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Alcune questioni sulla forma cubica
dello spazio a cinque dimensioni

Di Gixo Fano, Lausanne

In una mia Memoria del 1904) ho trattato alcune questioni di carat-
tere proiettivo sulla forma (o varietd) cubica generale dello spazio a
quattro dimensioni. Alcune di esse si estendono facilmente agli spazi
superiori; non tutte. D’altra parte un lavoro recente di E. G. Togliatti2)
ha considerata una particolare superficie del 5° ordine dello spazio ordi-
nario, ottenuta come contorno apparente di una forma cubica generale
dello spazio a cinque dimensioni rispetto a una sua retta generica, cioe
come luogo delle tracce su un §; fisso dei piani passanti per questa retta
e incontranti ulteriormente la forma cubica in coppie di rette. I in tale
ricerca, che muove essenzialmente dall’equazione della detta superficie,
non & fatto cenno delle relazioni tra le proprieta di questa superficie e
quelle della forma cubica dianzi menzionata; relazioni importanti, poiche
le prime derivano appunto da queste ultime. Sembra percio opportuno,
anche in vista di possibili ulteriori sviluppi, chiarire tali relazioni; e cio
mi da pure occasione di estendere alla forma cubica di S; alcune fra le
proprieta esposte nella mia Memoria cit.

1. Una forma cubica dello spazio a cinque dimensioni (V3, o breve-
mente V), che supponiamo priva di punti doppi, contiene oo rette; per
ogni suo punto ne passano ool, costituenti un cono I (di ordine 6, e di
genere virtuale 4). Fra gli oo® piani dello spazio ambiente S5, oo® incon-
trano V in terne di rette, cioé sono ad essa tritangenti; fra questi, oco®
Pincontrano in terne di rette di un fascio (ogni punto di V & centro di
oo! fra queste terne, i cui piani sono quelli passanti per questo punto e
contenuti nella quadrica polare del punto stesso); e oot in terne di rette
di cui due coincidono. Se r & une retta generica contenuta in V, e P un
punto qualunque di questa retta, il piano p tangente lungo r al cono I™

1) Ricerche sulla varietad cubica generale..., Ann. di Matem (3), vol. 10
(1904), p. 251. Questa Memoria verra indicata in seguito semplicemente con ,,Ann. di
Matem.*. V. anche la mia Nota: Sulle curve ovunque tangenti a una quintica
piana generale, Commm. Mathem. Helvetici, vol. 12 (1939—40), p. 172; in part. n. 2, 3.

2) Una notevole superficie di 5° ordine con soli punti doppi isolati,
Festschrift Rudolf Fueter, Beiblatt zur Vierteljahrschrift der Naturf. Ges. in Zirich,

Zirich 1940.
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uscente da P incontra V secondo r stessa contata due volte e una retta
ulteriore ¢, non passante in generale per P. Questo piano g & tangente a
V lungo l'intera retta r; &€ per conseguenza contenuto in tutti gli spazi
S, tangenti a V nei singoli punti di r, ed & ’asse del S,-cono quadrico
inviluppato da tali S,. Esso ¢ pure tangente lungo r agli analoghi coni
I'® uscenti dagli altri punti di . Gli oo? spazi S, passanti pel piano p
incontrano V secondo superficie cubiche @2 con due punti doppi, variabili
su r e in generale distinti; sono cioé bitangenti a V. I due punti doppi
coincidono in uno del tipo B, (cioe biplanare, colla r come intersezione
dei due piani tangenti?)) quando lo spazio §; & tangente lungo r al cono
quadrico che contiene il I'® uscente da quel punto. Un S, generico passante
pel piano p non & tangente a V, ma I'incontra in una V3 per la quale r
e retta ‘“‘speciale,; ). Visono in tutto oo? piani g, e ogni S, (iperpiano dello
spazio ambiente S;) ne contiene ocol.

Delle o3 rette di V infinitamente vicine ad r soltanto oo! sono ad
essa incidenti, nei singoli fasci che contengono r entro il piano g.

