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Ûber gewisse ganze Funktionen

vom Exponentialtypus

Herrn Carathéodory zum siebzigsten Oeburtstage gewidmet!

Von A. Pfluger, Fribourg

1. Den lAnlafi zur vorliegenden Arbeit gaben die Untersuohungen von
R. Paley und N. Wiener, if. L. Cartmright und N. Levinson1) ûber ganze
Funktionen vom Exponentialtypus2).

Wir bezeichnen dièse Funktionen mit n(z)t ihre von null verschiedenen
Nullstellen, dem Betrage nach geordnet, mit zlt z2t zn rnei0nt...,
mit n (r) ihre Anzahl in | z | ^ r und mit n+(r) bzw. njjr) ihre Anzahl in

lzKr» -~ir< ar82^"K- bzw- "ir <arg2< -jT- Die Funktion
z z z z

h(q>) Km sup — log | 7t(reiv) \

heiBt Indikator oder Strahltypus und ist Stûtzfunktion eines konvexen
Bereiches, des Indikatordiagrammes der Funktion n(z).

Das Hauptresultat der genannten Untersuchungen8) lautet dann:

Voraussetzung 1. Das Indikatordiagramm von n(z) ist tint Strecke

auf der imaginârtn Achse.

Voraussetzung 2. Der Orenzwert lim J log \n(x) • n(—a:) | •—j

txistiert1) und ist endlich.

l) a) R. Paley and N. Wiener, On entire funotions, Trans. Amer. Math. Soo. 35
(1933).

b) —, Fourier Transforma in the Complex Domain, Amer. Math. Soc. ColL
Pub. 19 (1934), chap. 5.

o) M. L. Cartwright, On funotions which are regular and of finite order
in an angle, Proc. London Math. Soo. (2) 38 (1935), p. 158—179.

d) —, On certain intégral functions of order 1 and mean type, Proo.
Cambridge Phil. Soc. 34 (1935), p. 347—350.

e) N. Levinson, On the closure of jelXfl*j and intégral funotions, Proo.
Cambridge Phil. Soc. 31 (1935), p. 335—346.

f) —t Gap and Density Theorems, Amer. Math. Soc. Coll. Pub. 26 (1940).
*) d. h. ganze Funktionen fur die | n(z) \ < tK ^ iat.
*) Fur gerade Funktionen stammt das Résultat von Paley und Wiener, fur beliobi^oa

n (z) wurde es von Cartwright und Levinson bewiesen, zun&ohst mit andern Voraus-

setzungen, welche die obigen in sioh sohlieûen. Fur die vorliegende Form vgL N. Levinson
in FuÛnote 1 f S. 25.

*) x und y sind im folgenden immer reelL
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Behauptung.

a) lim JL^L 2 A > 0

b) lim + lim —^ A
7* r-*eo

C) £ |8ine"
n-1 Tn

Die Behauptung a) besagt, daB die NuUsteilen die Dichte 2 A besitzen;
gemàB b) sind sie in der rechten und linken Halbebene gleich dicht und
nach c) schlieBlich liegen sie hauptsâchlich in Richtung der reellen
Achse.

Wir stellen die Frage, welchen Anteil jede der Voraussetzungen am
Zustandekommen der drei Behauptungen hat. Ist vielleicht die erste

Voraussetzung ùberflùssig? Wenn nicht, worin kommt sie in der Behauptung

zum Ausdruck? In der Tat werden wir zeigen, daB aus Voraussetzung

2 allein schon die Behauptungen a) und c) folgen und umgekehrt,
und daB erst die Voraussetzung 1 die Behauptung b) nach sich zieht. Als
Ganzes laBt sich der Satz nicht umkehren. Dazu ist die Behauptung b) zu
schwach. Wodurch ist sie dann zu ersetzen, damit der Satz umkehrbar
wird? Oder welches ist unter den Voraussetzungen a) und b) die not-
wendige und hinreichende Bedingung dafûr, daB sich das Indikator-
diagramm auf eine Strecke der iraaginâren Achse, oder allgemeiner, auf
eine vertikale Strecke reduziert

