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Uber gewisse ganze Funktionen
vom Exponentialtypus

Herrn Carathéodory zum siebzigsten Geburtstage gewidmet!
Von A. PrLuGER, Fribourg

1. Den Anla8 zur vorliegenden Arbeit gaben die Untersuchungen von
R. Paley und N. Wiener, M. L. Cartwright und N. Levinson!) iiber genze
Funktionen vom Exponentialtypus?).

Wir bezeichnen diese Funktionen mit n(z), ihre von null verschiedenen
Nullstellen, dem Betrage nach geordnet, mit z,, 23, ..., 2z, = 7,€'%,. ..,
mit n(r) ihre Anzahl in |2| £ r und mit n (r) bzw. n_(r) ihre Anzahl in

id 2 baw. ~ <argz& 87 Die Funktion

= — = —
|z|Z r, 3 <argz& B 3 5

h(¢) = lim sup —i—- log | 7 (ret®) |
heiBt Indikator oder Strahltypus und ist Stiitzfunktion eines konvexen
Bereiches, des Indikatordiagrammes der Funktion = (z).

Das Hauptresultat der genannten Untersuchungens3) lautet dann:

Voraussetzung 1. Das Indikatordiagramm von mw(z) st eine Strecke
auf der imagindren Achse.

R
Voraussetzung 2. Der Grenzwert lim | log | n(x) - = (—2) | -(-lg
R+ 1

existiertt) und st endlich.

1) a) R. Paley and N. Wiener, On entire funotions, Trans. Amer, Math. Soo. 35
(1933).

b) —, Fourier Transforms in the Complex Domain, Amer. Math, Soc. Coll.
Pub. 19 (1934), chap. 5.

¢) M. L. Cartwright, On functions which are regular and of finite order
in an angle, Proc. London Math. Soc. (2) 38 (1935), p. 168—179.

d) —, On certain integral functions of order 1 and mean type, Proo.
Cambridge Phil. Soc. 34 (1935), p. 347—350. :

e) N. Levinson, On the closure of {¢**%| and integral funotions, Proo.
Cambridge Phil. Soc. 31 (1935), p. 336—3486.

f) —, Gap and Density Theorems, Amer. Math. Soc. Coll. Pub. 26 (1940).

3) d. h. ganze Funktionen fiir die | 7(z)| < ¢X 1% ist,

3) Fiir gerade Funktionen stammt das Resultat von Paley und Wiener, fir beliobizos
# (z) wurde es von Cartwright und Levinson bewiesen, zundchst mit andern Voraus-
setzungen, welche die obigen in sich schlieSen. Fiir die vorliegende Form vgl. N. Levinson
in FuBnote 1 f), S. 25.

4) z und y sind im folgenden immer reell.
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Behauptung.

a) lim n(r) =24>0,
>0
L aa 4 r r-»> 00 r
- _siné, |
) FlimAlee

Die Behauptung a) besagt, daf die Nullsteilen die Dichte 24 besitzen;
gemiB b) sind sie in der rechten und linken Halbebene gleich dicht und
nach c) schlieBlich liegen sie hauptsichlich in Richtung der reellen
Achse.

Wir stellen die Frage, welchen Anteil jede der Voraussetzungen am
Zustandekommen der drei Behauptungen hat. Ist vielleicht die crste
Voraussetzung iiberfliissig? Wenn nicht, worin kommt sie in der Behaup-
tung zum Ausdruck? In der Tat werden wir zeigen, dafl aus Voraus-
setzung 2 allein schon die Behauptungen a) und c) folgen und umgekehrt,
und daB erst die Voraussetzung 1 die Behauptung b) nach sich zieht. Als
Ganzes liBt sich der Satz nicht umkehren. Dazu ist die Behauptung b) zu
schwach. Wodurch ist sie dann zu ersetzen, damit der Satz umkehrbar
wird? Oder welches ist unter den Voraussetzungen a) und b) die not-
wendige und hinreichende Bedingung dafiir, da sich das Indikator-
diegramm auf eine Strecke der imaginiiren Achse, oder allgemeiner, auf
eine vertikale Strecke reduziert ?

2. Die Produktdarstellung ganzer Funktionen der Ordnung 1

G(z) = 2m . ea+ds. ]Il(l -—-;—-)ez", (2.1)
zeigt, dall die Lage jeder einzelnen Nullstelle schon einen wesentlichen
EinfluB auf das Wachstum der ganzen Funktion hat; und nicht erst ihre
asymptotische Verteilung, wie dies bei nichtganzer Ordnung der Fall ist.
Diesbeziigliche Untersuchungen von Wiman, Pringsheim, Lindelof und
Cartwright®) haben gezeigt, daB8 der Ausdruck

Sry=b+ Y =z?
1zn |2y

$) A. Wiman, Arkiv fér Matematik, Astronomi och Fysik, 1 (1904).

