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Zur Theorie der Stratilklassenkdrper
der quadratisch reellen Zahlkdrper

Von Max Gur, Ziirich
Herrn Constantin Carathéodory zum siebzigsten Geburtstage gewidic

Bezerchnungen und Inhaltsangabe. In dieser Arbeit bedeute k, don
Korper der rationalen Zahlen und k einen quadratisch reellen ') Zchl-
korper, also k = ko(V'm), wo m eine von 1 verschiedene quadratfrcio
natiirliche Zahl ist. Unter ,,Jdeal’ soll immer ein ganzes Idcal von %
verstanden werden, und auBer den (endlichen) Idealen fiihren wir fol-
gende beiden unendlichen Primstelien p, und p,, ein: Ist » eine belie-
bige von 0 verschiedene Zahl von k = k,(¥m) und »’ ihre konjugicrte,

so bedeute » = 1 (mod. p,) : v ist positiv,
v 1 (mod. p,) : » ist negativ,
v = 1 (mod. pl) : »’ ist positiv,
v == 1 (mod. p.) :

»/ ist negativ.

Unter einem Stammideal verstehen wir wie in @. I. ein (endliches) Idoccl,
dessen Norm eine Primzahl oder eine Primzahlpotenz ist, alle andcron
(endlichen) Ideale auBer 0 und 1 bezeichnen wir als zusammengesetzie Idczlo.

Ist dann f ein beliebiges vom Nullideal verschiedenes endlichcz Idca
von k, so bedeute K{f} den Strahlklassenkérper, der zur vollstindizca
Idealklassengruppe mod. fp,, p., gehort, und %{f} den maximalen Unter-
korper von K{f}, der absolut abelsch ist 3).

1) Fir quadratisch tmagindre Grundkdrper k habe ich die entsprechendca Unt:cr-
suchungen schon durchgefiihrt in der Arbeit: Gut, Max, Zur Theorie dor Ilasson-
kérper der Kreiskdrper, insbesondere der Strahlklassenkdrper dor qua-
dratisch imagindren Zahlkérper. Comment. Math. Helvet.,, vol. 15 (1C22/:3),
pg. 81—119, In der vorliegenden Arbeit wird sie mit @, I. zitiert, und die Bczoichnuxz;ta
sind mutatis mutandis natiirlich hier die gleichen wie dort.

%) In @. I. bedeutet im 3. Alinea, pg. 81, der Kérper K |f| natiirlich auch den Eiozhl.
klassenkérper, der zur vollstdndigen Idealklassengruppe mod. § gohdrt. Die Ecxiichinurz
nl'ihrer't ist an jener Stelle so gebraucht worden, wie sie Rud, Fueler in coincn: Vor.
lesungen iiber die singularen Moduln und die komplexe Multiplilkction
der elliptischen Funktionen, 1. Teil (1924), 2. Teil (1927), B. Q. Teutzncr, I :lin
und Leipzig, pg. 109 und pg. 263, verwendet, wihrend sonst , Fihrer' in Q. I, u=d in
der vorliegenden Arbeit natiirlich immer die Bedeutung hat, wie dieses Wort bei ¢ ~-3
und Hasse gebraucht wird; vgl. T'akagi, Teiji, Uber eine Theorie des rolctiv
Abelschen Zahlkdrpers, Journal of the College of Science, Imp, Univ. of Tol:yo,
Bd. 41, Art. 9 (1920), und Hasse, Helmut, Bericht iiber neuere Untersuchun;on
und Probleme aus der Theorie der algebraischen Zahlkdrper, Jahresbclzlt
der Deutschen Mathematiker-Vereinigung, Bd. 35 (1926), pg. 1—85 und Bd. 86 (1527),
pg. 233—311.
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In der vorliegenden Arbeit bestimmen wir einerseits k{f} far ein beliebiges
Ideal § und geben anderseits far ein Stammideal § einen genauen Uberblick
aber die Struktur der Erweiterung von K{1} zu K{f}.

Wegen der in k enthaltenen unendlichen multiplikativen Einheiten-
gruppe zeigt es sich, daB fiir viele K{f} das Ideal fp,, p., nur Erklirungs-
modul, aber nicht der Fiihrer ist, so daBl insbesondere fiir Stammideale
f von der Form p%, bzw. p¥, beim Aufbau des Korpertums K{f}, falls
w von einem geeignet gewihlten Werte w, an unbeschrinkt wichst, nie
mehr ein nicht-absolut abelscher Kérper adjungiert wird oder sogar alle
diese Korper identisch sind in gro8em Gegensatze zur Struktur der
Strahlklassenkorper der quadratisch imagindren Zahlkdorper.

Weil die Einheitengruppe von k uneigentlich diskontinuierlich ist, ist
meines Wissens eine funktionentheoretische Festlegung der Korper K{f}
bis jetzt noch ausstindig. Die vorliegende Arbeit gibt vielleicht eine
weitere Anregung zu deren Bestimmung, z. B. durch geeignete Funk-
tionen zweier unabhingiger Verdnderlicher.

Der 1. Abschnitt enthéilt die Bestimmung der Strahlklassenanzahl und
einige allgemeine Bemerkungen. Hierauf fiihren wir die erwahnten Unter-
suchungen durch fiir ein Stammideal gemiB folgender Ubersicht 3):

i ist etn ungerades ¢) Stammadeal :
2. Abschnitt: 1. Hauptfall: p = p, n(p) = p3.
Abschnitt: 2. Hauptfall: p=p-p’, p #p/, a(p) =n(p)=p.
4. Abschnitt: 3. Hauptfall: p = p?, n(p) = p.

ht

f ust ein gerades Stammideal :

Abschnitt: m = 3 (mod. 4).
Abschnitt: m = 4 2 (mod. 8).
Abschnitt: m = 5 (mod. 8).
Abschnitt: m = 1 (mod. 8).

® N> o

Der 9. Abschnitt enthilt die Bestimmung von k{f} fiir ein beliebiges
zusammengesetztes Ideal § und zwei bemerkenswerte Sétze iber die Struktur
von K{f} far zusammengesetztes f .

Fir jede natiirliche Zahl m* sei wie in @. I. der Kérper der m*-ten
ey

Einheitsw:urzel mit ¢(m*) = k,(e™ ) bezeichnet.

