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Un théorème d'invariance
projective relatif au mouvement brownien

Par Paul Lévy, Lyon

1. La fonction X(t) du mouvement brownien linéaire

L'étude du mouvement brownien conduit tout naturellement à l'idée
d'une fonction aléatoire X(t) vérifiant la condition suivante: quels que
soient t! et t" > t', Vaccroissement X{tn) — X(tf) est une variable aléatoire
gaussienne d'écart type \/f — tr c'est-à-dire que Von a

Pr{X(t")-X{t')<xVt" ~tr} --^==- le 'dl1). (1)

Cette loi est d'ailleurs indépendante aussi bien de X(tf) que des valeurs

prises par X(t) avant Vinstant t1'.

D'après les propriétés connues de la loi dite de Gauss2), cette condition
n'implique aucune contradiction. Comme elle ne peut définir la nature
stochastique de la fonction X(t) qu'à une constante près, on la complète
par la condition que, pour une valeur tQ de t, X(t) ait une valeur donnée

x0, ou bien dépende d'une loi donnée. Sauf avis contraire, nous prendrons
pour condition initiale X(0) 0. Alors, pour t > 0, X(t) est une variable
gaussienne d'écart type \/t Si 0 < t < tx, l'ensemble des variables
X X(t) et Xx Xfa) dépend de la loi de Gauss à deux variables, les

trois paramètres dont dépend cette loi étant définis par les formules

M{X*} M{XXt} - t M{XI} ^ ; (2)

le coefficient de corrélation entre X et Xx est donc \/t\tx
Il n'est pas nécessaire de rien ajouter concernant la corrélation des

variables X(t) groupées trois à trois (ou n k n). Si en effet ^< ^<^5
l'accroissement Z3 — X2 étant indépendant du passé, la loi qui régit XZi
quand on connaît Xx et X2, ne dépend que de X2 ; la connaissance de Xx

1) Les notations Pr\A\, Pr \A9B\ et Pr\AjB\ désignent respectivement la probabilité

d'un événement A9 celle de A et B, et la probabilité conditionnelle de A si B est
réalisé. La notation M\x\ désigne la valeur probable de x.

a) Nous nous conformons à l'usage en parlant de la loi de Gauss et de variables gaus-
siennes. Mais il convient de rappeler que cette loi, bien avant Gauss, a été considérée par
de Moivre et Laplace.
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est sans influence. Des différents renseignements dont on dispose, le plus
récent compte seul, et dispense de connaître les autres. En d'autres
termes, à chaque instant, la connaissance de la valeur actuelle de X(t)
sépare le passé et l'avenir, qui n'influent pas directement l'un sur l'autre.

Faisons maintenant une remarque importante. Quelle que soit la
loi à deux variables X1 et X, on peut réaliser un choix régi par cette
loi en choisissant d'abord Xx, puis X, ce second choix devant alors être
régi par la loi conditionnelle dont dépend X lorsque Xx est connu. Si

to<t<tli Xo X(t0) étant connu, on voit qu'on peut choisir d'abord
Xx X(^), Xx — Xo étant une variable gaussienne d'écart type
\/tx~-t0, puis X X(t) d'après la formule

X(t) p(t) + a(t)Ht)> (3)

où ij(t) est une variable gaussienne réduite (c'est-à-dire que son écart
type est l'unité) et indépendante de Xo et Xl9 et où

(4)
H lo

-1/

sont la valeur probable conditionnelle et l'écart type conditionnel de X,
quand Xo et Xx sont connus.

Remarquons tout de suite que, pour tx infini, o(t) se réduit à \/t — t0 ;

d'autre part, quelque petit que soit e positif, l'ordre de grandeur probable
de Xx étant celui de \Ztx, on a

lim Pr { |p (*) -Xo| > e} 0.

