Die charakteristische Gleichung von 7', zerfillt in die Ranggleichung
des Quaternions a; g ist gleich dem auf eine Einheit reduzierten®)
Quaternion a. Damit ist der Nullteiler p — a gefunden.

e—a=+iValtal+a+a —a, (4)

Das Biquaternion ¢ —a hat rein imagindren Skalar- und reellen
Vektorteil; Study fithrt an dieser Stelle seine dualen Zahlen ein?®).

Entsprechend sind die z der Fixpunkte gebaut. Da 7', eine Geraden-
kongruenz in sich iiberfithrt, muf} es auf jeder ihrer Geraden mindestens
einen Fixpunkt geben. Da ihre zugeordneten Biquaternionen immer
Nullteiler sind, miissen alle Fixpunkte auf der quadratischen Fliche F,

n(z) =z + 2+ 2,42 =0

liegen. Somit gibt es auf jeder Geraden der Kongruenz genau zwei Fix-
punkte; diese sind die Treffpunkte der Geraden mit F,.
Wir betrachten die Kongruenzgerade durch P (b), und suchen ihre
Fixpunkte.
z=>b+ Aba, z=0b4+ Aa-b,
)

n(z)=2-z=mn() + A(@a+4a) -nb) + 22n(@)- - nd) =0,

—ay+iVa}+ dl + a2,

n (a)

MBn@) +2ia,+1=0, A=

nb(‘;) (C—i"{"}»n(a))=;z%(a—ao:|:i]/ai+a§+a§) .

2 ==

Den beiden Fixpunkten sind komplex-konjugierte Biquaternionen zu-

geordnet.
2 =2 .

Wir fassen die beiden zusammen, und schreiben mit Gleichung (4) die
Fixpunkte der Kongruenzgeraden durch P(b) bei 7T',:

8) 8. Wachs, Thése, Géometrie projective quaternionienne, Bruxelles (1936).
9) E. Study, Geometrie der Dynamen, Leipzig (1903), S. 222, 595—596.
E. Study, unter 7).
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ZT:C(Q-5),

wobei ¢ irgend einen Punkt der Kongruenzgeraden bedeutet.
Diese beiden Punkte sind natiirlich auch bei der inversen Transforma-
tion 7;': 2’ = x-a invariant.
Die Fixpunkte aller Kongruenzgeraden bilden nun die Gesamtheit der
bei 7', invarianten Punkte:
2z, = x(p—a) .

Diese zerfillt in zwei getrennte komplex-konjugierte Mengen. Da diese
auch gegeniiber 7';! invariant sind, geniigen sie den beiden Gleichungen:

n(z,) =0, 2,0 =2,°0 .

d. h. sie reprisentieren zwei Geraden auf der nullteiligen Fliche F,. Diese
beiden Geraden konnen sich nicht schneiden, da sie hochimaginir sind.
Sie gehoren einer der beiden erzeugenden Geradenscharen der null-
teiligen Fldche an.

Diese beiden bei 7', punktweise ruhenden Fixgeraden sind die Leit-
geraden der durch 7', erzeugten Linienkongruenz; diese ist also wirklich
linear.

Ganz entsprechende Ergebnisse haben wir bei der Transformation 7';.
Wir nennen die Geraden der Geradenschar auf F,, welcher die Fix-
geraden von 7', angehoren, die ,,Erzeugenden 1. Art‘‘, und entsprechend
die Geraden der andern Schar die ,,Erzeugenden 2. Art‘‘. Dann sind die

. | T,: 2,-a=z,-a 2 Erzeugende 1. Art
invarianten Elemente bei _ (5)
T,: a-2,=a-z, 2 Erzeugende 2. Art

Die zugehorigen Bewegungen nennen wir Schiebungen, und zwar

rechts- und linksseitige Schiebung. Wir iiberblicken sie damit vollig:

Bei einer Schiebung bewegt sich jeder Punkt des Raumes auf der-
jenigen Geraden, die man durch ihn legen kann, so dal} sie die beiden
Fixgeraden trifft.

Die Fixgeraden sind schon durch den Vektorteil von a bestimmt.
#'=x-a und 2z’ = z - (A + a) haben somit die selben Erzeugenden.
(4 reell.) Der Realteil gibt den Betrag der Schiebung an, wihrend der
Vektorteil die Richtung festlegt.

Somit lauten alle rechts- bzw. linksseitigen Schiebungen mit fester
Richtung a:
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T.(a): 2’ = z(A + a)

, A, u reelle Parameter .
Ty(a) : o' = (u + a)@
Dabei sind zwei Schiebungen derselben Art in der Regel nicht ver-
tauschbar.

Te(a)- T.(b) # T, (b) - T\(a) .

Die allgemeinste Transformation 7', welche ¥, in sich iiberfiihrt, er-
halten wir nun durch Zusammensetzung von 7', und 7';; diese ist ver-
tauschbar:

T=T.a) T,0)=T0) T/a): «' = (u+b)z(i+a).

Da die nullteilige Fliche F, sowohl bei T, wie bei 7, in sich iiber-
gefiihrt wird, so wird sie es auch bei 7'. Dabei bleiben nur die 4 Schnitt-
punkte der festen Erzeugenden von 7', und 7', invariant. Diese sind
paarweise konjugiert, und koénnen daher je durch eine reelle Gerade
verbunden werden. Das sind die beiden einzigen Geraden, welche 7' in
sich iiberfithrt. Wir bezeichnen sie als Axen (a,, a;), und nennen die
zugehorige Bewegung Schraubung. Die beiden Schraubenaxen sind wind-
schiefe, in bezug auf F, konjugierte Geraden.

Wir konnen die Transformation 7' ohne Einschréankung der Allgemein-
heit in der Form ' = (u + a) (4 + @) schreiben. Dabei ist ein
spezielles Koordinatentetraeder zugrunde gelegt, so daf eine der Schrau-
benaxen durch den Eckpunkt P (1, 0, 0, 0) lduft.

Wie sehen nun diese Schraubenaxen aus? Wir schneiden die Fix-
geraden von 7', mit denen von T} (5), und erhalten die Fixpunkte von T'.

Fixpunkte der Axe a,.
Fixpunkte der Axe a,.

Da z, = xz(p—a) und z,= (¢p—a)xz, so finden wir

alp—a)x = z(0—a)a,
a(e—a)z = z(p —a)a,

und damit die Gleichungen der beiden Axen:

aQ,: ar = za ,
a: ax = Za .

142



Gibt es nun spezielle Transformationen, so dafl eine der Axen punkt-
weise festbleibt? Dies ist nur moglich, wenn 7', die Schiebung der Axen-
punkte, welche T, bewirkt hat, wieder riickgingig macht. Da der Betrag
der Schiebung nur vom Realteil abhingt, muBl also gelten:

ptag= 1 (4 + a,) .

Die zugehorigen Bewegungen nennen wir Rotationen. Wir haben
3 Fille:

LA=pu, T,:2'=(A+a)z(A+a).

