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Die Funktionentheorie |
der Dirac’schen Differentialgleichungen

Von Rup. FUETER, Ziirich
Seinem lieben Freunde

Constantin Carathéodory
zum siebzigsten Geburtstage
gewidmet /

Im folgenden handelt es sich um die Dirac’schen Differentialgleichunscn
im Falle verschwindender Ruhmasse. Es wird bewiesen, wie diece gleich-
bedeutend sind mit der Bedingung, daB3 gewisse Integrale unabhin~iqg
sind von der Hyperfliche, iiber die integriert wird. Damit wird gczcizt,
daB sie genau so eine Funktionentheorie zulassen, wie die klaccizehen
Riemann-Cauchy’schen Differentialgleichungen!). Es scheint mir dics
darum bemerkenswert, weil die Differentialgleichung, der die KXomwo-
nenten der Funktionen geniigen, vom hyperbolischen Typus ist. Von
diesem Gesichtspunkt aus ist die Durchfiihrung eine Verallgemeinerung
der Riemann’schen Methode zur Loésung der Differentialgleichuny der
schwingenden Saite?).

So wird im vierten Teile eine Formel fiir alle Funktionen (deren Kcm-
ponenten die Dirac’schen Gleichungen befriedigen) entwickelt, in cer dia
letzteren Losungen einer linearen Integralgleichung sind, fells sie suf cincr
Hyperfliche gegeben sind. Die Losungsfunktion liBt sich nicht dircks
durch die Werte auf der Hyperfliche darstellen, sondern es tritt im Ccca-
satze zur Riemann’schen Theorie noch ein Glied mit einem Inte~ral dibor
eine bestimmte Hyperkegelwandung hinzu. Auf solche Integrale hat sch:on
Schrodinger aufmerksam gemacht3), und zwar in einem Fallo, dcr cinca-
teils die allgemeinen Dirac’schen Gleichungen, andernteils abor nur .
spezielle Losungen in Betracht zieht.

1) Ahnliche Bestrebungen sind von Moisil und Théodorescu verdffentlicht wordon,
Siehe Moisil, Sur un algorithme généralisant la théorie des fonctions
monogénes, qui peut étre utile pour l'intégration des équations aux
dérivées partielles d'ordre supérieur. Annalele Academiei Romane, llemoriils
Sectiunii stiintifice, ser. III, tom. XVI, mem. 17, 1941,

) Riemann, Gesammelte mathematische Werke, Leipzig, 1892, p. 158.

3) E. Schrodinger, On the solutions of wave equations for non-vanishing
Rest-mass inoluding a source-funotion, Proceedings of the royal Irish Acadomay,
vol, XLVII, section A, No. 1, 1941,
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1. Algebren
Wir fithren zunichst folgende Clifford’sche Zahlen ein ¢):

L4

1000 -100 O 0100 00-10

0100 0100 1000 00 01
Co= y O1= y Cg= y 3=

0010 001 0] 0001 -10 00

0001V 000-1 0010 01 00

die die Relationen erfiillen:

61=1, k=0, 1,2,3; c°ck=ckc°=ck,k=l, 2,3 y

ckc“= -—c,.c,‘,h,k= l, 2, 3, h#k .
Mit diesen bilden wir das Linearsystem £, 5):

2=23C.%,
(%)
mit reellen z,. , ist keine Algebra, da hierzu noch die Einheiten ¢, ¢,,
C1C3, €4C3, C;C3C3 hinzugenommen werden miiBten, wodurch sick uie Ord-
nung 22 = 8 der Algebra ergibe. Diese letztere Algebra sei mit €, be-
zeichnet. €, ist somit ein Linearsystem von ¢,.
AuBer @, filhren wir ein zweites System von hyperkomplexen Gréfen
ein: :

1000 000 00 00 0000
0000 1000 0000 0000
“=10000]"loo000]"% {1000]"% o000}
0000 0000 0000 1000

Falls man die Null-Matrix mit 0 identifiziert, bilden die e, die Basis einer
. Algebra ¥,, da:

el =0,k=1,2,3; ee=1¢,k=0,1,23; ¢e.=0,kk=1,2,3.

