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Ûber monothetische Gruppen

Von Beno Eckmann, Lausanne

1. Einleitung
Unter einer Grappe verstehen wir im folgenden immer eine topologische

Grappe, also eine solehe, deren Elemente gleichzeitig einen Raum bilden,
in welchem die Gruppenoperation stetig ist1). Vor allem gehôren dazu die
kontinuierlichen Gruppen, ferner die abstrakten Gruppen der Algebra,
als diskrete Râume aufgefaBt (die aus lauter isolierten Punkten bestehen) ;

die topologische Struktur kann aber auch wesentlich komplizierter sein.
Man nennt nach dem Vorschlage von van Dantzig [5] eine Grappe G

monothetisch, wenn in ihr die Potenzen eines Elementes a ûberall dicht
liegen; wir sagen in diesem Falle, G sei von a erzeugt. Man kann dièse

Eigenschaft auch so formulieren : Die kleinste abgeschlossene Untergruppe
von G, welche a enthâlt (wir bezeichnen sie mit Ha, sie besteht aus den
Potenzen von a und ihren Hàufungspunkten in G) ist die ganze Grappe G.
Da Ha immer Abelsch ist, ist jede monothetische Grappe Abelsch.

Jede zyklische Gruppe ist monothetisch, und fur diskrete (oder ab-

strakte) Gruppen fallen die beiden Begrifïe zusammen. Fur nicht-dis-
krete Gruppen dagegen ist monothetisch eine weniger einfache, halb
algebraische, halb topologische Eigenschaft. Als Beispiel erwâhnen wir
die Gruppe K der (eigentlichen) Drehungen des Kreises : sie wird erzeugt
von einer Drehung um einen irrationalen Bruchteil von 2n. Besonders
intéressant ist das direkte Produkt von r Kreisdrehungsgruppen K,
das ,,r-dimensionale Toroid"; daB dièse Gruppe monothetisch ist, und
von welchen Elementen sie erzeugt wird, das ist der Inhalt eines bekann-
ten Satzes aus der Théorie der Diophantisehen Approximationen, des

Kroneckerschen Approximationssatzes (vgl. Nr. 4).
In dieser Arbeit wird in zwei voneinander unabhângigen Abschnitten

untersucht, wie man an Hand der Darstellungen einer kompakten Gruppe
entscheiden kann, ob dièse monothetisch ist oder nicht.

Im § 1 beschrànken wir uns zum vorneherein auf kompakte Abelsche

Gruppen und formulieren mit Hilfe ihrer irreduziblen Darstellungen, also

ihrer CharaJctere, ein einfaches Kriterium (Satz 1, in Nr. 3), das auf einem
Existenzsatz fur Charaktere beruht. Mit diesem Kriterium kann man

1) Zur Définition der topologischen Gruppe vgl. man [1], Kap. III. Unter einem
,,Raum" soll im folgenden immer ein Hausdorffâcher Raum mit abzâhlbarer Basis (vgl.
[7], §§6 und 7) verstanden werden. — Zahlen in eckiger Klammer f ] beziehen sich auf
das Literaturverzeichnis am Schlufi der Arbeit.
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von vielen Gruppen naehweisen, da8 sie monothetisch sind ; insbesondere

ergibt sich der Satz, daB jede zusammenhàngende kompakte Abelsche

Gruppe monothetisch ist. Beim Beweis dièses Satzes machen wir vollen
Gebrauch von der Pontrjaginschen Charakterentheorie2) ; mit ihrer Hilfe
geben wir dem Kriterium die folgende Form (Nr. 5) : Eine kompakte
Abelsche Gruppe ist dann und nur dann monothetisch, wenn ihre Cha-

rakterengruppe einer Untergruppe3) der Kreisdrehungsgruppe K isomorph
ist (im algebraischen Sinne). — In dem angefïïhrten Satz ist auch die
Tatsache enthalten, daB das Toroid Tr monothetisch ist, also der
Kroneckersche Approximationssatz ; wir geben fur diesen auBerdem (Nr. 4)
mit Hilfe des Kriteriums — aber ohne Benûtzung der Pontrjaginschen
Charakterentheorie — einen speziellen Beweis an, der neu und besonders
einfach ist und insofern von Interesse sein diirfte, als der Kroneckersche
Satz in letzter Zeit gerade zur Untersuchung kontinuierlicher Gruppen
wiederholt als Hilfsmittel herangezogen wurde.