Dabei bleibt die Axe a, punktweise fest; sie liegt in der Ebene z, = 0.
Die Axe a, wird in sich verschoben. Wir kénnen die zugehorige Bewegung
sowohl als Rotation um die Axe q,, wie auch als Translation lings der
Axe a, auffassen.

2. Adpu=—2a,, T,:a'=(A+a)x(A+a).

Dabei bleibt die Axe a, punktweise fest; sie lduft durch die Ecke
P(1,0,0,0). Jetzt wird die Axe q, in sich verschoben, und wir konnen
die Bewegung entsprechend als Rotation um a, oder Translation lings
a, interpretieren.

3. A=p=0ay=0, T, ,:x'=azxa=aza.
Diesmal bleiben beide Axen punktweise fest. Wie wir spéter zeigen (8),
ist die zugehorige Bewegung eine Drehung oder Translation vom
Betrage x.
Durch Zusammensetzung von T, und T, kann die allgemeine Trans-

lation 7' erzeugt werden.

T:2'=(u+a)z(d+a)=(+08)(»+a)z@+a)lk+a),

kv +2av+ 1 2 ky — 1
#= K— ’ Tkt v+ 2a,

Wir erhalten infolgedessen die allgemeine Schraubenbewegung auf zwei
Arten: Entweder als Zusammensetzung einer rechts- und einer links-
seitigen Schiebung, oder als Zusammensetzung einer Rotation um die
Axe a, und einer Rotation um die Axe q,.

T=T,T,=T,T, . (6)
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Wie bewegt sich dabei ein Punkt P(c), der nicht auf einer der beiden
Schraubenaxen liegt ?

T, bewegt P auf einer rechtsseitigen Kongruenzlinie, und 7', jeden
ihrer Punkte auf einer linksseitigen Kongruenzlinie. Das ergibt eine ein-
parametrige Schar rechtsseitiger Kongruenzlinien, welche eine Regel-
fliche bildet. Auf dieser muB} es auch eine Schar linksseitiger Kongruenz-
linien geben, da bei einer Schraubung die beiden erzeugenden Schiebun-
gen vertauschbar sind. Diese Regelfliche hat die Gleichung:

z=(u+a)c(i+a). (7)

Diese Flache kann wegen (6) auch als doppelte Rotationsfliche um die
Axen aq, und a, aufgefaBt werden. Fiir jeden neuen Punkt P’(¢’), der
nicht auf einer der Kongruenzlinien von P liegt, erhalten wir eine neue
Regelfliche. Diese einparametrige Flidchenschar hat, euklidisch gesehen,
die Gestalt von einschaligen Hyperboloiden, welche in der Nihe der
einen Axe diese schlauchartig umhiillen, sich dann aufweiten, um iiber
ein elliptisches Paraboloid sich wieder um die andere Axe zu legen.

Um nun die uneigentlichen Transformationen zu finden, welche die
nullteilige Fliche F, in sich iiberfithren, brauchen wir nur die spezielle
uneigentliche Transformation

T,: /=%

zu betrachten. Ihr entspricht eine Spiegelung an der Ebene x, = 0 oder
am Punkte P(1, 0, 0, 0). Dabei werden die beiden Erzeugendenscharen
der nullteiligen Fliche vertauscht. Durch Zusammensetzung von 7', mit
T, und T, bekommen wir alle uneigentlichen Transformationen. Diesen
entsprechen die Umlegungen und Spiegelungen®).

Nun wollen wir die nullteilige Flidche ¥, als ,,fundamental’‘ auszeichnen,
und in bezug auf sie im Klein-Cayleyschen Sinn eine Metrik einfithren??).
Dabei wird unser Punktraum zum dreidimensionalen elliptischen Raum.
Die bisher betrachteten Transformationen fiihren die MafBfliche in sich
iber. Thnen entsprechen jetzt also die starren Bewegungen und Um-
legungen. Insbesondere werden wir zeigen, daf} bei einer Schiebung jeder
Punkt des Raumes um denselben Betrag bewegt wird. Somit haben die
Geraden der von 7', und 7', erzeugten Kongruenzen, die ja durch Schie-

%a) F. Klein, Vorlesungen iiber Nichteuklidische Geometrie, Berlin (1928),
S. 113.

10) F. Klewn, Zur Nichteuklidischen Geometrie, Math. Ann. Lpz. 37 (1890).
A. Cayley, The London Edinb. Dublin Phil. Mag. (4) 6 (1853).
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bung ineinander iibergehen, immer denselben Abstand, obwohl sie wind-
schief sind. Wir bezeichnen sie als Cliffordsche Parallelen 1. Art bzw.
2. Art1'). Die durch Schraubung erzeugten Regelflichen (7) nennt man
Cliffordsche Flidchen. Sie besitzen ldngs ihrer Erzeugenden eine zweifache
Parallelverschiebung in sich selbst, und gleichen somit euklidischen
Ebenen ; umgekehrt sind sie in doppelter Weise Rotationsflichen, was uns
an Kreiszylinder erinnert. In ihnen kommt die vollstindige Dualitédt der
elliptischen Geometrie am schonsten zum Ausdruck.

Bevor wir die Entfernung zweier Punkte definieren konnen, miissen
wir den Begriff des Doppelverhiltnisses erkliren.

Nach 8. Wachs'?) versteht man unter dem Doppelverhéltnis der
4 Quaternionen a, b, ¢, d den Ausdruck:

(abcd) = (a—c)(@a—d)y 2t (b—d)(b—c)?.

Dies ist eine formale Nachbildung des Doppelverhéltnisses bei kom-
plexen Zahlen, und ldBt sich aus der von Staudtschen Definition der
harmonischen Punkte bei einem vollstindigen Vierseit ableiten. Diese
Definition ist wohl gegeniiber T, nicht aber gegeniiber 7', invariant.

Wir beschrinken uns auf den Spezialfall, dafl die 4 Quaternionen auf
einer Geraden liegen, da wir ja bei unserer Maflbestimmung immer nur
lineare Gebilde verwenden. Dann zeichnen wir zwei Grundpunkte, etwa
a und b, aus; diese bestimmen die Gerade, und dann folgt fiir ¢ und d:

c=a -+ Ab, d=a-+ Ab.

Unter dem Doppelverhiltnis verstehen wir nun im gewohnlichen Sinn
den Quotienten von A, und A,:

(abcd) = —;i =(@a—c¢)(@a—d)y1=((b—d) b—c)t .
2
Dieses Doppelverhiltnis ist fiir reelle Punkte eine reelle Zahl, und in
unserm erweiterten Raum also hochstens eine komplexe Zahl. Es bleibt
somit gegeniiber allen betrachteten Transformationen invariant.
Man sieht sofort, da@ sich die so definierten Doppelverhéltnisse multi-
plikativ zusammensetzen.

1) W. K. Clifford, Proc. London Math. Soc. (1) 4 (1873).