2. I punti dello spazio S; hanno rispetto a V altrettante quadriche
polari formanti un sistema lineare oo®, 2, privo di punti basi. Fra queste,
oot sono coni, & oo? sono S;-coni. Se un punto 4 ha per quadrica polare
un cono di vertice 4/, la relazione fra questi due punti & reciproca; e
A, A’ sono anche punti reciproci rispetto a tutte le quadriche del sistema
2. Luogo di queste coppie A, A’ & la varieta Hessiana H di V, di 6°
ordine, sulla quale le coppie AA’ costituiscono un’involuzione 7' (e gli
assi degli S,-coni ne sono rette fondamentali). I sistemi lineari co* generici
contenuti in 2 hanno gruppi basi di 32 punti (G;), formanti nello spazio
S un’involuzione K,,; e i punti di ciascun gruppo, essendo contenuti
nelle stesse oo? quadriche, hanno rispetto a ¥ uno stesso §, polare. Una
retta generica di S; sta su oo? quadriche di 2'; ma ogni retta congiungente
due punti di uno stesso gruppo G;, sta su co? di tali quadriche; e su cia-
scuna di queste rette le quadriche di 2 segnano le oo! coppie di un’invo-
luzione I,, le quali appartengono a altrettanti diversi (/;,. Viceversa,
ogni retta contenuta in co3 quadriche di X, anziché in sole oo?, & sostegno
di una I, del tipo anzidetto®); e queste rette, complessivamente in numero

8) Faremo uso della notazione abituale, indicando con B un punto doppio biplanare,
e coll’indice la diminuzione da esso portata alla classe della superficie.

4) Nel senso di cui in Ann. di Matem., n. 2 e seg.

5) Nessuna retta pud appartenere a oo* quadriche del sistema X, perché in caso con-
trario questo sistema avrebbe su di essa qualche punto base.
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di oo?, si diranno rette ‘“speciali , ¢). I punti doppi delle involuzioni 7, sono
anche doppi per gruppi G, e vertici di coni del sistema 2', cioé punti
della varieta Hessiana H ; e i due punti doppi di una stessa I, sono altresi
coppie AA ' (affatto generiche) dell’involuzione 7' su H. Le oo® quadriche
del sistema 2 passanti per una retta speciale s s’incontrano ulteriormente
in una curva C}] (di ordine 15, genere 14) “residua,, di s, luogo degli
ulteriori coniugati dei punti di s nella K,,, e 4-secante s. Ciascuna di
queste 4 intersezioni é anche punto doppio di un gruppo @,,, e quindi di
una [,, generalmente su altra retta speciale; sicché questi pure sono punti
di H, completandone cosi le 2 + 4 = 6 intersezioni con s. Le oo® qua-
driche di 2’ passanti per s e per la curva residua sono polari dei punti
di uno spazio S;; percio gli S, polari dei punti di s rispetto a V passano
per questo §,, e formano un fascio.

Se una retta speciale s ha a comune con V i due punti di una coppia
della sua involuzione I,, lo spazio S, polare comune di questi punti sara
tangente a V in entrambi; e I'intera s stara su V. Vi sara percio un fascio
di spazi S, tutti bitangenti a V nelle singole coppie della stessa I,; e
lo spazio S, asse del fascio incontrera V in una superficie cubica avente
Pintera s come retta doppia, cioé in una rigata cubica R? di direttrice s.
La varieta V ha oo® spazi S, bitangenti; contiene oo? rette speciali, le cui
involuzioni I, costituiscono le coppie di punti di contatto di quegli S,
bitangenti; e contiene percio anche oo? rigate cubiche?). Le oo? rette spe-
ciali contenute in ¥V hanno per luogo una varieta M,, intersezione com-
pleta di V con altra forma#), di cui al n° seguente determineremo 1’ordine.
Ogni retta speciale contenuta in V & generatrice doppia del cono I
uscente da ciascuno dei suoi punti; e ogni S, passante per una di queste
rette incontra V in una V3 per la quale la stessa retta & pure speciale.