2. Die Produktdarstellung ganzer Funktionen der Ordnung 1

• 5 (l-JL^e*, (2.1)
n-l

zeigt, daB die Lage jeder einzelnen Nullstelle schon einen wesentlichen
EinfluB auf das Wachstum der ganzen Funktion hat ; und nicht erst ihre
asymptotische Verteilung, wie dies bei nichtganzer Ordnung der Fall ist.
Diesbeziigliche Untersuchungen von Wiman, Pringsheim, Lindelof und
Cartwriqht*) haben gezeigt, daB der Ausdruck

•) A. Wiman, Arkiv fôr Matematik, Astronomi och Fysik, 1 (1904).
A: Pringsheim, Math. Ann. 58 (1904).
E. Linddôj, Sur les fonctions entières d'ordre entier, Annales soi. de l'Ecole

Normale (3) 22 (1905), p. 369—395.
M. L, Cartwright, Intégral fonctions of intégral order, Proc. London Math.

Soc. (2) 33 (1932), p. 209—224.



hier von ebenso groBer Bedeutung ist wie die Anzahlfunktion n(r).
Innerhalb der gegebenen Voraussetzungen werden wir also genau &b-
zuklàren haben, welche Rolle der Funktion 8{r) beim Zustandekommen
des Indikatordiagrammes zugewiesen ist.

Der Faktor zm • e**6* in (2.1 bewirkt nur eine Parallelverschiebung des

Indikatorctiagramms. Wir lassen ihn weg und beschranken uns auf
kanonische Produkte der Form

i
n(z)=n (l-i-)e1". (2.2)

Dann wird
S(r)= 2 «C1 • (2-3)

Die Bedingung

lim JtSlL — 2A (2.4)

soll als Grundvoraussetzung im folgenden immer erfûllt sein.
Zunâchst behandeln wir den Fall ganzer Funktionen mit lauter reellen

Nullstellen und setzen dann zn Xn.

3. Beginnen wir mit der Betrachtung zweier entgegengesetzter Spezial-
falle. Wohlbekannt ist die Situation bei symmetrisch gelegenen
Nullstellen.

Satz A. Es sei

Die Anzahlfunktion der reellen Zahlenfolge { An} genûge der Bedingung (2.4).

Dann ist fûrtp^O und n *)

lim — log \F(re<*) \ =2nA \ sinç? | • (3.2)
r-*co f

Hier ist das Indikatordiagramm die vertikale Stocke mit den End-
punkten ± 2niA.

Der andere Spezialfall — unsymmetrische Lage, ,,wenige" Nullstellen
— stammt von M. L, CartwrigU 7).

•) Der Grenzwert existiert auoh fur ç> ¦¦ 0 und n, wenn r auf einer geeigneten Mengo
von linearer Dichte 1 gegen oo strebt.

7) in Fuûnote 5, S. 212. Der Satz wird dort aUgemein fur den Mitteltypua gansor
Ordnungen ç und beliebige Nullstellen mit n(r)~o (r9) auggeeprochen.



Sciz B. Sei die Funktion

vom Exponentialtypus, ihre Nullstellen reell und n(r) o(r).
Dann ist fur 9? # 0 und n 8)

lim (— log | f(re**) | — S(r) cos <p) « 0

Mit lim sup 8(r) p + q und lim inf S(r) p — q folgt dann
r-*»oo r->oo

lim sup — log |/(r***) | p cos ç? + q \ cos ç? | (3.3)
r-^oo **

Hier ist das Indikatordiagramm eine Strecke auf der reellen Achse. Dièse

Strecke reduziert sich dann und nur dann auf einen Punkt, wenn S(r)
konvergiert. Insbesondere ist es der Nullpunkt, wenn die Nullstellen
symmetrisch liegen.

4. Das asymptotische Verhalten der beiden Funktionen F(z) (Satz A)
und f(z) (Satz B) ist von wesentlich verschiedenem Charakter. In (3.2)
existiert der Grenzwert fur aile <p ^= 0 und n, in (3.3) dagegen nur fur

9= db -jr9)* Deutlicher wird der Unterschied bei folgender Schreibweise :

2

-i log \F(rei*)\ 27zA\8in<p\+e(r,<p)">) (4.1)

y log | f(re<*) | S(r) cos <p + e(r, <p) (4.2)

Dio Funktionen 2 71A \ sin <p \ und S(r) cos q> charakterisieren das
asymptotische Verhalten von F(z) bzw. f(z). Beide, als Funktionen von <p, sind
Siùtzfunktionen konvexer Bereiche, einer Strecke bzw. eines Punktes.
Jjiq erste Funktion hângt nur von 9? ab, die zweite auch von r. Wâhrend
bei r-^oo die Strecke also fest bleibt — ,,festes Indikator-
dicgramm — -wandert der Punkt auf der reellen Achse hin und her und
charakteiisiert fur jedes r durch seine Lage das Verhalten der Funktion -—

,,bewegliches" Indikatordiagramm.
8) vgi. FuCnote 6.

