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Die unwesentlichen Singularitâten der regulâren
Funktionen einer Quaternionenvariabeln

Von Walter Nef, Zurich

Einleitung

In dieser Arbeit wird eine Vermutung von Herrn Rud. Fueter uber die
auBerwesentliehen Singularitâten der regulâren Funktionen einer
Quaternionenvariabeln bewiesen und damit bestatigt.

In seiner Arbeit uber die vierfachperiodischen Funktionen1) hat Herr
Fueter bei gegebenen Perioden œ1,..., co4 ein System von zugleich
rechts- und linksregularen Funktionen pWi ng n^ (z) (nx + n2 -f % w

0,1, 2,...) konstruiert, welehe die vorgegebenen Perioden besitzen. Sie

haben als unwesentliehe Singularitâten von der Ordnung (n -f- 3) den
Punkt z 0 und die dazu aquivalenten Punkte. Fur aile andern end-
lichen Werte von z sind sie regular.

Aile rechts- oder linksregularen Funktionen, die fur z 0 eine
unwesentliehe Singularitat haben, im ganzen ubrigen Fundamentalbereich
aber regular sind, lassen sich in eine Reihe nach den Funktionen pni na n^ (z)

entwickeln. Nun stellt sich die Frage, ob bei singularen Kurven oder
Flachen (welch letztere naturlich im Fall der vierfachperiodischen
Funktionen zweier komplexer Veranderlicher von besonderem Interesse sind)
ganz neuartige Singularitâten auftreten, oder ob sie sich aus den obigen
zusammensetzen lassen. Herr Fueter hat die Vermutung ausgesprochen,
daB sie sich in der Form

i d[anin2flz
n3 J

durch eine Summe von Stieltjesschen Integralen darstellen lassen, wo
<Z das singulare Gebilde ist.

In einem Vortrag in Munster in Westfalen im Jahre 1939 und in
seinen Vorlesungen uber die regulâren Quaternionenfunktionen (S. S.

1940) hat Herr Fueter dièse Vermutung in einer erweiterten Form
ausgesprochen: Ist © ein singulares Gebilde irgendeiner rechtsregularen
(nicht notwendig vierfachperiodischen) Funktion /(z), so laBt sich f(z) in
der Umgebung von Q wie folgt darstellen:

*) Mud Fueter, Ûber vierfachpenodische Funktionen. Monatshefte fur Math.
u Phys. Bd 48, S 161
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wo R(z) eine auf S reehtsregulare Funktion ist. In der vorliegenden
Aibeit wird die Existenz einer solchen Darstellung fur unwesentliche
Singularitaten bewiesen. (Einen Teil davon habe ich in einer fruheren
Arbeit bewiesen, namlieh fur den Fall emer geradlinigen Strecke als

Singularitat2).) Das singulare Gebilde darf dabei eine ganz beliebige
(abgeschlossene) Punktmenge sein. Im ersten Teil der Arbeit stellen wir
den notwendigen IntegralbegrifiF auf, namlieh das ùber Q erstreckte
Stieltjessche Intégral. Es gelingt, dasselbe fur jede Menge zu definieren,
auf der fur je zwei îhrer Elemente ein Abstand definiert ist. Im zweiten
Teil beweisen wir die Richtigkeit der Vermutung des Herrn Fueter und
konstruieren im dritten Teil aile rechtsregularen Funktionen, die im End-
lichen nur unwesentliche Singularitaten haben (meromorphe Funktionen).

Die Resultate gelten naturlich sinngemaB auch fur die linksregularen
Funktionen.

Fur die Einzelheiten aus der Théorie der regularen Funktionen einer
Quaternionenvariabeln, insbesondere uber die Darstellung derselben in
der Umgebung isolierter punktformiger Singularitaten, sei aufdie Arbeiten
von Herrn Fueter verwiesen3).

1. TEIL
Stieltjessche Intégrale in kompakten metrischen Râumen

901 sei ein kompakter metrischer Raum4). Dann existiert auf SOI zu
jeder positiven Zahl e ein e-Netz, d. h. eine endliche Punktmenge N
auf 3Jt mit der Eigenschaft, daB jeder Punkt von 30î einen Abstand von

2) Walter Nef, tJber die singularen Gebilde der regularen Funktionen
emer Quaternionenvariabeln Comm Math Helv vol XV, pag 144.

3) Rud Fueter, Die Funktionentheone der Differentialgleichungen Ju 0

und JJu 0 mit 4 reellen Variabeln Comm Math Helv vol 7, S 307 (zitiert als
Fueter I)

Rud. Fueter, Ûber die analytische Darstellung der regularen Funktionen
einer Quaternionenvariabeln Comm Math Helv vol 8, S 371 (zitiert als
Fueter II)

Rud Fueter, Die Singularitaten der eindeutigen regularen Funktionen
einer Quaternionenvariabeln I Comm Math. Helv vol 9, S. 320 (zitiert als
Fueter III)

Rud Fueter, Integralsatze fur regulare Funktionen einer Quaternionenvariabeln.

