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Sur la décomposition des polyédres

Par J.-P. SypLER, Zurich

Les recherches poursuivies dans le cadre de 1’étude axiomatique du
volume ont conduit & une notion plus raffinée que la notion d’égalité
de volume, celle d’équivalence?):

,,Deux polyédres P et P’ sont dits équivalents (zerlegungsgleich) s’il
est possible de les décomposer en polyedres partiels p,, p,,...p,, res-
pectivement p;, p,,...,p,, tels que p, et p, soient congruents (i =
1,...,n).“

1l intervient encore la généralisation suivante de cette notion?!):

,,»P et P’ sont dits équivalents par adjonction (erginzungsgleich) si, en
leur ajoutant deux polyeédres équivalents @ et @', on peut obtenir deux
polyédres P + @ et P’ 4+ @’ qui sont équivalents.*

Il est clair que deux polyédres équivalents sont équivalents par ad-
jonction et que deux polyedres équivalents par adjonction ont méme
volume.

L’importance de ces notions apparait surtout dans la géométrie non-
archimédienne, mais elles sont aussi intéressantes dans la géométrie
habituelle, archimédienne et euclidienne, a laquelle les considérations
suivantes se rapportent exclusivement.

Dans le plan ou les polygones remplacent les polyedres, on peut éven-
tuellement renoncer & introduire ces deux notions, car dans la géométrie
archimédienne, deux polygones plans de méme aire sont toujours équi-
valents et par suite équivalents par adjonction?).

Dans l’espace par contre, Dehn a trouvé le théoréme suivant: ,,I1
existe des polyédres P et P’ de méme volume qui ne sont pas équivalents
par adjonction et par conséquent qui ne sont pas équivalents. Ainsi
par exemple, le tétraedre régulier n’est pas équivalent & un cube?).

Dehn a encore démontré ce qui suit: ,,Si deux polyedres équivalents
par adjonction sont compris dans la méme ,classe’, I'ensemble des classes
formées avec tous les polyédres de méme volume est infini et a la puis-
sance du continu. 3)

1) D. Hzulbert, Grundlagen der Geometrie (7me édition, Leipzig et Berlin, 1930),
chap. IV.

2) M. Dehn, Uber den Rauminhalt, Math. Ann. 55 (1902), 465—478. Démonstra-
tion simplifiée par Kagan, Uber die Transformation der Polyeder, Math. Ann. 57 (1903),
421—424.

3) M. Dehn, Zwei Anwendungen der Mengenlehre in der elementaren
Geometrie, Math. Ann. 59 (1904), 84—88.
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Pour ses démonstrations, Dehn établit des conditions nécessaires pour
I'équivalence par adjonction et il est aisé d’indiquer des couples de
polyédres P et P’ qui n’y satisfont pas.

On n’a pas encore trouvé de conditions suffisantes générales pour
I’équivalence ou I’équivalence par adjonction. On peut noter & ce propos
que 'on ne connait que peu de polyédres simples, et en particulier de
tétraedres, qui sont équivalents a un cube. (On ne connait guére que les
prismes 4) et les tétraedres de Hill %).)

Les considérations de géométrie élémentaire suivantes se rattachent
a ce cycle de problemes. Au § 2, il est démontré que deux polyeédres
équivalents par adjonction sont équivalents. Dans la géométrie habituelle
ou 'axiome d’Archiméde est valable, la distinction entre équivalence et
équivalence par adjonction est donc superflue. Dans le § 3, il est montré
qu’il existe entre les polyedres qui sont équivalents & un cube et ceux
qui ne le sont pas, une autre différence qui a trait & la maniere dont ils
peuvent étre décomposés. Le § 4 donne une nouvelle démonstration du
deuxiéme théoreme de Dehn mentionné plus haut sur 'existence d’une
infinité de classes d’équivalence: Partant d’un seul polyedre qui n’est pas
équivalent & un cube (le tétraedre régulier par exemple), on peut construire
une infinité de polyedres appartenant chacun a une classe différente, et
cela a l'aide de considérations purement géométriques, sans employer
les conditions de Dehn. Tous nos théoremes et toutes nos constructions
se basent sur un lemme formulé et démontré au § 1.