•) Bofcrn die Strecke sich nicht auf einen Punkt reduziert.
10) Fixe <p?£0 und n gilt lim t (r, g>) — 0. Es strebt ê(r, tp) auch fur ç>—0 und n gegen

r-fr-oo
Null, wenn r auf einer geeigneten Menge von linearer Diohte 1 gegen m strebt.



Kombinieren wir nun Satz A und B der Nr. 3 durch Betrachtung des

Produktes n(z) f(z)-F(z). GemâB (4.1) und (4.2) gilt

— log | n(re^) | S(r) cos <p + 2nA | sin <p | + e(r,<p)ll)

Hier ist das bewegliche Indikatordiagramm die Strecke mit don End-
punkten S (r) ± 2niA ; sie ist parallel zur imaginaren Achse und von
konstanter Lange 4tnA> wâhrend ihr Mittelpunkt S(r) auf der rccîlca
Achse hin und her wandert. Bei gleichen Bezeichnungen wie am SchluS
der Nr. 3 ist dann

p cos <p + q\ cos <p \ + 2 nA \ sin <p \

Das feste Indikatordiagramm ist also ein achsenparalleles Rechteck,
durch die bewegliche Strecke ,,erzeugt" wird.

Das letztere Beispiel zeigt, daB der Satz in Nr. 1 nicht umkehrbcx ict.
Denn die Nullstellen von n(z) erfûllen die Bedingungen a), b) und c) der
Nr. 1, aber das Indikatordiagramm ist im allgemeinen ein Rechteck.
Erst wenn S(r) konvergiert, reduziert es sich auf eine vertikale Strcoko.
Dies lâBt aber bereits vermuten, daB die Konvergenz von 8(r) die ge-
suchte notwendige und hinreichende Bedingung ist.

5. Zunachst wollen wir zeigen, daB bei reellen Nullstellen die Bedingung
(2.4) mit zwei andern gleichwertig ist.

Satz 1. Sâmtliche Nullstellen des kanonischen Produktes

seien reeU. — Dann sind die Bedingungen

nA »

R

y) lim f log 17t(x)

einander àquivalent.

n) vgl« Anmerkung 10.

^*) XJmgeht man don Nullpunkt zun&ohst duroh einon kleinen S&Ibkrois, dosson Rs£uU

ra&n dann gegen Null etreben l&Ût, so erkennt man wegen x (0) — 1 sofort, ds-3 ûs
Intégral bei x ¦¦ 0 konvergiert.



Der Satz ist eine triviale Verallgemeinerung des bekannten Résultâtes

von Paley und Wiener19) im Falle symmetrischer Nullstellenverteilung
und wird durch die Betrachtung der Funktion

auf letzteres zuruckgefûhrt. Ersetzen wir nàmlich in <%, /?, y die Funktion

n{z) durch F(z) und die rechten Seiten durch By tcB und — n2B, so
orhalten wir die Bedingungen von Paley und Wiener. Die letztern sind
aber mit B 2A den obigen Equivalent, was sich direkt bzw. aus
| n(— iy) | — | n(iy) | sofort ergibt.

In diesem Satze wird von der Funktion nur verlangt, daB sie vom
GcQchîecht ^ 1 sei, also die Reihe Z Ka konvergiere. Der Satz ist auch
auf ganze Funktionen vom Maximaltypus der Ordnang 1 anwendbar,
z. B. die reziproke Gammafunktion.

Die Âquivalenz der Bedingungen <x> /?, y gilt unter der Voraussetzung,
daB die NulLstellen reell sind. Im allgemeinen ist Bedingung y die stârkere
(vergleiche Nr. 9).

6. Wir nehmen den Gedanken am SchluB der Nr. 4 wieder auf und
beweisen

Satz 2. Sâmtliche Nullstellen des kanonischen Produktes n(z) seien reell,
eine der Bedingungen <xt fi, y in Satz 1 erfûllt und S(r) beschrânkt.