Man kann die hier fur kompakte Abelsche Gruppen entwickelten
Ûberlegungen auch fur lokal-kompakte Abelsche Gruppen anstellen; es

ergibt sich dabei (Nr. 7), daB die einzige nicht kompakte monothetische
Gruppe die unendliche zyklische Gruppe ist.

H. Weyl [2] hat den Kroneckerschen Satz verschàrft, indem er den

Begriff der Gleichverteilung einfïïhrte. Im § 2 iibertragen wir diesen Begriff
auf beliebige kompakte Gruppen und zeigen, daB die Potenzen eines

erzeugenden Elementes einer monothetischen Gruppe in dieser nicht nur
ûberall dicht, sondern sogar ûberall gleich dicht liegen (,,gleichverteilt"
sind, Définition in Nr. 8). Wir beweisen sogar den folgenden Satz, in
welchem nicht vorausgesetzt wird, daB die Gruppe monothetisch ist,
nicht einmal daB sie Abelsch ist:

Wenn einem Elément a der kompakten Gruppe G bei allen nicht-
trivialen irreduziblen Darstellungen von G eine Matrix zugeordnet wird,
die nicht den Eigenwert 1 hat, dann sind die Potenzen von a in der

Gruppe G gleichverteilt (G ist also monothetisch, von a erzeugt).
Als trivial bezeichnen wir dabei die ,,identische" Darstellung, die jedem

Elément von G die Einheitsmatrix zuordnet. — Der Beweis gelingt auf
Grund des Satzes von Peter-Weyl uber die Vollstândigkeit der irreduziblen

Darstellungen4). Unser Satz ist auch dann von Interesse, wenn die

Gruppe G endlich ist; wir geben deshalb fur diesen Fall in Nr. 11 noch
einen besondern, einfachern Beweis an.

2) Dargestellt in [1], Kap. V.
8) Wir lassen auch nicht-abgeschlossene Untergruppen zu (im Gegensatz zu Pontrjagin

[1], S. 58).
4) Vgl. [1], S. 116, Satz 27, oder [3], S. 76 und 78.
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§ 1. Kompakte Abelsche Gruppen

2. Charaktere

G sei eine Abelsche Gruppe. Mit K bezeichnen wir immer die multipli-
kative Gruppe der komplexen Zahlen vom Betrage 1 (die zu der in Nr. 1

ebenfalls mit K bezeichneten Kreisdrehungsgruppe isomorph5) ist). Ein
Charakter 99 von G ist eine homomorphe5) Abbildung von G in die Gruppe
K, also eine komplexwertige Funktion in G, die gewissen Bedingungen
genugt. Der ,,Haupt-Charakter'', welcher durchwegs den Wert 1 hat:

cp(x) 1 fur aile x eG

existiert fur jede Gruppe ; wir nennen ihn den trivialen Charakter.
Ist G eine kompakte Abelsche Gruppe, die nicht nur aus der Einheit e

besteht, so besitzt sie auch nicht-triviale Charaktere, d. h. solche, die
nicht fur aile x eG den Wert 1 haben. Wir nennen dièse Tatsache, die
fur das folgende wichtig ist, den Existenzsatz fur Charaktere, er folgt leicht
aus dem Satz von Peter-Weyl4), mit dessen Hilfe man sogar beweisen

kann, daB es zu jedem Elément a zfi e von G einen Charakter <p gibt,
fur welchen <p(a) ^ 1 ist6).

3. Monothetische Gruppen

Ist x ein Elément der Gruppe G, so bezeichnen wir mit Hx die kleinste
abgeschlossene Untergruppe von G, welche x enthalt, sie besteht aus den
Potenzen von x und ihren Haufungspunkten in G. DaB G monothetisch,
und zwar von a c G erzeugt ist, bedeutet

Das folgende Kriterium gibt nun an, wie man mit Hilfe der Charaktere
einer kompakten Abelschen Gruppe G untersuehen kann, ob sie monothetisch

ist.

Satz 1 : Die kompakte Abelsche Gruppe G wird dann und nur dann vom
Elément a erzeugt, wenn fur aile nicht-trivialen Charaktere cp von G cp (a) =fi 1

ist.
Beweis: a) ,,nur dann": Wenn Ha G, dann ist y (a) ^ 1 fur aile

nicht-trivialen Charaktere. Dieser Teil des Satzes ist trivial; denn aus
<p(a) 1 folgt <p (x) 1 fur aile x c Ha, und wenn Ha G ist, so ist der
Charakter cp trivial.