§ 1.

Si deux polyedres P et P’ sont équivalents, nous écrirons symbolique-
ment P ~ P’. Nous ne parlerons de somme de deux polyédres que s’ils
n’ont pas de points intérieurs communs. Nos polyédres ne sont pas néces-
sairement connexes.

Rappelons que tout prisme est équivalent & un cube*). La somme
de n polyeédres équivalents & un cube est équivalente & un cube$). Ceci
dit, établissons notre lemme fondamental.

4) Enriques, Fragen der Elementargeometrie (traduction allemande de Thieme,
Leipzig, 1911), 1re partie.

Killing und Hovestadt, Handbuch des mathematischen Unterrichts (Leipzig und
Berlin, 1913), II, § 13 et 14.

) Hill, Determination of the volumes of certain species of tetrahedra,
Proceedings of the London Mathematical Society XXVII (1896), 39—53.

¢) Chacun de ces polyédres étant équivalent & un parallélipipéde rectangle de hauteur
h; et dont la base est un carré de c6té 1, leur somme est équivalente & un parallélipipéde
de méme base et de hauteur X h; .
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LEMME

Soit P un polyédre quelconque et sotent n mombres positifs a, tels que

a, +a+...+a,=1.
Il existe n polyédres p; et un polyédre R tels que :

1. Les polyédres p; sont semblables a P, le rapport linéaire de similitude
étant a; ;

2. R est équivalent a un cube ;

3. P~p,+p,+...+p,+ R.

Considérons d’abord le cas ou P est un tétraedre 4 BCD. Divisons
I’'aréte AD en n segments proportionnels aux nombres @, . Par les points
de division A;, menons les plans paralleles & la face 4 BC. Soit A, B, C,
A4, B, C, le polyédre compris entre deux plans consécutifs, les points
A,, B,, C, étant respectivement entre les points A, et D, B, et D, C, et
D. Le plan mené par A, parallelement & la face BCD coupe les arétes
A, B, et 4,C,en EetF. Le plan 4, B, F coupe 'aréte B, C,enG. Le
tétraédre A, A, EF est semblable au tétraedre DABC, le rapport
linéaire de similitude étant un des a,; les polyédres A, EFB, B,G et
A,B,C,FGC, sont des prismes. En appliquant la méme décomposition
& toutes les sections, nous trouvons les n tétraédres cherchés et un
polyédre B composé de 2, — 2 prismes, donc équivalent & un cube.

Si P est un polyédre quelconque, nous pouvons le décomposer en
tétraedres 7', :

P~ > T, .
(]

Appliquons & chaque tétraédre la décomposition précédente:
TiNtil"I" bio + oot by 1+ Ri‘

Avec ces tétraédres t,,, nous pouvons construire » polyédres p, sem-
blables & P:
2 b ~DPr -
?
Par conséquent:

P~3Ti~p +pat+--+pPat B .

R~ 3 R, est équivalent & un cube, ce qui démontre notre théoreme
dans le cas général.

Comme nous emploierons souvent ce procédé, nous le nommerons
,,décomposition 4 .
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§ 2.

Théoréme. Deux polyédres équivalents par adjonction sont équivalents.

Plus explicitement: Soient A et B deux polyédres quelconques et soient
C et D deux polyédres équivalents. St les polyédres A + C et B + D sont
équivalents, les polyédres A et B sont équivalents.

Démonstration: Soient V; et V, les volumes de 4 et de C. Choisissons
Nn+3W
A

tirons de 4 n polyédres A’ semblables a 4 et de volume E Vi=V; .
n® !

un » tel que n?> A Yaide de la décomposition #, nous

Le polyédre restant R est équivalent & un cube. De ce polyédre R,
tirons n polyédres C’ semblables 4 C et de volumeni3 V,=V,. A cause

de notre choix de n, il reste un polyédre S de volume
Va=V,—nV;—nV,>0.