Dann ist n(z) eine ganze Funktion vom Exponentialtypus und dos

Indikatordiagramm von der Breite 2nA, nàmlich

h(±%)=nA (6.1)

Beweis : Nach einem Satz von E.Lindelàfu) ist eine ganze Funktion

dann und nur dann vom Exponentialtypus, wenn S(r) und —— fur

t -? oo beschrânkt sind. Der Rest ergibt sich aus Bedingung /? des
Satz 1 oder aus folgender Betrachtung.

Wir setzen

F(z) n(z)-n(— z) 0(z) ^ (6.2)

Dann ist
n*(z) ^F(z) -0(2) (6.3)

u) Fuûnote 1 b), S. 70 und 74.
u) Fufînote 5, S. 375.



Das Verhalten von i^z) ist nach(Ô.l) und Satz A bek&nnt.
0(z) 0(i) und 0(z) • #(- 2)= 1 ist \0(iy)\ 1. DaraUs fol^t (6.1).

7. Wann ist nun das Indikatordiagramm eine vertikale Strecke? Eino
notwendige Bedingung ergibt sich sofort aus folgendem Satz von
M. L. Cartwright ") : Oilt fur eine ganze Funktion vom ExponentiaUypvs

* çmd9.
80 %St

lim S(r) — Çhid)*

Seien also die Voraussetzungen des Satz 2 erfûllt und das Indikator*
diagramm eine vertikale Strecke. Dann ist wegen (6.1)

h(<p) p cos <p + nA | sin q> |

und daher

• 2w lir
ô 2^i und — | A(ô).e-<d • dd

Gemâû Bedin,gung <x) des Satz 1 ist also die Voraussetzung dos obijon
Satzes eiiullt und daher lim S(r) p. Wir werden zeigen, daS dieso

Bedingung auch hinreichend ist. Es gilt also

Satz 3. Unter den Voraussetzungen des Satz 2 reduziert sich das

Indikatordiagramm dann und nur dann auf eine vertikale Strecke, wenn S(r)
konvergiert. Bezeichnet p den Grenzwert, so ist

— log | n(rei9) \ p cos <p + nA \ sin9 | + e(rt <p) xi)

Wir zeigen noch, daû die Bedingung hinreichend ist. Die verwendcta
Méthode erlaubt es, zugleich einen etwas allgemeinern Satz zu bowcicca,
der in gewissen Fâllen das Zustandekomxnen des Indikatordiagramma
in Satz 2 erklârt.

u) Fuûnote 5, S. 213. Der Satz wird allgemein fur den Mitteltypui ganzer
ausgegproohen, vgl. auoh Fuflnote 1 0), S. 178.



Satz 4. Es seien sâmtliche Nvllstellen des kanonischen Produktes n(z)
reell. S{r) beschrânkt und mit der Bezeichnung der Nr. 1

Dann ist

— log | n(reiip) | S(r) cos w + nA | sin <p \ + e(r, <p) ie) •

Da3 Indikatordiagramm ist tin achsenparalleles Bechteck.

Wie im 3. Beispiel der Nr. 4 ist hier das bewegliche Indikatordiagramm
die Strecke mit den Endpunkten S(r) ±:7iiA, welche durch horizontales
Oszillieren das Rechteck des Satz 4 erzeugt. Bewiesen wird dies aber nur
unter der Zusatzbedingung (7.1). Der allgemeine Fall des Satz 2 konnte
ncoh nicht aufgeldart werden.

Die Bedingung (7.1) folgt nicht aus der Beschrânktheit von S(r),
dcige^en, in Verbindung mit (2.4) aus der Konvergenz von S(r). Nach
einem Satz von H. Rademacher17) ist nàmlich dann n+(r) — w.(r) o(r).
Daraus ergibt sich in Verbindung mit (2.4) die Bedingung (7.1).

Damit ist aber gezeigt, daû der noch zu beweisende Teil des Satz 3 in
Satz 4 enthalten ist.