La formule (3) se réduit donc à la limite à la formule (1), appliquée à

l'accroissement X — Xo ; l'influence de la donnée relative à l'instant tx

devient négligeable.
L'avantage de la méthode d'interpolation est qu'elle permet de choisir

une suite de valeurs distinctes

de t, qui constituent un ensemble partout dense, soit dans un intervalle
fini (^, î7), soit de tQ à l'infini, et de déterminer successivement tous les
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X(tn) en appliquant la formule (1) ou la formule (3) suivant que tn dépasse,

ou non, le plus grand des nombres tl9 t2,. tn_1. Naturellement, les

valeurs de t qui doivent intervenir dans chacune de ces applications sont
tn, le plus grand des tv(v 0, 1,. n — 1) qui soit inférieur à tn, et,
éventuellement, le plus petit de ceux qui dépassent tn.

Désignons maintenant par Xn(t) la fonction continue égale à Xo pour
t t0, prenant pour t tx, t2,. .,tn, les valeurs ainsi successivement
obtenues, et variant linéairement dans chacun des intervalles séparés

par ces valeurs de t ; à droite de ces valeurs, elle conserve la dernière
valeur connue. C'est donc la valeur probable conditionnelle de X(t) quand
on connaît X(t0), X(t^),.. X(tn). On démontre que, pour n infini, elle
tend presque sûrement (c'est-à-dire que l'hypothèse contraire, théoriquement

possible, a une probabilité nulle) vers une limite X(t), fonction de t
bien définie et continue dans l'intervalle considéré (tOi T) ou (t0, oo); la

convergence est uniforme dans toute partie finie de cet intervalle.
Par la manière même dont les X(tn) ont été choisis, on peut à tout

moment affirmer que le résultat est stochastiquement le même que si,

^,<2,...JW5 ayant été rangés par ordre de grandeur, on n'avait appliqué
que la formule (1). Cette formule est donc vérifiée, quels que soient les

nombres de la suite (6) que l'on y substitue à tr et t". On en déduit
aisément, par continuité, qu'elle est vérifiée quels que soient tr ^ t0 et
t/r > tf (et ^C T). La fonction aléatoire X(t) est stochastiquement
indépendante du choix des tn

2. La fonction réduite £ (/)

Occupons-nous maintenant de la fonction aléatoire réduite Ç(t) définie

par la formule (3), et proposons-nous de l'étudier dans l'intervalle (£0, tx).
Qu'il s'agisse de Ç(t) ou de la fonction à moitié réduite

le processus dont dépend la fonction étudiée est indépendant de X(t0)
et X(^). Comme pour X(t), si, à un instant quelconque t, on connaît
la valeur actuelle de la fonction étudiée, les renseignements qu'on peut
avoir sur ses valeurs antérieures sont sans influence sur les probabilités
conditionnelles des événements futurs, et réciproquement. Comme pour
X(t), il en résulte que le processus est bien défini si l'on définit la corrélation

qui existe entre les valeurs de Ç(t) groupées deux à deux. Comme
enfin la loi à deux variables Ç(t) et |(w) est une loi de Gauss, et que ces
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variables, considérées séparément, sont réduites, il n'y a qu'à déterminer
le coefficient de corrélation q ç(t,u) de Ç(t) et Ç(u), qui est aussi
celui de X±(t) et X^u).

Nous pouvons supposer t <u. On a donc

to<t<u<tx. (8)

Si Xx(t) est connu, X^t-J étant nul, la formule (3) s'applique à la loi
conditionnelle dont dépend Xx(u) ; il n'y a qu'à y remplacer to,t et X
par t, u, et Xx. II vient ainsi

^(u) étant une variable gaussienne réduite, indépendante de Xx(t) ; on
en déduit

M{XAt) XAu) } -^j M{X\(t)}

et, pour le coefficient de corrélation q on trouve la valeur

_ M \Xi M Z
QQ ~ a(t) a{u)

~~
tx — t a{u) '

c'est-à-dire, compte tenu de l'expression (5) de o(t),

(t - g (t, - u)

- g (tx - t) ' ['}

D'après cette expression, — @2 est un des rapports anharmoniques des

quatre nombres t0, t, u, tx. Il est donc invariant par une substitution
homographique effectuée sur ces quatre nombres, cette substitution
étant soumise à la seule restriction que les inégalités (8) soient, ou bien
conservées, ou bien retournées. D'après une remarque du n° 1, le cas
limite où l'un des nombres t0 et tx est infini ne donne lieu à aucune difficulté.