A: Pringsheim, Math. Ann, 58 (1004).

E. Lindclof, Sur les fonctions entidres d’ordre entier, Annales sci. de I'Ecole
Normale (3) 22 (1905), p. 369—395.

M. L. Cartwright, Integral functions of integral order, Proec. London Math.
Soc. (2) 33 (1932), p. 209—224.
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hier von ebenso groBler Bedeutung ist wie die Anzahlfunktion =n(r).
Innerhalb der gegebenen Voraussetzungen werden wir also genau ab-
zukldren haben, welche Rolle der Funktion S(r) beim Zustandekommen
des Indikatordiagrammes zugewiesen ist.

Der Faktor 2™ - ea+s in (2.1) bewirkt nur eine Parallelverschiebung des
Indikatordiagramms. Wir lassen ihn weg und beschrinken uns auf
kanonische Produkte der Form

n(z) = IT (1—-;-)3"‘. 2.2)
L LD n
Dann wird
Siry:= ¥ 271, (2.3)
lenl<Zr
Die Bedingung
lim 2 _ 24 (2.4)
> r

soll als Grundvoraussetzung im folgenden immer erfiillt sein.
Zunichst behandeln wir den Fall ganzer Funktionen mit lauter reellen
Nullstellen und setzen dann z, = 4,,.

3. Beginnen wir mit der Betrachtung zweier entgegengesetzter Spezial-
fille. Wohlbekannt ist die Situation bei symmetrisch gelegenen Null-
stellen. :

Satz A. Ks ses

Flz) =niz(1— ;:) : (3.1)

n

. Die Anzahlfunktion der reellen Zahlenfolge { A,} gentige der Bedingung (2.4).
Dann ist fir ¢ # 0 und = °) |

lim — log | F(ret?) | =2nd |sing]| . . (3.2)

>

Hier ist das Indikatordiagramm die vertikale Strecke mit den End-
punkten + 2n:A4.

Der andere Spezialfall — unsymmetrische Lage, ,,wenige* Nullstellen
— stammt von M. L. Cartwright 7).

¢) Der Grenzwert existiert auch fiir ¢ = 0 und #, wean r auf einer goeigneten Menge
von linearer Dichte 1 gegen oo strebt.

7) in FuBnote 5, 8. 212, Der Satz wird dort allgemein fiir den Mxtt.oltypul ganzoz
Ordnungen ¢ und beliebige Nullstellen mit n(r) = o (r?) ausgesprochen.



Sztz B. Ses die Funktion
f(z) = iﬁ' (l -— -;—-) GM
L L DY n

vom Exponentialtypus, ihre Nullstellen reell und n(r) = o(r).
Dann 18t fiir ¢ % 0 und 7 8)

lim (-—’1'— log | f(ret®) | — S(r) cos qo) = 0.

r-»> 00

Mit lim sup S(r)=p+¢ und lim inf S(r) == p — ¢ folgt dann
r-> 00 r-> o
lim sup—}log]/(r"")]:p cos p+q|cosep| . (3.3)
r-» 00

Hier ist das Indikatordiagramm eine Strecke auf der reellen Achse. Diese

trecke reduziert sich dann und nur dann auf einen Punkt, wenn §(r)
konvergiert. Insbesondere ist es der Nullpunkt, wenn die Nullstellen
symmetrisch liegen.

4. Das asymptotische Verhalten der beiden Funktionen F(z) (Satz A)
und f(z) (Satz B) ist von wesentlich verschiedenem Charakter. In (3.2)
existiert der Grenzwert fiir alle ¢ 5 0 und =, in (3.3) dagegen nur fiir

p= 4 —72-5-9). Deutlicher wird der Unterschied bei folgender Schreibweise:

— log | F(re®")| = 2xd |sing | +e(r,9)) ,  (4.1)

_}. log | f(re*®?)| = S(r) cos ¢ + e(r, @) . (4.2)

Die Funktionen 2x4 | sin ¢ | und S(r) cos ¢ charakterisieren das asymp-
totische Verhalten von F(z) bzw. f(z). Beide, als Funktionen von ¢, sind
Stiutzfunktionen konvexer Bereiche, einer Strecke bzw. eines Punktes.
Die erste Funktion hingt nur von ¢ ab, die zweite auch von r. Wéihrend
bei r—->co die Strecke also fest bleibt — ,,festes Indikator-
diagremm — wandert der Punkt auf der reellen Achse hin und her und
charakterisiert fiir jedes » durch seine Lage das Verhalten der Funktion —
nmbewegliches‘* Indikatordiagramm.

9) vgl. Fulnote 6.
?) soforn die Strecke sich nicht auf einen Punkt reduziert.

