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Ûber die Stieltjès'schen Intégrale

Herrn Professor Carathéodory zum siebzigsten Qeburtstage gewidmet /

Von Walter Nef, Zurich

Im Gebiete der in einem reellen Intervall < a, b > stetigen Funktionon
f(x) sei ein lineares Funktional A (f(x)) gegeben, d. h. ein Funktion&l,
welches den beiden Bedingungen genûgt :

I. Es ist -4(/1(x)+/a(a;)) ^(/1(a:)) + il(/2(a;)) fur zwei beliebige in
< a, 6 > stetige Funktionen fx(x) und /a(#).

II. Es existiert eine von f(x) unabhangige Konstante M, so daû

ist, wo F das Maximum des Betrages von f(x) in < a, b > bedeutet.

hat bewiesen1), daB es dann immer eine Funktion <x(x) gibt,
die in < a, 6 > definiert und daselbst von beschrânkter Schwankung ist,
so dafi der Funktionalwert fur jede in < a, 6 > stetige Funktion f(x)
gleich dem Stieltjès'schen Intégral

ix)] (1)

ist. Umgekehrt ist es klar, dafi jede Funktion <x(x), die in < a, 6 > von
beschrânkter Schwankung ist, im Gebiete aller in <a,6> stetigen
Funktionen ein lineares Funktional gemàfi (1) definiert. Denn dafi Eigen-
schaft I erfullt ist, ist offensichtlich, und die totale Variation von <x(x)
in < a, 6 > hat die von der Konstanten M verlangte Eigenschaft.

In dieser Arbeit stellen wir die Frage nach den Bedingungen dafûr,
dafi zwei Funktionen <xx{x) imd oc2{x)9 die beide in <a,6> von
beschrânkter Schwankung sind, im Gebiet aller in <a,6> stetigen
Funktionen dassolbe Funktional erzeugen.

1. <x(x) sei in <a,6> von beschrànkter Schwankung. Wir stellen
zuerst fest, dafi der rechts- bzw. linksseitige Grenzwert

*(x±0)
l) Démonstration nouvelle d'un théorème conoernant les opérations

fonotionelles linéaires. Ann. de l'Eoole Norm. 31. (1914) p. 9.
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fur aile Werte von x aus dem offenen Intervall (a, 6) existiert*). Im
folgenden verstehen wir unter â (x ± 0) die im abgeschlossenen Intervall
< a, b y definierfce Funktion:

oc (a) fur x a
«(s ±0) fur xc(a,4) (2)
oc(b) fur « 6.

a (s ± 0) ist in < a, 6 > wieder von beschrânkter Schwankung8).

Lemma 1. oc(x) sei in <a,6> t^m beschrânkter Schwankung. Dann ist

* b »

a a a

/#r jede in < a, 6 > «feftgre Funktion f(x).

Beweis: Wir betrachten die Differenz:

j f(x)d[oc(x)] - ] f(x)d[â(x ± 0)]= J f(x)d[a(x) - â(x ± 0)]
a a a

von der wir beweisen mûssen, daû sie gleich null ist. Da oc (x) als Funktion
von beschrankter Schwankung hôchstens abzâhlbar viele Unstetigkeits-
stellen hat4), sind oc (x) und â(x ± 0) hôchstens in einer abzahlbaren
Henge von a?-Werten voneinander verschieden. Es ist also:

oc(x)-â(x±O)--=O (3)

fur aile a; in (a, 6) mit Ausnahme einer hôchstens abzahlbaren Menge.
7ùr die Werte x a und x 6 ist (3) erfullt nach der Définition (2) der
Funktion â{x ± 0). Daraus folgt die Behauptung ohne weiteres, wenn
v/ir an die Définition des Stieltjès'schen Intégrais denken6), da wir die
fur die Bildung desselben notwendigen Unterteilungen des Intervalls
< a, 6 > stets so wâhlen kônnen, daû die Unterteilungspunkte der nach
dem Vorhergehenden in < a, 6 > liberall dichten Menge der Stetigkeits-
punlcte von a (x) angehôren.

a) Carathéodory, S. 186 (1).
*) Carathéodory, S. 187, Satz 8.
4) Carathéodory, S. 188, Satz 10.

*) Lebesgue. S. 253.
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Satz 2. <x(x) sei in < a, b > von beschrânkter Schwankung und es sei

à(x ± 0) oc(a) <x(b) conat.
ist b

/flr aile in < a, 6 > stetigen Funktionen f(z),

Beweis: Naoh Lemma 1 ist

J f(x)d[a(x)] /(x)d[o((x ± 0)]
« a

Aus der Voraussetzung folgt aber unmittelbar, daû das letztere Intégral
gleich null ist.