Cette derniére transformation, purement géométrique, est toujours
possible. En effet, supposons d’abord que C soit un tétraedre. Les
tétraédres C’ sont inscrits dans des prismes P’ construits sur trois
arétes concourantes de C’, de volume 3V et équivalents & des cubes. Du
cube R, nous pouvons tirer n cubes de volume 3V;, les transformer en
prismes P’ desquels nous tirons les tétraédres C’. Ceci est possible si
le volume du cube R est plus grand que celui des n prismes P’, c’est-
i+ 30,

7 :
quelconque, il suffit de le décomposer en tétraédres auxquels on applique
la transformation précédente.

Nous avons done

a-dire: V; — nV;>n3V,, n2> Si C est un polyédre

R~nC' 4+ 8
et par suite
A~nA'"+R~nA"4+nC' +8S~n(d'4+C)4+ 8.

Par hypothese,
A’ 4+ C'~B' 4+ D,

B’ et D’ désignant deux polyédres semblables & B et D, de volume V
et V,, donc
A~n(B' 4+ DY+ 8S~nB +nD 4+ 8.
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Par hypothese
¢’ ~ D',
et par conséquent
A~nB +nC0'+8~aB + =0+ 8).

Mais (n C’/ 4 8S) n’est autre que R; donc
A~nB + R.

D’autre part, si nous appliquons la décomposition & au polyédre B

nous voyons que
B~nB' 4+ R/,

R’ étant un polyédre équivalent & un cube de méme volume que R;
R et R’ sont donc équivalents et nous obtenons finalement

A~nB 4+ R~nB' + R ~ B,
A~DB.

Ce théoreme n’est pas vrai dans une géométrie non-archimédienne;
dans le plan déja, si 'axiome d’Archimede n’est pas valable, deux tri-
angles de méme base et de méme hauteur sont équivalents par adjonction,
mais ne sont pas nécessairement équivalents.?)

Nous pouvons encore énoncer notre théoreme sous la forme suivante:

Si de deux polyedres équivalents, on enléve deux polyedres équivalents,
les restes sont équivalents (ce qui justifie en quelque sorte la soustraction
des polyedres). En particulier, si d’un polyédre équivalent & un cube,
on enléve un polyédre équivalent & un cube, le reste est équivalent & un
cube.

Tirons une conséquence de notre théoreme: Soient deux polyedres
équivalents A et B et soit C leur intersection prise de fagon quelconque.
Les polyédres 4 — C et B — C sont équivalents. En particulier, si 4 et
B sont congruents, on obtient facilement une infinité de couples de poly-
édres équivalents.

§ 3.

Théoréme. Si en enlevant de facon quelconque d’un polyédre P un
polyédre P’ semblable & P, on obtient un polyédre non vide R équivalent
un cube, le polyédre P est équivalent a un cube. Réciproquement, st P est
équivalent a un cube, R est équivalent @ un cube. Démonstration: Soient
a et a’ les longueurs de deux arétes correspondantes de P et P’. D’apreés

notre lemme,
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P~P + P40,

P” étant un polyédre semblable 4 P et d’aréte a” = a — a’, C étant
équivalent & un cube. Par hypotheése,

P~P 4+ R.
Comme R et C sont équivalents & un cube,
R~C -+ C,
ou C’ est équivalent & un cube. Par conséquent,
P +P'+C~P +R~P +0+4C".

D’apres le théoreme précédent,
P/I ~ C/ x

P” est équivalent & un cube, donc P aussi.
Réciproquement, si P est équivalent & un cube, R l'est aussi comme
différence de deux polyedres équivalents & un cube.

Théoréme. Si a l'aide de n polyédres P, semblables a un polyédre P on
peut construire un polyédre semblable a P, le polyédre P est équivalent a
un cube.

