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Die unwesentlichen Singularitdten der regularen
Funktionen einer Quaternionenvariabeln

Von WarTer NEF, Ziirich
Einleitung

In dieser Arbeit wird eine Vermutung von Herrn Rud. Fueter iiber die
aullerwesentlichen Singularitéiten der reguldren Funktionen einer Quater-
nionenvariabeln bewiesen und damit bestétigt.

In seiner Arbeit iiber die vierfachperiodischen Funktionen!) hat Herr
Fueter bei gegebenen Perioden w,,..., w, ein System von zugleich
rechts- und linksreguliren Funktionen p, , ., (2) (7, + 7y + 73 =n =
0,1,2,...) konstruiert, welche die vorgegebenen Perioden besitzen. Sie
haben als unwesentliche Singularititen von der Ordnung (n + 3) den
Punkt z = 0 und die dazu dquivalenten Punkte. Fiir alle andern end-
lichen Werte von z sind sie regulir.

Alle rechts- oder linksreguldren Funktionen, die fiir z = 0 eine un-
wesentliche Singularitit haben, im ganzen iibrigen Fundamentalbereich
aber regulér sind, lassen sich in eine Reihe nach den Funktionen p, , ,. (2)
entwickeln. Nun stellt sich die Frage, ob bei singuliren Kurven oder
Fliachen (welch letztere natiirlich im Fall der vierfachperiodischen Funk-
tionen zweier komplexer Verdnderlicher von besonderem Interesse sind)
ganz neuartige Singularititen auftreten, oder ob sie sich aus den obigen
zusammensetzen lassen. Herr Fueter hat die Vermutung ausgesprochen,
dafB} sie sich in der Form

E E fd [anl ng Ny (C)] p”l NaNg (z - C)

n ﬂ="1+7lz-l—”a6

durch eine Summe von Stieltjesschen Integralen darstellen lassen, wo
S das singuldre Gebilde ist.

In einem Vortrag in Miinster in Westfalen im Jahre 1939 und in
seinen Vorlesungen iiber die reguldren Quaternionenfunktionen (S. S.
1940) hat Herr Fueter diese Vermutung in einer erweiterten Form aus-
gesprochen: Ist & ein singulidres Gebilde irgendeiner rechtsreguliren
(nicht notwendig vierfachperiodischen) Funktion f(z), so 148t sich f(z) in
der Umgebung von S wie folgt darstellen:

1) Rud. Fueter, Uber vierfachperiodische Funktionen. Monatshefte fiir Math.
u. Phys. Bd. 48, 8. 161.
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JO=RH+S X [ Aunn @] drammle— ),
S

n  n=n;+ng+nge

wo R(z) eine auf & rechtsregulire Funktion ist. In der vorliegenden
Arbeit wird die Existenz einer solchen Darstellung fiir unwesentliche
Singularititen bewiesen. (Einen Teil davon habe ich in einer friiheren
Arbeit bewiesen, niamlich fiir den Fall einer geradlinigen Strecke als
Singularitdt?).) Das singulire Gebilde darf dabei eine ganz beliebige
(abgeschlossene) Punktmenge sein. Im ersten Teil der Arbeit stellen wir
den notwendigen Integralbegriff auf, ndmlich das iiber & erstreckte
Stieltjessche Integral. Es gelingt, dasselbe fiir jede Menge zu definieren,
auf der fiir je zwei ihrer Elemente ein Abstand definiert ist. Im zweiten
Teil beweisen wir die Richtigkeit der Vermutung des Herrn Fueter und
konstruieren im dritten Teil alle rechtsreguliren Funktionen, die im End-
lichen nur unwesentliche Singularitdten haben (meromorphe Funktionen).

Die Resultate gelten natiirlich sinngeméfl auch fiir die linksregulédren
Funktionen.

Fiir die Einzelheiten aus der Theorie der reguliren Funktionen einer
Quaternionenvariabeln, insbesondere iiber die Darstellung derselben in
der Umgebung isolierter punktformiger Singularitéten, sei aufdie Arbeiten
von Herrn Fueter verwiesen?).

1. TEIL

Stieltjessche Integrale in kompakten metrischen Riumen

I sei ein kompakter metrischer Raum?). Dann existiert auf 9t zu
jeder positiven Zahl ¢ ein e-Netz, d. h. eine endliche Punktmenge N
auf IR mit der Eigenschaft, dafl jeder Punkt von It einen Abstand von

2) Walter Nef, Uber die singularen Gebilde der regularen Funktionen
einer Quaternionenvariabeln. Comm. Math. Helv., vol. XV, pag. 144,

3) Rud. Fueter, Die Funktionentheorie der Differentialgleichungen Ju = 0
und 44u = 0 mit 4 reellen Variabeln. Comm. Math. Helv., vol. 7, S. 307 (zitiert als
Fueter I).

Rud. Fueter, Uber die analytische Darstellung der regularen Funktionen
einer Quaternionenvariabeln. Comm. Math. Helv., vol. 8, S. 371 (zitiert als
Fueter II).

Rud. Fueter, Die Singularitdten der eindeutigen reguliaren Funktionen
einer Quaternionenvariabeln I. Comm. Math. Helv., vol. 9, 8,320 (zitiert als
Fueter II1I).

Rud. Fueter, Integralsatze fiir reguldre Funktionen einer Quaternionen-
variabeln. Comm. Math. Helv., vol. 10, S. 306 (zitiert als Fueter IV).

4) P. Alexandroff|H. Hopf, Topologie, erster Band, Berlin 1935, S.28 und S. 84.