5) Homomorphe Abbildungen topologischer Gruppen sollen immer zugleich stetig,
isomorphe immer topologisch sein, wenn nicht ausdrucklich hervorgehoben wird, daû
,,homomorph" oder ,,isomorph" nur îm algebraischen Sinne gememt ist.

6) Vgl [1], S 120, Satz 28 oder 30, oder S 146, Abschmtt C.
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b) ,,dann" : Es sei Ha^G\ dann besteht die Faktorgruppe G/Ha nicht
nur aus der Einheit, besitzt also nach dem Existenzsatz einen nicht-
trivialen Charakter <p, den wir als Charakter von G auffassen kônnen,
welcher auf den Nebengruppen nach Ha konstant ist. Dann ist aber

(p (Ha) 1, also cp (a) 1. Umgekehrt folgt also aus y (a) ^=. 1 fur aile
nicht-trivialen Charaktere: Ha G.

4. Der Kroneckersche Approximationssatz
Wir wenden dièses Kriterium zunàchst auf eine spezielle Gruppe an,

nâmlich auf das direkte Produkt von r Gruppen K, das man das r-dimen-
sionale Toroid Tr nennt. Statt seine Elemente durch r komplexe Zahlen
vom Betrage 1 zu geben (etwa e27TiXl,..., e2TÇiXr), beschreiben wir sie

durch f réelle Koordinaten x1}. xr, wobei zwei r-Tupel (xl9..., xr)
und (x[,..., x'r) dasselbe Elément x von T bedeuten, falls xk und xrk

derselben Restklasse der reellen Zahlen modulo 1 angehôren (k 1,..., r) ;

das Produkt der Elemente x (xl3..., xr) und y — (yl9..., yr) im
Sinne der Gruppe ist dann durch

x-y (xi + Vi,--, %r + Vr)

gegeben (Vektoraddition modulo 1), und die Potenzen von x sind die

ganzzahligen Vielfachen (nx1,.. .,nxr) des r-Tupels (xl9..., xr). Jeder
Charakter <p von Tr hat dann bekanntlich7) die Form

wo die mk beliebige ganze Zahlen sind; sind sie aile 0, so ist q> der
triviale Charakter. Wàhlen wir nun ein Elément a (ax,..., ar) von Tr
so, daB die Linearkombination mxax + • • • + mrar mit ganzzahligen
Koeffizienten mk niemals gleich einer ganzen Zahl ist, aufier wenn aile

mk 0 sind — wir wollen solche Elemente von Tr eigentlich nennen —,
dann ist

cp(a) ^ 1

fur aile nicht-trivialen Charaktere q> von Tr, und aus Satz 1 folgt:

Satz 2 : Das Toroid Tr ist monothetisch ; es wird von jedem eigentlichen
Elément a erzeugt.

Das ist nichts anderes als der Kroneckersche Approximationssatz, der
in der ubliehenFormulierung8) lautet: Die ganzzahligen Vielfachen eines

7) Vgl. z. B. [1], §32, Abschnitt C, in Verbindung mit Satz 36 (man beachte, daÛ

dort nicht cp(x), sondern -—. log cp(x) als Charakter bezeichnet wird).

8) z. B. [4], S. 83.
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eigentlichen r-Tupels reeller Zahlen (ax,..., ar), wenn man sie modulo 1

reduziert, entsprechen Punkten des r-dimensionalen Euklidischen Rau-
mes, die im ,,Einheitskubus" 0 ^ xk ^ 1 (Je 1,..., r) ùberall dicht
liegen.

Unser Beweis des Kroneckerschen Satzes ist zwar sehr einfach, aber
nicht elementar, da er den Existenzsatz aus Nr. 2 benùtzt.

5. Andere Formen des Kriteriums
In der Pontrjaginschen Charakterentheorie2) werden die Charaktere

einer Abelschen Gruppe G ihrerseits zu einer Gruppe F zusammen-
gefaBt, der Charakterengruppe9) von G. Der triviale Charakter von G

ist die Einheit von F; er werde jetzt mit e bezeichnet. Die Gruppe jThat,
wie G, eine abzâhlbare Basis ; sie ist diskret, wenn G kompakt, und
kompakt, wermG diskret ist (und lokal-kompakt, wenn G es ist) ; es gilt, wenn
G kompakt oder diskret ist (allgemeiner, wenn G lokal-kompakt ist) der
Dualitâtssatz10) : Die Charakterengruppe von F ist zu G isomorph ; dieser

Isomorphismus ist dadurch gegeben, da8 man jedes Elément x e G als
Charakter von F auffassen kann, indem man setzt:

x(<p) <p(x)

fur aile Charaktere <p von G, d. h. fur aile Elemente <p e F. Zwei Abelsche
Gruppen G und F mit der Eigenschaft, daB jede zur Charakterengruppe
der andern isomorph ist, nennt man kurz zueinander dual.