3) Fir f = 1 ist k(1] schon bestimmt worden in G. I., pg. 87.

¢) Wie in Q. I. nennen wir ein Ideal ungerade, wenn es durch keinen Primidealteiler
von (2) teilbar ist, gerade, wenn es vom Einheitsideal verschieden und nur durch Prim-
idealteiler von (2) teilbar ist.
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1. Ist » die Klassenanzahl von %k im gewdhnlichen weiteren Sinno,
¢ die Grundeinheit von k¥ mit ¢ > 1 und fiir ein endliches Ideal f der
Exponent G(f) die kleinste natiirliche Zahl, fiir welche

P =1(mod. ), (1)
so ist die Strahlklassenanzahl mod. fp,, p., offenbar:

.4_"’_(0..};, fallsn(s) = -+ 1, oder aber n(s) = — 1 und

p 2611 gleichzeitig G(f) gerade ist
h(fpwPe) = 4¢(f) - (2)
+h, falls n(e) = — 1 und gleichzeitig G(f) unge-
aE@m ‘rade ist

Bezeichnen wir daher allgemein mit
H(f) = (&{f} : K{1})

den Relativgrad von K{f} in bezug auf K{1}, so ergibt sich, da fiir f = 1

gemil (2):
2h, falls n(e) = + 1 ist

4
b (P Peo) = h, falls n(e) = — 1 ist,

fiir diese Funktion:

e im allgemeinen,
Hf) = 2G(f) (3)
- (g) falls n(¢) = — 1 und gleichzeitig G(f) gerade ist.

Ist p ein Primideal, bzw. p eine Primzahl, so gibt es, wenn u die Reihe
der natiirlichen Zahlen durchliuft, immer wieder einen Wert %, so daB3

g0 — 1 + =, , wo 7,=0 (mod, p¥), =, %= 0 (mod. p*+!), bezw.

(4)
") = 14 n,, wo m,=0 (mod. p¥), =, 0 (mod. p%+?)
ist. Im folgenden bedeute : |
u1<u2<ua'< .... ’ ulglv (5)

die vollstandige Reihe der nstiirlichen Zahlen  mit dieser Eigenschaft. Da
90" = 1 - pry+ oe + a2, bezw. P =14 pr 4.2l
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wird fiir alle j = 1:
G (p¥i*!) = p G (p%) , bezw. G(p¥+!) =pQ(p%) . (6)

Insbesondere sind, was im folgenden bei der Benutzung der Formel (3)
zur Bestimmung des Quotienten H (p@+!) : H(p¥), bzw. H (p*+') : H (p¥),
w = 1, beachtet werden moége, fiir ungerades p, bzw. ungerades p die
GréBen @ (p¥), bzw. G(p¥) fir w = 1 alle von gleicher Paritit gemal (4)
und (6).

2. In diesem Abschnitt soll p eine ungerade Primzahl sein, fiir welche
in k = k,()/m) die Gleichung p = p, n(p) = p* gilt. Es ist mithin p
zur Diskriminanten von k teilerfremd.

Wie in G. 1., pg. 92, ergibt sich:

k{pw} = k{1} (c(p*)), w21 .

Der Fall, dal n(¢) = — 1 und gleichzeitig G'(p) ungerade ist, kann
nicht eintreten, denn aus
e2+1 = 1 (mod. p)

mit ganzem rationalem z wiirde wegen p’ = p folgen, da8
¢/#+1 =1 (mod. p),
also

— 1 = (e&/)*+1 = 1 (mod. p),

was einen Widerspruch ergibt.
Gemé8 Formel (3) wird daher:

p+1

(P—l)'—-@*(-‘;)—— , falls n(e) = + 1,
Hip) = 2p+1)
\ -1 -— G , falls n(e) = —1 .

Beim Ubergang von K{1} zu K{p} wird mithin der Kérper ¢(p) adjun-
giert und ein nicht-absolut abelscher Korper vom Relativgrade Z(’;—
baw, 221 - ®

G(p)

Falls u, > 1 ist, wird fir 1 £ w < u, gemiB (3), (4) und (5):
H(pw*) : H(p¥) = p*,
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und daher wird beim Ubergang von K{p¥} zu K{pw+} der Korper
c(pw+!) vom Relativgrade p adjungiert und ein nichi-absolut abelscher
Korper, der relativ-zyklisch vom Grade p ist. .

In jedem Falle ist fiir w = u, = 1, weil gemiB (4), (5) und (6) die
Gleichungen u,,, = u, +.1, j = 1 gelten:

H(pw+) : H(p¥) =p,
und daher
K{pw+1} = K{pw} (c(pw-u)) y WUy,

wobei ¢(p¥*!) in bezug auf K{p*} den Relativgrad p hat.

3. In diesem Abschnitt soll p weiter eine ungerade Primzahl bedeuten,
fiir welche in k die Gleichung p='p-p’, p #p/, n(p)=n(p’)=1»
gilt. Es ist mithin p wiederum zur Diskriminanten von k& teilerfremd.

Wie in G. 1., pg. 91 und pg. 95, ergibt sich

k{p*1p'*1} = k{p*}, w = Min. (w,, w,),
insbesondere also
E{p¥} =k{l} , w1,

k{p°} = k{1} (c(p”)) , w21 .

und

GemdB Formel (3) wird:

-—%;(.571-—- im allgemeinen,
H(p) = 2 — 1) ,
-——g—(—;)-—— , falls n(e) = — 1 und gleichzeitig G(p) gerade ist.
Beim Ubergang von K{1} zu K{p} wird mithin ein nichi-absolut
abelscher Korper vom Relativgrade Pl g 221 adjungiert.