285



N hat, der < ¢ ist®). Daraus folgt, daB bei beliebigem ¢ > 0 der Raum I}t
in eine endliche Anzahl von punktfremden Teilmengen zerlegt werden
kann, deren Durchmesser < ¢ sind. Daraus wiederum folgt, dafl auf I
ein System 2’ von Teilmengen existiert, das den folgenden Bedingungen
gentigt:

1. Wenn die abzéhlbar vielen Teilmengen u,, s, #5,... von M zu,
2’ gehoren, so gehort auch ihre Vereinigungsmenge zu 2.

2. Ist p irgendeine Menge aus I oder gleich dem ganzen Raum IMN, (1)
und ist d irgendeine positive Zahl, so 1468t sich x4 als Vereinigungs-
menge von abzihlbar vielen zu 2 gehorigen Mengen darstellen,
die paarweise punktfremd und deren Durchmesser < ¢ sind.

Es bedeute namlich {¢,} eine Folge von positiven Zahlen mit lime¢; = 0.
J>00

2 (i =1,23,...) sei ein System von punktfremden Teilmengen auf I,
deren Durchmesser alle < ¢; sind und deren Vereinigungsmenge It ist.
Wir erhalten dann ein System 2 mit den Eigenschaften 1. und 2.,
indem wir alle zu irgendeinem 2;(j = 1,2,3,...) gehorigen Teilmengen
und alle Vereinigungsmengen von abzidhlbar vielen solchen zusanimen-
fassen. (Fiir unsere Anwendungen sei darauf hingewiesen, daf eine abge-
schlossene Punktmenge in einem Zahlenraum (als Relativraum im
Zahlenraum) ein kompakter metrischer Raum ist.)

Die Werte der im folgenden betrachteten Funktionen (Funktionen von
beschrinkter Schwankung und stetige Funktionen) mogen entweder reell
oder komplex oder Quaternionen sein.

Unter einer zu einem System 2’ gehorigen Mengenfunktion O(u) ver-
stehen wir eine Mengenfunktion, die fiir jede Menge u aus 2 definiert ist.

Eine zu ' gehorige Mengenfunktion @(u) heiBt totaladditiv, wenn fiir
jede Zerlegung irgendeiner zu 2’ gehorigen Menge p in abzéhlbar viele
punktfremde Teilmengen u, (j =1, 2,...):

p=2 Py,
7
gilt:
Ou) = X O(u;) .

]

Eine totaladditive Mengenfunktion @(u) heillt von beschrinkter Schwan-
kung auf M, wenn fiir jede Zerlegung von IM in abzihlbar viele elemente-
fremde Teilmengen m; (j = 1,2,...), die zu 2 gehoren:

8) P, Alexandroff/H. Hopf, Topologie, erster Band, Berlin 1935, S. 87, Hilfssatz II.
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&Ul ‘—"Em,-,
gilt: i
S10m)| < W, @)

7

wo W eine von der Art der Zerlegung unabhingige Konstante ist. Die
untere Grenze der Zahlen W, fiir die (2) erfiillt ist, bezeichnen wir mit
V(@) und nennen sie die totale Variation von O(u).

Eine im Bereich aller Elemente P von It definierte Funktion f(P)
heiBBt auf IN gleichmdifig stetig, wenn

1. Eine Konstante M von der Art existiert, dal fiir irgend zwei Ele-
mente P, und P, von IR gilt:

| [(Py) —[(Pe) | < M - D(Py, Py) ; (3)
(D(P,, P,) = Abstand der Elemente P, und F,).
2. f(P) auf I beschrinkt ist.

Wir gehen jetzt aus von einem kompakten metrischen Raum I,
einem zugehorigen Teilmengensystem 2, einer Funktion @(u), die auf
IR von beschrinkter Schwankung sei, und einer auf IR gleichméafig
stetigen Funktion f(P).

Jeder positiven Zahl § ordnen wir eine bestimmte Zerlegung 3(4)
von I in abzihlbar viele zu 2 gehorige elementefremde Teilmengen zu,
deren Durchmesser alle < § sind. Diese Zerlegung 3(J) bezeichnen wir

ie folgt:
e et 3(8): M= 3 u,(0).

P;(0) sei irgendein Element aus u,(d) .
Satz 1. Der Grenzwert
lim 3 6(s1(2) - {(P,(2)
>0 j
existiert und ist von der Menge der Zerlegungen 3(0) und von der Auswahl
der Elemente P;(J) unabhdngig.

Wir bezeichnen diesen Grenzwert mit
gafd[@("‘” - f(P)

und nennen ihn das iiber I erstreckte, durch die Funktion von be-
schrinkter Schwankung @ (u) vermittelte Stieltjessche Integral der auf
M gleichmiBig stetigen Funktion f(P) .
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Beweis von Satz 1: {J,} sei eine Folge von positiven Zahlen mit
lim §, = 0. Wir untersuchen den Grenzwert

k>
lim X 0(u(82) - H(P(2)-
Es geniigt zu beweisen, dafl dieser Grenzwert fiir jede den Bedingungen
geniigende Folge {d,} existiert.
Zunichst setzen wir voraus, dafl jede Zerlegung 3(J,) eine Verfeine-
rung der vorangehenden 3(J,_,) ist. Es sei etwa fiir die beiden Indizes
k und (k + 1) : (k, ! = beliebige natiirliche Zahlen)

p;(0y) = 5;\: ﬂA(5k+z)

wo A diejenigen Werte durchlduft, fiir die u)(d,,,;) Teilmenge von u,(d,)
ist. Es ist dann wegen der Additivitit von O(u) und wegen der Relation (3):

l @(#5(5k)) ’ f(P:i(ak)) - ‘? @(MA(5k+z)) ’ f(PA(5k+z)) | <

< X[ O(uAde))| - M - 6y
Also wird: A
| E O(u;(6)) - f(Pa(‘sk))_E O(ui(0x41)) f (Pi(0y10)) | < V(O)-M-6, .
I 3
Daraus folgt unmittelbar die Behauptung fiir den Fall sukzessiver Ver-
feinerung der Unterteilungen. Fiir den Fall einer anderen Folge von
Zerlegungen folgt die Behauptung durch eine bekannte Methode ver-
mittelst der ,,gemeinsamen Verfeinerung‘‘ zweier Unterteilungen aus dem
oben Bewiesenen.

