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Sur la décomposition des polyèdres
Par J.-P. Sydler, Zurich

Les recherches poursuivies dans le cadre de l'étude axiomatique du
volume ont conduit à une notion plus raffinée que la notion d'égalité
de volume, celle d'équivalence1) :

,,Deux polyèdres P et Pr sont dits équivalents (zerlegungsgleich) s'il
est possible de les décomposer en polyèdres partiels px, p2,.. ,pn,
respectivement px, p2,..., p'n, tels que pt et p\ soient congruents (i —

1,...,»)."
Il intervient encore la généralisation suivante de cette notion1) :

,,P et Pf sont dits équivalents par adjonction (ergànzungsgleich) si, en
leur ajoutant deux polyèdres équivalents Q et Qf, on peut obtenir deux
polyèdres P + Q et Pr + Q' qui sont équivalents."

Il est clair que deux polyèdres équivalents sont équivalents par
adjonction et que deux polyèdres équivalents par adjonction ont même
volume.

L'importance de ces notions apparaît surtout dans la géométrie non-
archimédienne, mais elles sont aussi intéressantes dans la géométrie
habituelle, archimédienne et euclidienne, à laquelle les considérations
suivantes se rapportent exclusivement.

Dans le plan où les polygones remplacent les polyèdres, on peut
éventuellement renoncer à introduire ces deux notions, car dans la géométrie
archimédienne, deux polygones plans de même aire sont toujours
équivalents et par suite équivalents par adjonction1).

Dans l'espace par contre, Dehn a trouvé le théorème suivant: 5,I1

existe des polyèdres P et P7 de même volume qui ne sont pas équivalents
par adjonction et par conséquent qui ne sont pas équivalents." Ainsi
par exemple, le tétraèdre régulier n'est pas équivalent à un cube2).

Dehn a encore démontré ce qui suit: ,,Si deux polyèdres équivalents
par adjonction sont compris dans la même ,classe', l'ensemble des classes

formées avec tous les polyèdres de même volume est infini et a la
puissance du continu/' 3)

1) D. Hilberty Grundlagen der Géométrie (ime édition, Leipzig et Berlin, 1930),
chap. IV.

2) M. Dehn, Ùber den Rauminhalt, Math. Ann. 55 (1902), 465—478. Démonstration

simplifiée par Kagan, Ûber die Transformation der Polyeder, Math. Ann. 57 (1903),
421—424.

3) M. Dehn, Zwei Anwendungen der Mengenlehre in der elementaren
Géométrie, Math. Ann. 59 (1904), 84—88.

266



Pour ses démonstrations, Dehn établit des conditions nécessaires pour
l'équivalence par adjonction et il est aisé d'indiquer des couples de

polyèdres P et PJ qui n'y satisfont pas.
On n'a pas encore trouvé de conditions suffisantes générales pour

l'équivalence ou l'équivalence par adjonction. On peut noter à ce propos
que l'on ne connaît que peu de polyèdres simples, et en particulier de

tétraèdres, qui sont équivalents à un cube. (On ne connaît guère que les

prismes4) et les tétraèdres de Hill5).)

Les considérations de géométrie élémentaire suivantes se rattachent
à ce cycle de problèmes. Au § 2, il est démontré que deux polyèdres
équivalents par adjonction sont équivalents. Dans la géométrie habituelle
où l'axiome d'Archimède est valable, la distinction entre équivalence et
équivalence par adjonction est donc superflue. Dans le § 3, il est montré
qu'il existe entre les polyèdres qui sont équivalents à un cube et ceux
qui ne le sont pas, une autre différence qui a trait à la manière dont ils
peuvent être décomposés. Le § 4 donne une nouvelle démonstration du
deuxième théorème de Dehn mentionné plus haut sur l'existence d'une
infinité de classes d'équivalence : Partant d'un seul polyèdre qui n'est pas
équivalent à un cube (le tétraèdre régulier par exemple), on peut construire
une infinité de polyèdres appartenant chacun à une classe différente, et
cela à l'aide de considérations purement géométriques, sans employer
les conditions de Dehn. Tous nos théorèmes et toutes nos constructions
se basent sur un lemme formulé et démontré au § 1.

