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Uber die Schranken fiir die
absoluten Betrdge der Wurzeln von Polynomen

Von Epuarp BaTscHELET, Basel

1. Ankniipfend an die Untersuchungen von Herrn Ostrowsk: iiber das
Graeffesche Verfahren!) habe ich in zwei Arbeiten?) das sich hierbei er-
gebende Problem weiterverfolgt, welchen Schwankungen die absoluten
Betrdge der Wurzeln eines Polynoms

A + At 4 -+ A, (1)

unterworfen sind, wenn man die Argumente der Koeffizienten A4,(0 <v <n)
beliebig variiert. In der vorliegenden Arbeit werden wir die bis jetzt er-

haltenen Ergebnisse erweitern.
Die Wurzeln z,, z,,.. ., z, eines jeden Polynoms der Gestalt (1) mégen
nach fallenden absoluten Betrigen geordnet sein. Es gelte also

2] =z 2. 2 @) - (2)

Ferner sei k(1 < k < n) ein fest gewdhlter Index. Wir nennen dann z,
auch die k-te Wurzel des Polynoms. Fiir die Koeffizienten des Polynoms

setzen wir
|Avl = &y, arg Av: @y, V= 0’ 1,...,’)’1: ‘

Variieren wir nun die Argumente ¢, beliebig, halten aber die absoluten
Betrige «, fest, so schwankt der absolute Betrag von z; in einem Inter-
vall, dessen genaue, obere Schranke mit Z, und dessen genaue untere
Schranke mit £, bezeichnet sein sollen. Die relative Breite dieses Intervalls
wollen wir durch den Quotienten

Z
) _ Zx 3
Vn = A (3)

messen.
Herr Ostrowsk: hat gezeigt, dafl unabhingig von der Wahl des Poly-

noms

A0 < (’2‘ + VE) k(n —k 4+ 1) (4)

1) Ostrowsk: (1). Siehe Literaturverzeichnis am Schlufl der Arbeit.
3) Batschelet (1) und (2).
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gilt3). Die Frage, ob y\¥) fur eine geeignete Wahl des Polynoms die Schranke
rechter Hand erreicht, wenn auch nur der Grofenordnung nach, blieb dabet
allerdings offen. Wir werden im folgenden zeigen, daf3 dies fiir die Gré8en-
ordnung zutrifft. Bezeichnen wir nimlich mit ¢{¥ das Maximum aller
¥, das fiir festes k und fiir spezielle Polynome n-ten Grades aus Stetig-
keitsgriinden erreicht wird, so werden wir die Ungleichung

P >Ekmn —k -+ 1) (5)
beweisen.
Fir den Fall, wo »n eine ungerade Zahl und k = nrl ist, habe ich

2
an anderer Stelle?) die in (5) als Spezialfall enthaltene Ungleichung

2

bereits hergeleitet.

2. Dem Beweis der Ungleichung (5) schicken wir einen Hilfssatz
voraus.

Hilfssatz. Es sei k eine der Zahlen 1,2,...,n und
E'=n—Fk+1 (6)
gesetzt. Dann gibt es stets zwei Polynome n-ten Grades

f(xg) = A 2"+ 4, o 4 -+ + 4,,
g(x) = B,a" + B, ;2" '+ -+ + By, (7)

welche den folgenden Bedingungen geniigen :

a) A,, B,w=20,1,...,n) sind reell,

b) |[4,|=1|B,), »=0,1,...,n,

c) f(x) besitzt etne k-fache Wurzel T> 0 und
g(x) eine k’-fache Wurzel o > 0 derart, daf

";“ = ok (8)
gult.

3) Ostrowsks (1), p. 145. Die Ungleichung ist sofort aus (25, 3) im ,,Corollaire au théo-
réme IX‘ zu entnehmen.

4) Batschelet (2), Ungleichung (14).
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Beweis : Man setze f(x) und g (x) in der Gestalt

f(.’IJ) = (z + t)k 'k;.‘::lav xv ,

v=0
§(z) = (@ + ) - S b, ¥
v=0

an, wobei a, und b, als reelle Zahlen und ¢, s als negative Zahlen zu be-

stimmen sind. — ¢ ist dann eine k-fache positive Wurzel von f(x) und
— s eine k’-fache positive Wurzel von ¢ (x).

Unter Beniitzung der abkiirzenden Bezeichnungen

k
T =( )t#, ‘—:’O’.l.’k 9,
p P M

Y (9)
S,L“——(‘u)sl‘ , w=0,..., k",

erhiilt man fiir f(x) und g(«), wenn man diese Polynome nach Potenzen
von z ordnet:

. k'—1 k’—1
f(x) = ET xk-n . La =3 \‘T a, xk—putv

v=0 p= 0

k—1
g(x) = ES,Lx"'*P Zb xv=3 N 8,b, k' —prtv |

v=0 p=0

Man fiihre noch in f(z) und in g(x) die neuen Summationsindizes

A=k —pu-+v, resp. A=k’ — u + v ein. Dadurch erhalten f(x) und
g(x) die Gestalt

11

Hzx) = ( x> T,L Ay ) zr

A=0

n k’
,[_=

A=0

Il

Dabei sind simtliche a, und b, gleich 0 zu setzen, wenn » nicht die
Werte 0,...,k'—1, resp. die Werte O,..