F. Riesz hat im Reellen den Satz bewiesen®):

Es seren f,(x) (k= 1,2,...) abzihlbar viele fir a < x < b stelige
Funktionen. c, seten Konstanten. Das Gleichungssystem
b

.‘d[zx(x)]]‘k(x)zck k=1,2,3,...)
a
hat dann und nur dann eine Lisung o(x), die in a <z <b von
beschrdankter Schwankung ist, wenn eine positive Konstante F existiert,
so daf} fir jede natiirliche Zahl n und n beliebige Konstanten 9,
(k= 1,2,...,n) stets gilt:
%) F. Riesz, Sur certains systémes d’équations fonctionnelles et 1’appro-

ximation des fonctions continues. Comptes rendus des séances de I'académie des
sciences, t. 150 (1910), p. 674.
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| X Oy e | < F-max| X fr(x)] -
k=1 k=1

Es gibt dann eine Lésung o(x), deren totale Variation < F ust.

Satz und Beweis lassen sich auf unseren allgemeineren Integralbegriff
mit komplexen Zahlen oder Quaternionen als Funktionswerte iiber-
tragen, falls I eine beschrinkte Punktmenge in einem Zahlenraum ist,
und es gilt:

Satz 2. Es ser IN eine abgeschlossene Punktmenge in einem Zahlenraum.
f(P) (k=1,2,3,...) sei eine abzihlbare Menge von auf M gleichmdfig
stetrtgen Funktionen. c, seten beliebige Konstante. Das Gleichungssystem

jd[@(ﬂ)]'fk(P) = Cp
m

hat dann und nur dann eine Losung O (u), die von beschrinkter Schwan-
kung ist, wenn eine positive Konstante F existiert, so daf fiir jede natiir-
liche Zahl n und n beliebige reelle Konstanten ¥, (k= 1,...,n) stets gilt :

lzﬂkck|<F'ma’Xl§:0kfk(P)l .
k=1 k=1

Es gibt dann eine Losung O(u), deren totale Variation <F st

Diesen Satz 2 werde ich in einer selbstdndigen Arbeit beweisen. Aus
Satz 2 konnen wir folgern:

Satz 3. Es sei IN eine abgeschlossene Punktmenge in einem Zahlen-
raum. fi(P) (G =1,...,v, v eine feste natiirliche Zahl, k =1, 2, 3,...)
seten auf M gleichmdfig stetige Funktionen. c, (k= 1,2,3,...) seien
beliebige Konstante. Das Gleichungssystem

7,‘:{; fd[@i(lu)]'fjk(l))::ck k=1,2,3,...)
m

hat dann und nur dann Losungsfunktionen
0,(1);. .., 6,(u),

die auf M von beschrinkter Schwankung sind, wenn eine positive Kon-
stante F existiert, so daf fir jede natirliche Zahl n und n beliebige reelle

Konstante 9,(k = 1,...,n) stets gilt:
| ¥ O ¢ | < F-max { | Eﬁkflk(P)l""’ l Xfoe(P)]} -
k=1 k=1 k=1
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Es gibt dann Losungen
(1) -+, B,(p)

fir welche die Summe threr totalen Variationen <F ist.

Beweis: Die Dimension des Zahlenraumes R, in dem It liegt, sei 4.
8 sei ein »- A-dimensionaler Zahlenraum. Durch einen beliebigen
Punkt A von S legen wir » unabhingige A-dimensionale Hyperebenen
S8;,...,8,. Jede derselben bilden wir durch eine eineindeutige affine
Transformation auf R ab, so dafl der Bildpunkt von A4 nicht zu 9t gehort.
Durch die inversen Abbildungen entspricht 9t in S; eine Bildmenge
S;(f =1,...,7). Bei festem k entspricht der Funktion f,, auf It eine
gleichméBig stetige Funktion ¢, auf S;(j =1,..., 7). Die Vereini-
gungsmenge aller S, (j = 1,..., ») nennen wir S. Auf & definieren wir
die Funktionen

¢ (P), wenn Pc G
oe(P) =1 - k=1, 2, 3,...).
¢,x(P), wenn Pc G,

Jetzt schreiben wir die Gleichungen auf:
é’:d[@*(y)]wpk(P):ck, (k=1,23,...) . (4)

Bei beliebiger natiirlicher Zahl » und beliebigen Konstanten 4,,..., 4,
ist die Beziehung

| ¥ dpce| <F-max | X 0, ¢i(P)|
k=1 auf & k=1
erfiillt. Also existiert nach Satz 2 auf © eine Funktion @*(u), deren

totale Variation auf G hochstens gleich ¥ ist und fiir die die Gleichungen
(4) erfiillt sind.

Nun sei u irgendeine zu 2’ gehorige Menge in . Thre Bildmengen in
S, seien u; (j = 1,..., v). Wir definieren auf I die » Mengenfunktionen

O;(u) = O () (=1,...,9).

Statt (4) konnen wir dann offenbar schreiben :

> ([0, (P =, k=1, 2,3,...) .

i=1

Die Summe der totalen Variationen aller ©,(u) (j = 1,..., ») ist gleich
der totalen Variation von @*(u) auf &, also hochstens gleich F, w.z.b.w.
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2.TEIL

Darstellung regulirer Funktionen in der Umgebung
singulérer Punktmengen.