1¢) Fiir ¢ 740 und #x gilt lim &(r, ) = 0. Es strebt & (r, ¢p) auch fiir =0 und 7 gegen
r>c0
Null, wenn £ auf einer geeigneten Menge von linearer Dichte 1 gegen o strebt.
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. Kombinieren wir nun Satz A und B der Nr. 3 durch Betrachtung des
Produktes n(z) = f(z) - F(z). GemdB (4.1) und (4.2) gilt

-;1_- log | n(re®) | = S(r) cosp +2xnA4 |sing| + e(r,p) 1) .

Hier ist das bewegliche Indikatordiagramm die Strecke mit den Xnd-
punkten S(r) + 2n14 ; sie ist parallel zur imagindren Achse und voa
konstanter Linge 47 A, wihrend ihr Mittelpunkt S(r) auf der rcclic
Achse hin und her wandert. Bei gleichen Bezeichnungen wie am Schiu8
der Nr. 3 ist dann

h(p) =pcosp +q|cosp| + 2nd |sing].

Das feste Indikatordiagramm ist also ein achsenparalleles Rechteck, das
durch die bewegliche Strecke ,,erzeugt‘‘ wird.

Das letztere Beispiel zeigt, daB der Satz in Nr. 1 nicht umkehrbcr ict.
Denn die Nullstellen von n(z) erfiillen die Bedingungen a), b) und ¢) der
Nr. 1, aber das Indikatordiagramm ist im allgemeinen ein Rechtcck.
Erst wenn S(r) konvergiert, reduziert es sich auf eine vertikale Strecke.
Dies 1i8t aber bereits vermuten, dal3 die Konvergenz von S(r) dxe ge-
suchte notwendige und hinreichende Bedingung ist.

8. Zuniichst wollen wir zeigen, daf bei reellen Nullstellen die Bedingung
(2.4) mit zwei andern gleichwertig ist.

Satz 1. Sdmitliche Nullstellen des kanonischen Produktes

u(z)=ﬁ(1--5-)e_’—"—

fim] ln
seten reell. — Dann sind die Bedingungen
o) lim n(7)

>

=24 ,

p)  lim log |n(iy) | ==4d ,
v-»:_teol I

?) limflog]n(x)l.%,‘f_=_u3413)

R»o0

etnander dquivalent.

11y vgl. Anmerkung 10.

13) Umgeht man den Nullpunkt zunachst durch einen kleinen Halbkreis, dozson Radiva
mean dann gegen Null streben la8t, so erkennt man wegen % (0) = 1 sofort, dad dos
Integral bei # = 0 konvergiert.
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Der Satz ist eine triviale Verallgemeinerung des bekannten Resultates
von Paley und Wiener'®) im Falle symmetrischer Nullstellenverteilung
and wird durch die Betrachtung der Funktion

nm1 An

cuf letzteres zuriickgefiihrt. Ersetzen wir némlich in «, 8, y die Funk-
tion z(z) durch F(z) und die rechten Seiten durch B, B und — #?B, so
orhalten wir die Bedingungen von Paley und Wiener. Die letztern sind
aber mit B = 24 den obigen #dquivalent, was sich direkt bzw. aus
| Z(— ty) | = | =(ty) | sofort ergibt.

In diesem Satze wird von der Funktion nur verlangt, dafl sie vom
Geachlecht < 1 sei, also die Reihe 3’ 172 konvergiere. Der Satz ist auch
auf ganze Funktionen vom Maximaltypus der Ordnung 1 anwendbar,
z. B. die reziproke Gammafunktion.

Die Aquivalenz der Bedingungen «, B, y gilt unter der Voraussetzung,
daf die Nullstellen reell sind. Im allgemeinen ist Bedingung vy die stirkere
(vergleiche Nr. 9).

n(z)-n(-—z)=ﬁ (1-———2—’-) = F(z) (5.1)

6. Wir nehmen den Gedanken am SchluB der Nr. 4 wieder auf und
beweisen

Sctz 2. Sdmitliche Nullstellen des kanonischen Produktes n(z) seien reell,
eire der Bedingungen «, f8, y in Satz 1 erfullt und S(r) beschrinkt.

Dann st 7(z) eine ganze -Funktion vom Exponentiallypus und das
Indikatordiagramm von der Breite 2r A, ndmlich

h(j;%—)::ul . (6.1)
Beweis: Nach einem Satz von E. Lindelsf 14) ist eine ganze Funktion
dann und nur dann vom Exponentialtypus, wenn S(r) und n1(’r) fur

7 —> o0 beschrinkt sind. Der Rest ergibt sich aus Bedingung f des
Satz 1 oder aus folgender Betrachtung.
Wir setzen

F(z) = n(z)-7(—2) , D)= —’-‘_-(_"—)-— . (6.2)
Dann ist R
n2(2) = F(z) - D(z) . (6.3)

1) Fulnote 1 b), 8. 70 und 74.
4) FuBnote 5, 8. 376,




~

Das Verhalten von F(z) ist nach (5.1) und Satz A bekennt. Wcz:n
P(z) = D(2) und P(2) - P(— 2z) =1 ist |P(3y)| =1. Daraus folst (6.1).