E. Study, Nichteuklidische und Liniengeometrie, Jahrb. Dtsch. Math. Ver. 11
(1902).

W.Vogt, Synth, Theorie d. Cliff. Parallelen und der linearen Linienérter
des elliptischen Raumes, Leipzig (1909).

12) giehe bei 8).
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Beh.: (abce) = (abcd) - (abde) .
Bew.: (a—c) (@—e)™! = (a—c) (a—d)(a—d) (a—e).

Nun definieren wir die Entfernung zweier Punkte P(a) und P (b) in
bekannter Weise:

E(a,b) = -;;-zn(abz' 2"y,

wobei wir unter 2z’ und z” die DurchstoBpunkte der Geraden durch P (a)
und P (b) mit der fundamentalen Fldche F, verstehen. Die MaBkonstante
wihlen wir —;— , um mit der euklidischen Winkelmessung vollige Uber-
einstimmung zu haben. So werden uns dieselben Ausdriicke, die hier die
Entfernungen messen, im euklidischen vierdimensionalen Raum die
Winkel darstellen.

Nun wollen wir die Entfernungsfunktion explizite aufstellen. Zur
Vereinfachung der Rechnung bestimmen wir die Entfernung des Punktes
P (a) vom speziellen Punkt P(1, 0, 0, 0); der allgemeine Fall wird dann
ohne weiteres auf diesen zuriickzufiihren sein.

r= A+a Gerade durch P(a) und P(1, 0,0, 0).
n(x) = A2 4+ 2a,4 + n(a) =0 Schnitt mit F,.

> 2 2 2
11,2=-—a0izl/a1+a2+a3. .

—aptiVaitaita  al—al—ai—ai—2a,iVataital
—ay—1i Vai+a+al n (a)

(laz’2") =

_ (260 —mn(a))* 4 4a5(n(a) — ag)

=1 .
n(a)?®

|(Laz'2") |

Das Doppelverhiltnis ist eine komplexe Zahl vom Betrage 1, und
it . ..
somi (laz’2") = e =cosp — i sin ¢

COoS @ = aﬁ—ai~—a§~—a§ — aﬁ ——ag—l—ag—}.ag:coszg——siﬁip—
¢ n (a) n(a) n (@) 2 2’
cosﬂ-——-_q’_o_ t .?-: ‘/a§+a2+a§
2 a|’ &2 @

146



Nun wird E(la) =-—;—-ln(laz’z”) =—;—ln P = _%v_ .

a a + al + a?
E(la)zgzarccos-*—aoT:arctgV1+a2+ 2
0

Da der Punkt P(a) durch Schiebung aus dem Punkt P(1, 0, 0, 0)
hervorgeht, haben wir mit obiger Formel auch den Betrag der Schiebung
gefunden, die der Multiplikation mit @ entspricht. Dieser ist in der Tat
nur vom Realteil abhingig. Wir heben der spitern Anwendung wegen
speziell hervor:

Ist der Realteil eines Quaternions a null, so stellt uns ' = xa oder

x’ = ax eine rechts- oder linksseitige Schiebung vom Betrage —g—dar (8).

Nun wollen wir die Entfernung zweier beliebiger Punkte P (a) und
P (b) berechnen. Diese ist nur vom Doppelverhiltnis (abz’2") abhingig,
und dieses ist unsern Transformationen gegeniiber invariant. Wir konnen
also mit 7', oder 7', die beiden Punkte starr so verschieben, dafl der eine,
etwa a, in den Punkt P(1, 0, 0, 0) fiallt. Damit ist der allgemeine Fall
auf unsern Spezialfall zuriickgefiihrt.

_ (ba), ba + abd
E(a,b) = E(1,ba) = arc cos ——— = arc cos —————— .
|ba| 2|a] |b]
s(ab)
E (a,b) = arc cos ——— .
2|al |b]

Um die metrischen Verhéiltnisse besser zu iiberblicken, betrachten wir
die Kugelschar um den allgemeinen Punkt P (a). Wir bezeichnen den
Kugelradius mit », und verlangen:

E(a, x) = r. Dies ergibt bei variablem r die Kugelschar um P(a).

(@x + xza)? = 4n(a)n(x) - cos?r.

Die Flichenschar ist gegeniiber z’ = axa natiirlich invariant, da dies
eine Rotation um die Axe P(a)P (1,0, 0, 0) bedeutet. Euklidisch ge-
sehen, haben wir eine Schar von Rotationsellipsoiden um diese Axe, die
iiber ein Rotationsparaboloid (wenn die Fliche die Ebene z, = 0 be-
rithrt) in Rotationshyperboloide iibergehen, bis diese die zu P(a) in
bezug auf F, polare Ebene doppelt iiberdecken.

Betrachten wir speziell die Kugelschar um den Punkt P(1, 0, 0, 0):
xz = n(x) - cos?r. '
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Diese hat dasselbe Aussehen, wie eine euklidische Kugelschar um
diesen Punkt. Gehen wir von den homogenen zu affinen Koordinaten
iiber, indem wir die Ebene z, = 0 als unendlich fern auszeichnen,

x, &y X4
— =X ; —_— = ; _— =22,
) By Xy
so erhalten wir:
x® P22 = — 1 =tg?r
Ty cos?r g

Die Transformation z’ = axa stellt also sowohl die Gruppe der
elliptischen wie der euklidischen Drehungen um den Punkt P(1, 0, 0, 0)
dar. Die Komponenten von a sind in letzterem Fall die Eulerschen
Parameter der Drehung!?).

Diese Darstellung der euklidischen Drehungen um einen festen Punkt
wurde direkt zu einer neuen Begriindung der Quaternionentheorie ver-
wendet!4).

Nun sollten wir in entsprechender Weise die elliptische Winkelmessung
analytisch durchfithren. Wir dispensieren uns davon, da sich diese nicht
von der euklidischen unterscheidet, insbesondere aber, da wir hier keine
vollstindige Darstellung der dreidimensionalen elliptischen Geometrie
geben wollen, und wenden uns nun den Bewegungen im vierdimensio-
nalen euklidischen Raum zu.

2. Die Bewegungen im euklidischen vierdimensionalen Raum

Wir denken uns einen dreidimensionalen elliptischen Raum und ver-
binden diesen mit einem Punkt 0 auBlerhalb. Dadurch entsteht eine vier-
dimensionale Mannigfaltigkeit. In dieser wihlen wir als MafBfliche die
nullteilige MafBfliche F, des elliptischen Raumes. Diese ist in unserer

13) W. R. Hamilton, Proc. R. Ir. Ac. Dublin (1) 3 (1847).

18) 4. Cayley, The Lond. Edinb. Dublin Phil. Mag. (3) 26 (1845).

4) F. Klein und A. Sommerfeld, Uber die Theorie des Kreisels. Math. Ann.
Leipzig 39 (1891).