Eine rechtsreguldre Funktion f(z) moge auf einer geschlossenen, orien-
tierbaren Hyperfliche R mit stetigem Normalenfeld keine singuldren
Punkte haben. Die Menge der innerhalb R gelegenen singuldren Punkte
nennen wir JR. Da jeder Haufungspunkt von singuldren Punkten selber
singuldr ist, ist 9 eine abgeschlossene Teilmenge des Quaternionen-
raumes @, .

Zu jeder positiven Zahl p definieren wir jetzt eine (nicht notwendig
zusammenhingende) Hyperfliche S(@ durch folgende Forderungen:

1. S(@ goll geschlossen und orientierbar sein und ein stetiges Normalen-
feld besitzen.

2. M soll im Innern von §‘@ liegen.
3. Der Abstand jedes zu 8@ gehorigen Punktes von I soll > p und
< 2 p sein.

Dabei verstehen wir unter dem Abstand eines Punktes von der
Menge I das Minimum der Abstinde dieses Punktes von allen
Punkten von Jt. Dieses existiert, da JJt abgeschlossen ist.

4. Unter allen Flichen, die (1) — (3) erfiillen, wihlen wir jetzt eine

beliebige aus, jedoch so, daB bei stetiger Anderung von ¢ auch §@
sich stetig dndert.

0, sei eine solche Zahl, daf} fir ¢ < g, 8¢ im Innern von R liegt.
Dann gilt, falls o < g, ist, fir alle Werte von z, die innerhalb R und
auBerhalb S(@ liegen:

1) = 5o [10) a2 4 — 2 + g [1© a2 A€ -7 .
R ste)

Das erste Integral stellt eine innerhalb R rechtsregulire Funktion ¢(z)
dar. Das zweite Integral bezeichnen wir mit g(z):

96) =55 [ 10 42 AC — 2 .

s(e)

?) Fueter I, pag. 318.
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Wir ordnen jetzt jedem Punkt { auf §!@ einen beliebigen Punkt c({)
auf I zu, dessen Abstand von ¢ hochstens gleich 3p sein soll. Es ist
dann, falls z von 9t einen Abstand hat, der groBer als 3 ist:

1

99 = g [ 1042 A[(E — o)) — (= — (&) T = 9

s(@) (5)

— o 5 (100 purn o) Gumn (0 (0)
+ny+ng

2
87 n=0 n=n,

s(e)

Denn fiir einen solchen Punkt z ist:

[C—c@)|<]z—c)] -
Ferner ordnen wir jedem 3-dimensionalen Gebiet G auf S(@ eine Teil-
menge u(G) von M zu, so dall die folgenden Bedingungen erfiillt sind:

«) Die obere Grenze der Abstidnde je eines Punktes von G und eines
Punktes von u(G) ist héchstens gleich 3p .

p) Ist Lc G, soist ¢(f)c u(@).

y) Ist G4, @,,. .. eine Folge von Gebieten auf S'@, deren Durchmesser
den Grenzwert O haben, so hat die Folge u(G,), u(G,),. .. dieselbe
Eigenschaft.

d) Der Vereinigungsmenge bzw. dem Durchschnitt von abzédhlbar
vielen Gebieten auf S‘@ entspricht die Vereinigungsmenge bzw. der
Durchschnitt der zugeordneten Mengen.

Ist u = u(G), so setzen wir:

G — S(Q)(M) .

Die Gesamtheit aller Mengen u (@) bezeichnen wir mit 2'/(@. ' /(@ jst
wegen y) ein den Forderungen (1) 1.—2. geniigendes Teilmengensystem
auf der Vereinigungsmenge I’ aller Teilmengen u(G). 2X'7(@ sei ein
ebensolches Teilmengensystem auf der Restmenge I — IMt’. Dann ist
die Gesamtheit aller entweder in 2 /(@ oder in 2”@ liegenden Teil-
mengen sowie der Vereinigungsmengen von abzéihlbar vielen solchen ein
System von Teilmengen auf 9, das den Bedingungen (1) 1.—2. geniigt.
Wir bezeichnen es mit J'(@.

Mit den zu J'(@ gehorigen Teilmengen als Definitionsbereich definieren
wir jetzt die folgenden Mengenfunktionen @), ., (x):

8) Fueter 11, pag. 373.
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_8—1—— f(C) dzp"ﬂlzna (C——C(M)) , wenn u C 2’ (o)

6 () = () () (c(u) ist irgendein Punkt auf u)

Ningng

0, wenn u c 3”@
O (1), wenn p=p,tp,, p, @, p,c I,

Aus (5) folgt dann:

g(Z) =X -~ fd [@gfl)nzns (1“) ] ) Qn1n2n3 (z - C) (53’)

n=0 nN=ny+ng+"n3.

fiir alle z, deren Abstand von It grofler als 3p ist, und die auBerhalb
einer der Hyperflichen S‘@ liegen. Also wird fiir alle z, die aulerhalb
eines St@ liegen:

9@ =lm X X [2[0P (1] Gu, G — ) - (O

e>0 n=0 n=ny+ns+mnz«

Satz 4. r(z) ser auf I (und somat in einer gewissen Umgebung U von IMN)
linksreguldr. S sev irgemndeine geschlossene, orientierbare Hyperfliche mit
stetagem Normalenfeld, die ganz tn W liegt und welche IMM in threm Innern
enthdlt. Das Minimum der Abstinde der Punkte von S von den Punkten

von IN sev gleich o,. Dann st fir o < %1 :
A(r(0) =~ 5= [ 9(0) dZ r(5) =
8
~ o r
= N x { d[OR),,., (1)] e ax’fz )ax"a : (8)
n= 2

0 n=n1+n2+n3.
m

(A (r(2)) ist ein Funktional mit allen auf IR linksreguliren Funktionen
r({) als Definitionsbereich.)