G sei jetzt eine kompakte Gruppe, -Tihre (diskrete) Charakterengruppe.
DaB G von einem Elément a erzeugt wird, ist nach Satz 1 damit gleich-
bedeutend, daB der Charakter a(<p) von F nur fur <p e den Wert 1 hat.
Wir wollen einen solchen Charakter a von F, fur welchen

a (99) ^ 1 fur aile 9? -=£e

ist, définit nennen. Damit kônnen wir den Satz 1 so formulieren:

Satz 3 : Die kompakte Abelsche Gruppe G ist dann und nur dann mono-
thetisch, wenn die zu ihr duale Gruppe F einen definiten Charakter besitzt;
dieser ist ein erzeugendes Elément von G.

Nun kônnen wir aber einen definiten Charakter a von F auch als
eine homomorphe Abbildung von F in K auffassen, welche eineindeutig
ist — da nur fur ç> e a(cp) 1 ist —, also isomorph, aber nur im alge-
braischen Sinne ; denn es ist nicht gesagt, daB dièse eineindeutige Abbil-

9) Définition und Eigenschaften s. [1], S. 127ff.
10) [1], S. 134, Satz 32.
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dung der diskreten Gruppe F in die kompakte Gruppe K auch topologisch
ist. Somit gilt

Satz 4 : Die kompakte Abelsche Gruppe G ist dann und nur dann
monothetisch, wenn die zu ihr duale Gruppe F einer Untergruppe von K
(im algebraischen Sinne) isomorph ist.

Anwendungen : 1. Wir betrachten die additive Gruppe der modulo
1 zu reduzierenden rationalen Zahlen als diskrete Gruppe Pt ; sie ist im
algebraischen Sinne einer Untergruppe von K isomorph (namlich der
Gruppe der Drehungen des Kreises um rationale Teile von 2 n). Jede
kompakte Gruppe G, die zu einer Untergruppe F von Px dual ist, ist also
nach Satz 4 monothetisch. Dies gilt z. B. fur die sogenannte w-adische

Gruppe11); das ist die additive Gruppe der n-adisehen Zahlen, welche,
kompakt topologisiert, einen zum Cantorschen Diskontinuum homoo-
morphen Raum bilden, dièse Gruppe ist dual zur Gruppe der w-albruche

modulo 1.
nm

2. P sei die diskrete additive Gruppe der rationalen Zahlen; eine zu
einer Untergruppe F von P duale kompakte Gruppe G heiBt eine Sole-

k
noide12) (und zwar eine w-adische, wenn F die Gruppe der w-albruehe —^

ist). Der Charakter a von F
a(<p) =ze*ni<pS,

wo | eine beliebige irrationale Zahl ist, hat fur aile rationalen Zahlen
(p z£ o einen von 1 verschiedenen Wert, weil <p£ keine ganze Zahl ist;
a ist also ein definiter Charakter von F, und aus Satz 3 folgt, daB jede
Solenoide monothetisch ist.

6. Zusammenhàngende Gruppen
Das letzte Beispiel sowie der Kroneckersche Approximationssatz sind

Spezialfalle des folgenden Satzes.

Satz 6 : Jede zusammenhàngende kompakte Abelsche Gruppe G ist
monothetisch.

GemaB der Pontrjaginschen Théorie ist die kompakte Abelsche Gruppe
G dann und nur dann zusammenhangend, wenn die zu G duale diskrete
Gruppe F keine Elemente endlicher Ordnung hat13). Wegen Satz 3 kann
man die Behauptung also auch so aussprechen:

ll) Vgl. [5], S. 113.
12) Emgefuhrt und ausfuhrlich untersucht von van Dantzig [5], § 2 und § 4. — Vgl.

ferner [1], S. 171, Beispiel 53.

13) [1]» s- 148, Beispiel 48.
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Satz 5!. Jede abzahlbare diskrete Abelsche Gruppe F ohne Elemente end-

licher Ordnung besitzt einen definiten CharaMer.

