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Uber die Stieltjés'schen Integrale
Herrn Professor Carathéodory zum siebzigsten Geburistage gewidmet /

Von WALTER NEF, Ziirich

Im Gebiete der in einem reellen Intervall { a, b ) stetigen Funktionen
f(x) sei ein lineares Funktional A4 (f(z)) gegeben, d. h. ein Funktionzl,
welches den beiden Bedingungen geniigt:

L Es ist A(f,() +fo(2)) = 4 (i(2)) + A(f(z)) fir zwei beliebige in
{a,b) stetige Funktionen f,(z) und f4().

II. Es existiert eine von f(z) unabhingige Konstante M, so da8
|A(f=)| <M-F

ist, wo F das Maximum des Betrages von f(z) in { @, b > bedeutet.

F. Riesz hat bewiesen!), daBl es dann immer eine Funktion «(z) gibt,
diein ( a,b) definiert und daselbst von beschrinkter Schwankung ist,
so daB der Funktionalwert fiir jede in ( a,b ) stetige Funktion f(x)
gleich dem Stieltjeés’schen Integral

A(f(x)) = ff(x)d[“(x)] (1)

ist. Umgekehrt ist es klar, daB jede Funktion x(z), diein {(a,b ) von
beschrinkter Schwankung ist, im Gebiete aller in {a,b ) stetizen
Funktionen ein lineares Funktional gemd8 (1) definiert. Denn da8 Eigen-
schaft I erfiillt ist, ist offensichtlich, und die totale Variation von «(x)
in {a,b) hat die von der Konstanten M verlangte Eigenschaft.

In dieser Arbeit stellen wir die Frage nach den Bedingungen dafiir,
daB zwei Funktionen «,(x) und «,(x), die beide in {a,b ) von be-
schrinkter Schwankung sind, im Gebiet aller in {a,b) stetigen
Funktionen dasseibe Funktional erzeugen.

1. x(x) sei in (a,d) von beschrinkter Schwankung. Wir stellen
zuerst fest, daB der rechts- bzw. linksseitige Grenzwert

«(x £ 0)

1) Démonstration nouvelle d'un théordme concernant les opérations
fonotionelles linéaires. Ann. de I'Ecole Norm. 31. (1914) p. 9.
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fir alle Werte von z aus de;m offenen Intervall (a, b) existiert?). Im
folgenden verstehen wir unter d(z =+ 0) die im abgeschlossenen Intervall
{ @, b ) definierte Funktion:

a(a) fir z =a
d(z + 0} = { «(z £ 0) fir zc (a,d) (2)
a(b) fir x=05.
d@(z + 0) ist in { @, b ) wieder von beschrinkter Schwankung2).

Lemma 1. «(x) get wn (a,b) von beschrdankter Schwankung. Dann ist

¢ d ]
| H@dx@]= | H2)d[a(z+ 0)] ‘If(x)d[a'(x-—O)]

far jede in { a, b ) stetige Funktion f(z).
Beweis: Wir betrachten die Differenz:

b > 5
J @) d[x(z)]— § f(z)d[a(z £ 0)]= [ f(z)d[x(2z) — a(z £ 0)],

von der wir beweisen miissen, daB sie gleich null ist. Da « (x) als Funktion
von beschrinkter Schwankung hochstens abzéhlbar viele Unstetigkeits-
stellen hatt), sind «(x) und @(x 4 0) hochstens in einer abzihlbaren
ifenge von z-Werten voneinander verschieden. Es ist also:

(@) — @z £ 0) =0 (3)

fir alle  in (a, b) mit Ausnahme einer héchstens abzihlbaren Menge.
Jir die Werte z = a und z = b ist (3) erfiillt nach der Definition (2) der
Funktion @(z 4+ 0). Daraus folgt die Behauptung ohne weiteres, wenn
wir an die Definition des Stieltjés’schen Integrals denken®), da wir die
fir die Bildung desselben notwendigen Unterteilungen des Intervalls
(a,b) stots so wihlen kénnen, daB die Unterteilungspunkte der nach
dem Vorhergehenden in { @, b ) iiberall dichten Menge der Stetigkeits-
punkte von «(z) angehéren.

3) Carathéodory, 8. 186 (1).
3) Carathéodory, 8. 187, Satz 8.
%) Carathéodory, S. 188, Satz 10.

§) Lebesgue, 8. 253.
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Satz 2. «(x) ses sn ( a,b ) von beschrinkter Schwankung und es ses

d(z 4+ 0) = «(a) = «(b) = const.
Dann st

J1@) aaia) = 0
far alle in <a,b> stetigen Funktionen f(z).
Beweis: Nach Lemma 1 ist
f 1@ dl(2)] = | f(a) dla(a £ 0)].

Aus der-Voraussetzung folgt aber unmittelbar, daB das letztere Integral
gleich null ist.