E. Study, Die Hauptsatze der Quaternionentheorie. Mitt. naturw. Ver. Neu-
vorp. 31 (1899—1900).

W. Fr. Meyer, Zur Theorie der Drehungen und Quaternionen. Z. Math.
Phys. Leipzig 55 (1907).

Anmerkung : Die hier zitierte Literatur ist nicht vollstéandig, und sollte nur die Schriften
bezeichnen, in denen sich die betreffenden Darstellungen zum erstenmal finden. Wir ver-
weisen auf den Enzyklop#die-Artikel IIT A B 11. Systeme geometrischer Analyse, und
vor allem auf die franzosische Ausgabe Encyclopédie des sciences mathématiques pures et
appliquées I 5 Nombres complexes, wo besonders der zahlentheoretische Standpunkt ein-
genommen wird.
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vierdimensionalen Mannigfaltigkeit eine einmal ausgeartete, quadra-
tische, nullteilige Flache und erzeugt deshalb eine euklidische Metrik.
Der dreidimensionale elliptische Raum wird zur unendlich fernen Hyper-
ebene unseres vierdimensionalen euklidischen Raumes. In diesem gibt es
durch jeden seiner Punkte einen dreidimensionalen Ma@kegel oder
Minimalkegel, ndmlich die Verbindung des Punktes mit der Maf-
fliche F,. Dieser Minimalkegel ist fiir ein dreidimensionales Geraden-
biindel das allgemeinste quadratische Gebilde. Die Geometrie dieses
Geradenbiindels ist also elliptisch.

Damit haben wir den euklidischen vierdimensionalen Raum einge-
fiilhrt und ihn gleich zum dreidimensionalen elliptischen in Beziehung
gesetzt. Wir konnen nun ohne weiteres die in letzterem bekannten Be-
wegungen iibertragen. Sie werden uns jetzt die Drehungen und Dreh-
streckungen um einen festen Punkt ergeben.

Im folgenden wollen wir die Komponenten eines Quaternions a als
Koordinaten eines Punktes P(a) in einem rechtwinkliggradlinigen
Koordinatensystem auffassen. Damit ist jedem Quaternion eineindeutig
ein Punkt des vierdimensionalen euklidischen Raumes zugeordnet.
Beschranken wir uns wieder auf wesentlich verschiedene Quaternionen,
so entspricht diesen die Gesamtheit der Geraden durch den Ursprung.
Die Gerade durch P (a) und den Ursprung 0 nennen wir die Radiale R (a).
Die Geometrie dieser Radialen stimmt mit der im ersten Abschnitt be-
trachteten elliptischen Punktgeometrie vollig iiberein.

Wir werden nun die Bewegungen eines Punktes untersuchen, indem
wir zuerst die Bewegung seiner Radialen betrachten und erst dann die
diskrete Punktbahn ermitteln.

Wir betrachten wiederum die Transformationen 7', und 7',, und
setzen diese dann zusammen. Wie bewegt die Transformation =’ = za
einen beliebigen Punkt P (x) des Raumes?

Die Radiale R (z) wird um den Ursprung um den Winkel ¢ == arc cos I%‘—’T
gedreht und die Entfernung des Punktes P(x) vom Ursprung 0 mit |a|

multipliziert. Die Drehbewegung ist aber nur dann eben, wenn die
Schiebung in allen Zwischenlagen dieselbe Richtung besitzt, wenn also
das Verhiltnis a, : a, : a; konstant bleibt. Betrachten wir a als variablen
Parameter a,, so mul} dieser proportional von 1 nach a wachsen.

a,=1+A@a—1), 0<As<1. (9)

Dann bewegt sich E(x) in einer Ebene. Diese nennen wir rechtsseitige
Kongruenzebene durch R(x). Sie schneidet den Minimalkegel in zwei
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konjugierten Geraden. Die einzelnen Punkte von R(x) beschreiben bei
monoton wachsendem A ebene Spiralen.

Auf dem Minimalkegel 7 (z) = 0 liegen eine rechts- und eine links-
geschraubte erzeugende Ebenenschar. 7', fiihrt letztere in sich iiber,
wihrend zwei konjugierte Ebenen der rechtsgeschraubten Schar fest
bleiben. Die Ebenenkongruenz durch 0 besteht nun aus sdmtlichen
Ebenen, die diese beiden imagindren Erzeugenden in zwei Geraden
treffen. Damit iiberblicken wir die 7', entsprechenden Bewegungen,
welche wir wiederum rechtsseitige Schiebungen nennen.

Ist insbesondere 7 (a,) = 1, so behalten die Punkte ihren Abstand vom
Ursprung bei. Wir haben dann eine Drehung um den Ursprung, und wenn
noch (9) erfiillt ist, Kreisbogen als Bahnkurven.

Entsprechend liefert uns die Transformation 7', die linksseitigen
Schiebungen bzw. Drehungen.

Die rechts- und linksseitigen Drehungen haben jetzt aufler der Iden-
ditdt noch die Spiegelung am Ursprung gemeinsam.

r —=—x.

Diese kann also sowohl durch rechts- wie durch linksseitige Drehung
um 180° erzeugt werden.

Durch Zusammensetzung von 7. und 7', erhalten wir die allgemeinen
Drehstreckungen und Drehungen um 0.

2’ =axb. (10)

Die linksseitige Ebenenkongruenz durch 0 wird rechtsseitig auf einem
Cliffordschen Kegelraum gedreht, und umgekehrt. Die einzelnen Punkte
werden dabei mit |a||b| gestreckt. Die Drehbewegung der einzelnen
Ebenen besitzt eine kontinuierlich éndernde Drehaxe; d. h. eine gedrehte
Ebene hat mit der urspriinglichen nur den Ursprung gemeinsam. Die
Drehung ist immer noch schraubenartig.

Ist n(a) = n(b) = 1, so stellt uns (10) die Gesamtheit der Drehungen
um den Ursprung dar.

In beiden Fillen werden zwei zueinander senkrecht stehende Ebenen
(die eine besteht aus sdmtlichen Normalen, die man im Ursprung auf
die andere errichten kann) in sich tibergefiihrt. Diese beiden Ebenen
sind die Axenflichen des Cliffordschen Kegelraumes. In ihnen ist die
Bewegung eine ebene Drehung.

Betrachten wir im speziellen die Transformation

' =azxal. (11)
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Hier bleibt die eine Axenfliche punktweise fest, wihrend die andere
um den doppelten Betrag gedreht wird. Die invariante Ebene geht durch
den Punkt P(e) und die x,-Axe. Die zugehérige Bewegung nennen wir
eine Rotation im engern Sinn. Jede Drehung kann durch zwei spezielle
Rotationen ersetzt werden. Gleichung (11) stellt uns bei freiem a die
Gesamtheit der Drehungen um die x,-Axe dar.

Betrachten wir nun die allgemeine lineare Transformation, so haben
wir folgende Einteilung:

2/ =axb n(@nbd) =1 starre Transformation um 0,
' =azxb+ ¢ Ahnlichkeitstransformation,
2’ = (ax + b) (cx + d)? konforme Transformation!s).