7. Wann ist nun das Indikatordiagramm eine vertikale Strecke? Eino
notwendige Bedingung ergibt sich sofort aus folgendem Satz von
M. L.Cartwright 18): Gilt fur eine ganze Funktion vom Ezxponentialiypus

r> o0

b

. n(r) 1

lim 27 - 2nfh(0)d0 ,
0

80 st

ew
lim S(r) = %fh(a) e99.d6 .
0

r-+=on

Seien also die Voraussetzungen des Satz 2 erfiillt und das Indikator-
diagramm eine vertikale Strecke. Dann ist wegen (6.1)

h(p) =pcosp + nd |sing|
und daher

- g t 1.4

1 _ 1 0.0 —
2nfh(0)d0-—2.4 und nJh(O)e d0=p .
0

0

Gemiil Bedingung «) des Satz 1 ist also die Voraussetzung des obizon
Satzes erfiillt und daher lim §(r) = p. Wir werden zeigen, dafl dicso

r-» 00

Bedingung auch hinreichend ist. Es gilt also

Satz 3. Unter den Voraussetzungen des Satz 2 reduziert sich das Indila-
tordiagramm dann und nur dann auf eine vertikale Strecke, wenn S(r)
konvergiert. Bezeichnet p den Grenzwert, 8o 1st

-1;- log | #(re'?) | =p cos ¢ + nd |sing | + &(r,p) 1Y) .

Wir zeigen noch, da die Bedingung hinreichend ist. Die verwendcta
Methode erlaubt es, zugleich einen etwas allgemeinern Satz zu bowcizca,
der in gewissen Fillen das Zustandekommen des Indikatordiagramms
in Satz 2 erkldrt. -

15) FuBnote 8, 8. 213. Der Satz wird allgemein fiir den Mitteltypus ganzer Ordzauny
ausgesprochen, vgl. auch Funote 1 o), 8. 178,




Satz 4. Es seien samtliche Nullstellen des kanonischen Produkies m(z)
reell, S(r) beschrdnkt und mit der Bezeichnung der Nr. 1

lim 240) . kim - (1) =Ad . (7.1)

-—_—

Dann st

-%- log |n(ret®) | = S(r) cos @ + nd |sing | 4+ &(r, ¢) *) .
Das Indikatordiagramm ist ein achsenparalleles Rechteck.

Wie im 3. Beispiel der Nr. 4 ist hier das bewegliche Indikatordiagramm
die Strecke mit den Endpunkten S(r) + nt 4, welche durch horizontales
Oszillieren das Rechteck des Satz 4 erzeugt. Bewiesen wird dies aber nur
unter der Zusatzbedingung (7.1). Der allgemeine Fall des Satz 2 konnte
ncch nicht aufgeklirt werden. |

Die Bedingung (7.1) folgt nicht aus der Beschrinktheit von S(r),

agezen, in Verbindung mit (2.4) aus der Konvergenz von S(r). Nach
einem Satz von H. Rademacher'?) ist nimlich dann n_(r) — n_(r) = o(r).
Daraus ergibt sich in Verbindung mit (2.4) die Bedingung (7.1).

Damit ist aber gezeigt, da der noch zu beweisende Teil des Satz 3 in

Satz 4 enthalten ist. )

8. Beweis von Satz 4. Betrachten wir gemdB (6.3) die beiden
IMuktionen F(z) und @(2) in (6.2). Nach (7.1) ist die Bedingung (2.4)
erfillt und daher auf F(z) der Satz A anwendbar. Demnach verbleibt uns
13 eigentliche Aufgabe, das asymptotische Verhalten der meromorphen
Funktion @(z) zu untersuchen. Ihre Nullstellen liegen bei z = 4,, ihre
Pole bei z = — 4, (dabei konnen gewisse Nullstellen und Pole einander
eufheben). Beim Spiegeln am Nullpunkt vertauschen sich die Null- und
Polstellen. Bezeichnet also ¢(z) das kanonische Produkt iiber die Null-
stellen und Pole der positiven reellen Achse, so ist

_ o)
D(2) o= - (8.1)

Es geniigt also ¢(z) zu untersuchen®). Fiir |argz | 0, mit

18) FuBnote 10,

) H. Rademacher, Uber die asymptotische Verteilung gewisser konver-
genzerzeugender Faktoren, Math, Zeitschrift 11 (1921), 8. 276—288; insbes.
Batz 3, 8.279.