Comm Math Helv vol 10, S 306 (zitiert als Fueter IV)
*) P. AlexandroffIH Hopf, Topologie, erster Band, Berlin 1935, S 28 und S. 84.
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N hat, der ^ e ist5). Daraus folgt, daB bei beliebigem s > 0 der Raum 50Î

in eine endliche Anzahl von punktfremden Teilmengen zerlegt werden
kann, deren Durchmesser ^ e sind. Daraus wiederum folgt, daB auf 501

ein System E von Teilmengen existiert, das den folgenden Bedingungen
genugt:

1. Wenn die abzahlbar vielen Teilmengen fix, ju2o //3,... von 501 zu
E gehoren, so gehort auch ihre Vereinigungsmenge zu E.

2. Ist ju irgendeine Menge aus 501 oder gleich dem ganzen Raum 501,

und ist ô irgendeine positive Zahl, so laBt sich ju als Vereinigungsmenge

von abzahlbar vielen zu E gehorigen Mengen darstellen,
die paarweise punktfremd und deren Durchmesser ^ ô sind.

Es bedeute namlich {e3} eine Folge von positiven Zahlen mit lim e3 0.
;->oo

E}(j 1,2,3,...) sei ein System von punktfremden Teilmengen auf 50Î,

deren Durchmesser aile ^ e3 sind und deren Vereinigungsmenge 501 ist
Wir erhalten dann ein System E mit den Eigenschaften 1. und 2.,
indem wir aile zu irgendeinem E3(j 1,2,3,...) gehorigen Teilmengen
und aile Vereinigungsmengen von abzahlbar vielen solchen zusammen-
fassen. (Fur unsere Anwendungen sei darauf hingewiesen, daB eine abge-
schlossene Punktmenge in einem Zahlenraum (als Relativraum im
Zahlenraum) ein kompakter metrischer Raum ist.)

Die Werte der im folgenden betrachteten Funktionen (Funktionen von
beschrankter Schwankung und stetige Funktionen) mogen entweder reell
oder komplex oder Quaternionen sein.

Unter einer zu einem System E gehorigen Mengenfunktion &([à) ver-
stehen wir eine Mengenfunktion, die fur jede Menge ju aus E definiert ist.

Eine zu E gehorige Mengenfunktion &(/u) heiBt totaladditiv, wenn fur
jede Zerlegung irgendeiner zu E gehorigen Menge jll in abzahlbar viele
punktfremde Teilmengen ^ (j 1, 2,... :

gilt:

Eine totaladditive Mengenfunktion 0{fi) heiBt von beschrankter Schwankung

auf 501, wenn fur jede Zerlegung von 501 in abzahlbar viele elemente-
fremde Teilmengen m^ (; 1,2,...), die zu E gehoren:

5) P. AlexandroffjH Hopf, Topologie, erster Band, Berlin 1935, S 87, Hilfssatz II
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gilt:
2 I 6(m,) | < W (2)

wo Tf eine von der Art der Zerlegung unabhângige Konstante ist. Die
untere Grenze der Zahlen W, fur die (2) erfullt ist, bezeichnen wir mit
V(0) und nennen sie die totale Variation von 0(^).

Eine im Bereich aller Elemente P von 501 definierte Funktion /(P)
heiBt auf 501 gleichmâjiig stetig, wenn

1. Eine Konstante M von der Art existiert, daB fur irgend zwei
Elemente Px und P2 von 501 gilt:

P2); (3)

(D(P1 P2) Abstand der Elemente Pi und P2).

2. /(P) auf 9ft beschrânkt ist.

Wir gehen jetzt aus von einem kompakten metrisehen Raum 30Î,

einem zugehôrigen Teilmengensystem U, einer Funktion O([ï), die auf
501 von beschrânkter Schwankung sei, und einer auf 9JI gleichmâBig
stetigen Funktion /(P).

Jeder positiven Zahl ô ordnen wir eine bestimmte Zerlegung 3(^)
von SDÎ in abzâhlbar viele zu E gehôrige elementefremde Teilmengen zu,
deren Durchmesser aile < ô sind. Dièse Zerlegung 3(^) bezeichnen wir
wie folgt:

Pj{ô) sei irgendein Elément aus

Satz 1. Der Grenzwert

lim

existiert und ist von der Menge der Zerlegungen 3 {à) und von der Auswdhl
der Elemente P3(ô) unabhângig.

Wir bezeichnen diesen Grenzwert mit

und nennen ihn das uber 501 erstreckte, durch die Funktion von
beschrânkter Schwankung 0(jh) vermittelte Stieltjessche Intégral der auf
501 gleichmâBig stetigen Funktion /(P)
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Beweis von Satz 1: {ôk} sei eine Folge von positiven Zahlen mit
lim ôk 0 Wir untersuehen den Grenzwert
k->oo

lim v 0(^(0,)) ¦ f(P3(ôk)).