Dabei achtet man bei den entsprechenden Bewegungen nur auf
Anfangs- und Endlage.

Die uneigentlichen Transformationen erhalten wir, indem wir die
eigentlichen mit der speziellen uneigentlichen Transformation z’ =z
zusammensetzen.

So erhalten wir die Spiegelungen und uneigentlichen Bewegungen.
Insbesondere 148t sich auch die Spiegelung an der z;-Axe so zusammen-
setzen.

I

x Spiegelung an der xz,-Axe

xl
2/ (12)

I

yxt;, j=1,2,3. Spiegelung an der x;,-Axe

Diese 148t sich also durch eine Spiegelung an der z,-Axe und darauf
folgender beidseitiger Rotation lings der x,z;-Ebene um 90° erzeugen.

Gerade diese Spiegelungen und ihre Zusammensetzungen werden uns
im folgenden beschéaftigen.

3. Die reguliren Quaternionenfunktionen und das Differential

Unter einer Quaternionenfunktion w verstehen wir die Zusammen-
fassung von vier reellen Funktionen u, der Komponenten x,, x,, x,, z,
eines variablen Quaternions » zu einem abhingig variablen Quater-
nion w.

w:Euh(anxlaxzixa)ih’ h:O’l’2!3'16)
(k)

15) K. Study, Math. papers Chicago Congress (1893).

Anmerkung : Die im ersten Abschnitt zitierten Arbeiten behandeln in der Regel auch
die Bewegungen im vierdimensionalen euklidischen Raum, und wurden deshalb nicht

mehr erwahnt.
16) R. Fueter, I S. 308.
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Von den %, verlangen wir weiter, daB sie stetig und stetig partiell
differenzierbar sind.
Dann existieren die 16 partiellen Differentialquotienten

Oun k) __
e = p=0.1,2,3.

Wir beschrianken uns in dieser Arbeit auf die Funktionen, deren
Wronskische Funktionaldeterminante nicht identisch verschwindet.

| uP|=£0 .

Solche Funktionen bezeichnet man vom Range 4.

Es sei H ein endliches Gebiet des vierdimensionalen, euklidischen
Raumes, in welchem die u, definiert sind und den obigen Bedingungen
entsprechen. Dann bildet jede Funktion vom Range 4 das Gebiet H topo-
logisch auf ein Bildgebiet H* ab.

Eine Quaternionenfunktion wird differenziert, indem man jede Kom-
ponente differenziert.

ow

=w® = X uP g, .
aa:k ()

Damit erhalten wir das Differential

dw = ¥ w® dx, .
(k)

Der Zuwachs der Funktion ist von der Fortschreitungsrichtung ab-
hingig. Die Abbildung ist im Infinitesimalen zentro-affin.

Nun definiert man nach R. Fueter!?) regulidre Quaternionenfunktionen,
indem man verlangt, daB die u{*) gewisse lineare partielle Differential-
gleichungen erfiillen. Diese sind formale Ubertragungen der Cauchy-
Riemannschen Differentialgleichungen und zerfallen wegen der Nicht-
kommutativitdt der Quaternionen in zwei Systeme.

Regularitdtsbedingung:

S whg, =0, (13) N wk =0, k=0...3. (14)

(%) (k)

Diejenigen Funktionen, welche die Gleichungen (13) erfiillen, nennt
man rechtsregulire Quaternionenfunktionen; diejenigen, welche die
Gleichungen (14) erfiillen, linksregulére.

Ist eine Funktion sowohl rechts- wie linksregulir, so nennt man sie
zweiseitig-reguléar.

17) R. Fueter, I S. 310.

162



Durch die Regularitétsbedingung werden die Funktionen einge-
schrinkt. Kennt man 3 partielle Ableitungen in einem Punkt, so ist da-
mit die 4. bestimmt. Das Differential ist spezialisiert.

dw = — kj‘_‘ w® g dxy + wdr; + w?® dr, + w® dx, .
=1

Die zentro-affine Abbildung ist eine spezielle. Ist diese geometrisch
ausgezeichnet, und besteht ein Zusammenhang mit den konformen Ab-
bildungen? Letzteres 148t sich vermuten, da die Regularitdtsbedingung
in die Cauchy-Riemannschen Differentialgleichungen entarten kann.

Wir packen diese Fragen an, indem wir zunichst untersuchen, unter
welchen Bedingungen die durch eine regulire Quaternionenfunktion
vermittelte Abbildung im Infinitesimalen konform wird.

4. Die infinitesimal konforme Abbildung

Wir betrachten im Definitionsbereich einer reguliren Quaternionen-
funktion W = F (X)) einen festen Punkt P. In diesem sind die partiellen
Ableitungen W konstant, und wir schreiben:

WO =D; WO=4; WO =B;: W®=(,.
Die infinitesimale Umgebung des Punktes P wird linear abgebildet.

dW = DdX, + A dX, + BdX, + CdX,.

Durch die Regularitidtsbedingung wird diese lineare Transformation
eingeschrankt. Wir begniigen uns mit der Darstellung der rechtsreguliren
Funktionen. Die entsprechenden Resultate fiir linksreguldre werden wir
durch Symmetrieiiberlegungen ohne weiteres erhalten.

Rechtsregularitat (13) im Punkte P:

D = —(4¢, + Bi, + C1y) .
Damit erhalten wir die spezielle Transformation
dW = — (44, + Biy + Ciy)dXy+ AdX, + BdX, + CdX,. (15)

Die infinitesimale Abbildung besitzt nur noch 12 freie Parameter und
die zugehorige Matrix hat die Gestalt:
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4, + B, + 0, A, B, Cy
- Ao + Ba - 02 Al Bl 01 (16)
—A4,—B,+0, 4, B, G

A,— B, —C, A, B,

Nun fragen wir nach den Bedingungen, die erfiillt sein miissen, damit
die Abbildung konform wird. Diese sind genau dieselben, welche die
Transformation (15) zur Ahnlichkeitstransformation machen. Dazu aber
ist notwendig und hinreichend, daf} in der Matrix (16) die Produkte von
je zwei Spalten verschwinden und die Quadrate aller Spalten gleich gro8
sind. Damit erhalten wir 9 Konformitédtsbedingungen:

8(A B)y=s8(AC)=s(BC) =0, (17%)
s(@,B+i,0) A =5, 4 +1,0) B=s(i, 4 +i,B)C =0, (177
n(A) = n(B) = n(C) = n(di, + Bi, + Ci,) . (179

Da die Matrix (16) durch die Regularitdtsbedingung spezialisiert ist,
miissen wir untersuchen, ob diese 9 Bedingungen unabhéngig und mit-
einander vertriglich sind. Wir werden zeigen, dafl bereits die Bedin-
gungen (17*) und (17°) Konformitit vermitteln, und (17°) zur Folge
haben. Um die Rechnung zu vereinfachen, spalten wir in W den Links-
faktor A4 ab.