Beweis: Nach (5a) gilt fir g<%i-

400) = —5m fg 42 r(2) =

1 ®
= ——2—76——2- b Yy f :.{}d[@;el)nzns (:u)] : inngna(&‘"‘ ¢) ; A 7'(C) =

n=0 n=n;+ns+ny ¢
S

1 0
= e e M N\ (@)
2 n2 11:0 n=n1:';’12+n3 (fd [@nlnzna anl ’ng‘ﬂa dZ T(C) (9)
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Nun gilt fiir zwei beliebige, auf S rechts- bzw. linksregulére Funktionen
w(2) und v(2):
f (w®dZv+wdZov®)=0, (=0, 1, 2, 3)
5
wo
ow ()

ox;

9v(2)
0z,

w® () = . o (2) =

ist ?). Wenden wir diese Formel auf die Funktionen w(z) = ¢, 4, (2—¢)
und v(z) = r(z) an, so erhalten wir:

[Grsnans € = ©) AZ7(0) = [ Grs-tinsns € — ) 42 el

und durch (n, + %, + n,)-malige Anwendung derselben Formel:

B 3 _ rr@)
:gfqnlnzna (C c) dZ r (C) "‘:SrQOOO (C C) az aé_-{n a&;lz ag;a o

" r(c)

oxyr 0xy? Ouy®

= — 2 7?

Setzen wir dies ein in (9), so folgt die Behauptung.

91

a (8) fir p <=~ gilt, ist insbesondere:

. o an
Ar@) =lm ¥ X f B[Oy, ()] 5 s i . (10)
1 2 3

@>0 n=0 mn=n;4+n24N3,
am

Wir definieren jetzt die unwesentlich singuldren Mengen :

Definition 1. Eine (abgeschlossene) Menge IN von Punkten des Quater-
nionenraumes heifft unwesentlich singuldir fir die rechtsregulire Funktion
f(z), wenn

1. Jeder Punkt von M ein singulirer Punkt von f(z) ist

2. Eine Konstante M und eine natiirliche Zahl N existieren, so daf

M
RACIE R 5 13

%) Fueter IV, pag. 309.
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1st. Dabei bedeutet : o den Abstand des Punktes z von der Menge M. J(p)
die untere Grenze der Inhalte der Hyperoberflichen aller geschlossenen
orientierbaren Hyperflichen mit stetigem Normalenfeld, die IR in threm
Innern enthalten, und deren Punkte von IR Abstinde haben, die > o sind.
Dre kleinste Zahl, die die Eigenschaft von N hat, heifst die Ordnung der
unwesentlich singuldren Menge.

Ist M ein Punkt oder eine rektifizierbare Kurve oder eine Fliache oder
Hyperfliche mit existierender 2- bzw 3-dimensionaler Oberfliche, so
kann man definieren:

I 1st unwesentlich singuldr, wenn eine Konstante M und eine natiir-
liche Zahl N existieren, so daf

M
[FE) < ox
ist. Demn in diesem Falle bleiben-"—,ég)— bzw. % bzw. iI—(QQ—) bzw. J(p) fur

o — 0 nach oben beschrinkt, und es ist lim — Jlo) #0, bzw. lim — (9) # 0,

>0 Q 0->0

Boge, T 2L = 0, baw. lim J(o) # 0.

e—>0 0 e->0

Satz 5. M ser unwesentlich singulidr von der Ordnung N fir die rechts-
reguldre Funktion f(z). Dann ist fir jede auf M linksrequlire Funktion
r({):

" r(c) .
ox™ dxl daxls

0
im £z [a[eg,, )
>0 n=N+1 "=”1+"2+”ain

Beweis: Es ist, wenn J(S‘®(u)) die Hyperoberfliche von S(@(u)
bedeutet :

169,00 =[5z [ 1) 02 pasun, =2 0))| <

8@ ()
1 M.9N 0" 9N J(S(Q)(Iu)) Q”_N
_ (e) = I , 10
<8712 S8 () o¥J (o) ni!my!ng! SnZM J (o) ny!lmylng! )

10) Fueter 111, pag. 327.
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Also ist:
oo an
Iim N N [‘d[@ﬁﬁ)nzna ()

] Ox;t dxg® dxgs

~
>0 n=N+1 n=ny+ng+ny,
m
9N 1 >t -N o
<imZowo £ s fabsemw)) SR
 e>0 872 J(0) n=N41 n=n T ngtng ! n,! n3!] ox; 0,2 0uy?

m

Es sei K, die Hyperkugel mit Mittelpunkt ¢ und Radius g, (vgl. (7)).
Da 7({) innerhalb und auf K, regulir ist, folgt:

l »
re) = — 5= | Gono (€ — ) AZ7(0),

K91

und somit, durch Differentiation unter dem Integralzeichen:

a"r(c) 1
= TS nyNgN — dZ .
dxy dxj* dye fmzjq sy (6 —0) 4Z 7(0)
K,
Es ist also:
!
1 (1(91) max ‘T(C 1 4M11). (12)

! " r(c)

dxm dxl dxls | 2 2 7 auf K, T
Aus (11) und (12) folgt: 2
lim ¥ fd[@ (@ " r(c) !
>0 n=N+1 n= n1+n2+n3. 17 3 ax{“ 8x;‘2 ax;'a '
(o) o n—N-1
<S-J(S )°Q E V Q (n‘j;_g) ),
J (o) =N+1 n= "1+"2+"3 ny ! ng!ng! 01

wo S eine Konstante ist, deren Wert aus dem obigen ersichtlich ist.
J (8'®) bedeutet die Hyperoberfliche der Hyperfliche S'@. Aus der
Definition der Grofle J(p) folgt sofort, dal man die Hyperfliche S(@
immer so wiahlen kann, daB

J(S(e) )
<2
J)
11) Eg ist namlich fir alle z: ’q"ﬂtzns (2) | <4 (‘T; lj:f;' .