Es genùgt zu beweisen, daB dieser Grenzwert fur jede den Bedingungen
geniigende Polge {ôk} existiert.

Zunâchst setzen wir voraus, daB jede Zerlegung 3(ôk) eine Verfeine-

rung der vorangehenden 3(^fc-i) ist. Es sei etwa fur die beiden Indizes
k und (k + l) ' (k, l beliebige naturliche Zahlen)

wo A diejenigen Werte durchlàufb, fur die /*\(ôk+l) Teilmenge von /Lt3(ôk)

ist. Es ist dann wegen der Additivitàt von Q([i) und wegen der Relation (3) :

5*)) 'f(P,(ôk)) -Ze(px(ôw)) -f(Px(ôk+l)) | <
X

<Z\O(fix(ôk+l))\ -M-Ôk.
Also wird: x

• f(P3(Ôk) - v 9(p,(âM) ¦ '/ (P,(ôk+l) | < V(0) ¦ M• Ôk

Daraus folgt unmittelbar die Behauptung fur den Fall sukzessiver Ver-
feinerung der Unterteilungen. Fur den Fall einer anderen Folge von
Zerlegungen folgt die Behauptung dureh eine bekannte Méthode ver-
mittelst der ,,gemeinsamen Verfeinerung" zweier Unterteilungen aus dem
oben Bewiesenen.

F. Riesz hat im Reellen den Satz bewiesen6):

Es seien fk(x) (Je 1,2,...) abzâhlbar viele fur a ^ x ^6 stetige
Funktionen. ck seien Konstanten. Das Gleichungssystem

b

fd[*(x)] fh(x)=ch (4 1,2,3,...)
a

hat dann und nur dann eine Lôsung oc (x), die in a < x < b von
beschrànkter Schwankung ist, wenn eine positive Konstante F existiert,
so da/3 fur jede naturliche Zahl n und n beliebige Konstanten êk
(k 1,2,..., n) stets gilt :

•) F. Riesz, Sur certains systèmes d'équations fonctionnelles et
l'approximation des fonctions continues. Comptes rendus des séances de l'académie des

sciences, t. 150 (1910), p. 674.
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Es gibt dann eine Lôsung oc(x), deren totale Variation ^.F ist.

Satz und Beweis lassen sich auf unseren allgemeineren Integralbegriff
mit komplexen Zahlen oder Quaternionen als Funktionswerte iiber-
tragen, falls 30Î eine beschrànkte Punktmenge in einem Zahlenraum ist,
und es gilt :

Satz 2. Es sei 501 eine abgeschlossene Punktmenge in einem Zahlenraum.
fk(P) (& 1, 2, 3,...) sei eine abzâhlbare Menge von auf 9JI gleichmàjiig
stetigen Funlctionen. ck seien beliebige Konstante. Dos Gleichungssystem

J
m

hat dann und nur dann eine Lôsung ©(//), die von beschrànkter Schwan-

kung ist, wenn eine positive Konstante F existierty so dafi fur jede natilr-
liche Zahl n und n beliebige réelle Konstanten êk (k 1,..., n) stets gilt :||| |

Es gibt dann eine Lôsung 0(jbt), deren totale Variation < F ist.

Diesen Satz 2 werde ich in einer selbstàndigen Arbeit beweisen. Aus
Satz 2 kônnen wir folgern:

Satz 3. Es sei 30Î eine abgeschlossene Punktmenge in einem Zahlenraum.

fjk(P) (j 15..., v, v eine feste naturliche Zahl, k l, 2, 3,...)
seien auf SDÎ gleichmàfïig stetige Funktionen. ck(k 1, 2, 3,...) seien

beliebige Konstante. Das Gleichungssystem

(*= 1,2,3,...)
J
m

hat dann und nur dann Lôsungsfunktionen

die auf ÏR von beschrànkter Schwankung sind, wenn eine positive
Konstante F existiert, so dafi fur jede naturliche Zahl n und n beliebige réelle
Konstante &k(k — 1,..., n) stets gilt :
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Es gibt dann Lôsungen

fur welche die Summe ihrer totalen Variationen ^.F ist.

Beweis : Die Dimension des Zahlenraumes R, in dem 501 liegt, sei X.