18) Im Falle nichtganzer Ordnung vgl. 0. Mdder, Uber das asymptotische Ver-
halten meromorpher Funktionen bei speziell gegebener Null- und Pol-
stellenverteilung, Dissertation Freiburg, 1942,
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At) = n, () — n_(t) , (8.2)
ist

log @(2) %afz log (1 - —i—-) +—;—; - dA(2)

und nach partieller Integration

p: 2
mgwa=-fé%%%n (8.3)
0

Der Untersuchung des Integrals sei folgendes vorausgeschickt. Gemifl
(7.1) und (8.2) existiert eine positive monoton abnehmende Funktion

% (r), so daB
A(ry<n(r).r fir =20 und lim #%(r)=0. (8.4)
-» 00
Nach (2.3) ist

s = [248 - 40 f 40 g
Wir setzen °

Ulr) = f"l(‘) dt . (8.5)

Dann ist
|Ur |€C und | S(r) — U(r)| € n(r) (8.6)

fiir r > 0 und eine Konstante C, ferner
FA) de
|0t = U | =[22G| <nttog & (5.9

fir k>1 und rZrn<ry<kr.
Um nun das Integral in (8.3) abzuschétzen, zerlegen wir es in drei

Teile,
oo 2r kr CJ
f=i+i+i

und bezeichnen die drei Integrale der Reihe nach mit J,, J, und J;.
Dabei ist |z| = r und & > 2.
Durch peartielle Integration folgt zunichst



= Uk 2+ f Ry

| J,| €20k r. (8.8)

und daraus wegen (8. 6)

Bezeichnen wir den Real- und Imaginirteil von t——_l_—?: mit R(f) und

J(t), so ist

Jy = iJ(@)] de .

Im Intervall 2 r £ ¢ < oo sind aber R(t) und J(¢) positiv und monoton
abnehmend. Daher wird nach dem zweiten Mittelwertsatz der Integral-

rechnung
1)
iJ(2r)j ig-)-dt] ,
2r

Jy =122 [R(2r)j§ At(:)

27<€‘<kr, i=—'1,2,

und daraus wegen R(2r) Z€ —, J(27) & —}— in Verbindung mit (8.7)

ﬂlw

| /3| € 4 (log k)-n(r)-r . (8.9)

Das Integral J, wird zerlegt,

2A(t) dt A(t)
J, = ft(t—z) f dt . (8.10)
0
Nun ist wegen (8.4)
s
zA(t) dt

— log (1 —%1)n(0)-r<n(0)k1.r .

J (t—2z
o( )

Fir |argz|>a>0 git |[t—2z]|> sin-e‘-(t-}—r) und daher wegen (8.4
2 g

l f~A(t) de|
t(t—2)

log: nklr) -r< —‘i—f—- n(klr)-r .

iy
;

10



Beide Ungleichungen ergeben in Verbindung mit (8.10) und (8.5)
[tz < [n0k + 55 @] s

Aus (8.8), (8.9) und (8.11) einerseits, aus (8.3), (8.6) und (8.7) ander-
seits folgt dann fiir |argz| >« >0

| logp(z) —28(r)| € (8.12)

(20 + n0)#* + E 9 + (5 108 £+ ) 00)] -+

Bei gegebenem r ist k irgend eine Konstante > 2r. Zufolge (8.4) li8t
sich nun £ derart als Funktion von r wihlen, daB k(r) = oo, 7k-1(r) = o0
und 7 (r) log k(r) - 0, wenn r— oo . Dann strebt die eckige Klammer in
(8.12) gegen null. Nach (8.1) gilt dann fiir jedes x > 0 in beiden Winkel-
riumen « & |argz | € n —«

|log @(2) — 28(r)z| L m(r) -7, limp(r)=0.

r->o0

Daraus folgt gemdB (6.3) und Satz A die Behauptung des Satz 4.

9. Wir befreien uns nun von der Voraussetzung, dal alle Nullstellen
reell seien. Sie sollen im folgenden wieder mit z,, 25, ...,2,=r,e'%, ...
bezeichnet werden. Wir libertragen zuniichst einen Teil des Satz 1.

Satz b. ZEs set das kanonische Produkt

nz) = II (1 ---z--) ™ (9.1)

=] Zn

vom Ezxponentialtypus. Dann sind die Bedingungen

limf—(z-)—=2A, i-—‘-ﬂ:—q-'-‘-l—==nB<oo (9.2)
und " "
3 dx
lim {log |7(2) | - Sp= — 2 C 5 £ oo 9.3)

einander dquivalent und es ist
A=B+C>0. (9.4)

1n



Beweis. Wir setzen .
Flz) = 17(1—3'—) :

n=1 T
Wegen
=) z2
nR) - wn(—2)= 1II (1 ——2—)
Al Zn
wird dann
n(z) w(—2)| & 25 — 22
log Fla) = ”2_“ log 2|

Die Reihe der rechten Seite ist in jedem endlichen Bereich gleichmiBig
konvergent und daher