Gip) ' G(p)
Falls u, > 1 ist, wird fir 1 L w < u,:

H(pv+): H(p¥) = p,

und daher entsteht K{p“+!} aus K{p*} durch Adjunktion eines relativ-
zyklischen Koérpers vom Relativgrade p, der nicht-absolut abelsch ist.
In jedem Falle ist fiir w = u, =1 wegen u,,, =14, +1,j =1:

H(pw+) : H(p¥) =1,
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d. h. fir w =u, sind die Strahlklassengruppen mod. p@+'p_ p., alle
gleich der Strahlklassengruppe mod. p*“ip,, p.. , und daher ist

K{pw+} = K{p“1}, w = u,.
Ferner wird gemiB der Formel (3), da der Fall, dall n(e) = — 1 und

gleichzeitig G (p) ungerade ist, nicht eintreten kann ¢):

G(p)

'\(P“l)"g‘%ﬂ , falls n(e) = — 1 ist.

s (p—1)- -1 , falls n(e) = -+ 1 ist,
H(p)

Beim Ubergang von K{1} zu K{p} wird also der Kérper c(p) adjungiert

und ein nicht-absolut abelscher Korper vom Relativgrad -——:—}-, bzw.
2(p—1) G(p)
Gip) -

Falls u, > 1 ist, wird fir 1 S w<u;:
H(p+) : H(p¥) = p*,

und daher wird beim Ubergang von K{p*} zu K{p»+'} der Kérper
¢(p*+') vom Relativgrade p adjungiert und ein nicht-absolut abelscher
Korper, der relativ-zyklisch vom Grade p ist.
In jedem Falle ist fir w =u, =1 wegen u;,, ,=u,+ 1,7 =1:
H(pwt): H(p*) =p,
und daher
K{p"*'} = K{p“}(c(@**)), w 2 u,,

wobei ¢(p¥+!) in bezug auf K{p*} den Relativgrad p hat.

Uber den Zusammenhang zwischen den Korpern K{p*}, K{p'*} und
K{p¥}, w = 1, schalten wir noch folgende Bemerkung ein, die wir fiir
den Beweis der letzten Aussage des 2. Satzes von Abschnitt 9 brauchen.

Zwischen den GroBen G(p¥), G(p’*) und G(p®), w = 1, besteht, wie
man auf Grund der Definition (1) leicht erkennt, folgender Zusammen-
hang:

Es ist im allgemeinen:

. G(p*) =G(p™)=G(p*) ;

%) Beweis wie in Abschnitt 2.
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dagegen, falls n(e) = — 1 und gleichzeitig G'(p*) ungerade ist:
G(p'*)=G(p*) = 26(p),

und falls n(e) = — 1 und gleichzeitig G (p’¥) ungerade ist:
G(pv) = G(p”) = 2G(p"v).

Die vollstindige Reihe der Groflen w, in (5) ist mithin weil p ungerade
ist, wegen der Gleichungen (6) die gleiche, falls in p¥ oder p’* oder p*
der Exponent w die Reihe der natiirlichen Zahlen durchliuft. Da ferner -
der Korper K{p*}, w = 1, sowohl die Kérper K{p¥} und K{p'*} als
natiirlich auch K{p*“-1} enthilt, ergibt sich:

Es wird in jedem Falle:

Hp): Hp)=H(p): Hp)=p—1,

und zwar entsteht K{p} aus K{p} oder aus K{p’} durch Adjunktion
von c(p), welcher Korper in bezug auf jeden dieser beiden Kdorper den
Relativgrad p — 1 hat.

Fir 1 = w < u, entsteht K{p¥+'} aus K{p*} durch Adjunktion des
Korpers c(p*+!) vom Relativgrade p in bezug auf K{p*} und durch
beliebige Adjunktion eines der beiden Kérper K{pw+'} oder K{p'w+1},
von denen ein jeder in bezug auf K{»*} und in bezug auf K{p*} (c(p*+'))
den Relativgrad p hat.

4. In diesem Abschnitt sei die ungerade Primzahl p Teiler der Dis-
kriminanten von k, also p == p2, n(p) = p.

Zur Bestimmung des Fiihrers der Erweiterung von k zu k(c(p?)),
h = 1, hat man 3 Hauptfilie zu betrachten ¢):

p—1
1. Hauptfall: p =1 (mod. 4) und m = p = (— I)Tp x
2. Hauptfall : Es sei p # 3 und nicht gleichzeitig p = 1 (mod. 4) und
p—-1

m=p=(—1) 3% p (2 Unterfille!) ;

3. Hauptfall: p = 3 (2 Unterfille!).

¢) In G. I., pg. 101 bis pg. 103, ist beim 2. Hauptfall im 1.und 2. Unterfall p £ 3
vorauszusetzen, und es ist dann noch der Fall p = 3 gesondert zu betrachten. Es gibt

daher zwei weitere Unterfille, je nachdem p in k() — 3) ein Primideal 2. Relativgrades

wird oder sich in k() — 3) in zwei voneinander verschiedene Primideale vom 1, Relativ-
grad zerlegt. Die Ordnung von (& bleibt n == ph-1(p — 1), aber die Werte fiir die n; und
vj sind die gleichen wie im Schema pg. 103. Das auf pg. 102 angegebene Resultat bleibt
auch in diesen beiden Unterfillen erhalten. Im Falle d), pg. 115/116, sind die beiden
Unterfalle p ;£ 3 oder p == 3, dann aber w = 3 einerseits, und p = 3, w = 1 oder w = 2
anderseits zu betrachten. Alle angefiihrten Schliisse bleiben erhalten.
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Analog wie in G. 1., pg. 101/103 sieht.man dann sofort, daB

rpey =2 (el 7)) L wz ™)

Bei der Anwendung der Formel (7) ist zu beachten, dal falls p = 3
ist, der Korper ko(V — 3) = ¢(3) schon in k{1} enthalten ist.

Falls n(e) = — 1 ist, muB G(p) = 4 sein. Denn es gibt, weil n(p) = p
ist, ein ganzes rationales a, so daf
¢ = a (mod. p)
ist, folglich
' = a (mod. p),
mithin
— 1 = ¢¢/ = a? (mod. p),
also
#2=a?= — 1 (mod. p),
und daher
e =1 (mod. p).
Gems5 Formel (3) wird folglich:
p;— L G(2p) , falls n(e) = + 1 ist,
H(p) =
T~ fallsn(e) = — 1 ist.

Beim Ubergang von K{1} zu K{p} wird also der Korper ¢(p) adjun-
; 1 in bezug auf K{1} ist7), und, falls
n(e) = + 1 und gleichzeitig G (p) = 1 ist, auBerdem ein relativ-quadra-
tischer Zahlkoérper, der nicht-absolut abelsch ist.
Wegen (7) und
Hpov): Hpo) =p- ol |, w21
Glpery) * T =0

ergibt sich sofort, daB alle u, der Reihe (5) ungerade sein miissen, und
es folgt:

giert, der vom Rela.tivgradep

Fiir allew = 1 entsteht der Korper K{p*2+1} aus K{p?*} durch Adjunk-

tion von c(p*+!), welcher Kérper in bezug auf K{p**} den Relativgrad
P hat.

