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Uber monothetische Gruppen
Von BENo EckMANN, Lausanne

1. Einleitung

Unter einer Gruppe verstehen wir im folgenden immer eine topologische
Gruppe, also eine solche, deren Elemente gleichzeitig einen Raum bilden,
in welchem die Gruppenoperation stetig ist!). Vor allem gehéren dazu die
kontinuierlichen Gruppen, ferner die abstrakten Gruppen der Algebra,
als diskrete Raume aufgefaBt (die aus lauter isolierten Punkten bestehen);
die topologische Struktur kann aber auch wesentlich komplizierter sein.

Man nennt nach dem Vorschlage von van Dantzig [5] eine Gruppe &
monothetisch, wenn in ihr die Potenzen eines Elementes a iiberall dicht
liegen; wir sagen in diesem Falle, G sei von a erzeugt. Man kann diese
Eigenschaft auch so formulieren: Die kleinste abgeschlossene Untergruppe
von (¢, welche a enthalt (wir bezeichnen sie mit H,, sie besteht aus den
Potenzen von a und ihren Haufungspunkten in @) ist die ganze GruppeG .
Da H, immer Abelsch ist, ist jede monothetische Gruppe Abelsch.

Jede zyklische Gruppe ist monothetisch, und fiir diskrete (oder ab-
strakte) Gruppen fallen die beiden Begriffe zusammen. Fiir nicht-dis-
krete Gruppen dagegen ist monothetisch eine weniger einfache, halb
algebraische, halb topologische Eigenschaft. Als Beispiel erwdhnen wir
die Gruppe K der (eigentlichen) Drehungen des Kreises: sie wird erzeugt
von einer Drehung um einen irrationalen Bruchteil von 27. Besonders
interessant ist das direkte Produkt von r Kreisdrehungsgruppen K,
das ,,7-dimensionale Toroid‘‘; daB3 diese Gruppe monothetisch ist, und
von welchen Elementen sie erzeugt wird, das ist der Inhalt eines bekann-
ten Satzes aus der Theorie der Diophantischen Approximationen, des
Kroneckerschen Approximationssatzes (vgl. Nr. 4).

In dieser Arbeit wird in zweil voneinander unabhingigen Abschnitten
untersucht, wie man an Hand der Darstellungen einer kompakten Gruppe
entscheiden kann, ob diese monothetisch ist oder nicht.

Im §1 beschrinken wir uns zum vorneherein auf kompakte Abelsche
Gruppen und formulieren mit Hilfe ihrer irreduziblen Darstellungen, also
ihrer Charaktere, ein einfaches Kriterium (Satz 1, in Nr. 3), das auf einem
Existenzsatz fiir Charaktere beruht. Mit diesem Kriterium kann man

1) Zur Definition der topologischen Gruppe vgl. man [1], Kap. III. Unter einem
»Raum‘ soll im folgenden immer ein Hausdorffscher Raum mit abzdhlbarer Basis (vgl.
[7], §§ 6 und 7) verstanden werden. — Zahlen in eckiger Klammer [ ] beziehen sich auf
das Literaturverzeichnis am SchluB8 der Arbeit.
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von vielen Gruppen nachweisen, dafl sie monothetisch sind ; insbesondere
ergibt sich der Satz, daB jede zusammenhingende kompakte Abelsche
Gruppe monothetisch ist. Beim Beweis dieses Satzes machen wir vollen
Gebrauch von der Pontrjaginschen Charakterentheorie?); mit ihrer Hilfe
geben wir dem Kriterium die folgende Form (Nr.5): Eine kompakte
Abelsche Gruppe ist dann und nur dann monothetisch, wenn ihre Cha-
rakterengruppe einer Untergruppe?) der Kreisdrehungsgruppe K isomorph
ist (im algebraischen Sinne). — In dem angefiihrten Satz ist auch die
Tatsache enthalten, daBl das Toroid 7T monothetisch ist, also der
Kroneckersche Approximationssatz; wir geben fiir diesen auflerdem (Nr. 4)
mit Hilfe des Kriteriums— aber ohne Beniitzung der Pontrjaginschen
Charakterentheorie — einen speziellen Beweis an, der neu und besonders
einfach ist und insofern von Interesse sein diirfte, als der Kroneckersche
Satz in letzter Zeit gerade zur Untersuchung kontinuierlicher Gruppen
wiederholt als Hilfsmittel herangezogen wurde.

Man kann die hier fiir kompakte Abelsche Gruppen entwickelten
Uberlegungen auch fiir lokal-kompakte Abelsche Gruppen anstellen; es
ergibt sich dabei (Nr. 7), daf3 die einzige nicht kompakte monothetische
Gruppe die unendliche zyklische Gruppe ist.