8. Beweis von Satz 4. Betrachten wir gemàB (6.3) die beiden
Funktionen F(z) und <P(z) in (6.2). Nach (7.1) ist die Bedingung (2.4)
erfûllt und daher auf F(z) der Satz A anwendbar. Demnach verbleibt uns
&Î3 eigentliche Aufgabe, das asymptotische Verhalten der meromorphen
?unktion &(z) zu untersuchen. Ihre Nullstellen liegen bei z An, ihre
Pôle bei z — An (dabei kônnen gewisse Nullstellen und Pôle einander
aufheben). Beim Spiegeln am Nullpunkt vertauschen sich die Null- und
Polstellen. Bezeichnet also cp(z) das kanonische Produkt ûber die Null-
stellen und Pôle der positiven reellen Achse, so ist

Eo genûgt also <p(z) zu untersuchen18). Fur | arg z \ # 0 mit
18) Fuûnote 10.
17) H. Rademacher, "Cher die asymptotische Verteilung gewisaer konver-

gônzorzeugender Faktoren, Math. Zeitschrift 11 (1921), S. 276—28S; insbes.
Sais 3, S. 279.

X8) Im Falle niohtganzer Ordnung vgl. O. Mâder, Ûber das asymptotisohe
Verhalten meromorpher Funktionon bei apeziell gegebener Null- und Pol-
«tellonverteilung, DisaerUktion Fnaiburg, 1942.

8



A(t) n+(t) - n.(t) (8.2)
ist

00

log <p (2) J j log (î - -i) + -1J. dA(t)
0

und nach partieller Intégration

Der Untersuchung des Intégrais sei folgendes vorausgeschickt. GemaB

(7.1) und (8.2) existiert eine positive monoton abnehmende Funktion
r>{r), 80 daû

A(r)<ri(r).r fur r>0 und lim rç(r) O (8.4)

Nach (2.3) ist

0 0

Wir setzen

f^dt. (8.5)
0

Dann ist
I #(r) I < 0 und | S(r) — U(r) | < t)(r) (8.6)

fur r > 0 und eine Konstante C, ferner

(2^I rA{t) d
i?(r).log h (8-7)

fur k > 1 und r ^rx<r%^kr
Um nun das Intégral in (8.3) abzuschàtzen, zerlegen wir es in drei

Teile,
2r ht oo

und bezeichnen die drei Intégrale der Beihe nach mit Jx> J% und Jt.
Dabei ist | z \ r und k > 2.

Durch partielle Intégration folgt zunachst

9



I
kr

und daraus wegen (8.6)
(8.8)

Bezeichnen wir den Real- und Imaginàrteil von mit R(t) und

so isfc

kr

Im Intervall 2 r < t < oo sind aber R(t) und J(t) positiv und monoton
abnehmend. Daher wird nach dem zweiten Mittelwertsatz der Integral-
rechnung

2r

i 1, 2

3 1
und daraus wegen S(2r) < —, J(2r) <— inVerbindung mit (8.7)

(8.9)

Bas Intégral Jt wird zerlegt,

Nun ist wegen (8.4)

larg3|>*>0 gilt \t - 2 | > sin-£(* + r) und daher wegen (8.4)



Beide Ungleichungen ergeben in Verbindung mit (8.10) und (8.5)

r (8.11)

Aus (8.8), (8.9) und (8.11) einerseits, aus (8.3), (8.6) und (8.7) ander-
seits folgt dann fur | arg z\ > a > 0

|logç>(z)-2,S(r)|< (8.12)

v(0) r1 + ^
Bei gegebenem r ist k irgend eine Konstante > 2r. Zufolge (8.4) lâBt

sich nun k derart als Funktion von r wâhlen, daB k (r) -* oo, rk~l (r) -> oo
und r](r) log k(r) -> 0, wenn r->oo Dann strebt die eokige Klammer in
(8.12) gegen null. Nach (8.1) gilt dann fur jedes oc > 0 in beiden Winkel-
raumen <x ^ | arg z \ ^ n — <%

| log 0(z) — 2S(r)z | < ^(r) • r, lim ^(r) 0

Daraus folgt gemâB (6.3) und Satz A die Behauptung des Satz 4.

9. Wir befreien uns nun von der Voraussetzung, daB aile Nullstellen
reell seien. Sie sollen im folgenden wieder mit zlt z2,..., zn rnei0nt...
bezeichnet werden. Wir ùbertragen zunâohst einen Teil des Satz 1.

Satz 5. Es sei dos kanonische Produkt

vom EzponentiaUypus. Dann sind die Bedingungen

lim JLilL 2A S m ia nB<oo (9.2)

und
M

lim I log I n(x) | • -ji— — ^ C ^ ± <*> (9»3)

einander équivalent und es ist

A » B + G > 0 (9.4)

11



Beweis.