Satz 3. Es sei
f1e)da@) = o
for jede in { a,b ) stetige Funktion f(x). Dann ist
@(z + 0) = const. = {a,b).

Beweis: Wir beweisen den Satz fiir die Funktion d(z 4 0). Der
Beweis fiir @(xz — 0) geht analog. Es sei a < # < b. Wir bilden folgende
Schar von in { @, b ) stetigen Funktionen:

1 fire<é<z
8, (§,2) = (linear fir 2 < ¢< 2+ ¢
0firz4+e<ELD.

Wir behaupten, daB
b
@(z + 0) — « (a) == m im § s,(&,2)d[x(£)] (4)
ist. Es ist nidmlich:

d(z + 0) —x(a) = lim «(x 4+ &) — «(a) = lim .jf-.d[oc(é')] ‘

8> +40 s>+0 «
Nun folgt aus der Definition von s,(§,2):

b

.fd[a(é)]= ja.(f.z)d[a(f)] wd  f o(2)d[(0)]=0.
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Wir haben also, um (4) zu beweisen, nur zu zeigen, da8

lim 'f.d[a(é)] = lim ‘f.s.(é,x) dlx(8)],
s>+0 2 s> +4+0 2
oder daB
[ 2]
“‘20 | (1 —35(2)d[x()]=0 (8)

ist. Nun definieren wir in { z, x 4+ ¢ ) eine Funktion % (§):

@z +0) —a(x) fir &=z,

v@=1 fir &> . (©)
Wege);n
| (&) = (x(&) + u (&) — (&)
ist dann: .
z+e z+8
iim (1 - a6l = lim T (1 - a,(60)d[(0) + 1)

(7)
—lim ] (0 — e (6] .

8>+0 =

Wir betrachten das erste der beiden letzten Integrale. Aus der Defini-
tion von u(§) folgt, daB die Funktion «(§) + u(f) fir ¢ = z gleich
ihrem rechtsseitigen Grenzwert ist:

x(z) + u(@) = a(z + 0) + u(z + 0) . (8)

Nun bedeute ¢(z, x + ¢) die totale Variation der Funktion « (&) + u(§)
in (z,z+ ¢e) . Wir behaupten, dafl

lim t(z,z+¢6)=0 (9)
8->-0
ist. Dazu geniigt es wegen (8) zu zeigen, daBl

lim t(z, x4+ &) =a(x+ 0) + u(x + 0) —x(z) — u(z) (10)

8>+0

ist. Da «(§) + u(§) mit «(£) von beschrinkter Schwankung ist, gibt
es zwei monoton wachsende Funktionen »(§) und »(¢), so daB in
{z,z+¢):
*(§) + u(8) = p(§) — 2 (¢)
ist ¢) .
®) Oarathéodory, 8. 184, Satz 1.
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Nun bedeute p(v, w) bzw. n(v, w) die totale Variation von p(£) bzw.
n(f) in {(v,w). Da p(§) und n(§) monoton wachsende Funktioncn
sind, ist: _

P(z, z + &) = p(x + &) — p()

n(z,x+ ¢)=n(x+ &) —n(x),

also auch:
lim p(z, x4+ &) = p(x + 0) — p(x)
> | (11)
lim a(z,z+ ¢&)=n(x+ 0) —n(z) .
s> 0

Von den! beiden rechts stehenden Werten ist stets mindestens einer
gleich null 7). Wir nehmen an, es sei etwa

n(x 4+ 0) —n(z)=0.

(Im Falle p(z 4+ 0) — p(z) = 0 geht man genau gleich vor.)
Da
tz,z+ &) =p(x, 2+ &) +n(z,z + 8)

ist 8), so wird wegen (11):
li!fot(-'c, z+ &) =p(x+0) — p(z) =
=p(z + 0) — n(z + 0) = p(z) + n(z) .

Damit ist (10) und infolgedessen (9) bewiesen.
Nun ist das erste der beiden Integrale auf der rechten Seite von (7)

T(l —8,(£))d[x(8) +u(&)] | <t(z,z+ o),
da *
I 1 — 3,(6,22)] <1
ist 9). Also ist:
48
lim (1 —4,(¢,2)d[x(¢) +u(®)]=0.

8>+4+0 2z
Fiir das zweite Integral folgt aus der Definition (6) der Funktion u(§):

z+8

f (1—s,(&2)d[u(E)]= (1 —s,(z,2)) [x(z) —a(z+ 0)].

z

?) Carathéodory, 8. 187 (2).
8) Carathéodory, 8. 183 (2).
) Lebesgue, 8. 254.
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Wegzen g,(z,z)==1 ist dieser letzte Ausdruck gleich 0. Damit ist (5)
mittols (7) und infolgedessen auch (4) bewiesen. Da aber s,(£,z) in (a,bd)
stetig ist, folgt aus (4) und der Voraussetzung des Satzes:

G(z + 0) —x(@) =0,

womit der Satz fir a < x <b bewiesen ist. Wire nun «(b) # «(a),
80 wire b

fl1ed[x(z)]=a() —a(@) #0,

was gegen die Voraussetzung des Satzes ist.