W=Aw, SWW=4FXwhi,=0. (18)
(%) (k)

Die Funktion w ist dann immer noch rechtsregulir, und w¥) = 1 in P.
Leistet w eine konforme Abbildung, so auch W, da die Multiplikation mit
A eine Drehstreckung bedeutet.

Wir verlangen nun von der Funktion w, daB ihre Ableitungen im
Punkte P den Bedingungen (17%) und (17") geniigen. Diese vereinfachen
sich folgendermaflen, wobei wir die entsprechenden Ableitungen mit
kleinen Buchstaben bezeichnen:

bo == Co = boCo + bICI + b262 + b303 = O )
b2 + C3 = 0 ’

boCs — by —b;¢5 + byc; —bsey =0,
—bgCy — b163 + bycy +- 036, — ¢, = 0.

18y R. Fueter, I S. 312.
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Diese 6 Gleichungen verringern die 12 freien Parameter der infinitesi-
malen Abbildung auf 6, und wegen der speziellen Wahl von @ kann die
Transformationsmatrix (16) somit durch 2 Parameter, etwa b, und b,,
dargestellt werden. Wir erhalten:

— b, b, c_bf+b§——b3 1—b,— b
b,—1 > * 7 bh,—1 T bg—1

C]_:

Daraus erfolgt sofort:

n(b) =n(c) = n(ar, + biy + ciz) =na) =1.

Mit Gleichungen (17*) und (17°) ist auch (17°) erfiillt. Die Regularitéts-
bedingung ersetzt also 3 Konformitdtsbedingungen. Damit erhalten wir

die Matrix der konformen Abbildung, welche die regulire Quaternionen-
funktion im Punkte P leistet.

0 1 0 0
—b24-b2V 1—b2—b? 1+ V1—b2—b?
o 0 b, b.b, —
b1+b2 b1+b2
(18)
by 1+ V1—b:—p2 b — 02402V 1—b2—b?
R b 2 b3+b3
—b, 0 +V1-b2—0? —b,

Nun fragt es sich, ob die Regularitidtsbedingung, die doch aus 4 reellen
Bedingungsgleichungen besteht, nicht iiberhaupt 4 KXKonformitéts-
bedingungen dquivalent ist. Dann miiBte jede Ahnlichkeitstransforma-
tion den Regularititsbedingungen (13) oder (14) geniigen. Das ist nicht
der Fall. Um das einzusehen, betrachten wir die lineare Abbildung

dw = ddx, + adz, + bdx, + cdzx; ,

wobei wir uns wieder auf den Fall @ = 1 beschrianken.

Die Abbildung soll konform sein. Wegen der speziellen Wahl von a
wird dann die lineare Transformation sogar orthogonal, und ihre zu-
gehorige Matrix lautet:
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0 1 0 0

by cy+by Vb2+b2—c2 V' 1-b2—b? b, V'bi+bi—c2—b, ¢, V' 1-b—b}

0 b
b2+ b2 ! b2+ b2
—bycy+b, V BE+b2— 2V 1-b2—b2 o ; b, VbEbE—c2—b,c, ) 1-bI—b?
b2+ b2 2 b2+ b
— Vbibi-c? 0 +V1-p2—b2 Cq

\

Die Regularitdtsbedingung

d = — (a1, + bty + ¢1iy)
ist nicht erfiillt.
Verlangen wir aber nur die Giiltigkeit einer Komponentengleichung,
so sind die andern drei auch sofort erfiillt.

Zum Beispiel: dy = a; + by + ¢5 .

Da d, = a, = 0 ist, erhalten wir ¢; = — b,, womit die orthogonale
Matrix in die Matrix (18) der reguléren konformen Abbildung iibergehﬁ,
Diese ist also eine einmal spezialisierte orthogonale Abbildung. Damit
ist gezeigt:

/

Drei der vier Regularitidtsgleichungen konnen durch drei beliebige

Orthogonalitidtsbedingungen ersetzt werden, wihrend die vierte Regu-
laritdtsgleichung die Abbildung spezialisiert.

Was ist die geometrische Bedeutung dieser vierten Regularitats-
gleichung, oder wie ist die konforme Abbildung ausgezeichnet, welche
die reguldre Funktion W = F(X) im Punkte P leistet?

Die Abbildung ist sicher dhnlich, und zwar speziell. Jede dhnliche Ab-
bildung 148t sich aber durch direkte Zusammensetzung einer rechts- und
einer linksseitigen Schiebung (10) erzeugen. Damit mufl sich dW, je nach-
dem die Transformationsdeterminante positiv oder negativ ist, auf eine
der folgenden beiden Weisen darstellen lassen.

dW = MdXN oder dW = MdXN
Welche dieser Darstellungen ist mit der Regularitdtsbedingung ver-
traglich, und wie formuliert sich jetzt die vierte Regularititsgleichung

analytisch ?
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Aus dW = MdXN folgt:

W® = MiN und X W®; =M 3 Ni,=—2MNY).
(k) (k)

Dieses Produkt kann nur mit M oder N verschwinden.

Eine regulire konforme Abbildung ist also immer eine uneigentliche
Ahnlichkeitstransformation, d. h. eine Spiegelung an der X,-Axe gefolgt
von einer Ahnlichkeitstransformation.

Aus dW = MdX N folgt: (20)
W& = M4,N und X W®{, =M X 4, Ni, = 4MN,,
¥ (¥)
entsprechend
S Wh = ¢ Mi, N=4M, N .
(k) (k)

Die infinitesimale Abbildung dW = MdX N ist rechtsregulir, wenn
der Realteil von N verschwindet, linksreguldr, wenn der Realteil von M
verschwindet. Damit hat die vierte Regularitdtsgleichung eine Form
gefunden, die sich unmittelbar geometrisch iibersetzen 148t.

Wir wollen vorher noch zeigen, dafl die 9 Konformitétsgleichungen (17)
in dieser Schreibweise enthalten sind, und die Faktoren M und N
explizite durch die Ableitungen von W ausdriicken.

AW = — (Ai, + Bi,+ Ciy) dX, + AdX,+ BdX,+ CdX,= MdX N .

Durch Vergleich der Ableitungen erhalten wir die 4 Quaternionen-
gleichungen
—Ai, —Bi,—Ciy = M N,

A - M-'ZIN,
B :M-i-zN,
¢ = Mi,N.

Von diesen 16 reellen Gleichungen benotigen wir 7 zur Bestimmung
der unabhiingigen Komponenten von M und N, wihrend die andern 9 den
Konformitstsgleichungen (172, 17°, 17°) dquivalent sind.