Wegen

wird dann

Wir setzen

log n{x)-n{-
F(x)

n
n—

2)

X)

il 1

L \ *fl /
CA I1
/7 1-
n-l \

QO

n-l

i)
z%

ri
-X*

£Ï

Die Reihe der rechten Seite ist in jedem endlichen Bereich gleichmàfiig
konvergent und daher

+R R

2 flog|*(*)!•§= flogl^*)!!
J x* j
Wir berechnen die Glieder der letzten Reihe. Die Nullstellen auf der

reellen Achse liefern den Beitrag null. Fur die andern wàhlen wir q > rn.
Hit F bezeichnen wir den geschlossenen Weg von z + q lângs des
Halbkreises | z \ q der obem Halbebene bis z — q und von dort
langs der reellen Achse bis z q indem wir die Stellen z ± rn und
2 0 durch kleine Halbkreise der obem Halbebene umgehen. Wir

22 — Ca
setzen ç>(C) log-£ und integrieren ç?(f) • C"2 làngs J'. Durch

partielle Intégration folgt dann, indem wir beachten, dafl <p(Ç) lângs
F um 2jrt zunimmt,

2tti
" "F" rn e,,-H

Fur - co strebt das Intégral ùber den Halbkreis gegen null. Danach ist

I sin 0n I

Jlog
dz
IF (8.6)

Der Integrand in (9.6) ist positiv oder identisch null. Die Glieder der
Reihe in (9.5) sind daher nie negativ, monoton wachsend und streben

gernaû (9.6) gegen den Grenzwert 2k-'8m w' wenn B gegen unendlich

12



geht. Es strebt also die Reihe in (9.5) gegen 2n .£ — gloich-

gùltig, ob die letztere konvergiert oder zu + oo divergiert. Andercoits
ist die Anzahlfunktion der Nullstellen bei F{z) gerade doppelt so groB
wie bei n(z)t also gleich 2 • n(r) und daher nach Satz 1

R
n(r) 1 r dxlim—i-Lsa— _-. lim I log |jp(a5)|._f (9.7)

sofem einer der Grenzwerte existiert und endlich ist. Beim Grenz-
ûbergang R -*oo wird Romit aus (9.5)

lim
-R

im flog|»(,)|^--^li«4>. + J«iJ^i. (9.8)

Dies ist so zu verstehen: a) Wenn der Grenzwert (9.7) existiert und
endlich ist, so strebt die linke Seite von (9.5) gegen einen Grenzwert
oder gegen -f oo, je nachdem die Reihe in (9.8) konvergiert oder zu + oo

divergiert ; b) wenn der Grenzwert auf der linken Seite von (9.8) existiert
und endlich ist, und zugleich die Reihe konvergiert, so existiert auch dor
Grenzwert (9.7). In beiden Fâllen gilt die Gîeiohung (9.8) bzw. (9.4).

Aus (9.2) folgt also (9.3). Umgekehrt folgt naoh einem Résultat von
N.Levinson19) aus (9.3) zunachst der zweite Teil der Bedingung (9.2),
nâmlich

±U™lAoo. (9.9)

In Verbindung mit (9.8) ergeben dann (9.3) und (9.9) zusammen auch
den ersten Teil der Bedingung (9.2). Damit ist der Satz bewiesen.

Aus dem Beweis ergibt sich zugleich, daû unter der Voraussetzung
(2.4) der Grenzwert

lira

R

flog

fur aile q> existiert, aber nur dann fur ein q> endlich wird, wenn g©m£3
(9.9) die Nullstellen hauptsâchlich in dieser Richtung ç> liegenaa).

li) Fuûnote 1 f Dièses Résultat, dos von Levinson in sohw&cherer Form ausgesprochen
wurde, ergibt sich aus dem Beweis von Leznma 9.1, S. 28, der'nur benûtzt, dzQ x{z)
vom Exponentialtvpus ist und das Intégral auf der linken Seite (9.6) bei B -? » bo-
sohrankt bleibt.

t0) Dies verallgemeinert in Verbindung mit (9.4) einen Sati von PàUy und Wiener,
vgl. Fuûnote 1 b)f Satz 13, S. 75.
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10. Nun fûhren wir unsere allgemeine Aufgabe durch folgenden Hilfs-
satz auf den Fall reeller Nullstellen zurùck.