Satz 3. Es 8ei

a

fur jede in < a, b > **e%e Funktion f (x). 2?ann ist

â{x ± 0) const. in < a, 6 >

Beweis: Wir beweisen den Satz fur die Funktion â(x + 0). Der
Beweis fur â(x — 0) geht analog. Es sei a ^ a? < 6. Wir bilden folgende
Schar von in < a, 6 > stetigen Funktionen:

1 fur a < f < x
linear fur a; < f < a? + £

Wir behaupten, daB

â{x + 0)-* (a) « lim ] s9(S,x) d[*({)] (4)

ist. Es ist namlich :

â(x + 0) - «(a) « lim a(a: + £) - ot(a) » lim

Nun folgt aus der Définition von 69(Ç$x):

|<*[«(*)]^fs.(S.x)d[«(f)] und f «.(£,*)<*[«(£)]= 0.
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Wir haben also, um (4) zu beweisen, nur zu zeigen, daB

lim

oder dafl

lim
m

ist. Nun definieren wir in < xt x + e > eine Funktion

Wegen

ist dann:

lim J (l-«,(f,*))«l[«(f)]-lim S (1-«.(*.*))«*[*(« + «

(7)

«-? + 0 *

Wir betrachten das erste der beiden letzten Intégrale. Aus der Définition

von u(S) folgt, daB die Funktion <*(£) + u($) fur £ x gleich
ihrem rechtsseitigen Grenzwert ist:

*(z) + u(x) <x(x + 0) + ti(x + 0) (8)

Nun bedeute t(x, x-\-e) die totaleVariation der Funktion <%(£ + w(f
in < x, x -f e > Wir behaupten, daB

lim t(x, x + e) 0 (9)

ist. Dazu genùgt es wegen (S) zu zeigen, daB

lim t(x,x + e) «(» + 0) + u(x + 0) —<%(x) — u(x) (10)

ist. Da <x(£) + w(f) mit <x(£) von beschrânkter Schwankung ist, gibt
es zwei monoton wachsende Funktionen p(Ç) und w(f), so daB in

(0
ist •)

•) Corothéodory, S. 184, Satz 1.
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Nun bedeute p(vtw) bzw. n(v9w) die totale Variation von p(£) bzw.
n(£) in < v, w > Da p(£) und n(£) monoton waohsende Funktionoa
sind, ist:

p(xt x + e) p(a; + «) — p(a?)

n(x, a: + e) n(s + «) — n{x)
also auch:

lim p(xt x + e) p{x + 0) — p(a?)
#"+0 (11)
lim n(«, x + e) « n(a? + 0) — n(«)

Von den' beiden rechts stehenden Werten ist stets mindestens eincr
gleich null *). Wir nehmen an, es sei etwa

n(x + 0) — n(x) » 0

(Im Falle p(x + 0) — p(x) 0 geht man genau gleioh vor.)
Da

t(x, x + e) p(x9 x + s) + n(x9 x + s)

ist •), 80 wird wegen (11):

lim t(x, x + e) p(a: + 0) — p{x) »
p(a; + 0) — n(a: + 0) — p(x) + n(x).

Damit ist (10) und infolgedessen (9) bewiesen.

Nun ist das erste der beiden Intégrale auf der reohten Seite von (7)

J(i-*At))d[«(e) + u(
da

ist °). Also ist:

lim *jf (1 - *.(f ,*))<*["(*) + ^(«] « 0

Fur das zweite Intégral folgt aus der Définition (6) der Funktion u(£):
*+«j

7) Carathéodory, S. 187 (2).
•) CaraÛUodory, S. 183 (2).
•) Lébeagu*. S. 254.
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We^en së(z,x)~ 1 ist dieser letzte Ausdruck gleich 0. Damit ist (5)
mittcls (7) und infolgedessen auch (4) bewiesen. Da aber 89($,x) in <a,6>
stotig ist, folgt aus (4) und der Vor&ussetzung des Satzes:

â(x + O) — oc(a) 0

womit der Satz fur a ^x<b bewiesen ist. Wâre nun <x(b) ^£ot(a),
so wâre b

was gegen die Voraussetzung des Satzes ist.