Durch Rechtsmultiplikation mit ¢, und Addition ergibt sich die be-
kannte Regularitdtsbedingung:

S Mi,Ni,=0 dh N,=0.
(k)

19) R. Fueter, I S. 308.
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Durch Linksmultiplikation mit ¢, und Addition erhalten wir N selber
bis auf einen Proportionalitédtsfaktor:

S Mi,N=4 My N=14,4— Ai, +i,B— Bi, + i, C — O3, .
&)
1

N—=—> (A —Ai,+i,B— Bi, + 4,0 —Ci;) .  (21)
1M,

Ist N bekannt, so 1iBt sich M aus jeder der 4 Gleichungen berechnen.
M = ANy = BN, = CN'iy = (— Ai, — Bi,— Cig) N1 . (22)

1
M,
wiahlen. Wir brauchen also fiir M und N genau 7 Gleichungen, und somit
stellt (22) noch 9 weitere Bedingungsgleichungen fiir die Ableitungen dar.
Diese sind mit den Konformitidtsbedingungen (178, 17°, 17°) identisch.

Es folgt sofort:
n(4) = n(B) = n(C) = n(di, + By, + C1,).

Da N den Faktor besitzt, diirfen wir den Realteil von M beliebig

Ferner folgt etwa aus der Gleichung AN-1¢;, = BN-1i,:

—N

. . . 4
ANiy=BNi,, weil N =2

Durch Linksmultiplikation mit 4 und B erhalten wir

BANi, = n(B) Ni, — BAN = n(B) Ni, ,

ABNi, = n(4) Ni, — ABN = — n(A) Ni, ,
und somit wegen n(4) = n(B)
(AB+ BA)N =0 , also s(AB) =0 .

Auf entsprechende Weise zeigen wir die Existenz der andern Gleichun-
gen (17%) und (17°).

Die Umkehrung beweisen wir, indem wir M und N aus den Ableitungen,
welche den Konformititsbedingungen geniigen, berechnen. Diese Ab-
leitungen kennen wir fiir den Spezialfall @ = 1. Auf diesen ist die Dar-
stellung (20) aber sofort zuriickfiihrbar.
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AW = Adw = Amdxn = MdzN .
Ist m und n bekannt, so ist damit auch M und N berechnet.
M=Am, N=n.

m und 7 erhalten wir aus (21) und (22), wenn wir fiir die Ableitungen
die speziellen Werte der regulirkonformen Abbildung (18) einsetzen.

1 . : "
" =Tm (2(b; —¢a) 03+ 2(cy,—ay) 1+ 2(a; — by) 7'3)
0
1 (bz. 1+ V1 —b— b i 466 1+V1—bi—b§i b
2m0 1 b%-—*—bg 1 1v2 bi—{—bg 2 1 3) .

Da wir iiber den Realteil von m beliebig verfiigen diirfen, wihlen wir
my = 4, und finden somit:

1+V1—02— b2 1+V1—-02—8

N:n: b% bg_’_b: z1+blb2 'bi_‘._bg "’2_b1i3 )
1+V1_b§“b2
N) =2p2 d N,=0.

Setzen wir dieses 7 in (22) ein, so sind alle 4 Gleichungen erfiillt. Wir
erhalten:

1—VI—8—b . b,

ni,y

— 1l — — .
M=N "% 7 (n) 5 2b, EREETRAE
1
n(m) = ()
Damit ist auch M gefunden:
1—1'1— b2 — b2 b
. 1 1 2 . 2 .
M= (b e gy
_n(4)
"= w)
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Damit haben wir folgenden Satz iiber die konforme Abbildung?°)
durch eine regulidre Quaternionenfunktion bewiesen:

1. Satz. Eine regulire Quaternionenfunkiton W = F(X) bildet die
infinitestmale Umgebung des Punktes P konform ab, wenn sich das Diffex
rential AW im Punkte P in der Form

dW = MAXN schreiben lLift, dabes ist
N, = 0, wenn W rechtsregulir ist,
M, = 0, wenn W linksregulir ist, und

M, = N, = 0, wenn W beidseitig requldr ist.

Der geometrische Inhalt dieses Satzes ist offensichtlich. Die Abbildung
ist eine uneigentliche Drehstreckung, d. h. eine Spiegelung an der reellen
Axe, gefolgt von einer Drehstreckung. Diese setzt sich aus einer rechts-
und einer linksseitigen Schiebung zusammen. Das Verschwinden des
Realteiles von M oder N besagt, dafl die Drehung der entsprechenden
Schiebung einen Drehwinkel von 90° besitzt (8).

Der Satz 1 entsprechende geometrische Satz lautet also:

2. Satz. Bildet eine regulire Quaterniomenfunktion W = F(X) die
infinitesimale Umgebung eines Punktes P konform ab, so ist die Abbildung
eine uneigentliche Drehstreckung; zu dieser gehort eine rechtsseitige Drehung
um 90°, wenn W rechtsregulir ist, eine linksseitige Drehung um 90°, wenn
W lLinksreguldr ist, und eine links- und rechtsseitige Drehung um 90°, wenn
W beidseitig reguldr ist.

Damit iiberblicken wir die infinitesimal konforme Abbildung véllig,
und wenden uns der allgemeinen infinitesimalen Abbildung zu, die durch
eine reguldre Quaternionenfunktion geleistet wird.

b. Die allgemeine infinitesimale Abbildung
Jede lineare Quaternionenfunktion I(z) 148t sich in einer der beiden
Formen darstellen:
L () = m,xn, + myxn, + myxn, + myxn,
oder
(%) =myxzn, + myxng + myTng, + myxn, .

20) Da es nur uneigentlich konforme reguldre Abbildungen gibt, und somit eine Ver-
wechslung unmdéglich ist, sprechen wir im folgenden schlechthin von konformen Ab-
bildungen.
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Dabei diirfen die m oder die » beliebig, aber linear unabhingig?),
gewahlt werden. Die allgemeine lineare Abbildung ist also eine Summe
von vier eigentlichen oder uneigentlichen konformen Abbildungen.

Nun stellt sich die Frage, ob die durch eine regulire Quaternionen-
funktion W vermittelte infinitesimale Abbildung

dW = — (44, + Bi, + Ci,)dX, + AdX, + BdX, + CdX,

immer als Summe von reguldr-konformen Abbildungen erhalten werden
kann. Zu diesem Zweck stellen wir dW, das uns hier als Funktion der
Komponenten von dX gegeben ist, explizite als Funktion von dX dar.
Das ist leicht moglich. Aus

dX, =% X %,dX1; %)
(7)
folgt fir die andern Komponenten
dX, =% X¢;dX4,1; .
)
Damit erhalten wir dW als Funktion von dX.

— B,
2

Ai, — Ci,
2

— A4, + Bi,
)

aWw =

+ 0 gxi 4+ dX i, + iXi, .

(23)

Jeder dieser Summanden ist fiir sich schon regulidr. Die infinitesimale
Abbildung ist in der Tat eine Summe von regulér-konformen Abbildun-
gen, und zwar erhalten wir mit drei Abbildungen schon den allgemeinen
Fall. Wir kénnen demnach von den drei konformen Komponenten der
Abbildung sprechen; diese selber ist natiirlich in der Regel nicht mehr
konform. Die konformen Komponenten sind spezielle Abbildungen; sie
gehen durch einseitige Schiebung aus den Spiegelungen um die imaginéiren
Axen hervor. Dies sehen wir sofort, wenn wir (23) umformen.

