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Uber die Grenzen der
einfachzusammenhédngenden Gebiete

Von T. van AARDENNE-EHRENFEST und
Jurivs Worrr, Utrecht (Holland)

Primenden erster Art der Grenze eines Gebietes sind diejenigen,
welche aus nur einem Punkte bestehen. Kin solcher Grenzpunkt ist
erreichbar. Primenden zwetter Art sind diejenigen, welche einen erreich-
baren und mindestens eimen unerreichbaren Grenzpunkt enthalten.

Frau T. van Aardenne-Ehrenfest hat festgestellt, dafl aus zwei Sitzen
von J. Wolff (siehe Fullnote ') und die Behauptung beim untenstehenden
Beweise) die negative Beantwortung einer bekannten Frage von Cara-
théodory hervorgeht:

Satz. Es gibt kein ewnfachzusammenhdngendes Gebuet, dessen Grenze nur
aus Primenden zweiter Art besteht.

Beweis: Wir nehmen fiir einen Augenblick an, dafl ein Gebiet G
vorliege, dessen Grenze g nur aus Primenden zweiter Art bestehe. Wir
bilden G@ konform auf die Halbebene D(x > 0) ab mittels der Abbil-
dungsfunktion f(z) = f(xz + ¢y) . Nach einem friiher bewiesenen Satz!)
besteht in jedem Punkte ¢y der imaginidren Axe d der Grenzwert

I{I)I;f(w-ki?/):w(?/) . (1)

Es sei ¢ eine positive Zahl. Wir behaupten, daBl jedes Rechteck
R(0<x<a; b<y<c) ein Rechteck R,(0<zrx<a;<a; b<b,<y<c,<c)
enthélt, in welchem die Schwankung von f(z) kleiner als ¢ ist. Zum
Beweise nehmen wir fiir einen Augenblick an, es existiere ein R mit der
Eigenschaft, dafl in jedem R, die Schwankung von f(z) groBer oder
gleich ¢ sei. Nach (1) ist ¢(y) Limes einer stetigen Funktion. Folglich
liegen die Stetigkeitspunkte von ¢(y) iiberall dicht. Es sei y, ein Stetig-
keitspunkt des Intervalles (b <y <c¢) und 4,(b, < y < ¢, ein Inter-

1) La représentation conforme au voisinage d’un point frontiére.
Proceedings Akad. v. Wetensch., Amsterdam, vol. 45 n® 2, 1942, p. 169—170.

Nach dem dort bewiesenen Satze ist ¢(y) sogar der Winkellimes von f(z) fir
z — ¢y. Mittlerweile sahen wir, dal3 R. Nevanlinna diesen Satz sogar fiir jede beschrankte
holomorphe Funktion in D bewiesen hat (Eindeutige analytische Funktionen,
Springer 1936).
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vall, das y, enthilt, innerhalb des Intervalles (b <y <c¢) liegt und
geniigend klein ist, damit

| 9(®) — 9(yo) | < auf . (2)

Nach (1) und (2) liegt auf der Halbgeraden (x > 0, y = y,) ein Punkt
2z, = z; + ty, mit den Eigenschaften

& ..
0<z,<3; (1) —e@o) | < fir 0<z<m, y=y,. (3)

Im Rechteck R,(0 <z < z;; by <y < ¢, soll nach Voraussetzung die
Schwankung von f(z) grofler oder gleich ¢ sein. Folglich enthilt R, einen

Punkt ¢, =&, 4+ vn, mit | () — @(y,) | > —;— Wegen der Stetigkeit
von f(z) in D besteht ein Intervall ¢; innerhalb R,, das {; enthilt,
parallel zur imagindren Axe d ist und geniigend klein, damit

1 F(2) — @ (y0) | > % in jedem Punkt von i, . (4)

Nach (1) und (2) liegt auf der Halbgeraden (x> 0, y = %;) ein Punkt
2y = Xy + t7; mit den Kigenschaften

1 E
O<w,<é; 5 0L x2<—~2—2-; | f(2) — o(y0) | <‘qur 0<ae<z,y, y=mn,. (5)

Im offenen Rechteck R,, zwischen den beiden Projektionen von ¢, auf
d und auf die Gerade x = z,, soll die Schwankung von f(z) grofler
oder gleich ¢ sein. Folglich enthilt R, einen Punkt (, = &, + ¢, mit

| f(Ca) — @(9o) | > —133— , also ein Intervall 7, innerhalb R,, das {, enthélt,
parallel zu d ist und geniigend klein, damit

1) — ¢(y,) | > -g— in jedem Punkt von i, . (6)
Indem wir so fortfahren, erhalten wir eine unendliche Folge von Inter-
vallen 7,, parallel zu d, deren Abszissen kleiner als % , 80 beschaffen,
daB fiir n =1,2,... die Projektion von i, , auf d innerhalb der-
jenigen von %, liegt, und daB

| £(2) — (o) | > _g- in jedem Punkt jedes i, . (7)
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Es existiert eine Gerade y = h, welche jedes 1, schneidet. Nach (1)
und (7) ist

%

| () — @(¥,) | (8)

£
7
Nach {2) aber ist

IA

| p(k) — pyo) | = - (9)
Dieser Widerspruch beweist unsere Behauptung. Daraus aber ergibt sich
wegen der Willkiir von ¢, dafl diejenigen Punkte ¢y auf d, wo ¢(y)
zwetdimensionaler Limes von f(z) ist, ein Residuel (nach der Den-
joy’schen Benennung) M bilden, das heilt: die Komplementirmenge
von M besteht aus hochstens abzihlbar vielen nirgends dichten Punkt-
mengen ; also enthilt jedes Intervall auf d eine perfekte Teilmenge von M .
Weil den Punkten von M Primenden erster Art auf der Grenze von G
entsprechen, ist nicht nur unser Satz bewiesen, sondern sogar folgender
scharfere

Satz. Hat die Grenze g eines einfachzusammenhdingenden Gebietes G nur
Primenden erster und zweiter Art, so hat die Menge m der Primenden
erster Art die Mdchtigkeit des Kontvnuums. Ber Abbildung von G auf die
Halbebene D entspricht m etmem Residuel auf der Begrenzungsgeraden d
von D .

(Eingegangen den 20. April 1944.)
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