Ogni retta speciale s contenuta in V & incidente a oo? fra le rette di V
ad essa infinitamente vicine, nei singoli fasci che la contengono entro lo

¢) La considerazione delle rette speciali pué estendersi a qualunque sistema lineare
oo 5 di quadriche dello spazio S;, anche se queste non sono le prime polari dei punti di
questo spazio rispetto a una forma cubica. E cosi per un sistema lineare oo® di quadriche
in 8y,. In due altri miei lavori (Mem. R. Accad. Torino (2), vol. 51 (1901), p. 1; Rend.
Circolo Matem. Palermo, vol. 29 (1910), p. 98) le ho chiamate, per n = 3, rette ‘“prin-
cipali , traducendo cosi il termine tedesco ,,Hauptstrahlen, usato da Th. Reye e altri;
ma nel caso presente, per questioni concernenti forme cubiche, preferisco conservare il
nome di rette “speciali, , gia prima adottato da Enriques (Giorn. di Matem., vol. 31 (1893),
p. 31).

7) Fra queste, ool sono rigate di Cayley, ciod colla retta doppia direttrice rettilinea
unica e in pari tempo generatrice; in corrispondenza a quelle rette speciali lungo le quali
V ammette un piano osculatore fisso.

8) Severi, Rend. R. Accad. Lincei (5), vol. 15 (1906),, p. 691.
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spazio 8, tangente a V lungo di essa; ma fra queste oo? non vi & general-
mente nessuna retta speciale. I piani passanti per s e non contenuti nel
detto §; determinano con questo S, spazi S, bitangenti a V; e se segano
ulteriormente V in coppie di rette, queste rette passeranno rispett. per
i due punti di contatto di quell’S,.

Come immediata estensione di proprieta gia note per lo spazioS; e S, ?),
una retta speciale s contenuta nella varieta V é bitangente alla Hessiana
nei punti doppi dell’involuzione I, su di essa; la sua C}; residua si appog-
gia ad essa in questi punti e nelle due intersezioni residue di s colla H 19).

3. Sia ora r una retta non speciale pel sistema di quadriche 2. I coniu-
gati dei punti di r nell'involuzione K,, hanno per luogo una curva y di
ordine 31 (dovendo essere incontrata da una quadrica generica del
sistema 2’ nei 31.2 punti coniugati dei due in cui la stessa quadrica incon-
tra r) 11). Le due linee » e ¥ hanno a comune i 6 punti intersezioni di r
colla Hessiana H di V, e sono fra loro in corrispondenza (1,31), coi 6
punti anzidetti come uniti. Generano pertanto una rigata R5¢, avente r
come direttrice 31P12 ¢ y come direttrice semplice, e le cui generatrici
sono le rette speciali appoggiate a r e per conseguenza anche a y.

Supponiamo ora la retta non speciale » contenuta nella varieta V.
Le quadriche @ polari dei punti di » contengono allora tutte questa retta,
€ quindi anche la curva y sua coniugata nell’involuzione K,, (curva che
stara percio sulla M3 base del loro fascio). Esse segano ogni piano con-
giungente r a un punto C di y, all’infuori di r, secondo rette passanti per
C, e che sono le polari dei singoli punti di r rispetto alla conica inter-
sezione ulteriore di questo medesimo piano con V. Una di queste rette &
sempre generatrice della rigata R5%. Quando C cade in una, M, delle 6
intersezioni di y colla 7, la @ polare di M & un cono di vertice M’ == M,
contenente il piano M 'r; e questo piano incontra ¥, all’infuori di 7, in

%) Cfr. p. es. Ann. di Matem., n. 4.

1%) La C13 & tangente a V nei primi due punti e osculatrice negli ultimi due (Ann. di
Matem., n. 15); incontra percio ulteriormente ¥V in 15.3 — (2.2 + 3.2) = 35 punti. Da
¢id si trae che in ogni fascio di S, bitangenti a ¥V vi sono 35 spazi tritangenti. — Pi
generalmente, ogni fascio di iperpiani bitangenti a una forma cubica generale di S, (n>>2)
contiene 3 (271 — n) 4 2 iperpiani tritangenti.