7) Falls p = 3 ist, ist ¢(p) schon in K1}, da es ja in %{1] enthalten ist.
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Fiir die weiteren Adjunktionen, die nur noch nicht-absolut abelsch
sind, haben wir 3 Unterfille zu unterscheiden $):

1. Unterfall.
Ist u;, >1, 8o ist fiir alle 1 £ w s-—’ﬂ—;—:—l—:
H(p'v) : H(p™ ) =p ,
und K{p*} entsteht aus K{p#*-1} durch Adjunktion eines relativ-zykli-

schen Korpers vom Relativgrad p. Dagegen ist fiir alle w = -2‘—;—1—:

K{p*} = K{p™'},

da fiir alle w = die Strahlklassengruppe mod. p*p, p., gleich

u, + 1
2
der Strahlklassengruppe mod. p®-1p,, p., ist.

2. Unterfall.
Ist 4; = 1 und u; = 5, was nur fiir p = 3 eintreten kann, so entsteht

fir alle 2<w<% ;1 der Korper K{p*} aus K{p**-!} durch Adjunktion

eines relativ-zyklischen Kérpers vom Relativgrad p. Dagegen ist fiir
us+1
—

w=1 und alle w =

| K{p™} = K{p™-1}.
3. Unterfall.
Ist u; =1und v; = 3, s0ist fiirallew = 1:

K{p™} = K{p™-1}.

b. In diesem Abschnitt sei =2 und m = 3 (mod. 4). Da 2 in der

Diskriminanten von k aufgeht, ist 2 = p3, n(p) = 2.

%) DaB alle diese drei Unterfalle auch wirklich auftreten kénnen, sieht man sofort an
konkreten Beispielen. Vgl. z. B. die Tabellen am Schlusse des Buches: J. Sommer, Vor-
lesungen iiber Zahlentheorie, Einfihrung in die Theorie der algebraischen
Zahlkérper, B. G. Teubner, Leipzig und Berlin, 1907; oder 0. F. Degen, Canon Pel-
lianus sive Tabula simplicissimam aequationis celebratissimae: y? =
az? 4+ 1solutionem, pro singulis numeri dati valoribus ab 1 usque ad 1000
in numeris rationalibus iisdemque integris exhibens. Hafniae, apud Gerhar-
dum Bonnierum, 1817.
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Wie in G. 1., pg. 105/106 ergibt sich, daBl
w+3
k{pw}.-.-.lc{l}( ([ ])) w=1. (8)

Dabei ist aber zu beachten, daB k,(V — 1) = ¢(22) in k{1} enthalten ist.
Es ist klar, daB n (&) in diesem Falle nicht gleich — 1 sein kann. Denn
aus

e=2x+4+yVm, z,y ganz rational
folgt
ce! = — y?m = a? 4+ y*s£ — 1 (mod. 4).

Zunichst ist ¢(p) = 1 und G(p) = 1 und daher gemaB (3):
K{p} = K{1} .
Ferner ist nach jener Formel fiir w =1 :

G (p¥)

H (pw) : H(pv) = 2 T pory)

w=1 .

In Verbindung mit Formel (8) und der darauf folgenden Bemerkung
ergibt sich hieraus, daB hochstens u, = 1 sein kann, aber sonst alle u,
gerade sind.

Fiir alle w = 2 entsteht der Kérper K{p?<} aus K{p22-1} durch Adjunk-
tion von ¢(2¥+!), welcher Korper in bezug auf K{p?w-1} relativ-quadra-
tisch ist.

Fiir alle weiteren Adjunktionen, die nur noch nicht-absolut abelsch
sind, haben wir wieder 3 Unterfille zu unterscheiden ?). Zuniichst kann
nimlich die Grundeinheit ¢ nicht von der Form

e=+1+4+2Vm (mod. 4)
sein, denn aus
e=+1+42Vm + 4(x + yVm), z, y ganz rational,
folgt:
l1=¢¢'=1—4m 4 8z — 16ym + 16(z* — ym),
also die unmdégliche Kongruenz :
0 =4 4 8z (mod. 16) .

%) Auch hier sicht man wieder sofort an konkreten Beispielen, da8 diese drei Unterfalle
alle wirklich auftreten konnen,
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Mithin ergeben sich folgende 3 Unterfille:

1. Unterfall: ¢ =1+ 4(x + y¥Vm).
Es ist %, = 4 und daher wird beim Ubergang von K{p} zu K{p?} und

fir 1 Sw _S_-%‘- — 1 beim Ubergang von K{p®} zu K{p®?+} je ein
relativ-quadratischer Zahlkorper adjungiert, wihrend fiir w = %L:

K{pzw-ﬂ} p— K{pﬁw} ,

da fiir w = %‘-die Strahlklassengruppe mod. p®@+ip_pl gleich der

Strahlklassengruppe mod. p*°p_, p., ist.

2. Unterfall: ¢ =3 + 4(x + y¥Vm).
Es ist
=94 24(x+ yVm) + 16(x + yVm)?,

und mithin », = 2, u, = 6. Beim Ubergang von K{p} zu K{p?} und
fir 2 <wgs< -%?- — 1 beim Ubergang von K{p*} zu K{p®+} wird je
ein relativ-quadratischer Zahlkorper adjungiert, wihrend fiir w = 1 und

Uy
w=—
- 2

K{p®+} = K{p*} .

3. Unterfall: e=Vm+2(x+yVm)=14+¥Vm—1)+2(z+y¥Vm) .
is wird -
e=m-+4Vm(x+ yVm)+ 4¢(x + y Vm)?
und

et = m3+-8mVm(z+yVm)+24m(z+yVm)3+32Vm(z+yVm)*+
+ 16(z + y Vm)* .