S sei ein v • A-dimensionaler Zahlenraum. Durch einen beliebigen
Punkt A von S legen wir v unabhàngige A-dimensionale Hyperebenen
8l9.. .,SV. Jede derselben bilden wir durch eine eineindeutige affine
Transformation auf R ab, so daB der Bildpunkt von A nicht zu 50Ï gehôrt.
Durch die inversen Abbildungen entspricht 501 in 8j eine Bildmenge
Qj (j l>#.., v). Bei festem k entspricht der Funktion fjk auf 501 eine

gleichmâBig stetige Funktion cpik auf ©3- (/ l,...,v). Die Vereini-
gungsmenge aller S^ (; 1,..., v) nennen wir S. Auf S definieren wir
die Funktionen

' ~* wenn P c Gx

(4 1, 2, 3,...).
; (P) wenn P c Sv

Jetzt schreiben wir die Gleichungen auf:

ck, (4=1, 2, 3,...) (4)

Bei beliebiger naturlicher Zahl n und beliebigen Konstanten
ist die Beziehung

\Zkk\^\Zkk=l auf S ifc=l

erfullt. Also existiert nach Satz 2 auf S eine Funktion 0*(^), deren
totale Variation auf S hôchstens gleich J7 ist und fur die die Gleichungen
(4) erfullt sind.

Nun sei /u irgendeine zu £ gehôrige Menge in 50t. Ihre Bildmengen in
Sj seien ju,} (j 1,..., v). Wir definieren auf 501 die v Mengenfunktionen

Statt (4) kônnen wir dann offenbar schreiben:

/«(P) cfc (*=1, 2, 3,...)
7=1

Die Summe der totalen Variationen aller 0^) (j 1,..., v) ist gleich
der totalen Variation von &*(jz) auf S, also hôchstens gleich F, w.z.b.w.
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2. T E I L

Darstellung regulârer Funktionen in der Umgebung

singulârer Punktmengen.

Eine rechtsregulâre Punktion f(z) môge auf einer geschlossenen, orien-
tierbaren Hyperflâche R mit stetigem Normalenfeld keine singulàren
Punkte haben. Die Menge der innerhalb R gelegenen singulàren Punkte
nennen wir 2R. Da jeder Hàufungspunkt von singulàren Punkten selber
singulàr ist, ist S0Î eine abgeschlossene Teilmenge des Quaternionen-
raumes Q4

Zu jeder positiven Zahl q defînieren wir jetzt eine (nicht notwendig
zusammenhàngende) Hyperflâche S{Q) durch folgende Forderungen:

1. SiQ) soll geschlossen und orientierbar sein und ein stetiges Normalenfeld

besitzen.

2. 3K soll im Innern von 8iQ) liegen.

3. Der Abstand jedes zu S{Q) gehôrigen Punktes von 3ïl soll ^ g und

^ 2 q sein.

Dabei verstehen wir unter dem Abstand eines Punktes von der
Menge 9DÎ das Minimum der Abstànde dièses Punktes von allen
Punkten von $01. Dièses existiert, da 50} abgeschlossen ist.

4. Unter allen Flàchen, die (1) — (3) erfullen, wàhlen wir jetzt eine

beliebige aus, jedoch so, daB bei stetiger Ânderung von g auch 8(Q)

sich stetig ândert.

g0 sei eine solche Zahl, daB fur q < qq S{^] im Innern von R liegt.
Dann gilt, falls Q < g0 ist, fur aile Werte von z, die innerhalb R und
auBerhalb SiQ) liegen:

f(z) g^i//(f) dZA(C- z)-> + -^

Das erste Intégral stellt eine innerhalb R rechtsregulâre Funktion q>(z)

dar. Das zweite Intégral bezeichnen wir mit g(z) :

S(Q)

7) Fueter /, pag. 318.
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Wir ordnen jetzt jedem Punkt f auf S(Q) einen beliebigen Punkt c(£)
auf 2R zu, dessen Abstand von £ hôchstens gleich 3^ sein soll. Es ist
dann, falls z von 30? einen Abstand hat, der grôBer als 3 q ist :

r1 8)g(z)

w=o w=w1+n2+n3

Denn fur einen solchen Punkt z ist :

Ferner ordnen wir jedem 3-dimensionalen Gebiet G auf S(Q) eine Teil-
menge ju(G) von 501 zu, so da6 die folgenden Bedingungen erfûllt sind:

oc) Die obère Grenze der Abstànde je eines Punktes von G und eines
Punktes von ju (G) ist hôchstens gleich 3 q

0) Ist Ce G, so ist c{Ç)œ fi(Q)

y) Ist Ol9 G2,... eine Folge von Gebieten auf 8{Q), deren Durchmesser
den Grenzwert 0 haben, so hat die Folge ^(Gj), ^((?2)}... dieselbe

Eigenschaft.
ô) Der Vereinigungsmenge bzw. dem Durchschnitt von abzâhlbar

vielen Gebieten auf 8{Q) entspricht die Vereinigungsmenge bzw. der
Durchschnitt der zugeordneten Mengen.