12) Fueter 111, pag. 328.
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wird. Daraus folgt die Behauptung wegen der Konvergenz der auf-

tretenden Reihe fir p < €. und dem vor dem Summenzeichen auf-

3
tretenden Faktor o .

Daraus und aus der Definition (8) des Funktionals A(r(¢)) folgt:

Satz 6. Fiir eine auf MM unwesentlich singulire Funktion f(z) von der
Ordnung N ist:

N

Ape) =1lim ¥ x  [a[6E,, w]

>0 n=0 n=n;4+ns+ng.
m

0" r(c)
0x;* Oxy? 0xy®

Satz 7. Es existiert eine Konstante F von der Art, daf} fur jede auf IM
linksreguldre Funktion r({) gilt :

wo in der Klammer alle Ablettungen von (L) stehen, deren Ordnung < N ist.

" r({)

n n n
0x;t 0x,? Oxy®

14(r()) <F-max[|r<c>| [

auf IN

Beweis: Wire der Satz falsch, so gibe es eine Folge r,({), 75({),. ..
von auf I linksreguliren Funktionen von der Art, daBl die Folge

nicht beschrinkt wire. Es gibe dann ein Indexsystem (v, v,, »;) mit
v, + v, + v3 < NV, so daB fiir unendlich viele Indizes j,, 9, j5,. . . Wére:

A(r;(6))

{F}= =
lmax[lr(&')[,..., 0" r(£)

auf M ox;! 0,2 dxy®

0" r.’ik (C)

ny ny ny |’
0xt 0x,? 0y

av T:ik (C)
ox¥t al? dxls |

k=1, 2,3,...)

max[[r,-k(C)],...,

auf M

.« | = IMax
auf M

Fiir die Funktionenfolge

T (E
{Qak(C)}z d )r’}"r(g“) ; (k=1,2,3,...)
F, -max
k aut m| Oxy* Oxy® oxy®

wire dann gleichméBig auf I :
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a" Qi (%)

n n n
dxy' 0xy* dxg®

(n19n23n3=1:"',Nr

ny + g + 1y < N)

lim max = (

k>0 auf M

und
4 (ij(C)) =1

fir alle k=1, 2,3,.... Das steht im Widerspruch zu folgendem

Satz 8. Ist fir eine Folge wvon auf MM linksreguliren Funktionen
r()t=123,...):

lim r;(c) = --- = lim " r (o)
i>o0 i>w 0X]! 0232 Oxy®

:...:O(n1+n2+n3<N)a

gleichmdifig fir alle Punkte ¢ auf I, so ist:
lim A(r,(¢)) = 0.

t> o0
Beweis: Man stelle 4(7;({)) in der Form (8) dar. Diese gilt fiir jeden
Wert von p. ¢ sei eine beliebige positive Zahl. Wegen Satz 5 kann man
o = o* so wihlen, daf3
B 0" r(c) £
S (e*) &
n=%+1 n=n;§n2+n32ﬁtfd[@"1n2 s ('u)] ax{” axg‘ﬁ ax;‘a 2

wird. Hierauf setze man
1 ¢ 1

6=7°?"P'(”N7

(V = Maximum der totalen Variationen aller @) (u) fiir
n, +n, + n3 < N, P(N) = Anzahl der Tripel (n,,n,,n;) mit
n, + ny, + 3 << N), und bestimme :, so, daB fiir ¢ > ¢, :

o" r;(c)
ozt 0xy® duy®

<0 (0<n + ny+ ny <N)

wird. Dann ist fir ¢ > ¢,:

Y . o" r; (c) &
M d @(Q ) i <2
n2='o "="1%'2+”am‘[ [ nyng Ng (‘u)] ax;q ax;la ax;a 2

|A(r(0))|<e fiar >4, .

und
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Da ¢ beliebig war, folgt daraus die Behauptung. Eine unmittelbare Folge
von Satz 8 ist

Satz 9. Ist far eine Folge von auf M linksrequliren Funktionen
r (&) ¢ =1, 2,...) gleichmdifig fiir alle c auf I :
. 0" r;(c) 0" r(c)
1 —
iy a0zl 0zt 0zl ol dal

(0 <ny 4 ny +n3 < N),

und st () auf M lLinksregulir, so ist
lim A(r,(8)) = A(r({)) .

t>00
Jetzt schreiben wir die Gleichungen auf:

N

E E fd [Anlnz ng (lu)] anPV1 "2 (C) = A (pvl VaVs (C)) (13)
m

n=0 n=ny+ny+n, ax{” 8x;’2 ax;’*'
(v1,v9,73=0,1,2,...)

und fragen nach Losungsfunktionen 4, , . (#) (ny, 71,7, =0,...,N;
ny + ny, + ny < N).

Nach Satz 3 ist fiir die Existenz solcher Losungen notwendig und
hinreichend die Existenz einer Konstanten F' von der Art, daB fiir eine
beliebige natiirliche Zahl s und beliebige Konstanten

01,1,,2,,3 (vy, Vo, v3= 1,...,8; v, + v, + v, < 8)
stets gilt:
8
E E A(pv1v2 vy (C))ﬁvl Vo Vg <
v=1 v=vi+vetvg
s
< F-max [|>; 5 Dorans () Boivars| se s (14)
auf M v=1 v=vi+vatvg

| N
-
v=1 v=v;+vy+Vv, 890{‘1 8x;'2 axg‘a

s o" V1VaVy
< Pryvars (©) I]

wo in der Klammer alle Ableitungen stehen, deren Ordnung < N ist.