Daher ist u; =1, u; = 2 und ;= 6. Fir 25 wg—%‘l—l wird beim

Ubergang von K{p?¢} zu K{p*+} je ein relativ-quadratischer Zahl-
korper adjungiert, wihrend
K{p’} = K{p*} = K{p},

o'}
2

L]
.

und fir w=
K{pﬂw*-l} — K{pW} .
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6. In diesem Abschnitt sei p=2 und m = 4 2 (mod. 8). Da 2 in

der Diskriminanten von k aufgeht, ist wiederum 2 = p? n(p) = 2.

Zunichst ist ¢(p) = 1 und G(p) = 1 und daher gemil (3) wiederum
K{p} = K{1} .

Ferner wird ¢(p?) = 2, und zwar werden die beiden zu p? teilerfremden
Restklassen festgelegt durch 1 und 1 4+ ¥m, so daB sich fiir £ nur die
beiden Moglichkeiten ergeben, daB &= 1 (mod.2) und ¢=1++ Vm
(mod. 2) ist.

Ist ¢ =1 (mod. 2), also fiir ganze rationale z, y:

so wird
¢! =14 4z 4+ 4(2* — ym) =1 (mod. 4) .

In diesem Falle ist mithin n(e) = + 1. Ferner ist v, = 2 und G(p?) = 1.

Ist ¢ = 1 4+ Vm (mod. 2), also fiir ganze rationale x, y:

e=14Vm+2(z+yV¥Vm),

8o wird
e/ =1—m -+ 4(x — ym) + 4(2* — y*m) = — 1 (mod. 4).
In diesem Falle ist mithin n(¢) = — 1. Ferner ist 4, = 1 und wegen

SB=14+m+2¥V¥m+4@+yVm)((z+1)+(y+1)¥Vm) (9)
wird G(p?) = 2.
Gemil Formel (3) wird mithin in jedem Falle:

H(p?): Hip)=2.

Da VL2 in k{1} liegt, dagegen nicht ¥—1, ergibt sich wie in G. I.,
pg. 108 oben, daB o

k{p®} = k{1} (c(2*)) = k{1} (c(2%))

ist, und daf auf jeden Fall K{p*} aus K{p} entsteht durch Adjunktion
von Y—1:

K{p®} = K{p} (V=1) .
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Zur Bestimmung des Fiihrers der Erweiterung von k zu k(c(2*)),
hy = 4, hat man 3 Fille zu betrachten:

1. Fall: m = 8 4+ 2 (mod. 16);
2. Fall: m = + 2 (mod. 18), m # 2;
3. Fall: m = 2.

Beachtet man, daB im 3. Falle K{1} = k{1} = k = ko(V2) ist, so
ergibt sich wie in @. I., pg. 108/109, daB fiirr w = 2:

k{pw} = k{1} (0(2[1-{_2 )) , w2 . (10)

Fiir w = 1 ist diese Formel also wesentlich ungtltig.

Da im Falle n(¢) = — 1 der Exponent G (p3) gerade ist, gilt in jedem
Falle fiir w = 2 nach (3):
G (p*)

W’ wg2. (11)

H(pw+t) : H(p¥) =2 -

Fiir alle w = 2 entsteht der Kérper K{p*~+1} aus K{p*?} durch Adjunk-
tion von ¢ (2%+2), welcher Kérper in bezug auf K{p*} relativ-quadratisch

18t.
Alle weiter unten angegebenen Adjunktionen sind nur noch nicht-

absolut abelsch.
Es sei zunichst n(e)= + 1. Da ¢ =1 (mod. p?) ist, gibt es nur die
beiden Méglichkeiten, dal ¢ = 1 (mod. p3) oder s = — 1 (mod. p3) ist.
Sei ¢ = 1 (mod. p3), also von der Form

e=14+22x+ yvVm),

wo z und y ganz rational sind.
Es ist 4, = 3 und G(p?) = 1, also nach (11):

H(p®) : H(p") = 2.

Der Korper K{p®} entsteht mithin durch Adjunktion eines relativ-
quadratischen Kdérpers aus K{p?}.
Wegen (10) und (11) ist «, ungerade.
ul — l

Falls u, = 5 ist, entsteht fiir alle 2SS w< 3 der Korper K{p?3}
aus K{p**—1} durch Adjunktion eines relativ-quadratischen Kérpers.
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u, +1

die Strahlklassengruppe

Dagegen ist in jedem Falle fiir w =

mod. p?p_, p., gleich der Strahlklassengruppe mod. p**~1p_ p_, , folglich:
K{p>} = K{p*~'}.

Es sei weiter n(¢) = + 1, aber ¢ = — 1 (mod. p3), also von der Form:

e=—1+4 2022+ y Vm),

wo z und y ganz rational sind.

Es ist u; = 2 und G(p3) = 2, mithin
K{p%} = K{p} .

Wegen - _

e2=1—42x+ yVm) + 42z + y Vm)?

wird u, = 5, und zwar ist wegen (10) und (11) die Grée u, ungerade.

Fir alle 25 w=< s — 1 entsteht der Korper K{p®} aus K{p*w-1}

durch Adjunktion eines relativ-quadratischen Korpers.

U+ 1
5

K{p*} = K{p¥-1}.

Dagegen ist fir w=

Es sei jetzt

n(e)=—1;,e=14+Vm+ 2(x+yVm),

wo z und y ganz rational sind.

Wegen (9) ist u, = 2, also G(p®) = 4, mithin wegen (11):
K{p®} = K{p*} .

e4=1+ 4¥Vm (mod. 8)

Weiter wird wegen

Uy == 5.
Aus (11) folgt daher sofort, daB der Koérper K{p*} aus K{p?®} durch
Adjunktion eines relativ-quadratischen Korpers entsteht. Dagegen ist

wbtl_ g,

fir alle w= 2

K{p™} = K{p™-1}.
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7. In diesem Abschnitt sei p =2 und m = 5 (mod. 8). Es wird 2=17p,
n(p) = 22, und die Diskriminante von & ist ungerade.
Wie in G. 1., pg. 110/111, ergibt sich, da8 firallew = 1:

k{p*} = k{1} (c(2¥)), w = 1. ' (12)
: —1 m —1—
Esist ¢ (p)=3 und dieGréBenl, w = ____—2-}_-_1_{_113_ und ' = -___é_l/__ﬁ

bilden ein Restsystem der zu p teilerfremden ganzen Zahlen von k.