1) Quando r & una retta speciale, la curva y® si spezza in questa stessa retta (che di
ogni suo punto contiene allora un coniugato) e nella C}g residua contata due volte. Il
genere di  (che non interessa pero pel seguito) & 60 (e, per la curva analoga in uno spazio
Sp, & (n—1) (2n-1—1)). Lo si pud determinare facilmente nel caso in cui il sistema 2
si compone delle quadriche aventi un dato simplex autopolare, poiché la curva in parola
¢ allora composta delle rette che corrispondono a r nelle singole omografie involutorie
aventi come spazi di punti uniti le coppie di elementi opposti del detto simplex.
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una coppia di rette passanti pure per M . Le @ polari dei punti di  incon-
trano percio questo stesso piano in una retta fissa: la coniugata armonica
di r rispetto a queste ultime due rette, la quale sara pure generatrice di
R58. La tangente a y nel punto M stara anch’essa nel piano M 'r, e quindi
nel cono quadrico polare di M ; sara dunque tangente tripunta di V in M.
Infine il piano osculatore a y in M & a sua volta contenuto nello spazio
S, tangente in M al detto cono quadrico'?) e quindi a V ; e percio la curva
y, tangente in M a una tangente tripunta di V e ivi osculatrice a un piano
tangente a V, sara osculatrice a V in M, vale a dire in tutte le 6 sue inter-
sezioni con r 13),

All’infuori di questi 6 punti, le intersezioni della linea » colla forma V
saranno in numero di 31.3 — 3.6 = 75. E saranno punti della linea y,
aventi ciascuno sulla r uno dei propri coniugati nell’involuzione K, ;
quello e questo appartenenti a V, e congiunti da una retta speciale, che
stara per conseguenza pur essa su V. Saranno dunque queste, tutte e
soltanto, le rette speciali contenute in V e appoggiate alla r; vale a dire:
11 luogo delle rette speciali contenute in V & una varieta M3, intersezione
div V con una forma di ordine 75 14) 15) 16),

12) Rappresentiamo la curva y nell’intorno di M, in coordinate non omogenee, colle
equazioni parametriche z;=a;tt+ ...(¢=1,2,...5), dove i termini non scritti
contengono ¢ a grado maggiore di %, e a,, a, 3= 0; e il cono quadrico M’ (o anche una
qualunque ipersuperficie) contenente y e la sua tangente in M coll’equazione

Aoy + ...+ Asgz; = 0.
Sostituendo in questa le espressioni delle z; , dovremo avere un’identita, e dovra percio
mancare 'unico termine eventuale in ¢2; vale a dire il polinomio 4, dovra mancare del
termine noto. L’equazione dell’S, tangente in M al cono o ipersuperficie dovra percio
essere soddisfatta per z, = x, = x; = 0; ossia questo S, conterra il piano osculatore
ayin M.

13) Per i casi analoghi negli spazi S; e §, cfr. Ann. di Matem., n. 13—16.

14) Le singole generatrici della rigata R%¢ incontrano V, oltre che sulla retta r direttrice
31prla di R, nei punti di una linea che ha 6 punti doppi nelle intersezioni di y colla r
(dove le generatrici MM’ sono tangenti tripunte di V) e 25.2 = 50 altri punti in ogni
spazio S, passante per r: curva percio di ordine 62. L’ulteriore intersezione di R% con V,
di ordine 56.3 — (31 + 62) = 75, & appunto costituita dalle 75 rette speciali contenute in
V e appoggiate a r.

15) Per una forma cubica di S, il numero (30) delle rette speciali appoggiate a una sua
retta generica r & stato da me determinato in Ann. di Matem. n. 8, 9 per vie completamente
diverse da quella qui usata nello spazio S;. Nello spazio S, la curva analoga a y & di
ordine 15 e si appoggia a 7 in ¢cinque punti, nei quali & del pari osculatrice alla forma cubica;
e si ha appunto 15.3 — 3.5 = 30. In generale, per una forma cubica di S, questo numero
¢ 3(2" —n—2). Per n=3 le 27 rette di una superficie cubica generale sono tutte
rette speciali e costituiscono I'intersezione completa con una superficie di ordine 9.