Hauptsatz 4. <xx(x) und oc2(x) seien in <a,6> von beschrânkter

Schwankung. Dann und nur dann ist

filr jede in <a,6> stetige Funktion f(x)t wenn

âx(x ± 0) - â2(x ± 0) const. (12)
ist, wo

fur x a

± 0) : <*v(x ±0) fur a<x< b

av(b) fur x b
v 1, 2 ist.

Dabei erhalten wir zwei richtige Sàtze, je nachdem wir beidemal dos obère

Vorzeichen oder beidemal dos untere nehmen.

Beweis: a) (12) sei erfùllt. Dann ist nach Satz 2:

1 f(x)d[ocl(x)] - } f(x) d[*2(x)] J f(x)d[ocl(x) ~ «,(*)] - 0
a m a

b) Es sei

• a

fur jede in <a,6> stetige Funktion/(a;). Dann ist:

J/(*î^[«i(«)-«t(*)]-0
also nach Satz 3:

dx(x ± 0) - da(s ± 0) « const.
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Korollar 5. <*i(x) und a2(x) seien in < a, 6 > von beschrânkter Schwan-

kung, und es sei

âx(x + 0) — a%(x + 0) const.
Dann ist auch

âx{x — 0) — â2(x — 0) const.
und umgekehrt.

2. Man kann offenbar die Gesamtheit aller Funktionen, die in < a, 6 >

von beschrânkter Schwankung sind, in Klassen einteilen durch dio
Forderung, daû zwei Funktionen <x(x) und 0{x) dann und nur dami sur
selben Klasse gehôren, wenn ihre rechts- (links-) seitigen Limesfunktionon

â(x + 0) und p(x + 0)(â(x — 0) und (i(x — 0)) sich hôchstens um eino
additive Konstante unterscheiden (betreffend der Définition voa
à{x ± 0), fi{x ±0) vergleiche (2)). Hauptsatz 4 sagt dann aus, daB dio
Menge der linearerî Funktionale im Gebiet der in < a, b > stoti^on
Funktionen f(x) umkehrbar eindeutig auf die Menge aller Klassen abge-
bildet ist, wenn wir als Bild einer Klasse das durch ihre Funktionen oc (x)
vermôge des Stieltjès'schen Intégrais

A(f(x))=$f(x)d[«(x)]
a

dargestellte eindeutig bestiminte lineare Funktional auffassen. Statt dor
Klasse nehmen wir jetzt eine der rechts-(links-)seitigen Limesfunktionon
â(x + 0) (d(# — 0)) ihrer Elemente (die sich aile nur um eine additive
Konstante unterscheiden), und bezeichnen dièse mit x* (x) Dann er-
haltea wir nach Lemma 1 wieder jedes lineare Funktional genau einmal
in der Form

Hauptsatz 6. Das Stieltjès'sche Intégral

a

erzeugt jedes lineare Funktional im Oebiete der in < a, 6 > stetigen Fvnk-
tionen f(x) genau einmal, wenn oc (x) aile Funktionen durchlâuft, die in
<a,6> von beschrânkter Schwankung und im Innern (a, 6) recJita-

(links-)seitig stetig sind. Dabei sind solche Funktionen oc(x), die sich nur
um eine additive Konstante u?Uerscheiden) als nickt verschieden zu 6e-
trachten.
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Dicocr Satz ist nach dam Vorhergehenden bewîesen, wenn wir die

Rickti^koit der folgenden beiden Hilfssâtze gezeigt haï* jn :

HCcsats 7. <x(x) sei in <a, b > von beschrânkter Sdwoanlcung. Dann
ist <x(x ± 0) in (a, 6) recAte- 6zw. linksseitig stetig.

HïïLjztz 8. «(a;) sei in < a, fc > von beschrânkter Schvxinhing und in
(a, 6) rec&te- èzw. linksseitig stetig. Dann existiert in < a, 6 > efne Funk*
tion /?(#), tfté daselbst von beschrânkter Schwankung ist, und so, dafi

<x(z) ^(a: + 0) bzw. a(z) fï(x — 0) M.

Beweis von Hilfssatz 7 : Man hat zu beweisen, daû

liin (lim <x(xdb«db^))= fà& ^(x ± tj)
0 + 0

lot. Bas ist aber richtig, sobald â(x ± 0) existiert10), was in unserem Fall
erfûlit ist.

Beweis von Hilfssatz 8: Es ist namlioh:

<x(z) =» â(x -f 0) bzw. <x(x) « a(* — 0).

(Eingegangen den 3. Mârz 1943.)
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