Ist £ = 1 (mod. 2), also von der Form
e=z+yVm,

wo die beiden zueinander teilerfremden ganzen rationalen Zahlen x und
y nicht beide ungerade sind, so ist G'(p) = 1, folglich

H(p) = 3,

und K{p} entsteht aus K{1} durch Adjunktion eines relativ-kubischen
Korpers, der nicht-absolut abelsch ist, da jeder von der Identitit ver-
schiedene Automorphismus der Galois-Gruppe von ¢(2*), A, = 2, eine
Ordnung hat, die eine Potenz von 2 ist.

Ist ¢ = w (mod. 2) oder ¢ = w’ (mod. 2), so ist G(p) = 3, folglich

. H(p) =1,
und

K{p} = K(1} .

Fiirdie hoheren Potenzen von p sind zwei Unterfille zu unterscheiden9):
1. Unterfall: u, = 2.
Dieser Fall kann nur eintreten, wenn n(g) = <+ 1 ist. Denn aus

&P =144(x+yw), z,y ganz rational,
folgt
0P =144+ yo') ,

also, da G (p) ungerade ist:

n(e)=n(e)¥ =144 (22—y)+16 (x+yw) (z+yw’)=1 (mod. 4).

19) Auch hier sieht man wieder an konkreten Beispielen, da8 beide Unterfalle wirklich
auftreten kénnen,
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Gemii3 Formel (3) wird mithin:

G (pv) w=1 .

H(pw-l»l) : H(pw) = 4—GW ’ =

Da fiir § = 1 in diesem Falle u,,, = u; + 1 ist, ergibt sich aus (12)
unmittelbar:

Fir 1 < w < u, entsteht der Kérper K{p*+'} aus K{p*} durch Adjunk-
tion von ¢ (2%+1), welcher Kérper in bezug auf K{p*} relativ-quadratisch
ist und Adjunktion eines relativ-quadratischen Korpers, der nicht-absolut
abelsch ist.

Fiir alle w = u, entsteht K{p*+'} aus K{p”} durch Adjunktion von
¢(2w+1) allein, welcher Korper in bezug auf K{p“} relativ-quadratisch ist.

2. Unterfall u, = 1.
Dann ist G(p?) = 2G(p), also G(p?) gerade.

Falls n(¢) = + 1 ist, wird mithin gemi8 (3):
H(p?) : H(p) =2,

und K{p?} entsteht aus K{p} durch Adjunktion von V—1.
Falls n(¢) = — 1 ist, wird gemal (3):

H(p®) : H(p) =4,

und K{p?} entsteht aus K{p} durch Adjunktion von k,(¥'—1), welcher
Korper relativ-quadratisch in bezug auf K{p} ist und Adjunktion eines
relativ-quadratischen Korpers, der nicht-absolut abelsch ist.

Da G (p?) gerade ist, ist — welches Vorzeichen auch n(¢) habe — fiir
alle w = 2 gemiB (3):

wrly 3 B (p0) = 4.0 P°)
H(port) : Hp¥) =4 g » W22

Ist mithin «», > 2, so entsteht fiir alle 2 < w < u, der Korper K{p¥+'}
aus K{p*} durch Adjunktion von ¢(2%+!), welcher Kérper in bezug auf
K{p*} relativ-quadratisch ist und Adjunktion eines relativ-quadra-
tischen Korpers, der nicht-absolut abelsch ist.

Fiir jeden Wert von u, entsteht K{p“+} aus K{p*} fiir alle w = u,
durch Adjunktion von ¢(2¥+!) allein, welcher Korper relativ-quadratisch
in bezug auf K{p*} ist.
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8. In diesem Abschnitt sei p=2 und m =1 (mod. 8). Es wird

p=p-p, p#p’, n(p)=n(p’) = 2 und die Diskriminante von k ist
weiter ungerade.
Wie in Q. I., pg. 91 und pg. 113, ergibt sich

k{p* plw.} = k{p*“}, w = Min. (w,, w,),

insbesondere also
Epv} =k1}, w21,

und
kE{p*} = k{1} (c(2¥)), w=1. (13)
Sei w = —1-; Vm’ o' = ——lgl/m ,also wt+w'=—1, 0 0’ =
-1——_—;——’73, mithin gerade und p = (2, w); p’' = (2, @’).

Da ¢(2) = 1 ist, bilden die Zahlen 1, w, w’, 0 ein Restsystem mod. 2,
von denen nur 1 zu 2 teilerfremd ist. Es muf3 mithin ¢ von der Form sein:

e=X+ YVm,

wo die beiden zueinander teilerfremden ganzen rationalen Zahlen X
und Y nicht beide ungerade sind.
Aus
ee/ = X2 — Y¥m = X* — Y? (mod. 8)

folgt :
Ist n(e)=+ 1, so muB X ungerade und Y durch 4 teilbar sein, d. h.

¢ fiir ganze rationale z und y von der Form:

e=(2z+4+ 1)+ 4y¥m =14 2(x+ 2y¥m). (14)

Ist n(e)= —1, so muB Y ungerade und X durch 4 teilbar sein, d. h.

e von der Form:

e=4z+ Qy+1)Vm=142(y+ o)+ 4z +ya). (15)

Wir betrachten zuerst die Koérper K{p*}, w =1, die aus K{1} nur
durch nicht-absolut abelsche Adjunktionen entstehen kénnen.

Da ¢(p) =1, also auch G(p) = 1 ist, ist:
K{p} = K{1} .
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Im folgenden sind zwei Unterfille zu betrachten:

1. Unterfall: w, = 2.
GemiB Formel (3) wird fiir 1 Sw < u,:

H(pw+t) : H(p*) = 2,

und daher entsteht fiir 1 < w < u, der Kérper K{p¥+'} aus K{p*} durch
Adjunktion eines relativ-quadratischen Koérpers.
Da G(p“**!) = 2 ist, wird gemil (3):

1—n(e)

Hiput): H(pu)=2 * ,
so daB, falls n(e) = 4 1 ist, K{p*“*+} = K{p*“1} ist, dagegen, falls
n(e) = — 1 ist, K{p“1+'} aus K{p*“'} durch Adjunktion eines relativ-
quadratischen Korpers entsteht.
Fir w > w, wird gemdB (3):
H(pw#): H(p¥) =1,
so dafB fir alle w > u, :
K{pe+) = Kip"+)
2. Unterfall: u, = 1.
Es wird ¢(p?) = 2, G(p?) = 2 und daher gemiB (3):

1—n(e)

H(p*):H(p)=2 ?
Falls n(e) = + 1 ist, ist mithin

K{p*} = K(p} = K{1}.