Ist n — ix (G) so setzen wir :

G fiW (ju)

Die Gesamtheit aller Mengen ju(G) bezeichnen wir mit Zr(Q). £/{Q) ist
wegen y) ein den Forderungen (1) L —2. genûgendes Teilmengensystem
auf der Vereinigungsmenge SDÎ' aller Teilmengen ju,(G). Zff{Q) sei ein
ebensolches Teilmengensystem auf der Restmenge SO? — 9Jl;. Dann ist
die Gesamtheit aller entweder in Zf{Q) oder in Zn(Q) liegenden
Teilmengen sowie der Vereinigungsmengen von abzâhlbar vielen solchen ein
System von Teilmengen auf SOI, das den Bedingungen (1) L—2. geniigt.
Wir bezeichnen es mit Z(Q).

Mit den zu Z(Q) gehôrigen Teilmengen als Definitionsbereich definieren
wir jetzt die folgenden Mengenfunktionen

8) Fueter II, pag. 373.
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0{Q) (u)

Aus (5) folgt dann:

wenn fi c £'<
ist irgendein Punkt auf fi)

0, wenn (i c

» V

fur aile z, deren Abstand von 30Ï grôBer als 3 g ist, und die auBerhalb
einer der Hyperflâchen 8{Q) liegen. Also wird fur aile z, die auBerhalb
eines 8{Q) liegen:

Satz 4. r (z) sei auf 501 (und somit in einer gewissen Umgebung U von 301)

linksregulâr. S sei irgendeine geschlossene, orientierbare Hyperflàche mit
stetigem Normalenfeld, die ganz in lï liegt und welche 30Î in ihrem Innern
enthâlt. Das Minimum der Abstânde der Punkte von S von den Punkten

von SOI sei gleich qv Dann ist fur q < -^- :

(8)

ist ein Funktional mit allen auf 3K linksregulàren Funktionen
C) als Definitionsbereich.)

Beweis: Nach (5a) gilt fur e<^-:

-2^5 X v f! rd[0<e1>n2n3(^)]-gnin2nj(C--c)jrfZr(C)
5 SR

n=0 n=
m
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Nun gilt fur zwei beliebige, auf 8 rechts- bzw. linksregulâre Funktionen
w(z) und v(z):

J (w^dZv + wdZ v{k)) 0, (Jfc 0, 1, 2, 3)

wo
3w(z) (k)/ dv(z)

v(A)(z) ±Lw{/c)(z)
dxk dxk

ist9). Wenden wir dièse Formel auf die Funktionen w(z) qn n^n (z—c)
und v(z) r(z) an, so erhalten wir:

lninznz (C - C) dZ f (C) jqni-l,n2,n3 (C - C) dZ ^-
S S

und durch {nx + n2 + ?i3)-malige Anwendung derselben Formel:

q000(C—c)dZ
Sçnid^

s
x

Setzen wir dies ein in (9), so folgt die Behauptung.

Da (8) fur q < -^- gilt, ist insbesondere :

o

A (r(«) lim S Z fd[9^nM)] aJZ'fl», ¦ (10)
ç->>0 n=0 n=w1 + n2+w3<i/ v«*'i UJ^2 Utl/3

an

Wir definieren jetzt die unwesentlich singularen Mengen:

Définition 1. Eine (abgeschlossene) Menge 90Ï von Punkten des Quater-
nionenraumes heifit unwesentlich singular fur die rechtsregulàre Funktion
f(z)y wenn

1. Jeder Punkt von 501 ein singularer PunJct von f(z) ist

2. Eine Konstante M und eine natûrliche Zahl N existieren, so dafi

•) Fueter /F, pag. 309.
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ist. Dabei bedeutet: g den Abstand des Punktes z von der Menge 90?. J(g)
die untere Grenze der Inhalte der Hyperoberflâchen aller geschlossenen
orientierbaren Hyperflâchen mit stetigem Normalenfeld, die 2R in ihrem
Innern enthalten, und deren Punkte von SOI Abstànde haben, die ^ g sind.
Die Heinste Zahl, die die Eigenschaft von N hat, hei/it die Ordnung der
unwesentlich singulâren Menge.

Ist SOI ein Punkt oder eine rektifîzierbare Kurve oder eine Flâche oder
Hyperflàche mit existierender 2- bzw 3-dimensionaler Oberflâche, so
kann man definieren:

93Î ist unwesentlich singulâr, wenn eine Konstante M und eine natilr-
liche Zahl N existieren, so

ist, Denn in diesem Falle bleiben ® bzw. —~-bzw. —— bzw. J(g) fur
Q Q Q

0 nach oben beschrànkt, und es ist Km —~- =£0, bzw. lim -—¦ ^ 0
e->o Q q-*o Q

bzw. lim —^- # 0, bzw. lim J(q) # 0.