., k—1 annimmt. Durch
Koeffizientenvergleich mit (7) ergibt sich

k
Ay = 20 Ty arsp—s
F,z

o A=0,1...,n . (10)
= 3 Spbarp_p’
p=0

130



Um jetzt die Bedingung b) des Hilfssatzes zu erfiillen, setze man fiir
A= 0, l,. o, |AA| = IBAI oder A)( + E,\B,\ == 0, WO fo, 51,. v oy 5,,,
Zahlen bezeichnen, die nur der Werte 4 1 oder — 1 fihig sind. Die Be-
stimmung des Vorzeichens eines jeden &, kénnen wir uns noch vorbe-
halten. Damit gewinnen wir aus (10) die Gleichungen

k %

EOT#aA+F—k+§’\.ESlLbA+H“k' =0 5 },:0,1,...,70 . (ll)
p= p=0

Dies ist ein System von n + 1 linearen, homogenen Gleichungen mit

den n» + 1 Unbekannten a,,... ay_,, b,,...,b,_,. Eine nicht triviale

Losung existiert dann und nur dann, wenn die Determinante des Systems

T, 0 0 ...0 0 & Sp 0 ... 0 0
Teey T, 0 ...0 0 &Sp—1 &8¢ ... 0 0
Tk__2 Tk~1 Tk e o e 0 O 52 Sk'—'2 §2 Sk'_]_ o o @ 0 O
............................................... (12)
0 0 0o ... T0 T, 0 0 cee Epa Sy £1 8
0 0 0O ... 0 To 0 0 .o 0 &, So
k" Spalten k Spalten

verschwindet. Die Determinante gleicht duBlerlich einer Sylvesterschen
Resultante, unterscheidet sich aber von einer solchen durch die Fak-
toren §,.

Man iiberzeuge sich, daf3 die Determinante (12) in den zwei Variabeln s
und ¢ homogen ist. Denn T, und 8, sind nach ihrer Definition in (9) vom
Grade p in ¢, resp. s. Multipliziert man noch die erste Spalte von (12) mit
tk'-1 die zweite mit t*-2, usw., die k’-te mit #° und entsprechend die
(k' + 1)-te Spalte mit s*1, die darauf folgende mit s*-2, usw., die letzte
mit s°, so enthilt die erste Zeile, wegen k + £’ = n 4+ 1, nur die Potenzen
t» und s”, die zweite Zeile nur die Potenzen ¢! und s*1, usw. Die letzte
Zeile enthilt in ¢ und s konstante Elemente. Daraus folgt die behauptete
Homogenitét unmittelbar.

Setzt man noch y = Ti_ , (13)
so muf} die Determinante (12) nach Division durch eine geeignete Potenz
von s ein Polynom in y sein. Man erhélt dieses Polynom aus (12) einfach
dadurch, daB man ¢t = y und s = 1 setzt. Es lautet
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Pk 0 ... 0 0 £ 0o ... 0 0

Byprr 9k .0 0 *) &, & ... 0 0
(’2‘) Yk_2 (116) '}’kml' .o 0 0 (k2‘) &, (k1') s ... 0 0
cee (’f) ’}/k*l ’}’k (k"c.'.l) fk'—l (k’fiz) flc'—l fee

(B (§) Y () & -

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

0 0 ... ®7 G(r 0 0 . (F)Ene (¥ Enms
0 o ... 1 (kfl) Y 0 0 cor &pa (k’f—1) En1
0 o ... 0 1 0 0 - 0 &,

Man entwickle (14) nach fallenden Potenzen von . Man erhélt dann

P k k' '
Ek’ (Sk'-i—l v En'ykk —-(].)(k,——-l) fk’—l gk'.;_ e fn)/kk ~1+R()’):O ’
(15)

wo R(y) die Summe aller Glieder vom Grade < k-k' —2 bezeichnet.
Man beachte, daB} E(y) aus lauter Summanden besteht, die genau k ver-
schiedene Faktoren &, besitzen. Aulerdem kommen in den Summanden
von R (y) diejenigen Produkte in den &, nicht mehr vor, welche zugleich
Koeffizienten von y**’ oder von y**'-1 gind, wie man leicht aus der
Struktur der Determinante (14) entnimmt. Es tritt also entweder ein &)
mit A < &’ — 1 hinzu, oder es fehlt ein &) mit 2 > k’.

Durch Multiplikation mit &' &% ,...&," erhidlt man aus dem Ver-
schwinden von (15) die Gleichung

YRR — &t Ey RE R R* (p) =0, (16)

wobei R*(y) = &' &Yy - .. &1 - R(y) gesetzt ist.