HilTcsatz. Dos kanoniscJie Produkt n(z) sei tint ganze Funktion vom

Exponentialtypus, deren Nullstellen der Bedingung (9.2) genilgen. Wir
n ~ n n ~ 3

setzen An +rnt wenn — — <0n<—, An=—rw, wenn — <c/n<-^

und
X

no(z) 77(1 s—i e
w

(10.2)

Dann gibt es fur jedes <x> 0 zwei Funktionçn e(r,a) und h(r,ot) mit

lim e (r, oc) lim h (r, oc) 0

50 da^8 die Ungleichung

log - S0(2R)] <e(R,<*).R (10.3)

iw ganzen Bereich \ z\ ^ R, oc ^ \ arg 2 | < jr — «¦ erfûllt ist, und die

entgegengesetzte Ungleichung

n (z)
log - 3iz [S(2R) - S0(2R) ] > - e(R, a) iî (10.4)

r/i demselben Bereich gûltig ist, ausgertommen in einem System von Kreis-
lein, deren Radiensumme <h(R,a)R ist.

Daraus folgt sofort unser Hauptresultat. Erfùllt nàmlich n(z) die
B^dingun^en (9.2) oder (9.3), so gelten fur tzo(z) gemàû (10.2) die Vor-
aussetzungen des Satz 221). Bezeichnen wir die Real- und Imaginârteile
von S(r) mit Sf(r) und8"(r)t ist also S(r) S'(r) +iS"(r), so strebt
S"(r) wegen (9.2) gegen einen Grenzwert. Deshalb ist mit S(r) auch
S'(r) und SQ(r) konvergent und umgekehrt (vgl. (11.5)). Anderseits ist
nach dem Hilfssatz das asymptotische Verhalten von n{z) und tzq(z) im
wesantlichen analog. Insbesondere darf unter der Voraussetzung (7.1)
Kach (8.6) und (8.7) in (10.3) und (10.4) S(2R) und S0(2R) durch
8{r) und S0(r) ersetzt werden, wenn k~lR < r < R ist und k hinreichend
î-^cam gogen oo strebt. Daher folgt aus den Sâtzen 2, 3 und 4 mit SQ(r)
ga Stella von S(r).

S1) S(r) und S0{r) gind gleiohseitig besohr&nkt [vgl. (11.5)].
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Satz 6, A. Bas kanonischt Produkt n{z) sti tint ganze Funktion vom

Ezjxmtntialtypus und tint dtr Btdingungtn (9.2) odtr (9.3) sti trfiïlU.
Bann ist das Indikatordiagramm von dtr Brtite 2nA. Es rtduzitrt sich

dann und nur dann auf tint vtrtikalt Strtckt, wtnn S(r) konvtrgitrt.
Btztichntt pf — ip" ditstn Grtnzwtrt, so ist

h(<p) pr cos <p + pn sin <p + nA | sin <p \

B. Unttr dtr Zusatzbtdingung (7.1) gilt

— log \n{ré*) | Sr(r) cos <p — 8"(r) sin <p + nA |sin<p \ + e(r, <p).

Babti ist auf jedtm Strahl arg z q) limsup £(r,ç>) 0 und ilbtrdits

lim e(r, <p) ~ 0, wtnn r auf tintr gttignettn Mtngt von lintartr Bichtt 1

gegtn untndlich strtbt 22).

Bas Indikatordiagramm ist tin achstnparalltlts Btchttck.

Auch hier ist nach B das bewegliche Indikatordiagramm die
Strecke mit den Endpunkten S(r) ±jri-4. Weil S"{r) konvergiert,
oszilliert dièse Strecke im wesentlichen horizontal und erzeugt deshalb

asymptotisch ein achsenparalleles Rechteck.

11, Beweis des Hilfssatzes in Nr. 10. Nach Vorgabe eines

beliebig kleinen ô > 0 teilen wir die Ebene ein in die Winkelrâume
W' | arg z | < ô, | n — arg z \ < ô) und W" (<5 < | arg z \ < n — ô). Die
Nullstellen in Wr bezeichnen wir mit zfn, jene in Wn mit znn ihre Anzahl-
funktionen entsprechend mit n\r) bzw. nn{r). Es gibt dann eine in r
monoton abnehmende Funktion tj{rt ô), so daB fur jedes ô > 0