H. Weyl [2] hat den Kroneckerschen Satz verschiarft, indem er den
Begriff der Gleichverteilung einfithrte. Im § 2 ibertragen wir diesen Begriff
auf beliebige kompakte Gruppen und zeigen, dafl die Potenzen eines
erzeugenden Elementes einer monothetischen Gruppe in dieser nicht nur
tiberall dicht, sondern sogar iiberall gleick dicht liegen (,,gleichverteilt‘
sind, Definition in Nr. 8). Wir beweisen sogar den folgenden Satz, in
welchem nicht vorausgesetzt wird, daf3 die Gruppe monothetisch ist,
nicht einmal daf sie Abelsch ist:

Wenn einem Element ¢ der kompakten Gruppe G bei allen nicht-
trivialen irreduziblen Darstellungen von ¢ eine Matrix zugeordnet wird,
die nicht den Eigenwert 1 hat, dann sind die Potenzen von a in der
Gruppe G gleichverteilt (G ist also monothetisch, von a erzeugt).

Als trivial bezeichnen wir dabei die ,,identische‘‘ Darstellung, die jedem
Element von G die Einheitsmatrix zuordnet. — Der Beweis gelingt auf
Grund des Satzes von Peter-Weyl iiber die Vollstandigkeit der irredu-
ziblen Darstellungen?). Unser Satz ist auch dann von Interesse, wenn die
Gruppe G endlich ist; wir geben deshalb fiir diesen Fall in Nr. 11 noch
einen besondern, einfachern Beweis an.

2) Dargestellt in [1], Kap. V.

3) Wir lassen auch nicht-abgeschlossene Untergruppen zu (im Gegensatz zu Pontrjagin
[1], S. 58).

4) Vgl. [1], S. 116, Satz 27, oder [3], S. 76 und 78.
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§ 1. Kompakte Abelsche Gruppen

2. Charaktere

G sei eine Abelsche Gruppe. Mit K bezeichnen wir immer die multipli-
kative Gruppe der komplexen Zahlen vom Betrage 1 (die zu der in Nr. 1
ebenfalls mit K bezeichneten Kreisdrehungsgruppe isomorph?®) ist). Ein
Charakter ¢ von @ ist eine homomorphe®) Abbildung von G in die Gruppe
K , also eine komplexwertige Funktion in ¢/, die gewissen Bedingungen
geniigt. Der ,,Haupt-Charakter*‘, welcher durchwegs den Wert 1 hat:

@p(x) =1 fiir alle z e G

existiert fiir jede Gruppe; wir nennen ihn den trivialen Charakter.

Ist G eine kompakte Abelsche Gruppe, die nicht nur aus der Einheit e
besteht, so besitzt sie auch nicht-triviale Charaktere, d. h. solche, die
nicht fiir alle z ¢ @ den Wert 1 haben. Wir nennen diese Tatsache, die
fiir das folgende wichtig ist, den Ewistenzsatz fiir Charaktere; er folgt leicht
aus dem Satz von Peter-Weyl?), mit dessen Hilfe man sogar beweisen
kann, daB es zu jedem Klement a-#e von G einen Charakter ¢ gibt,
fiir welchen ¢(a) =1 ist®).

3. Monothetische Gruppen

Ist z ein Element der Gruppe G, so bezeichnen wir mit H, die kleinste
abgeschlossene Untergruppe von G, welche x enthilt; sie besteht aus den
Potenzen von x und ihren Haufungspunkten in G'. Dafl ¢' monothetisch,
und zwar von a «G erzeugt ist, bedeutet

H,=@.

Das folgende Kriterium gibt nun an, wie man mit Hilfe der Charaktere
einer kompakten Abelschen Gruppe ¢ untersuchen kann, ob sie monothe-
tisch ist.

Satz 1: Die kompakte Abelsche Gruppe G wird dann und nur dann vom
Element a erzeugt, wenn fiir alle nicht-trivialen Charaktere  von G @ (a) # 1
1st.

Beweis: a) ,,nur dann‘“: Wenn H, =G, dann ist ¢(a) £ 1 fiir alle
nicht-trivialen Charaktere. Dieser Teil des Satzes ist trivial; denn aus
@(a) = 1 folgt p(x) = 1 fiir alle x ¢ H,, und wenn H, = G ist, so ist der
Charakter ¢ trivial.

5) Homomorphe Abbildungen topologischer Gruppen sollen immer zugleich stetig,
isomorphe immer topologisch sein, wenn nicht ausdriicklich hervorgehoben wird, da@
»yhomomorph** oder ,,isomorph‘‘ nur im algebraischen Sinne gemeint ist.