16) Nello spazio S, la congruenza (7,3) delle rette speciali (o principali) di un sistema
lineare oo® di quadriche senza punti basi — in particolare delle quadriche polari rispetto
a una superficie generale del 3° ordine — da un esempio molto semplice di superficie rego-
lare di genere zero e bigenere uno (cfr. i miei lavori Mem. R. Accad. di Torino (2), vol. 51

278



4. Data una forma cubica generale di §,, i piani che passano per una
sua retta generica r e incontrano ulteriormente la forma in coppie di
rette danno come tracce su un piano generico x i punti di una curva gene-
rale di 5° ordine; i piani delle coniche tangenti a r danno i punti di una
conica 5-tangente alla quintica; gli spazi S; tangenti alla forma nei punti
di » danno le tangenti di questa conica; i piani delle 5 coppie di rette della
forma che appartengono con r ad un fascio danno i 5 punti di contatto
delle due linee anzidette del piano z 17).

Era percio a prevedere, passando allo spazio S;, che i piani condotti
per una retta r di una forma cubica V e incontranti ulteriormente questa
in coppie di rette avessero come tracce su di un generico S, i punti di
una superficie F'5 del 5° ordine; i piani delle coppie di rette formanti
fascio con 7, i punti di una curva di 5° ordine ¢° contenuta in F3; e gli
spazi S, tangenti a V nei punti di r, gli co! piani inviluppanti una qua-
drica, e precisamente un cono quadrico 4 tangente alla '> lungo la curva
85 18),

Le stesse considerazioni analitiche esposte per la forma cubica di S,
al n. 2 del mio lavoro cit. di questi C.M.H., vol. 12, si possono ripetere
per la forma V di S;, colla sola differenza di una variabile in piu. Assunta
la r come retta z, = x, = x, = &, = 0, la V puod rappresentarsi con
un’equazione :

a, % + 2b, x5 4 ¢, 75 4 2a, 2, 4 2b, 25 4 @y = 0 (1)

(1901), p. 1, in part. § 14; Rend. Circolo Matem. Palermo, vol. 29 (1910), p. 98). Ho
voluto percio esaminare se ’analogo sistema oo® di rette speciali di S, (Ann. di Matem.,
in part. n. 2, 3) costituisse una varietd a 3 dimensioni anche di genere zero, tale da dar
lume sulla questione ancora incerta delle condizioni di razionalita di queste ultime varieta.
Ma non & cosi; si tratta —nello spazio Sy della Grassmanniana delle rette di S,—di una
varieta di genere uno a superficie-sezioni canoniche. L’ordine della varieta & ad. es. quello
della rigata intersezione del sistema oo® delle rette speciali con due complessi lineari; in
particolare della rigata delle rette incidenti a due piani dati, e composta a sua volta, se i due
piani stanno in un S, e percio si incontrano in una retta I, di due rigate; I'una avente la
l come direttrice, I’altra R contenuta nel detto spazio §,. La prima, analoga alla R qui
considerata nel testo, & di ordine 25 e genere 21. Quanto alla seconda, occorre considerare
la superficie f5 intersezione dello spazio S, colla Hessiana della forma cubica; la curva C}{
intersezione di f5 colla (ossia sezione iperpiana della) superficie luogo dei punti coniugati di
quelli di f5 nell’involuzione (analoga alla 1" del n. 2) delle coppie di punti reciproci rispetto
a tutte le quadriche del sistema oo?; e su questa C}g, coniugata di sé stessa, I’involuzione
'yé delle coppie in essa contenute; involuzione priva di punti doppi, e percié di genere 6.
Questa 'y% genera la rigata R richiesta, di ordine 10 e genere 6, avente a comune colla
prima 10 generatrici. Il sistema oo® di rette considerato ha quindi per immagine una
varieta M?3% di Sy, a curve-sezioni di genere 21 4+ 6 4 10 — 1 = 36, e le cui superficie-
sezioni sono superficie canoniche di genere 9: varieta pertanto di genere uno.