En effet, d’aprés notre lemme, P est équivalent & la somme d’un
cube C et de n polyédres P; semblables & P et proportionnels aux poly-
édres P,. La somme de ces n polyédres P; est équivalente & un polyédre
P’ semblable & P:

D’aprés notre théoréeme précédent, P est équivalent & un cube.

Nous pouvons énoncer cette proposition sous la forme suivante:

Théoréme. Une condition nécessaire et suffisante pour qu’un polyédre
sott équivalent a un cube est qu’il soit équivalent a k polyédres semblables
a lur-méme (k> 1) .

11 est clair en effet qu’'un polyédre équivalent & un cube est équivalent
a k polyédres semblables & lui-méme.
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Remarquons encore que si cette propriété est vraie pour un certain £,
elle est vraie pour tout £. Nous pouvons donc toujours supposer k == 2.

De ce théoréme, nous déduisons immédiatement le théoréme suivant:

11 est ympossible de décomposer un polyédre non equivalent a un cube en
k polyédres semblables a lui-méme.

C’est la généralisation d’un théoreme de Dehn: Il est impossible de
décomposer un tétraedre régulier en k tétraédres réguliers?).

§ 4.

Si ’'on considere I’ensemble de tous les polyédres de méme volume, on
peut les ranger en classes d’équivalence: Deux polyedres appartiennent
a la méme classe g’ils sont équivalents et & deux classes différentes s’ils
ne sont pas équivalents. Dans le plan, il n’existe qu'une seule classe.
Dans I'espace, nous savons qu’il existe un polyédre qui n’est pas équi-
valent & un cube (le tétraédre régulier par exemple)?).

Théoréme. L’ensemble des classes d’équivalence est infini et a la puissance
du continu.

Démonstration: Soit P* un polyédre non équivalent a un cube. Dési-
gnons par 4 une de ses arétes et par d la longueur de 4 ; soit C d* le vo-
lume de¢ P* . Soit P ~ p 4+ p’ un polyédre de volume C, p et p’ étant
semblables & P*. Soient encore a et a’ les longueurs des arétes de p et p’
homologues 4 4 et soit b =a + a’.

Si 'on ne distingue pas deux polyédres équivalents, & tout nombre b,
1 < b <4, correspond un et un seul polyédre P(b)?). En effet, le
systeme

a® +a't =1
a +a =2b

n’admet que les solutions (a,a’) et (a’, @) ol

2 —_— 4 2 - 4
" 3b+1/61b2b 3b ot a:3b l/61b2b 3b,

solutions réelles et positives si 1 < b < P4 . Mais aux deux systémes
(a,a’) et (a’, a) correspondent deux polyédres équivalents que nous ne
distinguons pas.

7) Pour b = 1,a’ = 0: Le polyédre p’ est vide.
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Nous prétendons maintenant que:

La condition nécessaire et suffisante pour que deux polyedres P (b)
et P (b') soient équivalents est que b = b'.

La suffisance découle immédiatement de ce qui précede.

Si bs£b’, les polyédres P(b) et P(b’) ne sont pas équivalents. En
effet, supposons b > b’. Soit P’ un polyédre semblable & P*, l'aréte
homologue & 4 ayant la longueur . D’aprés notre lemme,

P’ ~ P(b) + R~ P(b’') + P" + R/,

P” étant semblable & P*, P’aréte homologue &4 A ayant la longueur
b — b’ . Comme R et R’ sont équivalents & des cubes,

.RN.R,+ RI/,

R’ étant équivalent & un cube. Il est impossible que P(b) et P(b)
soient équivalents, car nous aurions alors

P”—l—-R,NRNR,—}— R//
P/I NRI/’

P” serait équivalent & un cube, donc P* aussi, ce qui est contraire & nos
hypotheéses.

Ainsi done, & tout nombre b, 1 < b < ¥4, correspond un polyedre
P(b) et a deux nombres différents correspondent deux polyédres non
équivalents, donc de classes différentes. L’ensemble des classes d’équi-
valence a donc la puissance du continu.

(Recu le 27 décembre 1943).
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