Nun ist aber .
E E pl’ll’zvs (C) 791'11»’21’3

v=1 v=vi+ve+v,3

eine fiir alle { linksreguldre Funktion. Also ist (14) nach Satz 7 erfiillt
und die Gleichungen (13) haben Losungen

Ay pgn,(€) (B, My, M3 =0,...,N; 0y + n, 4 n3 <N).
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r({) sei jetzt eine Funktion, die im Innern einer Hyperkugel I", deren
Mittelpunkt der Nullpunkt ist, und die die singulire Menge I in ihrem
Innern enthilt, linksreguldr ist. Dann gilt in I" eine Entwicklung von
der Gestalt:

}: pv1v2v3 (C) * av1v2v3 (15)

V=v1+Vs+¥;3

r(l) =

1148

1 4

und fiir beliebiges (n,, n,, n3):

aﬂ r (C) — :* E anpvlvzva (C) .
— Vovy °
QLI DR 0TI o0 wewi e, 0LV 0@l Ol

Alle diese Reihen konvergieren gleichméflig in jedem abgeschlossenen
Teilbereich von I', insbesondere also auf 9Jt. Deshalb ist nach Satz 9:

A(T(C)) = E E A(pv1v2v3 (C))'a”ﬂ'zvs =

v=0 v=vi+vatv;

N | oo £ an (C) )
e \‘ \ s N\ N f d A nom . pv1v2v3 .a - _
”‘:0 n=”1f*'_;?2+773 ' 1:0 V=V1‘—'}-V2+V3§Jt [ ans 3(H)] ax;‘l ax;l2 ax;:} ViVaVs s
- 0" r(c)
n=0 1+n2+n3 .f [Amnns ()] ox;* 0xy? 0xy® (16)

Wir setzen jetzt 7({) = qqo0(2 — £). Aus (6) und (8) folgt:
A(qooo(z — ) = 9(2) .

Ist jetzt z auBerhalb der Hyperkugel I' gelegen, so ist ggoo(2 — )
innerhalb I' linksreguldr, und es folgt nach (16):

y 341‘ (z —¢)
o\ Ay . 000 _

n=0 n=n;34+ny4-ny .

N
== " fd [Anln2n3 ] innzns (z - C) ¢ (17)

n= 0 n= n1+n2+n3 t

Setzen wir jetzt fiir alle z, die auBlerhalb irgendeines S‘@ liegen:

N
he) = & f @[ Aungn, (1) ] Gmmems & — ©) > (18)

n= 0 n= n1+na+na
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so ist h(z) eine iiberall auler auf M rechtsregulire Funktion. Denn alle
Funktionen der Form g, ,,, (2 —c) sind rechtsregulir. AuBlerhalb I
stimmen aber die Funktionen 4 (z) und ¢g(z) nach (17), (18) iiberein. Nun
sind aber zwei rechtsregulire Funktionen, die in einem 3-dimensionalen
Kontinuum ibereinstimmen, vollstdndig identisch. Also ist % (2) in seinem
ganzen Verlauf mit ¢g(z) identisch und es gilt fiir alle z, die aullerhalb
irgendeiner Hyperfliche S@ liegen:

n=0 n=ny4ngs-t+ny

N
)=~ X f [ Ay (1) ] Gnynany (2 — ©) -
m

Nach (4) unterscheidet sich die Funktion f(z) nur durch eine auf 9t (und
innerhalb R) rechtsregulire Funktion ¢(z) von g(z), und es gilt also:

Hauptsatz 10. Ist eine Funktion f(z) im Innern einer geschlossenen
Hyperfliche rechtsregulir mit Ausnahme der Punkte einer singuliren
Menge MM, die unwesentlich singulir von der Ordnung N sein moge, so gilt
fir alle z, die tm Innern von R liegen, und die durch eine stetige Kurve, die
keinen Punkt mit IN gemernsam hat, mit R verbunden werden kiénnen :

N

I =p@+ Xy X {'d[Anlnzna (1) ] Gnnany (2 — ©) -

n=0 n=n1+n2+n3 [
m

Daber 1st @(z) eine tnnerhalb R, insbesondere also auf YN rechisregulire
Funktion.

(Die Einschriankung: ,,und die durch eine stetige Kurve ... ist not-
wendig, weil wir die Moglichkeit nicht ausschlieBen wollen, wo I eine
geschlossene orientierbare Hyperfliche [natiirliche Grenze von f(2)] ist.
An Stelle dieser Einschrinkung haben wir bisher immer gesagt: ,,z soll
auBerhalb irgendeiner der Hyperflichen 8@ liegen®.)

3. TEIL

Meromorphe regulire Funktionen

Wir stellen uns jetzt die Aufgabe, alle rechtsreguldren Funktionen auf-
zustellen, die fiir alle endlichen z nur unwesentliche Singularitdten haben.
Dabei werden wir aber die als Singularititen auftretenden Mengen noch
einer einfachen Beschrinkung unterwerfen.
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f(z) sei eine rechtsregulire Funktion, die im Endlichen nur unwesent-
liche Singularititen hat. R sei die Menge aller im Endlichen gelegenen
singuldren Punkte von f(z).

Definition 2. Unter einem zusammenhingenden singuliren Gebilde von
f(z) verstehen wir eine Teilmenge M von R, die folgende Eigenschaft hat :
Ist o irgendeine positive Zahl, so gibt es in M eine endliche Anzahl von
Punkten P; von der Art, daf3 die Menge der inneren Punkte aller Hyper-
kugeln mit den Mittelpunkten P, und dem Radius o zusammenhingend ist,
d. h. daf jeder Punkt dieser Menge sich mit jedem andern durch eine in thr
verlaufende stetige Kurve verbinden lif3t.

Definition 3. Ein zusammenhingendes singulires Gebilde M von f(z)
heif3t isoliert, wenn eine positive Zahl o existiert, so daf die Hyperkugeln
vom Radius o und irgendeinem Punkt von IN als Mittelpunkt keine singu-
liren Punkte von f(z) enthalten aufer den Punkten von IN.