Beweis : Die Elemente von F seien irgendwie numeriert :

Mit 03 bezeichnen wir die von <pOi..., q>3 erzeugte Untergruppe von F;
die 03 bilden eine aufsteigende Folge von Untergrupppen, welche die

ganze Gruppe F ausschopfen. Wir wahlen eine Folge reeller (irrationaler)
Zahlen cx, c2,..., derart, daB fur jede Zahl n das w-Tupel cx,..., cn

eigenthch ist (s.Nr.4), und konstruieren den gesuehten definitenCharakter
a von F so, daB er fur jedes Elément cp von 03 die Form

a((p) e2;u(riCl+-"+r?c? + r) (1)

hat (j 0,1,2,...), wobei die rk, r rationale Zahlen sind. Dièse Kon-
struktion gelingt durch vollstandige Induktion nach /. Wir nehmen an,
fur O3_i sei ein definiter Charakter a der verlangten Form (1) erklart
(fur j 1 ist es der Fall: a(<pQ) l), und erweitern diesen zu einem
definiten Charakter von 03 der Form (1). Dabei sind 3 Falle zu unter-
scheiden :

a) (p} e 03_x ; dann ist 0} 03_1, und es ist keine Erweiterung vorzu-
nehmen.

b) Es gebe ganze Zahlen q =£ 0 fur welche (pq7 c &3^19 und die kleinste
positive Zahl dieser Art sei n > 1 (die Zahlen q sind also Vielfache
von n). Es sei „ ^

und z sei eine solche komplexe Zahl, daB

zn=^a(xp)
ist; dann setzen wir

a((p3) z.

Jedes Elément <p e 03 ist in der Form

V X ' ?7 > X * *,-i
darstellbar, wobei % un(i m durch cp nicht eindeutig bestimmt sind ; wohl
aber ist

von derWahl dieser Darstellung unabhangig; denn aus % • <p^— %f - y™'

folgt <p™~m' €&3-i, also m — m! kn und x' X'<P*n ~ X"Wk y somit
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also

Also ist der Charakter a von <2^_! zu einem Charakter von 03 erweitert,
und es ist klar, daB er von der verlangten Form (1) ist, weil nach In-
duktionsvoraussetzung a(%) und a (y)), also auch z, von dieser Form ist.
Es ist noch zu zeigen, daB a auf &3 définit ist: Aus a(ç>) 1 folgt
a(wn) 1; aber

ist ein Elément von 03_x, und da a auf 03_t définit ist, muB cpn e

sein ; da F keine Elemente endlicher Ordnung hat, folgt daraus cp e

c) Fur aile ganzen Zahlen n ^ 0 sei cp™ nicht in @3-i enthalten. Wir
setzen in diesem Fall

da die Elemente cp e &3 eindeutig in der Form

P= X'V? i Z^^-i
darstellbar sind, ist damit a fur die ganze Gruppe <P3 erklart, und es ist

a(q>)

Nach Induktionsvoraussetzung ist

a(x) e27r*(/l

also

von der Form (1). Aus a (99) 1 folgt, daB die Klammer im Exponenten
eine ganze Zahl darstellt, und das bedeutet wegen der Wahl der c3, daB

r1 r3_x m 0 ist, also cp % und a(%) 1 ; und da a auf
03_x définit ist, folgt

çp x e

Der erweiterte Charakter a ist also auch auf <P3 définit.
Es ist leicht zu sehen, wie sich dieser Beweis unter den einschrànkenden

Annahmen, daB F endlichen Rang oder sogar ein endliches Erzeugenden-
system hat, vereinfachen laBt.

7. Lokal-kompakte Gruppen

Die Méthode, mit welcher wir in diesem Paragraphen kompakte Abel-
sche Gruppen untersucht haben, laBt sich unverândert auf lokal-kompakte
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Abelsche Gruppen ubertragen, weil fur dièse ebenso wie fur kompakte
Gruppen der Existenzsatz fur Charaktere gilt14); die Sàtze 1, 3 und 4

bleiben giiltig, wenn man darin ,,kompakt" durch ,,lokal-kompakt"
ersetzt.

Ein triviales Beispiel einer monothetischen Gruppe, die nicht kompakt,
sondern nur lokal-kompakt ist, bildet die unendliche zyklische Gruppe.
Wir wollen zeigen, daB es die einzige derartige Gruppe ist.