17) V. il mio lavoro cit. di questi Comm. Mathem. Helvet., vol. 12, n. 2, 3, e altri lavori
ivi menzionati.

18) Togliatti, 1. c.
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dove le a, b, ¢ sono forme nelle z,, z,, x,, x, di grado eguale all’indice.
La quadrica polare di un punto generico di 7, e sia (0,0,0,0,z;,x,), &:

Ty (ay T4 + by x5 + ay) + 25 (b 4 + ¢y 5 + by) = 0 ;

e lo spazio §, tangente comune a V e a questa quadrica nel medesimo

punto &: 2

r* ro
a,x, +2b, 2,2+ cox; =0

contenente le sole variabili «,, x,, ,, *; che compaiono nelie a, b, c.
Questi oo! spazi 8, hanno a comune il piano a, = b, =c¢, =0, che &
il piano g del n. 1. 1l loro inviluppo a,c¢, — b} = 0, interpretandone
Pequazione nello spazio (S;) z, = z; = 0, & il cono 4. La superficie F'
si rappresenta (come ’analoga C° nel piano z) scrivendo che ¢ nullo il
discriminante della (1), come equazione nelle due variabili z,, x;:

by ¢ by |=0; (2)

equazione che & appunto la (3) di Togliatti, 1. c. E la curva 4° di contatto
di questa superficie col cono 4 ha per equazione:

b, ¢ b,

é dunque di genere 2, come intersezione del cono 4 con una superficie
cubica, all’infuori di una retta®).

19) Se alla retta generica r della forma cubica V si sostituisce una retta speciale s,
lungo la quale cio® gli spazi S, tangenti a V siano tutti bitangenti nelle coppie di punti
di un’involuzione, potremo prendere come punti fondamentali 4 e 5 i punti doppi di questa
involuzione. Questi saranno allora reciproci rispetto a tutte le coniche intersezioni di V
coi piani passanti per s; e sard identicamente nullo il polinomio b;. Il cono A si spezza
pertanto come luogo nei due piani a, = 0, ¢, = 0, e come inviluppo nel loro fascio
contato due volte; e la curva 0% si spezza nella retta a, = ¢, = 0 e nelle due coniche
a, =ay,=0 e ¢, = b, = 0. I punti di J° provengono infatti dai piani che passano per
s e incontrano ¥V secondo terne di rette di un fascio; e queste terne nel caso presente o
stanno nello spazio a, = ¢, = 0, che sega V in una rigata cubica, e comprendono allora
fra le tre rette la 8 come doppia; oppure escono da uno dei due punti 4 e 5, le cui quadriche
polari sono coni e contengono infiniti piani passanti per s. L’equazione della superficie F®
é in tal caso a,c,a;,—a, bg_ —Cy a%: 0; essa & tangente ai piani a, =0 e ¢; =0
rispett. lungo le coniche a;, = a, = 0 e ¢; = b, = 0, e ha su ciascuna di queste 8 punti
doppi (a; =ay=cya3—b3 = 0, risp. ¢; =by=a,a;3—a} =0).
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Criterio di massima per stabilire la multiplicitda di un punto P di F
per questa superficie, o per le sue intersezioni con piani e rette, sara di
considerare la superficie ¢ 2 intersezione di ¥ con uno spazio S, passante pel
piano r P — spazio rispett. generico, contenuto nell’S, proiettante il piano,
o esso medesimo proiettante la retta considerata —, e esaminare quanti
tra 1 piani tritangenti di questa ¢3 che passano per r sono assorbiti dal
piano rP. In massima ogni S, passante per r e tangente a V' in un punto
non appartenente a r dara un piano tangente a F® in un suo punto gene-
rico, e viceversa; dovranno percio coincidere la classe di V e quella di
F5. E poiché la prima vale 3.2¢ = 48, mentre una superficie generale del
5° ordine ¢ di classe 5.4> = 80, la differenza 80 — 48 = 32 dipendera da
punti doppi isolati di F'5; i quali pertanto, se di tipo generale (conici),
saranno in numero di 16 20).