8) Vgl. [1], S. 120, Satz 28 oder 30, oder S. 146, Abschnitt C.
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b) ,,dann‘‘: Es sei H, 7% G ; dann besteht die Faktorgruppe G/H, nicht
nur aus der Einheit, besitzt also nach dem Existenzsatz einen nicht-
trivialen Charakter ¢, den wir als Charakter von G auffassen kénnen,
welcher auf den Nebengruppen nach H, konstant ist. Dann ist aber
p(H,) =1, also ¢(a) = 1. Umgekehrt folgt also aus ¢(a) 7% 1 fiir alle
nicht-trivialen Charaktere: H, = (.

4. Der Kroneckersche Approximationssatz

Wir wenden dieses Kriterium zunachst auf eine spezielle Gruppe an,
namlich auf das direkte Produkt von » Gruppen K, das man das r-dimen-
stonale Toroid TT nennt. Statt seine Elemente durch r komplexe Zahlen
vom Betrage 1 zu geben (etwa e?>7%*1 ... ¢*"%%r) beschreiben wir sie
durch 7 reelle Koordinaten z,,..., ., wobei zwei r-Tupel (z,,..., x,)
und (z,,..., z,) dasselbe Element z von 7 bedeuten, falls z, und =z,
derselben Restklasse der reellen Zahlen modulo1 angehoren (k= 1,...,7);
das Produkt der Elemente x = (x;,...,%,) und y = (y;,...,¥%,) Im
Sinne der Gruppe ist dann durch

XYy = (x1+y13°"sxr+ yT)

gegeben (Vektoraddition modulo 1), und die Potenzen von 2 sind die
ganzzahligen Vielfachen (nx,,...,nz,) des r-Tupels (z,,..., ,). Jeder
Charakter ¢ von 7' hat dann bekanntlich?) die Form

w(x) —_ e277’i(M1x1+"'+fon) ,

wo die m, beliebige ganze Zahlen sind; sind sie alle = 0, so ist ¢ der
triviale Charakter. Wahlen wir nun ein Element a = (a,,...,a,) von 7
so, daBl die Linearkombination m,a, + --- 4+ m,a, mit ganzzahligen
Koeffizienten m, niemals gleich einer ganzen Zahl ist, auller wenn alle
m,, = 0 sind — wir wollen solche Elemente von 7" eigentlich nennen —,

d ist
ann is (@) # 1

fiir alle nicht-trivialen Charaktere ¢ von 77, und aus Satz 1 folgt:

Satz 2: Das Toroid T ist monothetisch ; es wird von jedem eigentlichen
Element a erzeugt.

Das ist nichts anderes als der Kroneckersche Approximationssatz, der
in der iiblichen Formulierung?8) lautet: Die ganzzahligen Vielfachen eines

7y Vgl. z. B. [1], §32, Abschnitt C, in Verbindung mit Satz 36 (man beachte, da@l
1
dort nicht ¢ (x), sondern EPT log ¢ (z) als Charakter bezeichnet wird).
8) z. B. [4], S. 83.
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eigentlichen r-Tupels reeller Zahlen (a,,..., a,), wenn man sie modulo 1
reduziert, entsprechen Punkten des r-dimensionalen Euklidischen Rau-
mes, die im ,,Einheitskubus®“ 0 <z, <1 (k= 1,...,r) tberall dicht
liegen.

Unser Beweis des Kroneckerschen Satzes ist zwar sehr einfach, aber
nicht elementar, da er den Existenzsatz aus Nr. 2 beniitzt.

b. Andere Formen des Kriteriums

In der Pontrjaginschen Charakterentheorie?) werden die Charaktere
einer Abelschen Gruppe G ihrerseits zu einer Gruppe [’ zusammen-
gefallt, der Charakterengruppe®) von G'. Der triviale Charakter von G
ist die Einheit von I'; er werde jetzt mit ¢ bezeichnet. Die Gruppe I hat,
wie (7, eine abzahlbare Basis; sie ist diskret, wenn G' kompakt, und kom-
pakt, wenn (@ diskret ist (und lokal-kompakt, wenn@ es ist); es gilt, wenn ‘
G' kompakt oder diskret ist (allgemeiner, wenn G lokal-kompakt ist) der
Dualitatssatz!?): Die Charakterengruppe von I ist zu G isomorph; dieser
Isomorphismus ist dadurch gegeben, daBl man jedes Element z ¢G als
Charakter von I' auffassen kann, indem man setzt:

z(p) = ¢ (%)

fiir alle Charaktere ¢ von G, d. h. fiir alle Elemente ¢ € I'. Zwei Abelsche
Gruppen G und I' mit der Eigenschaft, daB jede zur Charakterengruppe
der andern isomorph ist, nennt man kurz zueinander dual.