Zwischen den ¢, und e, finden gemidB dem Matrizenkalkiil fiir die
Produkte c,e, folgende wichtigen Beziehungen statt, die wir in der T'afel
nicderlegen:

4) Biehe die Ziircher Dissertation: P. BoShard, Die Clifford’'schen Zahlen, ihre
Algebra und ihre Funktiouentheorie. Zirich 1940,

%) Siehe L. E. Dickeon, Algebren und ihre Zahlentheorie, Ziirich 1927, p. 80.
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Produkt c,e,: | €1 || —€ | @ € | —6
Cy é €o €3 €3
Cs ||—€s| € | —€ | €

Das Produkt einer Grofe von 8, mit einer Qrife von U, liegt daher sicts
in U,. Unter 0 wollen wir stets eine GroBe in €, oder U, verstehen, deren
Komponenten sdmtlich null sind. Bei der Multiplikation der Groﬂen von
¢, und U, gilt das assoziative Qesetz.

2, Funktionen
Es sei z = Y z,c, irgend ein Punkt eines Hyperraumes H. In allen
(k)
Punkten von H seien u,(z,, ,, 2;, %;), h = 0, 1, 2, 3, vier stetige, stetig
differenzierbare reelle Funktionen der reellen Variablen z,; w = f(z) =

2 u,e, heiBt dann eine in H gegebene e-Funktion von z.
)

Definition: Die e-Funktion w = f(z) heifit in H linksreguldr, wenn :

X quwh =0 (D
®

ist, wo w'® die Abkitrzung :

ou, ou, ou,
eo+ a 1+ a I+ azk

Lk
bedeutet .

GemiB den Abmachungen iiber ¥, ist I. die Abkiirzung fiir vier Glei-
chungen, die auf Grund der Tafel so lauten:

U — M uUP — uP =0, ,
T T Y
w0 o) 4 P — = 0
U — P P P = 0.

(II)
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Dies sind die Dirac’schen Gleichungen bei fehlenden Ruhmassen®).
Sind die Funktionen u, zweimal stetig differenzierbar, so folgt aus I.

sofort:
w000 __ gp(11) __ 45(32) __ 45(33) — () . (1IT)

Denn differenziert man I. nach z; und subtrahiert von der Gleichung
mit I = 0 diojenigen fiir I = 1, 2, 3, so bleibt links wegen ¢,c, + c.c; = 0.
l#k; l,k=1,2,3 und coc, — ¢, co= 0 gerade die Gleichung III. iibrig.

AuBer den e-Funktionen fiihren wir die c-Funktionen ein:

W=>F(@z)=X Up(®y, 2, %3, Z3) ¢, ,
M
wobei die Voraussetzungen iliber die U, dieselben sind, wie iiber die u,.

Deofinition: Die c-Funktion W = F(z) he:ft in H reguldr, wenn :

E W(k) ck = 0 (IV)
(k)

i8t, wober W* die Abktirzung
oU,

0x,

U, v, U,

W= ot 3, o o, T,

bedeutet.

Die linke Seite von IV. liegt nicht in £,, sondern in §,. Da 7 Einheiten
auftreten, miissen nach unsern Abmachungen 7 Koeffizienten null sein,
was die reellen Bedingungsgleichungen ergibt:

UP+ UP+ UP+UP =0,
UP+U0=0, UP+UP=0, UP+UP=0, (V)
U.(lz)—- UV =0, U — UP=0, UM — U(13)== 0.