Gli spazi S, tangenti a V nei punti della retta » daranno piani tangenti
comuni a F’ e al cono 4. Ciascuno di questi S, contiene due piani passanti
per r e incontranti ulteriormente V in coppie di rette che formano fascio
con r; e ogni S, condotto genericamente per uno di questi piani entro
quell’S, sega una superficie ¢3 con punto biplanare, per la quale il piano
considerato assorbe due fra i piani tritangenti passanti per r. I piani
tangenti del cono A sono pertanto tutti (come e ovvio) bitangenti a F,
in coppie di punti della curva §° appartenenti alle singole generatrici di
quel cono. In particolare &° sara essa stessa tangente a ser generatrici
del cono 4 ; e si avranno cosi 6 piani bitangenti a F5 in coppie di punti
infinitamente vicini — incontranti percio F® in curve con tacnodo — e
tracce degli S, tangenti a V nelle intersezioni della retta r colla Hessiana
di V.

5. Perché un punto P sia doppio per la superficie F> & necessario e
sufficiente che per ogni @3 segata da un S; contenente il piano rP questo
piano assorba almeno due fra i piani tritangenti che passano per r.
& ¢i6 non avviene certo, se ¥V non ha punti doppi, qualora il piano rP
incontri V in tre rette distinte. Avviene invece sempre se il piano rP
incontra V, all’infuori di 7, in una coppia di rette coincidenti?!). Questo
e un caso particolare di 3 rette di un fascio; percio i1 punti doppi di #'
stanno sulla curva &% Questa curva ¢ proiettata da r secondo una M3,

20) E cosi & realmente (cfr. anche le ultime due linee della nota 19)). Sono i 16 punti
che annullano tutti i minori di 2° ordine del determinante simmetrico (2); il loro numero
fu determinato, per un determinante simmetrico di tipo anche pili generale, da Giambell:
(Atti. R. Accad. di Torino, vol. 41 (1905), p. 102).

21) K escluso ovviamente anche il caso in cui r conti essa doppiamente nella terna di
rette, come pel piano ¢ del n. 1.
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8,-cono, che incontra V in una rigata R!® di direttrice . Ogni piano della
M: contiene due generatrici di questa rigata, coniugate in un’involuzione
v, le quali si proiettano in uno stesso punto della curva 6°; e i punti
doppi di F** provengono dalle coppie di generatrici coincidenti, cioe dagli
elementi doppi dell’involuzione y;. Il numero d di questi elementi doppi
¢ dato da una formola di Schubert?®), la quale per » = 1 (trattandosi di
involuzione), m =k + 1 =2, n =15 (ordine della rigata), = 5
(ordine della M3), si riduce a:

1

dove z € il numero dei punti doppi della curva sezione generica di R!5
che non sono tali in senso invariantivo per I'involuzione sezione della y7}.
Ora questa curva ha due punti doppi, sovrapposti a un punto semplice,
sulla 7; quindi 2=2, e d = 16.

Se la retta r incontra una retta speciale s contenuta in ¥ in modo gene-
rico, cioé senza essere generatrice della rigata cubica R® di direttrice s
(in altri termini, senza che la r stia nello spazio S, di questa rigata), il
piano 7s incontrera V in una terza retta distinta da r, s. Pero lo spazio
tangente a V nel punto rs sara tangente a V anche in un secondo punto,
in generale diverso, della s; la sua traccia & percido un piano non solo
tangente a F° in due punti di una generatrice del cono 4, ma anche in un
terzo punto; quindi tritangente a F'5. Se piu particolarmente » & genera-
trice della rigata R? dianzi menzionata, la s conta doppiamente per I'inter-
sezione di V col piano rs; la traccia di questo piano € allora uno dei
punti doppi di F'> e appartiene a 6°; la traccia dello spazio di R? é tangente
quadripunta di #'%, e su questa si € portato, infinitamente vicino al punto
doppio, il terzo punto di contatto con F°.