G sei jetzt eine kompakte Gruppe, I'ihre (diskrete) Charakterengruppe.
DaBl G von einem Element a erzeugt wird, ist nach Satz 1 damit gleich-
bedeutend, dafl der Charakter a(¢) von I nur fiir ¢ = ¢ den Wert 1 hat.
Wir wollen einen solchen Charakter ¢ von I, fiir welchen

a(p) #1 fir alle ¢ #e¢

ist, definit nennen. Damit kénnen wir den Satz 1 so formulieren:

Satz 3: Die kompakte Abelsche Gruppe G st dann und nur dann mono-
thetisch, wenn die zu thr duale Gruppe I' einen definiten Charakter besitzt ;
dieser ist ewn erzeugendes Element von Q.

Nun konnen wir aber einen definiten Charakter ¢ von I auch als
eine homomorphe Abbildung von I" in K auffassen, welche eineindeutig
ist — da nur fir p =¢ a(@) = 1 ist —, also isomorph, aber nur im alge-
braischen Sinne; denn es ist nicht gesagt, daB diese eineindeutige Abbil-

9) Definition und Eigenschaften s. [1], S. 127ff.
10) [1], S. 134, Satz 32.
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dung der diskreten Gruppe I" in die kompakte Gruppe K auch topologisch
ist. Somit gilt
Satz 4: Die kompakte Abelsche Gruppe G ist dann und nur dann mo-

nothetisch, wenn die zu thr duale Gruppe I' einer Untergruppe von K
(em algebraischen Sinne) isomorph ist.

Anwendungen: 1. Wir betrachten die additive Gruppe der modulo
1 zu reduzierenden rationalen Zahlen als diskrete Gruppe P, ; sie ist im
algebraischen Sinne einer Untergruppe von K isomorph (ndmlich der
Gruppe der Drehungen des Kreises um rationale Teile von 2 7). Jede
kompakte Gruppe G, die zu einer Untergruppe I" von P, dual ist, ist also
nach Satz 4 monothetisch. Dies gilt z. B. fiir die sogenannte n-adische
Gruppe!!); das ist die additive Gruppe der n-adischen Zahlen, welche,
kompakt topologisiert, einen zum Cantorschen Diskontinuum homéo-
morphen Raum bilden; diese Gruppe ist dual zur Gruppe der n-albriiche

k
— modulo 1.

2. P sei die diskrete additive Gruppe der rationalen Zahlen; eine zu
einer Untergruppe I' von P duale kompakte Gruppe G heiBt eine Sole-

notde!?) (und zwar eine n-adische, wenn I" die Gruppe der n-albriiche -]%

n
ist). Der Charakter a von I'
alp) = e,

wo & eine beliebige irrationale Zahl ist, hat fiir alle rationalen Zahlen
@ # 0 einen von 1 verschiedenen Wert, weil ¢& keine ganze Zahl ist;
a ist also ein definiter Charakter von I', und aus Satz 3 folgt, daBl jede
Solenoide monothetisch ist.

6. Zusammenhingende Gruppen
Das letzte Beispiel sowie der Kroneckersche Approximationssatz sind
Spezialfille des folgenden Satzes.

Satz 5 : Jede zusammenhingende kompakte Abelsche Gruppe G ist mono-
thetisch.

Gemafl der Pontrjaginschen Theorie ist die kompakte Abelsche Gruppe
G dann und nur dann zusammenhéngend, wenn die zu ¢ duale diskrete
Gruppe I' keine Elemente endlicher Ordnung hat'?). Wegen Satz 3 kann

man die Behauptung also auch so aussprechen:
1y vgl. [5], S.113.
12) Eingefiihrt und ausfiihrlich untersucht von van Dantzig [5], § 2 und § 4. — Vgl

ferner [1], S. 171, Beispiel 53.
13) [1], S. 148, Beispiel 48.
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Satz 5’ Jede abzihlbare diskrete Abelsche Gruppe I' ohne Elemente end-
licher Ordnung besitzt einen definiten Charakter.