Aus den vorigen Uberlegungen folgt, daB jeder Summand von R*(y)
mit wenigstens zwei der Faktoren &, &,..., &y, &% Eptiyse ooy &0
behaftet ist. Keiner besitzt jedoch nur das Produkt &;! &,._, allein.

Man wihle jetzt L
E]c_' s 5]‘;'__1 == 1 . (17)

Dann enthilt jeder Summand von R*(y) noch wenigstens einen der
Faktoren &, &,,..., &y, &4y 5. - -5 &, 1, deren Vorzeichen noch wihlbar
ist. Anderseits kommt keiner dieser Faktoren in ein und demselben
Summanden mehr als einmal vor. R*(y) ist also in jedem dieser Faktoren
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linear. Daneben kann R*(y) unmdoglich identisch verschwinden, da sich
bei der Entwicklung der Determinante ein von y unabhingiges Glied
# 0 ergibt. Nach einem Hilfssatz iiber multilineare Funktionen®) gelingt
es dann stets, jedem einzelnen &) den Wert + 1 oder — 1 so beizulegen,
daB fiir den festen Wert y = kk’

R*(y) = R*(kk') < 0 (18)
wird.
Bei dieser Wahl der &, folgt weiter, dafl die linke Seite von (16) fiir
y = kk’ negativ wird. Da das Glied hochsten Grades in ¢ einen positiven
Koeffizienten besitzt, so muf (16) eine positive Wurzel

vo > kk’ (19)

besitzen.
Man bestimme endlich negative Werte fiir ¢t = ¢, und s = s,, welche
der Bedingung (13) fiir y = y, geniigen, etwa t, = — p, und s, = — 1.

Aus (11) berechne man weiter die reellen Koeffizienten a, und b,. Damit
hat man zwei Polynome f(x) und g (x) mit der k-fachen Wurzel —¢,=1y,,
bzw. der k’-fachen Wurzel — s, = 1 gewonnen. Aus (19) folgt dann un-
mittelbar (8). Damit erfiillen f(x) und g(x) simtliche Bedingungen des
Hilfssatzes, womit der Beweis fertig ist.

3. Nach dieser Vorbereitung kénnen wir leicht die Ungleichung (5) her-
leiten. Die im Hilfssatz genannten Polynome f(x) und g (x) gehen geméif
ihrer Eigenschaft b) auseinander hervor, wenn man die Argumente ihrer
Koeffizienten in geeigneter Weise variiert. Wir haben bei dieser Variation
das Verhalten der k-ten Wurzel zu untersuchen.

Sei |z,| = 1, fiur f(x) und |z,| = o, fiir g(x) gesetzt. Wir behaupten
dann, es gelte

T, 2T, 0, =0. (20)

Wire niamlich 7, < 7, so kénnte 7, wegen (2) unmdéglich der absolute
Betrag der k-ten Wurzel sein, weil v ja k-fache Wurzel ist. Ware ferner
o, > o, so miilte g(x) wenigstens £ Wurzeln besitzen, deren absoluter
Betrag > ¢ wiire. Anderseits ist o eine k’-fache Wurzel. ¢(x) hitte daher
wenigstens & + &k’ Wurzeln, was aber wegen (6) unmoglich ist.

5) Batschelet (2), Hilfssatz I. Er lautet: ,Es sei k eine positive ganze Zahl wund
F (&, ..., &) etn multilineares Polynom der Variabeln §,, . . ., &, das also in bezug auf jede
Variable linear ist. Das konstante GQlied sei gleich 0, die iibrigen Koeffizienten aber irgend-
welche reelle Zahlen, die nicht s@mitlich verschwinden.

Dann kann man jeder der Variabeln &, . .., & die Werte + 1 oder — 1 so beilegen, daf
F(&,, ..., &) < 0 gilt.” Der Beweis folgt leicht durch Induktion.
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Aus (20) folgt nunmehr
T1

1

v

i
o
und aus (8) erst recht

-f;‘->kk'=k(n—-k+1) . (21)
1

Nach der Definition von ¢{¥) in Abschnitt 1 schlieBen wir daraus un-
mittelbar die zu beweisende Ungleichung (5).

4. Die Gleichung (16) liefert nach dem Beweis des Hilfssatzes offenbar
besonders grofie Werte fiir »{¥’, wenn man den Faktoren &, in geeigneter
Weise die Werte + 1 und — 1 beilegt. Fiir £ = 1 oder k = » habe ich
auf anderem Wege gezeigt, dal die groBte Wurzel der Gleichung (16) fiir
&) = (— 1)A sogar die maximalen Werte c{¥) liefert. Man findet®)

1

V2 —1

¢ = M =

Ob auch im allgemeinen Falle ¢{*’ aus (16) bestimmt werden kann,
bleibt eine offene Frage.

8) Batschelet (1), p. 169, Formel (6, 1).

(Eingegangen den 13. Juli 1944.)
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