Falls n(e) = — 1 ist, entsteht K{p?} aus K{p} durch Adjunktion eines
relativ-quadratischen Korpers. Fiir alle mir bekannten Zahlen-Bei-
spiele ist allerdings, falls n(¢) = — 1 ist, u, > 1, dafiir dann natiirlich

gemi3 Formel (15) die GroBe u, = 1 fiir das konjugierte Primideal p’.
Nach (14) und (15) wird », = 3.
Fir 2 £ w < u, wird:
H(pv+) : H(p*) =2,

und daher entsteht fiir 2 < w <wu, der Koérper K{p*+1} aus K{p*} durch
Adjunktion eines relativ-quadratischen Korpers. Endlich ist gemiB (3)
fir alle w = u,:
H(pw+) : H(p¥) =1,
also fiir alle w = u,: .
K{pw+1} = K{p“l} .
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Wir betrachten zum Schlusse die Kérper K{p¥}, w = 1.
Da ¢(2) = 1 ist, ist G(2) = 1 und folglich

K{p} = K{1}.

GemiB (13) wird beim Ubergang von K{p¥} zu K{p*+},w = 1, jeden-
falls immer der Kérper ¢ (2%+!) adjungiert, der in bezug auf K{p*} relativ-
quadratisch ist. Gleichzeitig wird aber jeweilen noch ein relativ-quadra-
tischer Kérper adjungiert werden, der nicht-absolut abelsch ist, wenn der
Relativgrad gleich 4 ist. Uber diese Relativgrade sind zwei Unterfille
zu unterscheiden:

1. Unterfall: u, = 2.

Dieser Fall kann nur eintreten, falls n(¢) = + 1 ist. Denn wegen (15)
ist, falls n(e) = — 1 ist, u, = 1. Nach (3) wird fiir alle 1 S w<u,:

H(p*+') : H(p*) = 4.
Dagegen wird fiir w = u, :
H(pw*) : H(p*) = 2.

2. Unterfall: u, = 1.
Es wird ¢(4) = 4, G(4) = 2, und daher gemiB (3):

3—n(e)

Hp):Hp) =2 *

Aus (14) und (15) ergibt sich, daB «, = 3 ist. Fir 2 S w < u, wird
gemall (3):
H(pw+) : H(p¥) = 4.
Fir w = u, ist:
H(pw) : H(p*) = 2.

Uber den Zusammenhang zwischen den Kérpern K{p¥}, K{p’*} und
K{p*}, w> 1, schalten wir noch folgende Bemerkung ein, die wir fiir
den Beweis der letzten Aussage des 2. Satzes im néichsten Abschnitt
brauchen.

Zwischen den GroBen G(p¥), G(p’v¥), G(p¥), w = 1, besteht, wie man
leicht erkennt, folgender Zusammenhang.

Es ist

Gp)=CG(p)=G@ =1. (16)
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Fiir w > 1 ist allgemein:

G(p*) =G (p") =G(®"), (17)
dagegen, falls n(e) = — 1 und gleichzeitig G'(p*) ungerade ist:
G(p'®) = G(p°) = 2G(p®), w> 1, (18)

und, falls n(e) = — 1 und gleichzeitig G (p’*) ungerade ist:
G(pv) =G (") = 2G(p'?), w>1. (19)

Wenn in p¥, bzw. p’%, bzw. p* der Exponent w die Reihe der natiir-
lichen Zahlen durchliuft, sei das allgemeine Glied der Reihe (5) mit
(uy)y»> bzw. (u,),,, bzw. (u,), bezeichnet.

Falls n(e) = + 1 ist, erkennt man auf Grund der Relationen (16) und
(17) sofort, daB fir alle j = 1:

(ui)p == (uj)p‘ = (ui)p

ist, so daB wir diesen gemeinsamen Wert mit «, bezeichnen konnen.

Falls n(e) = — 1 ist, so bezeichne die nicht negative ganze rationale
Zahl £ den Exponenten der Potenz von 2, die in der Zahl z der Formel (15)
aufgeht. Betrachtet man dann einerseits die Potenzen, in denen p und p’
in den Idealen (¢ — 1) und (&2 — 1) aufgehen 1), wo & durch (15) definiert
1st, benutzt man anderseits die Formeln (4), (6) und (16) bis (19), so
erkennt man: Es ist entweder

(ul)p s 5 + 2) (ul)p' = (ul)p = l ;
oder

(ul)v = (u1), = 1, (ul)p' =§4 2.

Dagegen wird fiir j = 2:
(u})p = (uj)p' = (uj)g = 5 + 7. + 1 ’

8o daB wir auch hier fiir j = 2 diesen gemeinsamen Wert mit u, bezeichnen
konnen, was fiir das folgende geniigt.
Benutzt man schlieBlich wieder die Tatsache, daB der Korper K{p*},

11) Man beachte hiebei, daB (g — 1) (&' — 1) = —(g - &’), ferner (¢ + 1) (6’ + 1) =
(€ + &), endlich &8 — 1 = (g — 1) (¢ + 1) ist.
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w 2 1, sowohl die Kérper K{p*} und K{p’*}, als auch K{p¥~-1} enthilt,
so ergibt sich: Ist

n(e) =41 und u, = 2, so gilt fir 1 Sw<u,:
n(e) =+ 1 und u, =1, so gilt fir 2 Sw<u,:
n(e) = — 1, so gilt fir 1 Sw<u,:

Der Korper K{p“+1} entsteht aus K{p"“} durch Adjunktion des relativ-
quadratischen Korpers ¢(2¥+!) und durch beliebige Adjunktion eines der
beiden Kérper K{p“+1} oder K{p’¥+}, von denen jeder relativ-quadra-
tisch in bezug auf K{p*} und in bezug auf K{p*} (c(2v+!)) ist.