Beweis: Die Elemente von [’ seien irgendwie numeriert:

Po = &, P15 P2s+ -

Mit @, bezeichnen wir die von ¢,. .., ¢; erzeugte Untergruppe von [’;
die @, bilden eine aufsteigende Folge von Untergrupppen, welche die
ganze Gruppe I ausschopfen. Wir wéahlen eine Folge reeller (irrationaler)
Zahlen c¢,,c,,..., derart, daBl fiir jede Zahl n das n-Tupel ¢,,...,c,
etgentlich ist (s. Nr.4), und konstruieren den gesuchten definiten Charakter
a von I" so, daf} er fiir jedes Element ¢ von @, die Form

a(w) — 62-717;(7]_ cl+"'+7’j0]‘+r) (1)

hat (j =0, 1, 2,...), wobei die r,, r rationale Zahlen sind. Diese Kon-
struktion gelingt durch vollstindige Induktion nach j. Wir nehmen an,
fir @,_, sei ein definiter Charakter a der verlangten Form (1) erklart
(fﬁr j =1 ist es der Fall: a(p,) = 1), und erweitern diesen zu einem
definiten Charakter von @, der Form (1). Dabei sind 3 Falle zu unter-
scheiden:

a) ¢, €D, ,; dann ist &, = P,_,, und es ist keine Erweiterung vorzu-
nehmen.

b) Es gebe ganze Zahlen g # 0, fiir welche ¢? ¢ @;_,, und die kleinste
positive Zahl dieser Art sei = n > 1 (die Zahlen ¢ sind also Vielfache
von n). Es sei S —ped,
und z sei eine solche komplexe Zahl, daf3

2" = a(y)
ist; dann setzen wir

a(p;) =z.
Jedes Element ¢ ¢ @, ist in der Form
=29 2P,

darstellbar, wobei y und m durch ¢ nicht eindeutig bestimmt sind; wohl

aber ist
a(p) = a(y) 2™

von der Wahl dieser Darstellung unabhingig; denn aus y- 7=y - ¢
folgt ¢' ™ e P, ,, also m —m’' =kn und y' = y-¢*" = y-¢*, somit
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a(y') = a(y-v*) = a(y) ek =a(y) 2,
also
a(y)-z" =a(y)- 2™ =a(y) 2" .

Also ist der Charakter @ von @,_; zu einem Charakter von @, erweitert,
und es ist klar, da3 er von der verlangten Form (1) ist, weil nach In-
duktionsvoraussetzung a(y) und a(y), also auch 2, von dieser Form ist.
Es ist noch zu zeigen, daBl a auf @, definit ist: Aus a(¢) =1 folgt
a(e”) = 1; aber
¢" =2 = Ay

ist ein Element von @, ;, und da a auf @, , definit ist, mull ¢" =¢
sein; da I keine Elemente endlicher Ordnung hat, folgt daraus ¢ =¢.

c) Fiir alle ganzen Zahlen n # 0 sei ¢} nicht in @, , enthalten. Wir

setzen in diesem Fall 2mic;

a(p;) =e ;

da die Elemente ¢ ¢ @, eindeutig in der Form

(p:x-(p;.", XEQ)J‘—I’
darstellbar sind, ist damit a fiir die ganze Gruppe @, erklart, und es ist

27 tme; .

a(p) = a(y)-e
Nach Induktionsvoraussetzung ist
a(x) — 627ri(r1 1+ - +7'j—1 ¢, +7) ,

also .
a(gg) —_— 627”(7'1 1+ "'+7’j_16j_1+mc,-+r)

von der Form (1). Aus a(¢) = 1 folgt, dafl die Klammer im Exponenten
eine ganze Zahl darstellt, und das bedeutet wegen der Wahl der c;, dafl
ry=+--=r,_,=m=20 ist, also ¢ = y und a(y) = 1; und da a auf
®,_, definit ist, folgt
Q=) =E¢.

Der erweiterte Charakter a ist also auch auf @; definit.

Es ist leicht zu sehen, wie sich dieser Beweis unter den einschrankenden
Annahmen, daf} I" endlichen Rang oder sogar ein endliches Erzeugenden-
system hat, vereinfachen laf3t.

7. Lokal-kompakte Gruppen

Die Methode, mit welcher wir in diesem Paragraphen kompakte Abel-
sche Gruppen untersucht haben, 148t sich unverandert auf lokal-kompakte
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Abelsche Gruppen iibertragen, weil fiir diese ebenso wie fiir kompakte
Gruppen der Existenzsatz fiir Charaktere gilt'*); die Satze 1, 3 und 4
bleiben giiltig, wenn man darin , kompakt durch ,lokal-kompakt‘
ersetzt.

Ein triviales Beispiel einer monothetischen Gruppe, die nicht kompakt,
sondern nur lokal-kompakt ist, bildet die unendliche zyklische Gruppe.
Wir wollen zeigen, daB3 es die einzige derartige Gruppe ist.