Satz 5. 2R sei unwesentlich singuldr von der Ordnung N fur die rechts-

regulâre Funktion f(z). Dann ist fur jede auf 2R linksregulâre Funktion

lim 2 v
G->0 n=N+l n=n1 + n2 +n^

Beweis: Es ist, wenn J(S{^(ili)) die Hyperoberflâche von S{Q)(fi)

bedeutet :

| s^ / / (0 dZ Pi-, (t - c

1

- T(Sl0) (a)
nn~N

10) Fueter III, pag. 327.
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Also ist:
oo /»

lim v S d[Gi%in

ON

SÈR

Es sei KQi die Hyperkugel mit Mittelpunkt c und Radius ^x (vgl. (7)).
Da r(C) innerhalb und auf KQi regulàr ist, folgt:

r(c) —

und somit, durch Differentiation unter dem Integralzeichen :

dnr(c) ]

Es ist also:

dn r(c)
auf K Qi Qi

Aus (11) und (12) folgt:

ïsïs

J(Q)
v

n-N-l • 12\

7l2
^n+3

wo S eine Konstante ist, deren Wert aus dem obigen ersichtlich ist.
J(S{Q)) bedeutet die Hyperoberflâche der Hypernàche 8{Q). Aus der
Définition der GrôBe J(q) folgt sofort, daB man die Hyperflàche S{Q)

immer so wàhlen kann, daB

J(q)

") Es ist nâmlich fur aile z : | qnin2n3 (z) \ < 4 y ~^^'
12) Fueter III, pag. 328.
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wird. Daraus folgt die Behauptung wegen der Konvergenz der auf-

tretenden Reihe fur q < —- und dem vor dem Summenzeichen auf-
o

tretenden Faktor q

Daraus und aus der Définition (8) des Funktionals A(r(Ç)) folgt:

Satz 6. Fur eine auf 2R unwesentlich singulare Funktion f(z) von der

Ordnung N ist *

A(r{Ç)) lim v v
6->0 n=0 n=n1 + n

Satz 7. Es existiert eine Konstante F von der Art, dafi fur jede auf 2R

linksregulare Funktion r(£) gilt:

auf M

wo in der Klammer aile Ableitungen von r(Ç) stehen, deren Ordnung < N ist.

Beweis : Ware der Satz falsch, so gabe es eine Folge rx(Ç), r2(£),...
von auf 501 linksregularen Funktionen von der Art, daB die Folge

\ max I

auf an [_ ¦-]
nicht beschrankt ware. Es gabe dann ein Indexsystem (vlf v2, vz) mit
Vi + v2 + v3 ^ N, so daB fur unendlich viele Indizes jl9 j2, jz,... wàre:

max
auf m.

[l',«OI ,...]= max
auf an

l, 2, 3,...)
Fur die Funktionenfolge

{&»«)>
F -max

r(0 =l, 2, 3,...)

ware dann gleichmaBig auf SOI :
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lim max
k+oo auf SDÏ dx?1

0

und
N)

fur aile k 1, 2, 3,... Das steht im Widerspruch zu folgendem

Satz 8. Ist fur eine Folge von auf SDÎ linksregularen Funktionen

rf(Ç)(i l,2,3,...):
dn r (^lim rt (c) • • lim

gleichmafiig fur aile Punkte c auf 9JI, so ist :

lim A(rt(Ç)) 0
t->oo

Beweis : Man stelle A(rt(Ç)) in der Form (8) dar. Dièse gilt fur jeden
Wert von g, s sei eine beliebige positive Zahl. Wegen Satz 5 kann man
q q* so wahlen, daB

wird. Hierauf setze man

3

A l Ë

F 2 P(JV)

P^ Maximum der totalen Variationen aller
% + ^2 + ns ^ -^ > ^(^ Anzahl der Tripel

bestimme i0 so, da8 fur i

d«rt(c)
dx?1

< (0 n2 N)

wird. Dann ist fur i ^ i0 :

=0 n=«1 + n2+n3 J

und
fur Ï

mit
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Da e beliebig war, folgt daraus die Behauptung. Eine unmittelbare Folge
von Satz 8 ist

Satz 9. Ist fur eine Folge von auf SDÎ linksregulâren Funktionen
rt(f (i 1,2,...) gleichmajiig fur aile c auf 30?:

lim 3"r,(c)

und ist r(C) auf 30Î HnJcsregulâr, so ist

lim A(rt(O) A{HC)) ¦
i-yoo

Jetzt schreiben wir die Gleichungen auf:

w=O

und fragen nach Lôsungsfunktionen

¦Vi s ^ y3 0 ^ l 9
2

(ju) (nlt n2, nz 0,.. .,JV ;

Nach Satz 3 ist fur die Existenz solcher Lôsungen notwendig und
hinreichend die Existenz einer Konstanten F von der Art, dafi fur eine

beliebige natiirliche Zahl s und beliebige Konstanten

stets gilt:

Vl V2 V3 (C) * UVl V2 Vz

i^max F |X ^ pVlVtvA
auf ÎK L v l v y, + i<2+>'3

(14)

\2

wo in der Klammer aile Ableitungen stehen, deren Ordnung < N ist.
Nun ist aber

eine fur aile f linksregulâre Funktion. Also ist (14) nach Satz 7 erfûllt
und die Gleichungen (13) haben Lôsungen