G sei eine lokal-kompakte monothetische Gruppe. a sei ein erzeu-
gendes Elément von G, also ein definiter Charakter der zu G dualen
Gruppe F, oder eine algebraisch isomorphe Abbildung von F in K.
F ist lokal-kompakt ; es gibt infolgedessen15) in F eine Untergruppe 0,
die in das direkte Produkt ihrer maximalen kompakten Untergruppe 0r
und einer Vektorgruppe 0" zerfâllt, und derart, daB die Faktorgruppe
F/0 diskret ist. Wir betrachten zunàehst den definiten Charakter a nur
auf der Untergruppe 0 ; a ist auch auf der Vektorgruppe 0n c 0 définit,
und das ist nur môglich, wenn 0" nur aus der Einheit s (dem Null-
vektor) besteht ; denn andernfails hat eine Vektorgruppe keinen défini -

tiven Charakter. Folglich ist 0 0\ also kompakt. a ist als einein-
deutige stetige Abbildung eines kompakten Raumes (mit abzâhlbarer
Basis) in K von selbst topologisch, und a(0) ist eine abgeschlossene
Untergruppe von K. Wir haben also 2 Môglichkeiten :

1. a(0), also 0 selbst, ist eine endliche zyklische Gruppe; F ist also

diskret, d. h. G ist kompakt.
2. a(0) K; da a eineindeutig ist, muB in diesem Fall F 0 sein,

also ist F zu K isomorph. Die zu K duale Gruppe G ist aber die unendliche

zyklische Gruppe.

Wir haben damit bewiesen:

Satz 6 : Mit Ausnahme der unendlichen zyklischen Gruppe ist jede
monothetische lokal-kompakte Gruppe kompakt.

% 2. Gleichverteilung in kompakten Gruppen

8. Gleichverteilung
G sei von jetzt an eine beliebige kompakte Gruppe. Ist M eine

abgeschlossene Teilmenge von G, so bezeichnen wir mit ju,(M) das invariante
(Haarsche) MaB16) von M ; es sei so normiert, daB ju(G) 1 ist.

14) [1], S. 163, im Beweis von Satz 32, zweiter Abschnitt.
15) ri], S. 160, Satz 41, in Verbindung mit S. 160, Abschnitt E.
16 Wegen der im folgenden benûtzten Eigenschaften des invarianten Mafîes und der

Intégration in einer Gruppe vergleiche man [3], bes. Kap. II.
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Wir nennen eine abzahlbare Folge von Punkten xx, x2,... in G

gleichverteilt, wenn folgende Bedingung erfullt ist: N(M) sei die Anzahl
derjenigen unter den Punkten xl9 x2,..., xN, die in M liegen; fur jede
abgeschlossene Teilmenge M von G ist

(2)

Eine gleichverteilte Folge (xv) liegt in G uberall dicht (denn es gibt
in jeder Umgebung eine Menge M von positivem MaB und somit Punkte
xv). Sind also die Potenzen eines Elementes a in G gleichverteilt, so ist
G monothetisch, von a erzeugt. Umgekehrt sind die Potenzen eines erzeu-
genden Elementes a einer monothetischen Gruppe G immer in G

gleichverteilt. Dies wird sich aus den folgenden Uberlegungen ergeben, die

ubrigens vom § 1 vollig unabhangig sind. Der Unterschied gegenuber
dem § 1 ist der, daB wir einerseits nicht nur Abelsche Gruppen betrachten,
andererseits auf den Begriff ,,gleichverteilt" ausgehen, der etwas mehr
AufschluB gibt als ,,monothetisch".

Wir werden die folgende Eigenschaft der Gleichverteilung einer belie-

bigen abzahlbaren Punktfolge (xv) in G benutzen, unter Verwendung
der zum invarianten MaB /ti gehorigen invarianten Intégration in G (fur
stetige komplexwertige Funktionen / in G ; jjfdx sei das uber die ganze
Gruppe G erstreckte Intégral von /) :

Hilfssatz: Wenn fur jede stetige Funktion / in G

lim -i-i f(xv) ffdx (3)
JV-> oo ¦*¦ ' v 1

ist, dann sind die xv in G gleichverteilt17).

Beweis: M sei eine abgeschlossene Teilmenge in G, F die Funktion

F (x) 1, wenn x € M,
0, wenn x nicht in M liegt.