G sei eine lokal-kompakte monothetische Gruppe. a sei ein erzeu-
gendes Element von G, also ein definiter Charakter der zu G dualen
Gruppe I', oder eine algebraisch isomorphe Abbildung von I' in K.
I' ist lokal-kompakt; es gibt infolgedessen'®) in I" eine Untergruppe @,
die in das direkte Produkt ihrer maximalen kompakten Untergruppe @’
und einer Vektorgruppe @’ zerfallt, und derart, daBl die Faktorgruppe
I'/® diskret ist. Wir betrachten zunéchst den definiten Charakter ¢ nur
auf der Untergruppe @; a ist auch auf der Vektorgruppe @” c @ definit,
und das ist nur méglich, wenn @” nur aus der Einheit ¢ (dem Null-
vektor) besteht; denn andernfalls hat eine Vektorgruppe keinen defini-
tiven Charakter. Folglich ist @ = @’, also kompakt. a ist als einein-
deutige stetige Abbildung eines kompakten Raumes (mit abzéhlbarer
Basis) in K von selbst topologisch, und a(®) ist eine abgeschlossene
Untergruppe von K. Wir haben also 2 Moglichkeiten:

1. a(P), also P selbst, ist eine endliche zyklische Gruppe; I ist also
diskret, d. h. ¢ ist kompakt.

2. a(P) = K; da a eineindeutig ist, mul} in diesem Fall I' = @ sein,
also ist I' zu K isomorph. Die zu K duale Gruppe @ ist aber die unend-
liche zyklische Gruppe.

Wir haben damit bewiesen:

Satz 6 : Mit Ausnahme der unendlichen zyklischen Gruppe ist jede mono- |
thetische lokal-kompakte Gruppe kompakt.

§ 2. Gleichverteilung in kompakten Gruppen

8. Gleiwchverteilung

G sei von jetzt an eine beliebige kompakte Gruppe. Ist M eine abge-
schlossene Teilmenge von (, so bezeichnen wir mit u (M) das invariante
(Haarsche) MaB31¢) von M ; es sei so normiert, dafl u (@) = 1 ist.

14) 11], S. 163, im Beweis von Satz 32, zweiter Abschnitt.

18) 1], 8. 160, Satz 41, in Verbindung mit S. 160, Abschnitt E.

16) Wegen der im folgenden beniitzten Eigenschaften des invarianten MaBes und der
Integration in einer Gruppe vergleiche man [3], bes. Kap. II.
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Wir nennen eine abzéhlbare Folge von Punkten z,,2,,... i @
gleichverteilt, wenn folgende Bedingung erfiillt ist: N (M) sei die Anzahl
derjenigen unter den Punkten z,, z,,..., zy, diein M liegen; fiir jede
abgeschlossene Teilmenge M von G ist

lim sz(M) . (2)

N> N

Eine gleichverteilte Folge (x,) liegt in G iiberall dicht (denn es gibt
in jeder Umgebung eine Menge M von positivem Mafl und somit Punkte
z,). Sind also die Potenzen eines Elementes a in G gleichverteilt, so ist
@ monothetisch, von a erzeugt. Umgekehrt sind die Potenzen eines erzeu-
genden Elementes a einer monothetischen Gruppe ¢ immer in ¢ gleich-
verteilt. Dies wird sich aus den folgenden Uberlegungen ergeben, die
iibrigens vom § 1 vollig unabhéingig sind. Der Unterschied gegeniiber
dem § 1 ist der, daB wir einerseits nicht nur Abelsche Gruppen betrachten,
andererseits auf den Begriff ,,gleichverteilt‘ ausgehen, der etwas mehr
Aufschlufl gibt als ,,monothetisch‘‘.

Wir werden die folgende Eigenschaft der Gleichverteilung einer belie-
bigen abzdhlbaren Punktfolge (x,) in G beniitzen, unter Verwendung
der zum invarianten Mafl x4 gehorigen invarianten Integration in G (fiir
stetige komplexwertige Funktionen f in G ; j' fdx sei das iiber die ganze
Gruppe G erstreckte Integral von f):

Hilfssatz: Wenn fiir jede stetige Funktion f in @

. 1 X
lim - 3% /@) = f [ do (3)

N> oo
ist, dann sind die z, in G gleichverteilt?).
Beweis: M sei eine abgeschlossene Teilmenge in &, F die Funktion

F(x) =1, wenn z e M,
= 0, wenn z nicht in M liegt.