9. Da auch fiir die quadratisch reellen Grundkorper die beiden Sitze
gelten, dal K{f} in bezug auf k eine hochstens durch die Primidealteiler
von f teilbare Relativdiskriminante hat, und fiir zwei zueinander teiler-
fremde Ideale f, und f, der Kérper K{f,f,} das Kompositum K{f,}(K{f,})
enthilt, ergibt sich wie in G. 1., Abschnitt 12, pg. 113—119 der Beweis 2)
des Satzes:

1. Satz. Ist § ein beliebiges vom Einheitsideal und von einem Stammideal
verschiedenes Ideal von k, so stelle man | als Produkt von Stammidealen dar,
deren Normen zueinander teilerfremd sind :

T

f=‘111ft1 (n(fo)’n(ft))= lv8¢t * (20)

Dann ist k{f} ein Ausgangskreiskorper, und zwar das Kompositum der in
den Abschnitten 2— 8 bestimmten (Ausgangs-Kreis-) Korperk{f},t=1,2,...T.

Sind allgemeiner f,, f,,... fp je zu zweit zueinander teilerfremde
Ideale, so ist

T T
e (lIfy) = H‘P(ft) (21)
t=1 t=1

T
und G(I7f,) gemdB Definition (1) das kleinste gemeinschaftliche Viel-
t=1

fache der GroBen G(f,), t=1,2,... T, also

T T T T
11 G(f,) IIG(f) IHG(f,) I1G(f,)
t=1 _ __ | = = R ~ S I (22)
T
G (‘1_71 fo) G(f,) G(fs) G(fr)

13) Im Falle d), pg. 115/1186, sind die beiden Unterfalle p ;2 8 oder p = 3, dann aber
w=>3 einerseits, und p = 3, w = 1 oder w = 2 anderseits Tu betrachten. Vgl. hier An-
merkung 6.
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wo die Klammer auf der rechten Seite von (22) den groten gemeinschaft-
lichen Teiler der in ihr auftretenden GroBen bedeutet. Aus Formel (3)
ergibt sich daher unter Beriicksichtigung der Gleichungen (21) und (22):

T T T
r o7 1 (tf_{a(fo 6 ‘{_{G(f,)>
H(tlzlf‘) :t{-ll H(ft)": 27T -1 G(fl) ’ G(fg) y T ‘—’O"('f‘;-)'—‘ . (23)

Dabei ist T/ = 1im allgemeinen, dagegen T’ die Anzahl unter den GroBen
G(f), @({,),. .., @(fr), die gerade sind, falls n(e) = — 1 und gleichzeitig

T
G ( I1{,) gerade ist.

t=1
Speziell wird (23) fiir zwet zueinander teilerfremde Ideale f, und f,:

(G(f,) ,» G(f;)) im allgemeinen ;

H(f, f2): HG) Hf) = 3O(F), 6(F), falls ale)=—1 und | (g4
gleichzeitig G(f,) und

G(f,) beide gerade sind.

Aus dem 1. Alinea und dem 1. Satze dieses Abschnittes, der Formel
(24), und unseren Ausfiihrungen in Abschnitt 3 und 8 folgt der

2. Satz. Sind §, # 1 und §, # 1 zwet zueinander teilerfremde Ideale
von k, so ist K{f,} (K{f,}) Unterkorper von K{f,f,}, und der Relativgrad
wird durch Formel (24) gegeben. Ist dieser Relativgrad grifer als 1 und
sind die Normen von §, und §, zueinander teilerfremd, so wird die Galois-
sche Qruppe von K{f,f,} in bezug auf K{f,} (K{f,}) durch keinen Kreis-
korper reduziert, sind dagegen die Normen von §, und f, Potenzen der glei-
chen Primzahl p 13), so entsteht K{f,{,} aus K{§,} (K{f,}) durch Adjunktion
eines geergneten Kreiskorpers, dessen Diskriminante nur durch p teilbar ist.

SchlieBlich gilt der
3. Satz. Ist allgemein f, von der Form
fe=p% w21, (25)

wo p, ein Primideal vst, oder auch, falls fur die rationale Primzahl p, die
Primidealzerlegung p, = p, - p;, P % P, gilt, von der Form

fe=0 w, 21, | (26)
13) Dabei gilt p als 1. Potenz von p .
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und gilt (20), so gibt es fir jeden Index t =1,2,..., T einen geeigrel
gewdihlten Wert (w,),, so daf der in K{f} enthaltene nicht-absolut abelsche
Bestandteil derselbe bleibt, falls fur jedes t der Exponent w, den Wert
(w,), beliebig ubertrifft. Weitere eigentliche Adjunktionen nicht-absolut
abelscher, aber in bezug auf k relativ-abelscher Korper konnen also hochstens
dadurch erfolgen, daf die Anzahl T der Stammidealteiler von f, deren
Normen zueinander teilerfremd sind, bestindig vergrofert wird.

Zum Beweise des 3. Satzes seien zuniichst in (25) und (26) die Expo-
nenten w, = w, = +*» = w,p = 1 gesetzt und fiir jedes festgehaltene ¢
dann die nicht negative ganze rationale Zahl v, der genaue Exponent der
Potenz, in der die Primzahl p, in

T
I G(f,)

$=1

G(fo)
aufgeht.

"~ In den Abschnitten 2—8 hat sich ergeben, daB fiir ein Ideal von der
Form (25) oder (26) beim Aufbau des Kérpertums K{f,}, falls w, von
einem geeignet gewihlten Wert (w,); an weiter beliebig wiichst, nie mehr
ein nicht-absolut abelscher Korper adjungiert wird oder sogar alle diese
Korper identisch sind.

Wegen der Formeln (6) kann ferner (w,)s * so groB gewihlt werden,
daB fiir w, = (w,); * der Exponent G (f,) durch p¥ teilbar ist.

Es sei jetzt fiir jedes t =1,2,..., T:

(we)o = Max. ((wt): , (wy :*) .

Setzt man fiir jedes ¢t = 1, 2,..., T diesen Wert (w,), in f,, und dann
die f, in Formel (23) ein, so erkennt man, dal3 der Korper

T

K {f} H f =¢{Il ft ’
von endlichem Grade in bezug auf das Kompositum der T' Kérper K{f,},
t=1,2,..., T, ist, und daB dieser endliche Relativgrad, d.h. die

rechte Seite von (23) wegen der Formeln (6) konstant bleibt, falls die
GroBen w, beliebig weiter zunehmen.

(Eingegangen den 17. April 1943.)
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