Jedes zusammenhdngende isolierte singulire Gebilde ist vollstindig, d. h.
durch Hinzunahme weiterer singulirer Punkte wird der Zusammenhang
zerstort.

Satz 11. Es gibt nur abzihlbar viele isolierte singulire Gebilde.

Beweis: R sei fiir jedes dieser Gebilde die obere Grenze der Zahlen o,
welche die in Definition 3 verlangte Eigenschaft haben. Wir klassifizieren
die Gebilde nach der GroBe dieser Zahl R. Die erste Klasse enthélt alle
Gebilde, fiir die R >1 ist. Die zweite diejenigen mit 1 <R <1 ---,

die n-te Klasse enthilt die Gebilde mit—2—,—}l—i < B< 2,}_2 . Jedes Gebilde

gehort einer dieser abzéhlbar vielen Klassen an. Jede Klasse enthilt aber
abzihlbar viele Gebilde. Denn es gibt nur abzihlbar viele punktfremde
Hyperkugeln mit gegebenem Radius.

Wir machen jetzt die Voraussetzung, daB f(z) nur isolierte, unwesentlich
singuldre Gebilde hat.

Es sei R ,R, R,;,...

eine Folge von geschlossenen orientierbaren Hyperflichen mit stetigem
Normalenfeld und mit folgenden Eigenschaften:

1. R, , enthdlt R; in seinem Innern (1 =1,2,3,...).
2. Ist z irgendein Punkt des Quaternionenraumes, so existiert ein Index
10(2), so dal} fiir ¢+ > 7,(z) z im Innern von R, enthalten ist.

3. Die Punkte auf den Hyperflichen R, sind regulire Punkte von f(z).
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Wir numerieren nun die isolierten singuldren Gebilde in irgendeiner
Reihenfolge, jedoch so, daBl wir zuerst die innerhalb R, gelegenen nehmen,
dann diejenigen, welche in R, aber nicht in R, liegen usw. In dieser
Reihenfolge bezeichnen wir sie mit:

S, S, S5,

Ihre Ordnungen seien bzw.:
Ny, Ny N,,..

Die natiirlichen Zahlen A(¢) (: = 1, 2, 3,...) seien so definiert, daf3 genau
die S) mit 4 < A(¢) im Innern von R, liegen (¢ = 1, 2, 3,...).

Die Hyperflichen S{@(1=1,2,3,...) seien beziiglich S, ebenso
definiert, wie im 2. Teil die Hyperflichen 8@ beziiglich Jt. Dabei
beschrinken wir ¢ auf solche Werte, daB die 8{¥ keine gemeinsamen
Punkte haben. Es gilt dann innerhalb R, :

1 2M7)
f(z) = lim X | /() dZA( —2)*

8 72 e>0 =1

9

8) dZ A (L — 2)1

Nach dem Resultat des 2. Teiles ist

1 A1)

lim X [f(0)dZ A¢—2) =

8 2 e>0 1=1,
S(Q)

A(?)
-3 [ f AL (1)) Gy, (2= )|
A=1 n= 0 n= n1+n2+n3

und

7)) = 55 [110)2Z (¢ —2)
Rz

ist eine innerhalb R, rechtsregulire Funktion. Es ist somit

A7)

f( ) = hm ‘ 2-« [n 0 n=n +'n 4 ({vd[d(ﬂﬁ)ﬂrz ng (/,t)] ’ Qnﬂ%z ng (Z—’C)] + (pi (z)z’

z—»oo(l-l

Nun sei K, die grote Hyperkugel mit dem Mittelpunkt z = 0, deren
innere Punkte innere Punkte von R; sind. L; sei die Hyperkugel mit
z = 0 als Mittelpunkt und halb so grofem Radius wie K,;(z = 1,2,3,...).
@,(z) ist innerhalb R;, also innerhalb K; rechtsregulir, somit gilt in K,:
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oo
991.(z):.n;s-:() n n§L+n “sl)”z"a.pnlnzna(z) (7':1’2’3"") ‘
= =n 2 3

&, €3, €3,... sel eine Folge von positiven Zahlen mit lim ¢ = 0.
7> 00

Wir wihlen fiir jedes ¢+ den Index »; so grof3, da3 innerhalb L, :

Vi
Iq)i(Z)—-—-— A\-"O § + “fl:l)ﬂzna pn1n2n3(z) I <8’i (?/:1’ 2, 39"')
N= n=mny-1r+Ng-t+"ngy

ist. Setzen wir
<. (¥
Al - 1 —_—
= ~ Knyngng * Pryng ng (2) = Y (2) ,
n=0 n=nj+ny+ng

so sind die y,(z) ganze rationale rechtsregulire Funktionen, und es wird:

A(3) Nx
() =lm| X[ x f A8y, 0] Gy 2 — 0| + w02

t>o00{ A=1 n= 0 n= n1+n2+n3

Daraus folgt:

Hauptsatz 12. Hat eine rechtsrequlire Funktion f(z) im Endlichen nur
1solierte unwesentlich singulire Gebilde, so sind diese in abzdihlbarer Menge
vorhanden. Bezeichnen wir sie mit S,, S,, S;,..., s0 st fir alle z, die
nicht auf einem singuliren Gebilde liegen, und die sich durch etne stetige
Kurve, die aus lauter reguliren Punkten besteht, mit dem Punkt z = oo

verbinden lassen :

MS

Ny
s f ALADny 0y (0] T, (2= ©) + 21(2) |

=0 n= n1+n2+n3

fz) =

A

Il
[

Dabei ist N die Ordnung von S,, die Funktionen A, . (u) sind auf S,
von beschrinkter Schwankung und die x)(2) sind ganze rationale rechts-
requlire Funktionen .

(Eingegangen den 5. Januar 1944.)
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