Si deux polyèdres P et P! sont équivalents, nous écrirons symboliquement

P ~ Pf. Nous ne parlerons de somme de deux polyèdres que s'ils
n'ont pas de points intérieurs communs. Nos polyèdres ne sont pas
nécessairement connexes.

Rappelons que tout prisme est équivalent à un cube4). La somme
de n polyèdres équivalents à un cube est équivalente à un cube6). Ceci

dit, établissons notre lemme fondamental.
4) Ennques, Fragen der Elementargeometrie (traduction allemande de Thieme,

Leipzig, 1911), Ire partie
Killing und Hovestadt, Handbuch des mathematischen Unterrichts (Leipzig und

Berlin, 1913), II, § 13 et 14.
5) Hill, Détermination of the volumes of certain species of tetrahedra,

Proceedmgs of the London Mathematical Society XXVII (1896), 39—53.
6) Chacun de ces polyèdres étant équivalent à un parallelipipède rectangle de hauteur

ht et dont la base est un carré de côté 1, leur somme est équivalente à un paralléhpipède
de même base et de hauteur 2 ht.
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LEMME
Soit P un polyèdre quelconque et soient n nombres positifs az tels que

ax + a2 +... + an 1

Il existe n polyèdres pt et un polyèdre R tels que :

1. Les polyèdres pt sont semblables à P, le rapport linéaire de similitude
étant at ;

2. R est équivalent à un cube ;
3. P~Pl + p2+...+ pn + R.

Considérons d'abord le cas où P est un tétraèdre ABCD. Divisons
l'arête AD en n segments proportionnels aux nombres at Par les points
de division At, menons les plans parallèles à la face ABC. Soit Ax Bx C1

A2 B2C2 le polyèdre compris entre deux plans consécutifs, les points
A2, B2, C2 étant respectivement entre les points A± et D, Bx et D, Gx et
D. Le plan mené par A 2 parallèlement à la face BCD coupe les arêtes

AXBX et A C± en E et F. Le plan A2 B2 F coupe l'arête Bx C1 en G. Le
tétraèdre A2 Ax EF est semblable au tétraèdre DABC, le rapport
linéaire de similitude étant un des at ; les polyèdres A 2 EFB2 Bt G et
A2B2G2FGCX sont des prismes. En appliquant la même décomposition
à toutes les sections, nous trouvons les n tétraèdres cherchés et un
polyèdre R composé de 2W — 2 prismes, donc équivalent à un cube.

Si P est un polyèdre quelconque, nous pouvons le décomposer en
tétraèdres Tt :

Appliquons à chaque tétraèdre la décomposition précédente :

Avec ces tétraèdres ttk9 nous pouvons construire n polyèdres pk
semblables à P:

Par conséquent:

P — S T% ~Pl + p% + • • • + pn + R

R ~ ^ Rt est équivalent à un cube, ce qui démontre notre théorème
dans le cas général.

Comme nous emploierons souvent ce procédé, nous le nommerons
,,décomposition #"
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§2.

Théorème. Deux polyèdres équivalents par adjonction sont équivalents.

Plus explicitement: Soient A et B deux polyèdres quelconques et soient
G et D deux polyèdres équivalents. Si les polyèdres A -j- C et B -f- D sont

équivalents, les polyèdres A et B sont équivalents.