F ist eventuell unstetig ; aber es gibt zwei Folgen nicht-negativer stetiger
Funktionen fn und gn, so daB

17 Von diesem Satz gilt auch die Umkehrung; man kann also die Gleichverteilung
auch durch (3) definieren — Infolgedessen gilt auch von Satz 7 die Umkehrung, ebenso

von Satz 8 letzteres ist aber trivial (s Nr 10).
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fjx) < F(x) < gn{x) fur aile x *G
und

lim J fn(x) dx Km J grn (#) d# — ju(M)
n-> oo n->oo

ist.
r sei eine positive Zahl ; wir wàhlen % so, daB

$gndx<p(M) + y
ist. In der Ungleichung

l n l N 1 N

N t^x n v N f±x v) ^ N £?!

N
ist _£ F(x) N(M) und, wenn N genûgend groB ist,

l N r

wegen der Voraussetzung (3). Es folgt also

wenn r > 0 vorgegeben und N genûgend groB ist; also gilt (2).

9. Darstellungen und Gleichverteilung

Ist D eine Darstellung von G, so bezeichnen wir fur jedes x eG mit
D(x) die Matrix, welche x darstellt. Die ,,identischencc Darstellungen,
bei welchen fur aile x eG D(x) die Einheitsmatrix E ist, nennen wir
trivial. (xv) sei wiederum eine abzàhlbare Punktfolge in G.

Satz 7 : Wenn fur aile nicht-trivialen irreduziblen Darstellungen D von G

1 V -_V->-oo ¦*•* v — 1

ist, dann sind die xv in G gleichverteilt.
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Beweis: Wir wahlen in jeder Klasse aquivalenter irreduzibler Dar-
stellungen von G eine unitare Darstellung DU), (i 0, 1, 2...), und
setzen D{l)(x) (d(fy(x)y Dann bilden die Matrixelemente d$(x) ein
System unitar-orthogonaler Funktionen in G, und nach dem Satz von
Peter-Weyl4) lafit sich jede stetige Funktion in G gleichmaBig durch
Linearkombinationen der àfy(x) approximieren. D(o) sei die triviale irre-
duzible Darstellung, also d(^(x) 1 fur aile x.

Ist / eine stetige Funktion in G, dann gibt es zu einer vorgegebenen
Zahl r > 0 eine Linearkombination g der dfy, derart, daB fur aile x e G

\f(x)-g(x)\<-^
ist. Daraus folgt

i N
1 V flr \ —N zj™

und

J f{x) dx -

1 N

— J g (x)

Nach der Voraussetzung (4)

also

lim -^r
N+œ JM

lim -

dx

gilt
1

„)

fur i > 0

N

y d(i) (x

Koeffizient

n*v)-

-9(x)

von c

- g (xv)
r

d*<Y-

l$> in g

(5)

(6)

und dieser Koeffizient ist J g(x)dx ; fur N > N(r) ist also

1 ^ / v dx r
(7)

und aus (5), (6) und (7) folgt

1 N

< r fur aile N>N(r),

d. h. es folgt (3). Nach dem Hilfssatz sind also die xv in G gleichverteilt.

10. Fixpunktfreie Darstellungen

Wir wenden uns nun dem Fall zu, wo die Folge (xv) aus den Potenzen
an (n 0, db 1, ± 2,... eines Elementes a von 6? besteht.

Eine Bezeichnung: Wir sagen, das Elément a e G sei bei der Darstellung
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D fixpunktfrei, wenn D(a), als lineare Transformation eines Vektorraumes
F aufgefaBt, auBer dem Ursprung von V keinen Fixpunkt besitzt; dies
bedeutet, daB die Matrix D(a) nicht 1 zum Eigenwert hat, oder daB die
Déterminante \D(a) — E\ ^ 0 ist.

Satz 8: Wenn das Elément a der Jcompakten Gruppe G bei allen nicht-
trivialen irreduziblen Darstellungen von G fixpunktfrei ist, dann sind die
Potenzen von a in G gleichverteilt.

Beweis : D sei eine nicht-triviale irreduzible Darstellung von G. Es ist

da man den an dritter Stelle stehenden Quotienten wegen | D (a) — E |

einfach ausdividieren kann. Die Elemente der resultierenden Matrix sind
(fur N -> oo) beschrânkt, weil G kompakt ist, und deshalb ist

1 N
lim -w 2 D{av) 0

Die Potenzen von a erfullen also die Voraussetzung des Satzes 7 und
sind somit in G gleichverteilt — und zwar schon die positiven Potenzen
allein (und ebenso, wie leicht ersichtlich, die negativen Potenzen allein,
oder aile zusammen).