F ist eventuell unstetig; aber es gibt zwei Folgen nicht-negativer stetiger
Funktionen f, und g,, so daB3

17) Von diesem Satz gilt auch die Umkehrung; man kann also die Gleichverteilung
auch durch (3) definieren. — Infolgedessen gilt auch von Satz 7 die Umkehrung, ebenso
von Satz 8; letzteres ist aber trivial (s. Nr. 10).
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folx) < Flz) < g,(x) fiir alle xe@
und
lim {f,(z)de = lim | g, () de = u(M)

n-> o n->oo

ist.
r sei eine positive Zahl; wir wahlen n so, daB

§ fode > p(3) —
und 5
ist. In der Ungleichung
1 J 1 NF I -
— a(1) < — z)) <—-— ¥ ¢.(x,
¥ 2 hE) Sy ) <y X @)
N
ist ¥ F(x)=N(M) und, wenn N geniigend grof} ist,
v=1
LS fulm) > § fula) dr —
_N—v=1nxv) jnx)x 9
L ¥ (x,) < de 4 —

I

v=1

wegen der Voraussetzung (3). Es folgt also

u(M)y —r< —l—v—l(v{n—)—<M(M)+7' )

wenn r > 0 vorgegeben und N geniigend grof} ist; also gilt (2).

9. Darstellungen und Gleichverteilung

Ist D eine Darstellung von @, so bezeichnen wir fiir jedes x ¢ @ mit
D (z) die Matrix, welche z darstellt. Die ,,identischen‘ Darstellungen,
bei welchen fiir alle x e @ D(x) die Einheitsmatrix F ist, nennen wir
trivial. (x,) sei wiederum eine abzahlbare Punktfolge in G.

Satz 7: Wenn fiir alle nicht-trivialen irreduziblen Darstellungen D von G

N
lim -—;—f Y D(x,)=0 (4)
N->oo v=1

188, dann sind die z, in G gleichverteilt.
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Beweis: Wir wiahlen in jeder Klasse aquivalenter irreduzibler Dar-
stellungen von G eine unitare Darstellung D, (¢ = 0,1, 2...), und
setzen D()(z) = (d{Q(x)). Dann bilden die Matrixelemente d{)(x) ein
System unitiar-orthogonaler Funktionen in &, und nach dem Satz von
Peter-Weyl?) laflt sich jede stetige Funktion in G gleichméaflig durch
Linearkombinationen der d{?)(x) approximieren. D'® sei die triviale irre-
duzible Darstellung, also d{)(x) = 1 fiir alle x.

Ist f eine stetige Funktion in ¢/, dann gibt es zu einer vorgegebenen
Zahl r > 0 eine Linearkombination g der @', derart, daB fiir alle & ¢ @

r
1@ —g@) <5
ist. Daraus folgt

1 1 X 1 F
v & lf( 2 2 v§1g( Sw v)z.l flx (x,) (5)
und
[ @) do — [ g (@) da| < [ | fl@) — g(@) | d < - (6)

Nach der Voraussetzung (4) gilt fir + >0

Iim — 2 d‘” ,
N>owo
also

N
lim — Y g(z,) = Koeffizient von d{) in ¢ ,

und dieser Koeffizient ist = | g(x)dz; fiir N > N(r) ist also

1 &

v X 9@~ fgl@)de

und aus (5), (6) und (7) folgt

1 ¥ .

N > f) —§ fx)de|<r
v=1

d. h. es folgt (3). Nach dem Hilfssatz sind also die z, in G gleichverteilt..

<= (7)

, fir alle N>N(r),

10. Fixpunktfrere Darstellungen

Wir wenden uns nun dem Fall zu, wo die Folge (x,) aus den Potenzen
a"(n=0, +1, +2,...) eines Elementes a von G besteht.
Eine Bezeichnung: Wir sagen, das Element a ¢ G sei bet der Darstellung
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D faxpunktfrei, wenn D (a), als lineare Transformation eines Vektorraumes
V aufgefaflt, auller dem Ursprung von V keinen Fixpunkt besitzt; dies
bedeutet, daBl die Matrix D (a) nicht 1 zum Eigenwert hat, oder daf die
Determinante | D(a) — E | £ 0 ist.

Satz 8: Wenn das Element a der kompakten Gruppe G bei allen nichi-
trivialen irreduziblen Darstellungen von G fixpunktfres ist, dann sind die
Potenzen von a m G gleichverteilt.

Beweis: D sei eine nicht-triviale irreduzible Darstellung von G'. Es ist

N N
Y D(@) = ¥ D*(a) = D(a) Sl

— K
b~z — D@

<

da man den an dritter Stelle stehenden Quotienten wegen | D (a) — E| %0
einfach ausdividieren kann. Die Elemente der resultierenden Matrix sind
(fiir N — oo) beschrankt, weil @ kompakt ist, und deshalb ist

=

lim

1
Y .D v ::0 .
N> N (a)

v=1

Die Potenzen von a erfiillen also die Voraussetzung des Satzes 7 und
sind somit in G gleichverteilt — und zwar schon die positiven Potenzen
allein (und ebenso, wie leicht ersichtlich, die negativen Potenzen allein,
oder alle zusammen).