+R R ) R

: dx ' dx eI L 22 — 22 | dx
2.[ logln(x)lo-fx; =jlog |F(:c)|-aT2 +n>-'1 J log m——l—;a (9.5)
-R -R -R

Wir berechnen die Glieder der letzten Reihe. Die Nullstellen auf der
reellen Achse liefern den Beitrag null. Fiir die andern wihlen wir o > r,,.
1Mt I' bezeichnen wir den geschlossenen Weg von z = + p lings des
Halbkreises | z| = o der obern Halbebene bis z = — ¢ und von dort
lings der reellen Achse bis z = g, indem wir die Stellen z = 4 », und
z= 0 durch kleine Halbkreise der obern Halbebene umgehen. Wir

2 3

n
72 — 3

partielle Integration folgt dann, indem wir beachten, daB ¢ () lings
I’ um 27¢ zunimmt,

L _2mi L) dl
éﬁ""‘) 2 e TP T T

27 2n1

=~ Tri(cst, im0,

setzen ¢ ({)=Ilog

und integrieren ¢@({)-{-? lings I. Durch

Fir g— oo strebt das Integral iiber den Halbkreis gegen null. Danach ist
+ o0

i za — 2 | dz | sin 6, |
Jlog e B (9.6)

=~ Q0

Der Integrand in (9.6) ist positiv oder identisch null. Die Glieder der
Reihe in (9.5) sind daher nie negativ, monoton wachsend und streben
gemiB (9.6) gegen den Grenzwert 2% —I-sl:—gl‘—', wenn R gegen unendlich
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geht. Es strebt also die Reihe in (9.5) gegen 2x Z Isin G|

Nl
giiltig, ob die letztere konvergiert oder zu + oo dxvergxert Anderceits

ist die Anzahlfunktion der Nullstellen bei F(z) gerade doppelt so gro8
wie bei n(z), also gleich 2 - n(r) und daher nach Satz 1

, gloich-

: 1
lim ) “—E’“gﬂ;f log |F(z)l--d;?-, (9.7)

r->00 r

sofern einer der Grenzwerte existiert und endlich ist. Beim Grenz-

iibergang R —oco wird somit aus (9.5)
R

lim log\n(x)ldx= = im nin +x X Asinbn | . (9.8)
R o0 x? 2 (& X Nml rn
-R

Dies ist so zu verstehen: a) Wenn der Grenzwert (9.7) existiert und
endlich ist, so strebt die linke Seite von (9.5) gegen einen Grenzwert
oder gegen -+ oo, je nachdem die Reihe in (9.8) konvergiert oder zu + oo
divergiert; b) wenn der Grenzwert auf der linken Seite von (9. 8) existiert
und erdlich ist, und zugleich die Reihe konvergiert, so existiert auch der
Grenzwert (9.7). In beiden Fillen gilt die Gleichung (9.8) bzw. (9.4).

Aus (9.2) folgt also (9.3). Umgekehrt folgt nach einem Resultat von
N. Levinson'?) aus (9.3) zunéchst der zweite Teil der Bedingung (9.2),
néamlich

-

¥ Mﬂ_‘-:n3<oo. (9.9)

ne=1 Tn

In Verbindung mit (9.8) ergeben dann (9.3) und (9.9) zusammen auch
den ersten Teil der Bedingung (9.2). Damit ist der Satz bewiesen.
Aus dem Beweis ergibt sich zugleich, daB unter der Voraussetzung

(2.4) der Grenzwert
R

lim_[log | mlee) | - (— get) | -2

R->00
0

fiir alle ¢ existiert, aber nur dann fiir ein ¢ endlich wird, wenn gemé3
(9.9) die Nullstellen hauptsichlich in dieser Richtung ¢ liegen®?).

19) FuBnote 1 f). Dieses Resultat, das von Levinson in schwacherer Form auszcsprochica
wurde, ergibt sich aus dem Beweis von Lemma 9.1, 8. 28, der’'nur beaitzt, dz8 =(z)
vom Exponentialtypus ist und das Integral auf der linken Seite (9.5) bei R - bo-
schrankt bleibt.

20) Dies verallgemeinert in Verbindung mit (9.4) einen Satz von Paley und Wiener,
vgl. FuBnote 1 b), Satz 13, S. 76.
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10. Nun fithren wir unsere allgemeine Aufgabe durch folgenden Hilfs-
satz auf den Fall reeller Nullstellen zuriick.