n"{r) ^r]{r, ô) • r und lim rç(r, <5) 0 (H«l)
00 1

ist. Denn wegen | sin Q"n \ > sin ô ist J£ — konvergent und daher

lim \ 0
n->oo * n

22) Falls 6"(r) konvergiert, ist :t(z) von Mregul&rem asymptotisohen Verhalten*'.
Es wird also im vorliegenden Falle durch Satz ô eine Frage beantwortet, welcho unto?
andern Bedingungen in einer frùhern Arbeit [Coram. Math. Holv.r 14 (1942), S. 314—349]
behandelt wurde. Ist namlioh die ganze Funktion vom Exponentialtypus und rogularcm
asymptotischen Verhalten, so ist die Nullstellenverteilung ,,meÛbar" und S(r)
konvergent. Sind nun umgekehrt die MeBbarkeit der Nullstellenverteilung und die Kon-
vergenz von S(r) auch hinreichende Bedingungen fur regulares asymptotisches Verhalton
des zugehôrigen kanonischen Produktes? FalU die Nullstellen nach Maûgabe von (9.9)
hinreiohend genau in Richtung der reellen Aohse liegen, ist gemaÛ Satz 6 dièse Frage zu
bejahen.
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Im folgenden sei \z | r < R. Wir setzen

iog mz) 2
r«>2JR - f +-f) - 2 60g (i-f)+f) •

\ Z

bzw. (2^)= 77 (i--|f) • (11.3)

und

Dann ist nach (9.1), (10.1) und (10.2)

Iog -^- - z [S(2R) - S0(2R) ] + logj + log^ + loglï (11.4)

Wir schàtzen die drei letzten Glieder ab.

Zunâchst ist

_1 1_ - | cos 0n | - t sin 6n

00 / 1 1 \ateo gemâû (9.2) die Reihe v x—I absolut konvergent. Es folgt
1 \zn "n/

\og H(z)= 2 Iog 1-

Wegen und £j<Iistaber

und daher

Iog
'&-%:) 1 1

|log|JÏ(2)||<9r S
'••>«*

Es gilt also fur

(11.6)
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Zur Abschàtzung von log -jrf bezeichnen wir mit Cv den Bo^an

f r'¥ eie der z¥ mit Xv verbindet. Sei ferner <x > 0 und à < —.
Fur «<larg z|<jr—« und C auf CK gilt dann |C — z[>
sin — (r + r') und daher

4

- ^ r
J C(« —<

Wegen (11.2), (11.3) und n'(r) **K,r wird dann

log

sin —
4

«'( (11.7)

K' fur jfc-1

_ 3-r r
~ « L

blli —r-

iî und

n'(2.R)
2R

n^(f)

|arga|

p//pZur Abschàtzung von log -^ erinnern wir an einen bekannten Satz

von Bourtroux und Carton, wonach fur jedes H > 0

77
n-l

1 -
ist auBerhalb eines Systems von hôchstens N Kreislein mit der Ra-
diensumme ^ 2H

In entgegengesetzter Richtung folgt aus (11.1) fur k~lR 22? •

2R

SJJ
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lllt H 2kR folgt dann nach (11.8) und (11.1) in Verbindung mit
11.9) die Ungleichung

(11.10)

ira ganzen Kreisring l-1 jB < | z | < 22?, ausgenommen ein System von
KrcLlein mit der Radiensumme < 4hB.

GemaÛ (11.1) lassen sich nun à, h und h derart als Funktionen von R
wahlen, daB fur iî-*oo gilt i(JS)->0, »j(J?, ô(R))->0, h(R)->09
\logh(R) | -^(2JÎ ô(2R))-+0 £(£)^oo £(£) <$(jR)->0 und
-BJk-^-BJ-^oo.Esexisticrtdannnach (11.4), (11.6), (11.7) und (11.10)
fur jedes &>0 eine Funktion e(R,a) mit lim £(J?,a) 0, so daû

(i0.3) und (10.4) im ganzen Bereich \z\ ^ R a < | arg z | < ^ — a.

erfullt sind bis auf ein System von Kreislein mit der Radiensumme

{4th(R) + lrl(R))R. Da^^^- in d*r obern und untern Halbebene

regulâr ist, so gilt wegen des Maximumprinzips (10.3) im ganzen Bereich
\z\ < R a < | arg z \ < n — ce, sofern R genûgend groû ist.

(Eingegangen den 18. Marz 1943.)
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