Die Voraussetzung des Satzes 8 ist fur eine Abelsche Gruppe G mit der
(notwendigen und hinreichenden) Bedingung des Satzes 1 identisch.
Daraus folgt: 1. Von Satz 8 gilt auch die Umkehrung. 2. Die Potenzen
eines erzeugenden Elementes einer monothetischen Gruppe liegen in
dieser nicht nur ùberall dicht, sondern sind sogar gleichverteilt; wichtig
ist dièse Verschàrfung z. B. fur das Toroid Tr, d. h. fur den Kronecker-
schen Approximationssatz (Nr. 4), wo sie den Satz von Weyl [2] ùber die
Gleichverteilung modulo 1 ergibt.

Andererseits gestattet uns der Satz 8, iiber die Struktur einer kom-
pakten Gruppe G, von der wir zum vorneherein nicht wissen, ob sie mono-
thetisch ist oder nicht — nicht einmal, ob sie Abelsch ist —, eine Aussage
zu machen : wenn ein gewisses Elément a bei allen nicht-trivialen irreduziblen

Darstellungen fixpunktfrei ist, dann ist die Gruppe G monothe-
tisch, von a erzeugt. Oder (Kontraposition) :
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Satz 8'- Wenn die kompakte Gruppe G nicht monothetisch (z. B. nicht
Abelsch) ist, dann gibt es zu jedem Elément a^e von G eine nicht-triviale
irreduzible Darstellung D, bei welcher D(a) den Eigenwert 1 hat.

11. Endliche Gruppen

Fur den Spezialfall einer endlichen (diskreten) Gruppe G konnen wir
die zuletzt angefuhrten Satze so aussprechen.

Wenn das Elément a der endlichen Gruppe G bei allen nicht-trivialen
irreduziblen Darstellungen fixpunktfrei ist, dann ist G zyklisch, von a
erzeugt. Oder:

Wenn die endliche Gruppe G nicht zyklisch ist, dann gibt es zu jedem
Elément a ^ e von G eine irreduzible Darstellung D, bei welcher D(a)
den Eigenwert 1 hat.

Es mag angebracht sein, fur diesen einfachen Satz uber endliche Gruppen

einen direkten, vom tîbrigen unabhangigen Beweis anzugeben.
D{0) E, D{1),..., D(h) sei ein vollstandiges System nicht-aquiva-

lenter, unitarer, irreduzibler Darstellungen18) der endlichen Gruppe G.
N sei die Ordnung von G, und xv (v 1,..., N) seien die Elemente von G.
Die Elemente dfy(xp) der Matrizen D{l)(xv) smd Funktionen in G, oder
,,Vektoren" eines JV^dimensionalen komplexen Vektorraumes U, ihre
Anzahl ist bekanntlich N. Wir numerieren sie durch und bezeichnen
sie mit dp(xv), p 1,..., N (es sei dx(xv) d(^(xv) 1 fur v 1,... ,N),
bekanntlich gilt

— 0 fur p =£ q

^z 0 fur p q

d. h. die dp bilden eine unitar-orthogonale Basis von U. Jeder Vektor
f(xv) von U laBt sich nach dieser Basis zerlegen:

f(xv) £cpdp(xv) (10)

1 N
wobei der Koeffizient cx -^- ^T f(xv) ist.

Wir nehmen nun an, es gebe ein Elément a unter den xv welches bei
allen nicht-trivialen irreduziblen Darstellungen fixpunktfrei ist, d. h.
derart, da8

| D^ (a) — E | ^ 0 ist fur i 1 h

18 Wegen der benutzten Satze aus der Darstellungstheorie der endlichen Gruppen
vergleiche man etwa [6], Kap. 11 und 12
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Dann ist
N D^ (nN\ E

lav) — D{i) (a) [ ' — — 0

also fur p > 1

N

v dv(a") 0

Naeh (10) gilt dann

N N N

v=l p=l v=l
also

N N

v f(av) V f(x (11)

fiir jeden beliebigen Vektor f(xv). Setzen wir z. B.

f(xv) 0 fiir xv ^ b

1 fur xv b

wo 6 ein beliebiges Elément von G ist, so wird

£/(<*') i ;

es gibt also eine Potenz av, die b ist. 6? ist also zyklisch, von a
erzeugt.
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