Démonstration: Soient \\ et F2 les volumes de A et de C. Choisissons

y _i_ 3 y
un n tel que n2 > —^—^—-. A l'aide de la décomposition #, nous

tirons de A n polyèdres A! semblables à A et de volume — V± V[
n

Le polyèdre restant R est équivalent à un cube. De ce polyèdre jR,

tirons n polyèdres Gf semblables à C et de volume—^- F2 Vi A causex- •/ n3
de notre choix de n, il reste un polyèdre S de volume

Cette dernière transformation, purement géométrique, est toujours
possible. En effet, supposons d'abord que C soit un tétraèdre. Les
tétraèdres Cr sont inscrits dans des prismes Pr construits sur trois
arêtes concourantes deC", de volume 3Fg et équivalents à des cubes. Du
cube R, nous pouvons tirer n cubes de volume 3Fg, les transformer en
prismes Pr desquels nous tirons les tétraèdres Cf. Ceci est possible si
le volume du cube R est plus grand que celui des n prismes P'', c'est-

à-dire: V1-nV[>n3Vf2J n*>Vl+T/3V2 Si C est un polyèdre

quelconque, il suffit de le décomposer en tétraèdres auxquels on applique
la transformation précédente.

Nous avons donc

R~nC + 8
et par suite

A ~nA' + R~nAf + nC + S ~n(A' + Cr) + S

Par hypothèse,
A' + C'~ B' + D'y

B! et D1 désignant deux polyèdres semblables à B et Z>, de volume V[
et V'2, donc

A ~ n (B' + D') + S ~ n Br + n Dr + S
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Par hypothèse
C'~D',

et par conséquent
A ~ n B! + n C + S ~ n Br + (n C + 8)

Mais (n Cr + S) n'est autre que R; donc

A ~nBf + R

D'autre part, si nous appliquons la décomposition # au polyèdre B
nous voyons que

B ~n Br + Rr,

R1 étant un polyèdre équivalent à un cube de même volume que R;
R et R' sont donc équivalents et nous obtenons finalement

A ~ n Br + R ~ n Bf + Rr ~ B,
A~B

Ce théorème n'est pas vrai dans une géométrie non-archimédienne ;

dans le plan déjà, si l'axiome d'Archimède n'est pas valable, deux
triangles de même base et de même hauteur sont équivalents par adjonction,
mais ne sont pas nécessairement équivalents.1)

Nous pouvons encore énoncer notre théorème sous la forme suivante:
Si de deux polyèdres équivalents, on enlève deux polyèdres équivalents,

les restes sont équivalents (ce qui justifie en quelque sorte la soustraction
des polyèdres). En particulier, si d'un polyèdre équivalent à un cube,

on enlève un polyèdre équivalent à un cube, le reste est équivalent à un
cube.

Tirons une conséquence de notre théorème: Soient deux polyèdres
équivalents A et B et soit C leur intersection prise de façon quelconque.
Les polyèdres A — C et B — C sont équivalents. En particulier, si A et
B sont congruents, on obtient facilement une infinité de couples de
polyèdres équivalents.

§3.
Théorème. Si en enlevant de façon quelconque d'un polyèdre P un

polyèdre Pf semblable à P, on obtient un polyèdre non vide R équivalent à

un cube, le polyèdre P est équivalent à un cube. Réciproquement, si P est

équivalent à un cube, R est équivalent à un cube. Démonstration : Soient

a et a' les longueurs de deux arêtes correspondantes de P et P!. D'après
notre lemme,
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P~P' + P" + C,

Pn étant un polyèdre semblable à P et d'arête a" a — a', C étant
équivalent à un cube. Par hypothèse,

P ~P' + R

Comme R et C sont équivalents à un cube,

R~C + C,

où C" est équivalent à un cube. Par conséquent,

P' + P»+C~P' + B~P' + C + C.

D'après le théorème précédent,

Pn est équivalent à un cube, donc P aussi.

Réciproquement, si P est équivalent à un cube, R l'est aussi comme
différence de deux polyèdres équivalents à un cube.

Théorème. Si à Vaide de n polyèdres Pt semblables à un polyèdre P on
peut construire un polyèdre semblable à P, le polyèdre P est équivalent à

un cube.