Anin2n3(c) (%' n2> nz 0,..., N ; Tii + n2 + n3 < i^).
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r(C) sei jetzt eine Punktion, die im Innern einer Hyperkugel F, deren
Mittelpunkt der Nullpunkt ist, und die die singulâre Menge 501 in ihrem
Innern enthâlt, linksregulàr ist. Dann gilt in F eine Entwicklung von
der Gestalt:

v £ Vv1v2v3(O-anv2v3 (15)

und fur beliebiges (nl9 n2, n3):

Aile dièse Reihen konvergieren gleichmâBig in jedem abgeschlossenen
Teilbereich von F, insbesondere also auf 2R. Deshalb ist nach Satz 9 :

N (oo /"»

v v v v l d[A
an

Wir setzen jetzt r(Ç) qO0O(z — f). Aus (6) und (8) folgt:

(2 —0)

Ist jetzt 2 auBerhalb der Hyperkugel F gelegen, so ist q000 (z — £)

innerhalb F linksregulàr, und es folgt nach (16):

0 n nl + n1 +n,

«=0 n=ni+n2 + n3 1
an

Setzen wir jetzt fur aile z, die auBerhalb irgendeines S{Q) liegen:

n=0 n=1+2+îtan
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so ist h(z) eine ûberall auBer auf 501 rechtsregulàre Funktion. Denn aile
Funktionen der Form qnin2n3{z— c) sind rechtsregulàr. AuBerhalb F
stimmen aber die Funktionen h(z) und g(z) nach (17), (18) ùberein. Nun
sind aber zwei rechtsregulàre Funktionen, die in einem 3-dimensionalen
Kontinuum ubereinstimmen, vollstàndig identisch. Also ist h (z) in seinem

ganzen Verlauf mit g(z) identisch und es gilt fur aile z, die auBerhalb
irgendeiner Hyperflàche S{e) liegen:

y /»

9 (») £ 2 \d [ànin2nz (/*) ] ' qnin2nz (z — C)

an

Nach (4) unterscheidet sich die Funktion f(z) nur durch eine auf 501 (und
innerhalb R) rechtsregulàre Funktion <p(z) von g(z), und es gilt also:

Hauptsatz 10. Ist eine Funktion f(z) im Innern einer geschlossenen

Hyperflàche rechtsregulàr mit Ausnahme der Punhte einer singulâren
Menge 501, die unwesentlich singulâr von der Ordnung N sein moge, so gilt
fur aile z, die im Innern von R liegen, und die durch eine stetige Kurve, die
keinen Punkt mit 501 gemeinsam hat, mit R verbunden werden kônnen:

N /•
/ (Z) (f (Z) + V V \d [Anin2n3 [fx) ] • qnin2n, (Z — C)

n=o n=«1 + w2 + M3 t/
m

Dabei ist q>(z) eine innerhalb R, insbesondere also auf 501 rechtsregulàre
Funktion.

(Die Einschrànkung : ,,und die durch eine stetige Kurve ." ist not-
wendig, weil wir die Môglichkeit nicht ausschlieBen wollen, wo 501 eine

geschlossene orientierbare Hyperflàche [natûrliche Grenze von f(z)] ist.
An Stelle dieser Einschrànkung haben wir bisher immer gesagt: ,,z soll
auBerhalb irgendeiner der Hyperflachen 8{Q) liegen".)

3. T E I L

Meromorphe regulâre Funktionen

Wir stellen uns jetzt die Aufgabe, aile rechtsregulâren Funktionen auf-
zustellen, die fur aile endlichen z nur unwesentliche Singularitâten haben.
Dabei werden wir aber die als Singularitâten auftretenden Mengen noch
einer einfachen Beschrânkung unterwerfen.
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f(z) sei eine reehtsregulare Funktion, die im Endlichen nur unwesent-
liche Singularitaten hat. 5R sei die Menge aller im Endlichen gelegenen
singularen Punkte von f{z).

Définition 2. Unter einem zusammenhangenden singularen Gebilde von
f(z) verstehen wir eine Teilmenge 9JI von 9t, die folgende Eigenschaft hat :
Ist q irgendeine positive Zahlt so gibt es in SOÎ eine endliche Anzahl von
Punkten Pt von der Art, dafi die Menge der inneren Punkte aller Hyper-
kugéln mit den Mittelpunkten Pt und dem Radius q zusammenhangend ist,
d. h. dafi jeder Punkt dieser Menge sich mit jedem andern durch eine in ihr
verlaufende stetige Kurve verbinden lafit.

Définition 3. Ein zusammenhangendes singulares Gebilde 50Ï von f(z)
heijit isoliert, wenn eine positive ZaM q existiert, so dafi die Hyperkugeln
vom Radius q und irgendeinem Punkt von 30Î als Mittelpunkt keine singularen

Punkte von f(z) enthalten aufier den Punkten von SDÎ.