Tiligsatz. Das kanonische Produkt m(z) sei eine ganze Funktion vom
Exponentialtypus, deren Nullstellen der Bedingung (9.2) genugen Wir

setzen J.,,=+r,,,wenn—-—72f-<0,,<-g—,2,,= , Wenn —- <9 ,
Bry= X 21, Sn= X i,, (10.1)
lenlZr A | Zr
und
=
n, (2) = H(l - -;-) e™ . (10.2)
=] n

Dann gibt es fir jedes a>0 zwei Funktionen &(r,a) und h(r,«) mit

lim e(r,«) = lim A(r,x) =0,

- 00 7 - 00
so daf die Ungleichung
K (z)

“o (z)

im ganzen Bereich |z| < R, « € |argz| <€ nn — o erfullt 1st, und die
entgegengesetzte Ungleichung

2 (2)
log l 70 (@)

wn demselben Bereich gultig ist, ausgenommen in einem System von Kreis-
lein, deren Radiensumme < h(R, «) R ist.

log — Rz[S2R) — S,(2R)] <¢(R,x)-R (10.3)

—~ Rz [S(2R) — 8,(2R)] > —¢(R,x)- R (10.4)

Daraus folgt sofort unser Hauptresultat. Erfiilllt ndmlich =(z) die
Bedingungen (9.2) oder (9.3), so gelten fiir 7, (2) gemil (10.2) die Vor-
cussetzungen des Satz 2 2'). Bezeichnen wir die Real- und Imaginirieile
von S (r) mit S'(r) und S8”(r), ist also S(r) = 8’(r) +18”(r), so strebt
8”(r) wegen (9.2) gegen einen Grenzwert. Deshalb ist mit S(r) auch
8’(r) und S,(r) konvergent und umgekehrt (vgl. (11.5)). Anderseits ist
rach dem Hilfssatz das asymptotische Verhalten von #(z) und =, (z) im
wesentlichen analog. Insbesondere darf unter der Voraussetzung (7.1)
nach {8.6) und (8.7) in (10.3) und (10.4) S(2R) und S,(2R) durch
S {r) und S, (r) ersetzt werden, wenn k- R < r < 'R ist und % hinreichend
2nzzam gegen oo strebt. Daher folgt aus den Sitzen 2, 3 und 4 mit S, (r)
22 Stelle von S(7).

) 8(r) und Sy (r) sind gleichzeitig beschrankt [vgl. (11.5)].




Satz 6. A. Das kanonische Produkt n(z) ser eine ganze Funktion vcin
Exponentialtypus und eine der Bedingungen (9.2) oder (9.3) ses erfalls.

Dann ist das Indikatordiagramm von der Breite 2nA. Es reduziert sich
dann und nur dann auf eine vertikale Strecke, wenn S(r) konvergiert.
Bezeichnet p’ — 1p” diesen Grenzwert, so ist

h(p) =p cosp + p”" singp 4 nd |sing| .
B. Unter der Zusatzbedingung (7.1) gilt
%log | (ret?)| = 8'(r) cos p — 8"(r) sin p + =4 |singp| + €(r, ¢).

Dabei ist auf jedem Strahl arg z=¢ limsup e(r,p)=0 und tberdies

r->
lim &(r, @) =0, wenn r auf einer geeigneten Menge von linearer Dichte 1
gegen unendlich strebt %2).
Das Indikatordiagramm ist ein achsenparalleles Rechteck.

Auch hier ist nach B das bewegliche Indikatordiagramm die
Strecke mit den Endpunkten S(r) 4+ nt4. Weil 8”(r) konvergiert,
oszilliert diese Strecke im wesentlichen horizontal und erzeugt deshalb
asymptotisch ein achsenparalleles Rechteck.

11. Beweis des Hilfssatzes in Nr. 10. Nach Vorgabe eines
beliebig kleinen 6 > 0 teilen wir die Ebene ein in die Winkelrdume
Wi(largz|<Z 6, |mn—argz|< 6) und W' (< |argz|<n—4). Die
Nullstellen in W’ bezeichnen wir mit 2/, jene in W” mit 2/, ihre Anzchl-
funktionen entsprechend mit n’(r) bzw. »n”(r). Es gibt dann eine in r
monoton abnehmende Funktion 7(r, d), so daB fiir jedes 6 > 0

n”(r)(n(r,é)-r' und lim %(r,d8) =0 (11.1)
P -> 00
© 1
ist. Denn wegen |sinf,|>sind ist X —; konvergent und daher
n=1 ‘n
lim lf,— =0 .