Hatte man (IV) so geschrieben:

S o Wh =0,
(k)
so hitten sich genau dieselben Gleichungen (V) ergeben. Man unter-
scheidet hier somit nicht zwischen rechts- und linksregulir.
D28 es regulire Funktionen gibt, wird so gezeigt: Wir definieren di»
konjugierten GroBen in €, durch:

z=(§x,3,, WO -c-°=c°, Ek= -Gk, k=1’2’ 3.
)
¢) Siehe etwa die unter ¢) xitierte Dissertation, p. 44.
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Unter der Norm von z: n(2) verstehen wir:

nR@) =z2z=2—a} — 2 — 23 .
Es gelten die beiden leicht zu bestitigenden Hilfsformeln:

Sz, =2(24+2), X cyz¢, =—2z .,
(k) (k)

Jetzt kann sofort der Satz bewiesen werden:

Satz: In jedem Hyperraume H, der keine Punktie des Hyperkegels
n(z — d) = 0 enthdlt, ist
W=n(z —dy ' (z=d)

eine reguldre c-Funktion von z. Dabei 1st d irgend eine beztiglich z konstante
Grofie von L,.

Denn:

SWh e =~ X (2n(z—d) }(z—d) " cy(z—d) 2 ¢+ n(2—d) 3 ¢,0,) =0,
(k)

(k)
wegen der beiden Hilfsformeln.

3. Integrale

Es sei H ein endlicher abgeschlossener Hyperraum, dessen Grenz-
hyperfliche R orientierbar ist. R besitze in jedem Punkte { eine ins Innere
von H gerichtete Normale, die durch den Einheitsvektor &, £=0,1,2,3,

gegeben sei. Man setzt:
dz = EEkcbdr )
(%)

wo dr das Hyperflichenelement von R in { ist. Nach dem GauB’scken
Integralsatze gilt fiir je 16 in H stetige, stetig differenzierbare, endliche
und reelle Funktionen P,, der z,(h, k = 0, 1, 2, 3):

d
fz-———-”"" dh=— |3 (Pub)dr,b=0,1,2,3.
(k)

0z, a0
(H) (R)

Multipliziert man diese Gleichung mit e, und addiert iiber alle A, so
folgt:
0P, e -
fz——a—;‘f;-“-dh=—f S (P bre,) dr .
& Bb o B
23



Jetzt sei w eine linksregulire e-Funktion, W eine regulire c-Funktion
in H. Man wiihlt fiir die P,, die eindeutig bestimmten Komponenten von

WO;w=EPMe,., k=0,1,2,3-
(h) ,

Dann folgt:
[x m@wwww—~¢ N Wepbydrw=— [ WdZw .
@ ® ® ® R)

Wegen der Regularititsbedingung von W und w ist:

(:'; (Wep w)®) = (\‘ (W® ) w4+ W (‘i; cw® =0 .

Daher mufl
(WdzZw=0 (VI)

] (R) :
sein.

I. Hauptoctz: Ist w eine in H linksreguldre e-Funicition, W eine in H
reguliire c-Funktion, so st fur jede in H liegende geschlossene orientierbare
Hyperfliche R:

f WdZw=0 .
(R)

Man sieht ohne weiteres die Umkehrung ein:

Sctze Ist W eine in H reguldre, in keinem vierdimensionalen Kontinuum
verschwindende c-Funktion, und w eine 1n H stetig und stetig differenzierbare
e-Funkiton; gilt ferner fur jede geschlossene, orientierbare Hyperfliche R
tn H die Beziehung :

( WdZw = 0 ,
(R)
80 18t w in H linksregulir.

4. Zweiter Integralsatz

Es cei R eine gegebene orientierbare Hyperfliche. Auf derjenigen Seite
von R, zu der man von den Punkten von R aus gelangt, indem man in
Richtung der negativen z,-Axe fortschreitet, sei ein abgeschlossener

Hyperraum § gegeben, zu dessen Begrenzung R gehére. Die Punkte z von
9 sollen die Ei"enschafb haben, daB alle Strahlen aus z, deren Winkel mit

der + 2,Axe < — smd R in einem und nur einem Punkte treffen. In §) sei

w = f(2) eine linksreguliire e-Funktion. Wir wihlen einen festen Punkt 2
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in §, der nicht auf R ﬁegt, und ziehen von ihm aus alle Strahlen, doxcn
Winkel mit der + x,-Axe < T —e¢8ind, O<e< — 4 -

bis zum Schnittpunkt mit R, legen einen Hyperraum H, fest, der Teil-
bereich von § ist. Die Begrenzung von H, ist der Hyperkreiskegel K, und
ein Stiick R, von R. Alle Punkte von H, kénnen gegeben werden durch:

; dieselben, genommen

C= Etkckv
(k)

o — Xg=1 cO8 I, , . 0t =0,

{ —z, =1 s8in ¢, sin ¢, , Ostxé%—s.
wo: " / ist .

l3 — xg =1 8in t, cost, sin’ ¢y , -——L;-étaé'—z—,

{3 —x3=1 8in ¢, cos ¢; cos ¢; , 0= =s2n,

¢ ist die Lénge der Strahlen von z bis zum Schnitt mit R, also eine ein-
deutige Funktion von ¢, ¢,, t5, %o, %3, %3, Z3. Auf K, ist ¢, = -g- —¢, auf

R, t = p zu setzen.

Wir schlieen jetzt noch z selbst aus H, aus, indem wir um z eine kleine
Hyperkugelschale K, mit dem Radius 7 legen, also nur ¢ = 7 betrachtcn.
r muB so klein sein, daBl K, keine Punkte mit R gemein hat. Dic so
amputierten Bereiche H, und K, seien H, und K.. In H/ ist die c-Funktion
n(¢ — 2)"}({ —z)™! regulir. Nach dem ersten Hauptsatz wird somit:

[+ [+ [a¢—2r@=2dzt ) =0, ()
(Rp) (E,) (Bs)
wobei dZ ins Innere von H/ gerichtet ist. In dieser Gleichung lassen wir

r — 0 gehen. Wegen der Stetigkeit und stetigen Differenzierbarkeit von
f(z) ergibt eine elementare Rechnung die Existenz des ersten Integrals:

73 cos? 2¢;

r->0
(Ky)

3
© %.H
":*g;»la

f (C - z)s sin? tl cos iy dtl dt’ dta ’(C) =
0

”
— -

4
= 4 [ S dt, fle) = m (oot 28 + Iy b)) fe)
(1]

cos? 2¢,
23



Deher muB auch das zweite Integral in (a) existieren, und wir kénnen
den Grenzwert von (&) fiir r — 0 8o schreiben:

1

° 1
fz) + n(cotg 28 <+ lgtga)é,’).{— n(cotg 26 4- 1g tg 8)(;,[) =0, (b
(K, e .

fir alle 0<s<% .

Wir berechnen jetzt den Grenzwert des mittlern Integrals in (b) fiir
e—>0. Auf K, ist ¢, = —1‘-—- ¢, und somit wird, da die Normale ins Innere

von K, gerichtet ist, nach einer elementaren Rechnung:

" ¢ G Cs Cs
0l 9§ 0y 9L,
ot ot ot at 1

dZ = L, 9%, 9Ly 9L, | dtdigdt, = T((-z)_, dr ,

ot, oty oty oty

9l 9% {0
3t, O, ot, ot

wo dr= sin“(g ——s) 83 cos t,dtdt,dt; das Hyperflichenelement von K, in {

ist, und der Index — ¢ in ({ — 2)_, bedeutet, daB an Stelle von ¢, = -‘7-;- — 8
der Wert ¢, = -g- + & zu setzen ist. Nun ist auf K,: n({ — z) ={* sin 2¢.

Der Faktor ({ —2)™1 ({ —2)_, bleibt fiir ¢ - 0 endlich und ergibt in der
Form n({ —z)™* ({ —z) ({ —z)_, geschrieben wegen:

d({ — 2) — di{—2)_,
-T:(C_z)—cv _—d—s—_—_=—(c—z)'
den Grenzwert:
) _ (§—2) —({—2)
li —2z)1 (L — = — —
b = e =~ T =)

Deraus folgt, daB der Grenzwert des mittlern Integrals in (b) fiir
¢ = 0 existiert und gleich:

_2VE [ (-2 — (=2
m ) (€= +@=a) ar 1)




ist. Somit muB auch der Grenzwert des dritten Integrals in (b) existieren,
und (b) geht iiber in:

2V§ * (=2 — (=2

A (C=a+G=ay 1O+
(Ko) (0)
+.l-l>o n(cotg 2¢ + Ig tg s)f n({ —2) ({—2)1dZ {({)=

Um den letzten Grenzwert zu berechnen, bezeichnen wir die zwei-
dimensionale Schnittfliche des Hyperkegels, fiir den ¢, = konst. ist, mit
R, durch F, . Fiir ¢ = 0 ist sie der Schnitt von K, mit B und sei kurz
mit F bezeichnet. Setzt man dZ = dZ*dt,, so wird nach bekannicn
Rezepten:

lim ! _lp [ aC—2'¢E—2)dZf0)
c»0 7(cotg2¢e + lgtg s) - D) 1

) Fw — < :
B ("3-¢) ~ sin? 2s+ sin & cos ¢

Wie friiher gezeigt wurde, ist fir ¢, = ii — & die Norm #( — z) =
t3sin 2¢ und t= —‘-/1—5-( ((—2)+({—2)). Daher ergibt der Grenzwert,
falls man noch dZ* = Adf setzt, wo df das Flichenelement in { auf F ist,

den Ausdruck:
AW |
e d .
f((C—z)-{-(C z) )¢ F1@

(F)

Setzt man dies in (c) ein, so entsteht der

II. Hauptsatz : Ist f(z) sm Hyperraume H eine linksreguldre e-Funl:lion
(d. h. etne Losungsfunktion der Dirac’schen Differentialgleickunger), wo H
eine feste H yperﬂdche R in seiner Umgrenzung enthdlt und die weitcre
Eigenschaft hat, daf in jedem seiner Punkte z die positive Seite der Erzeu-
genden des Hyperkreiskegels:

(lo—Z) —(Li— 2 ) — ({3 — ) — ({3 — 25)* =0 (1)
dve Hyperfliche R nur tn esnem Punkie schneidet, so gilt die Formel :

-2 =9 - 2 [ C=94
f (e~ ")‘W =l f (€—a+C=2)* fﬁgﬁ
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wo K die Mantelhyperfliche des Hyperkreiskegels. (1) zwischen z und R,
und F die Schknitifliiche dieser Mantelhyperfliche mit R ist.

Im ersten Integrul iiber K ist:
{—2z= —V%— (¢o + sin t4¢c, + cos ¢, sin 53¢, + cos £, CO8 £5¢,)
im zweiten tiber ¥ :

{—z= L (co + sin ¢3¢, + cos ¢, 8in t3c, - co8 £, cO8 3C,)

V2

zu setzen, wo ¢ die Linge der Erzeugenden von (1) zwischen der Spitze
des Hyperkegels und R ist. Das Vorzeichen von 4 ist durch die Richtung
der Normalen auf R gegen H bestimmt. Sein Wert ist

Co G Cq Cs
3o 0% 9% 9%
0t, ot, dat, ot,
y WO: dZ%= 4| 3¢, 9, 9L, 0l | disdi; ist
0ty dity oty dt,

0l 0L 2Ly 9L
3t, Ot, 0t, 0t

_ az*

4 a5

wobei ¢, = %z_ und t=p, d.h. die betreffende Funktion p von ¢,,¢,, ¢,

einzusetzen ist.

Der wichtigste Fall fiir das physikalische Problem ist wohl derjenige,
in dem R die Hyperebene x, = Zeit = konst. ist. Nimmt man an, daB
f () auf R, also zu einer gegebenen Zeit bekannt ist, so zeigt der II. Haupt-
catz, dab f(z) in irgend einem andern Momente durch eine lineare Integral-
gleichung gegeben ist. Dabei hingt der Wert ym Punkte z nur von len
/erten der Furktion in der Schnittkurve F des Kegels (1) mit R ab. Die
Funktion ist eindeutig bestimmt, und es ist die Moglichkeit gegeben, die
Funktion nach den Eigenfunktionen der Kern-c-Funktion von VII zu
entwickeln. Ich behalte mir vor, in einer weitern Arbeit darauf zuriick-
zukommen.

(Eingegangen den 28. Miirz 1943.)
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