En effet, d'après notre lemme, P est équivalent à la somme d'un
cube C et de n polyèdres P[ semblables à P et proportionnels aux
polyèdres Pt. La somme de ces n polyèdres P[ est équivalente à un polyèdre
P; semblable à P:

P ~ E P[ + C ~ P' + C.

D'après notre théorème précédent, P est équivalent à un cube.

Nous pouvons énoncer cette proposition sous la forme suivante:

Théorème. Une condition nécessaire et suffisante pour qu'un polyèdre
soit équivalent à un cube est qu'il soit équivalent à k polyèdres semblables

à lui-même (k > 1)

Il est clair en effet qu'un polyèdre équivalent à un cube est équivalent
à k polyèdres semblables à lui-même.
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Remarquons encore que si cette propriété est vraie pour un certain k,
elle est vraie pour tout k. Nous pouvons donc toujours supposer k 2

De ce théorème, nous déduisons immédiatement le théorème suivant:

II est impossible de décomposer un polyèdre non équivalent à un cube en

k polyèdres semblables à lui-même.

C'est la généralisation d'un théorème de Dehn: II est impossible de

décomposer un tétraèdre régulier en k tétraèdres réguliers3).

§4.
Si l'on considère l'ensemble de tous les polyèdres de même volume, on

peut les ranger en classes d'équivalence: Deux polyèdres appartiennent
à la même classe s'ils sont équivalents et à deux classes différentes s'ils
ne sont pas équivalents. Dans le plan, il n'existe qu'une seule classe.

Dans l'espace, nous savons qu'il existe un polyèdre qui n'est pas
équivalent à un cube (le tétraèdre régulier par exemple)2).

Théorème. Uensemble des classes d'équivalence est infini étala puissance
du continu.

Démonstration : Soit P* un polyèdre non équivalent à un cube.

Désignons par A une de ses arêtes et par d la longueur de A ; soit C d3 le
volume dç P* Soit P ~ p -f- pf un polyèdre de volume C, p et p' étant
semblables à P*. Soient encore a et a' les longueurs des arêtes de p et pr
homologues à A et soit 6 a + a'.

Si l'on ne distingue pas deux polyèdres équivalents, à tout nombre 6,

1 < 6 < ^4, correspond un et un seul polyèdre P(6)7). En effet, le

système
a3 + a'3 1

a + a! b

n'admet que les solutions (a, a') et (a',a) où

362 + 1/126 —364 ^
3 62 — j/l26 — 364

a — — et a'
66 ^ ~ ~ 66

solutions réelles et positives si 1 < 6 ^ ]^4 Mais aux deux systèmes
(a, ar) et (ar, a) correspondent deux polyèdres équivalents que nous ne

distinguons pas.

7) Pour b 1, a 0: Le polyèdre p est vide.
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Nous prétendons maintenant que:
La condition nécessaire et suffisante pour que deux polyèdres P (b)

et P (bf) soient équivalents est que 6 — br.

La suffisance découle immédiatement de ce qui précède.
Si b^ézb', les polyèdres P(b) et P(b') ne sont pas équivalents. En

effet, supposons b>bf. Soit P' un polyèdre semblable à P*, l'arête
homologue à A ayant la longueur b. D'après notre lemme,

P1 ~ P(b) + R~ P(b') + P" + Rf,

Pn étant semblable à P*, l'arête homologue à A ayant la longueur
b — b'. Comme R et Rr sont équivalents à des cubes,

R r^j R -]- R

R" étant équivalent à un cube. Il est impossible que P(b) et P(6;)
soient équivalents, car nous aurions alors

p"+ R< ~R~R> + R"
P" ~R\

Pn serait équivalent à un cube, donc P* aussi, ce qui est contraire à nos
hypothèses.

Ainsi donc, à tout nombre 6, 1 < b < ]^4, correspond un polyèdre
P(b) et à deux nombres différents correspondent deux polyèdres non
équivalents, donc de classes différentes. L'ensemble des classes
d'équivalence a donc la puissance du continu.

(Reçu le 27 décembre 1943).
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