6. Il numero (75) delle rette speciali contenute in V e incidenti a una
retta generica r di V stessa (n. 3), e quindi dei piani tangenti del cono 4,
percio bitangenti alla superficie F'5, e in pari tempo tangenti ancora a
quest’ultima in un terzo punto, si pu6 determinare per altra via, in base
a quest’ultima proprietd dei piani stessi. La superficie F° essendo di
classe 48, i piani tangenti ad essa che passano per un punto qualunque
dello spazio inviluppano un cono anche di classe 48. Riferendoci al punto
0 vertice del cono 4, questo inviluppo oo! comprendera il cono stesso 4
contato due volte — ogni suo piano tangente essendo bitangente a F'5 —

22) Severt, Trattato di geometria algebrica, vol.I, parte I (Bologna 1927),
pP. 253.
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e percid un inviluppo (cono) residuo I" di classe 44. Il numero cercato &
pertanto quello dei piani comuni ai due inviluppi conici 4 e I" di vertice 0,
cioé¢ 2.44 = 88, escluse le soluzioni estranee al problema, costituite dai
piani comuni ai due inviluppi e tangenti a /% in uno stesso punto. Ora
i punti di contatto di F'> con piani passanti per 0 stanno sulla superficie
di 4° ordine prima polare di O rispetto a F®, la quale contiene la curva 45,
e incontra le generatrici del cono 4 in un solo punto ulteriore, variabile.
Occorre pertanto che anche quest’ultimo punto cada su 8%; il che avviene
soltanto per la generatrice di 4 tangente in 0 a d° e per le 6 generatrici
tangenti a ° nei punti doppi della sua involuzione g;.

Nel primo caso si tratta del piano tangente in 0 alla superficie F¢,
comune appunto ai due inviluppi 4 e I'. Esso incontra F® in una curva
per la quale 0 € punto doppio a tangenti distinte??); e queste tangenti sono
rispett. le generatrici (o caratteristiche) dei due inviluppi. Tale piano e
percio un loro elemento comune semplice.

Le 6 generatrici del cono 4 tangenti a ¢° in punti distinti da 0 hanno
ivi contatto tripunto colla prima polare di 0; sono quindi generatrici
cuspidali del cono I', ma semplici per 4, col medesimo piano tangente.
Questo piano va percio computato come due elementi comuni ai due
inviluppi®).

Riassumendo: 88 — (1 + 2.6) = 75, c.s.v.d.

(Regu le 19 mai 1943.)

23) 11 piano tangente in 0 alla superficie F'* & la traccia dello spazio ¥, tangente a V
nel punto 7¢ (n. 1). Un §, generico pel piano ¢ = r¢ incontra V in una superficie cubica
¢?® con due punti doppi conici su 7, per la quale ¢ conta solo semplicemente fra i piani
tritangenti che passano per r; 0 & pertanto punto semplice di F®. Se perd questo S, &
contenuto nello spazio ¥,, uno dei punti doppi di ¢?® cade in 72 e & biplanare; il piano @
assorbe percio almeno due dei piani passanti per r e tritangenti a (2. Ne assorbe tre per
due distinti di questi ultimi S, le cui tracce sono percio le due tangenti tripunte della -
F5 in 0. Uno di questi contiene oltre ¢ il secondo piano passante per » e contenuto nella
quadrica polare del punto 7¢; esso sega una ¢? per la quale il punto doppio conico & assor-
bito da quelio biplanare, che diventa di tipo Bj; e ha per traccia la generatrice del cono
A tangente in 0 alla d5. L’altro & determinato dal piano ¢ e dal piano tangente a ¥V lungo
la ¢; esso sega una 2 per la quale il punto r¢ & biplanare di tipo B, colla ¢ come intersezione
dei due piani tangenti; e che ha in pi2i su 7 un punto doppio conico.

24) Nel piano, la tangente a una curva in una cuspide (di 12 specie) & elemento semplice
per la curva inviluppo. Il caso duale di quello qui considerato & quello di due curve piane
tangenti in un loro comune punto semplice, che & per di pil1 flesso di una di esse e non tale
per l'altra: esso assorbe evidentemente due sole loro intersezioni.
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