Die Voraussetzung des Satzes 8 ist fiir eine Abelsche Gruppe G mit der
(notwendigen und hinreichenden) Bedingung des Satzes 1 identisch.
Daraus folgt: 1. Von Satz 8 gilt auch die Umkehrung. 2. Die Potenzen
eines erzeugenden IKlementes einer monothetischen Gruppe liegen in
dieser nicht nur iiberall dicht, sondern sind sogar gleichverteilt; wichtig
ist diese Verscharfung z. B. fiir das Toroid 7™, d. h. fiir den Kronecker-
schen Approximationssatz (Nr. 4), wo sie den Satz von Weyl [2] iiber die
Gleichverteilung modulo 1 ergibt.

Andererseits gestattet uns der Satz 8, iiber die Struktur einer kom-
pakten Gruppe ¢, von der wir zum vorneherein nicht wissen, ob sie mono-
thetisch ist oder nicht — nicht einmal, ob sie Abelsch ist —, eine Aussage
zu machen: wenn ein gewisses Element a bei allen nicht-trivialen irredu-
ziblen Darstellungen fixpunktfrei ist, dann ist die Gruppe G monothe-
tisch, von a erzeugt. Oder (Kontraposition):
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Satz 8': Wenn die kompakte Gruppe G nicht monothetisch (z. B. nicht
Abelsch) wst, dann gibt es zu jedem Element a # e von G eine nichi-triviale
1rreduzible Darstellung D, bei welcher D (a) den Eigenwert 1 hat.

11. Endliche Gruppen

Fiir den Spezialfall einer endlichen (diskreten) Gruppe @ konnen wir
die zuletzt angefiihrten Satze so aussprechen:

Wenn das Element a der endlichen Gruppe G bei allen nicht-trivialen
vrreduziblen Darstellungen flxpunktfrei ist, dann ist G zyklisch, von a
erzeugt. Oder:

Wenn die endliche Gruppe G nicht zyklisch ist, dann gibt es zu jedem
Element a # e von G eine irreduzible Darstellung D, bei welcher D (a)
den Eigenwert 1 hat.

Es mag angebracht sein, fiir diesen einfachen Satz iiber endliche Grup-
pen einen direkten, vom Ubrigen unabhingigen Beweis anzugeben.

DO =F DWW .. D sei ein vollstindiges System nicht-dquiva-
lenter, unitarer, irreduzibler Darstellungen %) der endlichen Gruppe 6.
N sei die Ordnung von G, und z,(v=1,..., N) seien die Elemente vonG .
Die Elemente d{?)(z,) der Matrizen D(“( ,,) sind Funktionen in ¢, oder
,,Vektoren‘ eines N-dimensionalen komplexen Vektorraumes U ; ihre
Anzahl ist bekanntlich = N. Wir numerieren sie durch und bezeichnen
sie mit d (z,), p=1,.. .,N(es sei d,(x,) =d%(x,) =1 fir v=1,.. .,N);
bekanntlich gilt

=0 fir ps#gq,

d 9
—1 x).—,éO fir p=gq, 9)

<

d. h. die d, bilden eine unitér-orthogonale Basis von U. Jeder Vektor
f(z,) von U laft sich nach dieser Basis zerlegen:

f@) =X ¢, d, () , (10)
p=1
1 N
wobei der Koeffizient ¢, = ~ N flz,) ist.
v=1

Wir nehmen nun an, es gebe ein Element ¢ unter den z,, welches bei
allen nicht-trivialen irreduziblen Darstellungen filxpunktfrei ist, d. h.

derart, daB
| DD (@) — E|#0 ist fir ¢=1,...,h.

18) Wegen der beniitzten Séatze aus der Darstellungstheorie der endlichen Gruppen
vergleiche man etwa [6], Kap. 11 und 12.
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Dann ist

v=1
Nach (10) gilt dann
N N N
N fe)y=Xc, ¥d,(a*) = N¢,,
v=1 =1 v=1
also
N N
S fla*) = X f(=,) (11)
y=1 v=1

fir jeden beliebigen Vektor f(z,). Setzen wir z. B.

0 fir x,#0D
=1 fir «, =05,

/()

I

wo b ein beliebiges Element von @ ist, so wird

N

X f(a’)=1;

v=1
es gibt also eine Potenz a”, die = b ist. @ ist also zyklisch, von a
erzeugt.
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