Jedes zusammenhangende isolierte singulare Gebilde ist vollstandig, d. h.
durch Hinzunahme weiterer singularer Punkte wird der Zusammenhang
zerstort.

Satz 11. Es gibt nur abzahlbar viele isolierte singulare Gebilde.

Beweis : R sei fur jedes dieser Gebilde die obère Grenze der Zahlen o,
welche die in Définition 3 verlangte Eigenschaft haben. Wir klassifizieren
die Gebilde nach der GroBe dieser Zahl R. Die erste Klasse enthalt aile
Gebilde, fur die R > 1 ist. Die zweite diejenigen mit y2 < R < 1 • -,

die fi-te Klasse enthalt die Gebilde mit -j—^ < R < —— Jedes Gebilde

gehort einer dieser abzahlbar vielen Klassen an. Jede Klasse enthalt aber
abzahlbar viele Gebilde. Denn es gibt nur abzahlbar viele punktfremde
Hyperkugeln mit gegebenem Radius.

Wir machen jetzt dieVoraussetzung, daB f(z) nur isolierte, unwesenthch
singulare Gebilde hat.

Es sei Bl9 R2, R3,...

eine Folge von geschlossenen orientierbaren Hyperflachen mit stetigem
Normalenfeld und mit folgenden Eigenschaften :

1. Rt+1 enthalt Rt in seinem Innern (i 1, 2, 3,...).
2. Ist z irgendein Punkt des Quaternionenraumes, so existiert ein Index

io(z), so daB fur i > io(z) z im Innern von R% enthalten ist.

3. Die Punkte auf den Hyperflachen Rt sind regulare Punkte von f(z).
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Wir numerieren nun die isolierten singulàren Gebilde in irgendeiner
Reihenfolge, jedoch so, daB wir zuerst die innerhalb R1 gelegenen nehmen,
dann diejenigen, welche in R2, aber nicht in Rx liegen usw. In dieser

Reihenfolge bezeichnen wir sie mit:

Ihre Ordnungen seien bzw. :

Nl9N%,Nz,...

Die natiirlichen Zahlen X{i) (i 1, 2, 3,... seien so definiert, daB genau
die Sa mit A < X{i) im Innern von Rt liegen (i 1, 2, 3,...).

Die Hyperflàchen ^(X — 1, 2, 3,...) seien beziiglich <5\ ebenso

definiert, wie im 2. Tei] die Hyperflàchen 8{Q) beziiglich $R. Dabei
beschrànken wir q auf solche Werte, daB die S^ keine gemeinsamen
Punkte haben. Es gilt dann innerhalb Rt :

Nach dem Résultat des 2. Teiles ist

Hi)l Hi) f,— lim Z f(OdZA(

il F i X fd[A<»ni

und

Ri

ist eine innerhalb i?f rechtsregulâre Funktion. Es ist somit

/(z) lim 2 v S d[A^n% (p)] • gMinsna (2-c) + ?>, (2)

Nun sei J^e- die grôBte Hyperkugel mit dem Mittelpunkt z 0, deren
innere Punkte innere Punkte von Ri sind. i>t sei die Hyperkugel mit
z 0 als Mittelpunkt und halb so groBem Radius wie JK^ (i 1,2,3,...
cpt{z) ist innerhalb Rt, also innerhalb Kt rechtsregulàr, somit gilt in i^ :
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VtW^E E ^n!n2n3'Pnin2n3(z) (t 1 2 3

£i 9 £2 i e3 > • • • sei eme Folge von positiven Zahlen mit lim e3 0

Wir wâhlen fur jedes i den Index vt so groB, daB innerhalb Lt :

ist. Setzen wir
Vt

ni, 123 1237t=U 71=' 7i\-\- W2 + Wg

so sind die ^2(2) ganze rationale rechtsregulâre Funktionen, und es wird :

f(z) Hm ^J£ ^S I ^[^n^natia (/*)]' ^nin2n8(z"~"c)| +Vt(2) î •

Daraus folgt:

Hauptsatz 12. £Ta^ eme rechtsregulâre Funktion f(z) im Endlichen nur
isolierte unwesentlich singulâre Gebilde, so sind dièse in abzdhlbarer Menge
vorhanden. Bezeichnen wir sie mit Si, ®2 ®3 > • • • > 50 ist fur aile z, die
nicht auf einem singulâren Gebilde liegen, und die sich durch eine stetige

Kurve, die aus lauter reguldren Punkten besteht, mit dem Punkt z oo
verbinden lassen:

Dabei ist N\ die Ordnung von S^, die Funktionen A^n2fl9 (ju) sind auf &\
von beschrànkter Schwankung und die xx(z) s^n^ ganze rationale
rechtsregulâre Funktionen.

(Eingegangen den 5. Januar 1944.)
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