Heuptaotz 4. «,(x) und «,(z) seten in {a,b) von beschrinkter
Schwankung. Dann und nur dann ist

b
jf(x)d[“x(x = .f z) d [xy(2)]
far jede in { a,b) stetige Funktion f(x), wenn

d,(z 4 0) — d,(x £ 0) = const. (12)
18¢, wo
«,(a) fir xz=a
d(z+0)=( x,(x +0) fir a<zx<b )r=1,2 st
«,(b) fir =0

Dabe: erhalten wir zwes richtige Sdtze, je nachdem wir beidemal das obere
Vorzeichen oder beidemal das untere nehmen.

Beweis: a) (12) sei erfiillt. Dann ist nach Satz 2:

)
{ f(z) o (2)] — f f(z) d[xg(2)] = }f(xw[ax(x) — ay(z)] = 0.
b) Es sei
b )
;ff(x)d[ax(x)] = ,gﬂx)d[o!,(z)]

fir jede in (a, b ) stetige Funktion f(z). Dann ist:

b
Jf(x)d[“t(x) — ay(2)] =0,

also nach Satz 3:
d,(z £ 0) — @;(x + 0) = const.
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Korollar b. «,(z) und x;(z) seien in {a, b von beschrinkter Schwecn-
kung, und es sei
d,(z 4+ 0) — d;(x + 0) = const.
Dann ist auch
@, (x — 0) — d,;(z — 0) = const.
und umgekehrt.

2. Man kann offenbar die Gesamtheit aller Funktionen, diein {( a,b )
von beschrinkter Schwankung sind, in Klassen einteilen durch cio
Forderung, daB zwei Funktionen «(z) und §(x) dann und nur denu zur
selben Klasse gehoren, wenn ihre rechts- (links-) seitigen Limesfunktioncen
d@(x 4+ 0) und E(x + 0)(@(x — 0) und E(x — 0)) sich héchstens um eino
additive Konstante unterscheiden (betrefiend der Definition wvecn
d@(z 4 0), E(x -+ 0) vergleiche (2)). Hauptsatz 4 sagt dann aus, daf die
Menge der linearen Funktionale im Gebiet der in {a,b) steticen
Funktionen f(x) umkehrbar eindeutig auf die Menge aller Klassen abge-
bildet ist, wenn wir als Bild einer Klasse das durch ihre Funktionen «(z)
vermoge des Stieltjés’schen Integrals

A(f(x)) = fl(x)d[“(x)]

dargestellte eindeutig bestimmte lineare Funktional auffassen. Stett dor
Klasse nehmen wir jetzt eine der rechts-(links-)seitigen Limesfunktionon
d@(x 4+ 0) (@(x — 0)) ihrer Eiemente (die sich alle nur um eine additive
Konstante unterscheiden), und bezeichnen diese mit «*(x). Dann er-
halten wir nach Lemma 1 wieder jedes lineare Funktional genau einmal
in der Form

b
A(f(z) = [ H(z)d[x*(x)].
Hauptsatz 6. Das Stieltjés’sche Integral

jf(x)d[a(x)]

erzeugt jedes lineare Funktional im Gebiete der in {a,b ) stetigen Funk-
tionen f(x) genau einmal, wenn «(x) alle Funktionen durchléuft, die in
{a,b)> von beschrinkter Schwankung und im Innern (a,bd) reckis-
(links-)seitig stetig sind. Dabei sind solche Funktionen «(x), die sich nur
um eine additive Konstanle unterscheiden, als nicht verschieden zu be-
trachten.
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Diczer Satz ist nach dem Vorhergehenden bewiesen, wenn wir die
Richtizkeit der folgenden beiden Hilfssiitze gezeigt hal on:

-

IIillcocts 7. «(x) set in (a, b) von beschrdnkter Schwankung. Dann
16t a(x + 0) in (a, b) rechts- bzw. linksseitig stetig.

Eillzsotz 8. a(z) sei in {( a,b) von beschrdnkter Schwankung und in
(@, b) rechts- bzw. linksseitig stetig. Dann existiert in {a,b) eine Funk-
tion B(x), die daselbst von beschrdnkter Schwankung ist, und so, daf

x(x)=B(z + 0) bzw. «(z) = f(z — 0) ist.
Beweis von Hilfssatz 7: Man hat zu beweisen, daf3

lim (im &(z 36+ %)= lim a(z L 2)

8> +0 N->+0 N++0

ist. Das ist aber richtig, sobald d(z =+ 0) existiert!?), was in unserem Fall
erfiilit ist.

Beweis von Hilfssatz 8: Es ist nimlich:

a(z) = d@(z +0) baw. a(x) = d(z — 0).

(Eingegangen den 3. Mirz 1943.)
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