i2) Falls S (r) konvergiert, ist #(z) von ,,reguladrem asymptotischen Verhalten*,
Es wird also im vorliegenden Falle durch Satz 6 eine Frage beantwortet, welche unter
andern Bedingungen in einer frithern Arbeit [Comm. Math, Helv., 14 (1942), 8. 314—349)
behandelt wurde. Ist nimlich die ganze Funktion vom Exponentialtypus und rezulircm
asymptotischen Verhalten, so ist die Nullstellenverteilung ,,me8bar* und S(r) kon-
vergent. Sind nun umgekehrt die MeBbarkeit der Nullstellenverteilung und die IZon-
vergenz von S(r) auch hinreichende Bedingungen fiir regulires asymptotisches Verhalicn
des zugehtrigen kanonischen Produktes? Falls die Nullstellen nach Ma8gabe von (9.9)
hinreichend genau in Richtung der reellen Achse liegen, ist gemiB Satz 6 diese Frage zu
bejahen.
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Im folgenden sei |z2| =r <& R. Wir setzen

log Hiz) = ¥ (log (1— -;z:) +;z:) -y (log (1-——-%)-{-;:) ,

ra>2R ra>2R
Ple)= IT (1 -'i,) bzw. P(z) = II (1-.‘;,.) (11.2)
r:‘ZaR " r:zm " '
und '
Q' (2) = 'IT (1 — —;7) bzw. Q"(z) = IT (1 -——-z-,7) . (11.3)
' r22R n fh 2R "

Dann ist nach (9.1); (10.1) und (10.2)

log 7 (2) =z[S(2R)-—So(2R)]+logg,,,f+log—g+logH. (11.4)

7o (2)

Wir schitzen die drei letzten Glieder ab.

Zunichst ist

1 1] |1—]cosf,|—1ts8inb, lgin @, |
‘Z——I-"— = rn <3'— rn e——" Y (11.5)
also gemaB (9.2) die Reihe :\:j (-;1- —_ —):1—) absolut konvergent. Es folgt
1 n n

1 1
A 1 1
log Hiz)= % log | 1— 22 %n z (—_---) .
g ) r,?)‘m . 2 + ru%R Zn ;'u

1 — =

A

Wegen |2| € R und —;—z-!<% ist aber

-]
Z, A, 1 1
ol e A PR
und daher " .
llog |Hiz) || or 5 5ROl
f”>28 rn

Es gilt also fiir |z| < R
|log |H@) || < m(B)- R, lim p(B)=0 .  (11.6)
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!
Zur Abschiatzung von log —g—; bezeichnen wir mit C, den Bozen

t=r! et®, der 2, mit A, verbindet. Sei ferner « > 0 und é< -5;;.

Fir a<larg z|€nx—a« und { auf C, gilt dann |[{—2|>
sin% (r + r,) und daher

or 1 3) (- 5|

Wegen (11.2), (11.3) und »/(r) € K.r wird dann

[@al< e
501 & r+r,

P’ ’,.R
ic ‘ i‘-zj = (11.7)
: :
2o e

/
<k6—I§-—-R fir A 'R<Z |2| € Rund « € |argz| € —« .

/N
Zur Abschitzung von log 2,7 erinnern wir an einen bekannten Satz

von Bourtroux und Cartan, wonach fiir jedes H >0

N N
a-% >(—§—) . (|2 2 B) (11.8)
Nl é

ist auBerhalb eines Systems von hdchstens N Kreislein mit der Ra-
diensumme < 2H .

In entgegengesetzter Richtung folgt aus (11.1) fiir k'R < |2| £ 2R

2R
log | P"(z) || 2R\ L,
log | @"(2) | ﬂfhg(l* r)ano-
iR 2R 1 .
= log z.n”(23)+23(f +f) t_‘_w..”t(‘) dt< (11.9)
0 R '

< K" [7(2R,8) +n(k'R, 8) + k]-R .
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7it H=2FR folgt dann nach (11.8) und (11.1) in Verbindung mit
(11.9) die Ungleichung

lor | 2G| 2 g 1 R 1R, 3) + k1. R
QIQ,,(Z)!;<K [+ [logh]) n(2R, 8) + n( ,~)+(u]10)

im ganzen Kreisring k-'*R £ | z| € 2R, ausgenommen ein System von
Kreislein mit der Radiensumme € 4 A R.

Gemail (11.1) lassen sich nun 8, £ und A derart als funktionen von R
wihlen, daB fir R—oo gilt 8(R)—>0, 5(R,4(R))—>0, A(R)—0,
{logh(R)|-n(2R,4(2R))—>0, k(R)—>oo , k(R)O(R)—>0 und
Rk-1(R)—>oo . Es existiert dann nach (11.4), (11.6), (11.7) und (11.10)
fur jedes « > 0 eine Funktion ¢(R,a) mit lim ¢(R,«) = 0, so daB

R»e
(10.3) und (10.4) im ganzen Bereich |[z2|Z R, a € | arg z| L n —«
erfillt sind bis auf ein System von Kreislein mit der Radiensumme
(4h(R)+ k2 (R)R. Da-"?L in der obern und unten Halbebene

o (2)
reguldr ist, so gilt wegen des Maximumprinzips (10.3) im ganzen Bereich

2| € B, a € |argz| € n — «, sofern R geniigend groB ist.

(Eingegangen den 18. Mirz 1943.)

18



	Über gewisse ganze Funktionen vom Exponentialtypus.