_ Bi, + Ci,

Ai, + Bi, .
2

aw ild‘X“il+‘i?1—“-25-%i2dXi2+ 2, dX i, .

Nun ist nach (12) =z’ =1,x4; eine Spiegelung an der x;-Axe. Die
infinitesimale Abbildung 148t sich somit aus den drei Spiegelungen um

21y W. R. Hamilton, Proc. R. Ir. Ac. Dublin (1) 8 (1864).
22) R. Fueter, 1 S, 308.
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die imagindren Axen zusammensetzen. Dabei folgt jeder Spiegelung eine
linksseitige Schiebung, wenn die Funktion rechts-regulir ist.
Schreiben wir noch fiir die Koeffizienten der Komposition

Bi, + Ci,
2

Ai, + Bi,
2

Ai, + O,

so erhalten wir als endgiiltige Form fiir das Differential:
AW = Ri,dXi, + Si,dX iy + Ti, dX 4, .

Die Ableitungen W®* lassen sich mit R, 8 und 7' sofort berechnen,
und geniigen natiirlich der Regularitidtsbedingung.

WO —=_R_-8—T,

Wo = (R—8—T)i,, o
W — (8 —T—R)i,, (=" w=0
W® = (T—R— 8)i,.

Entsprechendes folgt sofort fiir linksregulidre Funktionen. Diese Dar-
stellung konnen wir geradezu als neue Formulierung der Regularitits-
bedingung ansehen.

3. Satz. Eine Quaternionenfunktion W = F(X) st wm Punkte P
rechtsregulir, wenn sich daselbst AW in der Form

dW = Ri,dX i, + Si,dX 1, + Ti,dX 1,
darstellen lif3t,
linksregulir, wenn sich daselbst AW in der Form
dW == ildXilR + ide-igs + i3dXi3T
darstellen lipt, und
betdseitigreguldir, wenn als weitere Bedingung noch

'Rl - S g — T3 — O
erfallt ist.
Daraus 148t sich die geometrische Kennzeichnung der infinitesimalen
Abbildung, welche eine regulire Quaternionenfunktion im Punkte P
leistet, miihelos ablesen.

Eine infinitesimale Hyperkugel um P geht in ein infinitesimales
Hyperellipsoid iiber, dessen Axen mit R, § und 7' beschrinkt sind.

|dW| < (IB| + 18] + |T]) |[dX] .
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Die Abbildung ist linear und setzt sich aus konformen zusammen.
Dariiber wissen wir:

4. Satz. Jede durch eine regulire Quaternionenfunktion vermittelte Ab-
bildung der infinitesimalen Umgebung des Punktes P lift sich aus drei
reguldr-konformen Abbildungen additiv zusammensetzen. Diese entstehen
aus den drev Spiegelungen an den imagindren Axen durch linksseitige
Schiebung, wenn die Funktion rechtsreguldir ist, und durch rechtsseitige
Schiebung, wenn die Funktion linksregulir ist. 1st die Funktion beidseitig-
reguldr, so sind die konformen Komponenten auch schon beidseitig regulir.

Diese allgemeine infinitesimale Abbildung artet offensichtlich in eine
konforme aus, wenn zwei ihrer Komponenten verschwinden. Die so er-
haltenen konformen Abbildungen besitzen nur 4 Parameter, wihrend
die allgemeinsten regulidren konformen Abbildungen (20) deren 6 besitzen.

dW = Mi,dXi;,N, mit N;=0 oder M,=0,5j=0,1,2,3.

Diese konnen immer aus der Spiegelung an der x,-Axe erhalten werden,
wobei eine der Schiebungen einen Drehwinkel von 90° besitzt (8).
Die 6 wesentlichen Konformitétsbedingungen lauten jetzt:

sSORi)=s(TRi,)=0,
s (RS 1) =8 (TS 4,) =0,
S(RT i) =s8(8Ti;) =0.

Nun wenden wir uns abschlieend der Frage zu, wann eine regulire
Quaternionenfunktion ein ganzes Gebiet konform abbildet.

6. Die konformen reguliren Quaternionenfunktionen

Vermittelt eine regulidre Quaternionenfunktion in jedem Punkte ihres
Regularitdtsbereiches eine konforme Abbildung, so nennen wir die
Funktion konform.

Beispiele solcher konformer Funktionen erhalten wir, wenn wir die
linearen Funktionen der infinitesimalen konformen Abbildung auf den
gesamten Regularitétsbereich ausdehnen. Dabei lassen sich die fiir die
infinitesimale Abbildung geltenden Sdtze ohne weiteres iibertragen.

W=MXN, mit N,=0.

Die Funktion ist im ganzen endlichen R, regulir. Die Abbildung setzt
sich aus einer Spiegelung des Gesamtraumes an der z, Axe und darauf
folgender links- und rechtsseitiger Schraubung zusammen, wobei letztere
einen Drehwinkel von 90° besitzt.
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Uben wir nach dieser Abbildung noch eine Translation aus, so wird die
Konformitéit sicher nicht zerstéort. Wir behaupten, daBl die so ent-
stehenden Abbildungen die allgemeinsten regulir-konformen Abbildun-

gen sind.
W= MXN + L, mit Ny=0.

Nach einem Satz von Liouville23) sind die konformen Abbildungen im
Rt immer Kollineationen, also hochstens gebrochene lineare Funktionen.

w= (ax + b) (cx + d).

Die Funktion w hat fiir x = — ¢'d einen Pol 1. Ordnung. Aus der
Reihenentwicklung?*) der reguliren Quaternionenfunktionen folgt aber,
daB eine isolierte Singularitdt mindestens ein Pol 3. Ordnung ist. Somit
kann die Funktion w nicht regulér sein.

Dies sehen wir auch sofort durch Bildung der Ableitungen:

w® = (a — (@az + b) (cx + d)™? c) i (cx 4+ d)?

k) 5 — = e _y .y S(e®) + 2d,
%)w i, =2(a — (@z + b) (cz + d) ) W5 - d)

Sw'® g, kann nur auf der Hyperebene s(cx) = —2d, verschwinden.

(k)

Es gibt also kein vierdimensionales Gebiet, in dem w regulér ist. Die
linearen reguliren Quaternionenfunktionen sind also immer ganz linear.

Daraus folgt fiir die konformen reguldren Quaternionenfunktionen:

b. Satz. Bildet eine regulire Quaternionenfunktion ein vierdimensionales
Gebiet konform ab, so ist die Funktion ganz linear :

W=MXN-+L, N,=0 oder M,=0.

Dabei verschwindet der Realteil von M, N oder von beiden, je nachdem die
Funlktion W links-, rechts- oder beidseitigrequldr ist.

('Eingegangen den 7. August 1944.)

2) @. Monges et Hachette, Applications de 1’analyse & la géometrie, Nouv.
éd. annotée p. Liouville, Paris (1850).
) R. Fueter, II1 S. 329.
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