Nous avons ainsi établi le théorème suivant :

Théorème 1. La fonction Ç(t), définie dans l'intervalle (t0, tx) par la
formule (7), a toutes ses propriétés stochastiques dans cet intervalle
invariantes pour n'importe quelle substitution homographique effectuée à la fois
sur tQ,tx et t, avec cette seule restriction que, si t0, tx et leurs transformés
t'o, t[ sont finis, l'intérieur de Vintervalle (£0, tx) corresponde à l'intérieur de
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3. Applications

Nous allons nous placer dans le cas où ju (t) est identiquement nul dans
l'intervalle (t0, tx). Si t0 et t± sont finis, cela implique que X(t) s'annule
en ces deux points; si l'un d'eux, par exemple tt, est infini, cela implique
seulement X(t0) 0. Dans ces conditions les racines de X(t) comprises
entre t0 et tx sont celles de £(t), et le théorème 1 entraîne l'invariance des

propriétés stochastiques de l'ensemble E de ces racines, pour toutes les

transformations homographiques considérées dans l'énoncé de ce
théorème.

On peut alors, de propriétés établies dans le cas où tx est infini, déduire
des propriétés relatives au cas où t0 et tx sont finis. Ainsi, dans un travail
antérieur3), nous avons établi les résultats suivants:

1° Si X(0) 0, et 0 < t < u, la probabilité que l'intervalle (t, u) ne
contienne aucune racine de X(r) est

— Arc sin
71

m /—
y u

2° Si X(0) 0, 0 < t < u, et si X(r) n'a aucune racine comprise
entre 0 et t, la probabilité qu'il n'y en ait aucune entre 0 et u est ]/t/u

A l'aide du théorème 1, on en déduit immédiatement les théorèmes
suivants :

Théorème 2. Si tQ<t<u<t1, et si X(t0) Xfa) 0, la probabilité
que Vintervalle (t, u) ne contienne aucune racine de X(r) est (2/tt) Arc sin q.

Théorème 3. Si tQ<t<u<tx, si X(t0) X(tx) 0, et s'il n'y a
aucune racine de X(r) comprise entre t0 et t, la probabilité qu'il n'y en ait
aucune entre t0 et u est g.

On démontre de la même manière, en désignant par M (u) le maximum
de

quand t varie de ^ à u < tx, que :

3) Paul Lévy, Sur certains processus stochastiques homogènes. Compositio
mathematica, vol. 7 (1939), p. 283—339. V. formules (35), (42) et (44).
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Théorème 4. On a

/* -Si
J dr,

0

e 2 (12)

C'est en effet un énoncé de forme invariante. Pour tt infini, il se réduit
à un théorème connu4).

Si tx est fini, la condition M(u) ${u), dans la formule (12), indique
que X1(^)/(f1 — t) atteint, pour t u, une valeur non encore dépassée.
Si tx est infini, elle exprime la même circonstance pour X^t).

4. Remarques

1° Le théorème 1 s'étend naturellement au cas de l'espace. Si M M(t)
désigne le point mobile soumis au mouvement brownien, si A — A(t)
désigne un point qui coïncide avec M aux instants t0 et ^ et a pendant
l'intervalle de temps (t0, tx) un mouvement rectiligne et uniforme, de sorte

que A est la position probable de M si Mo M(t0) et Mx M^) sont
connus, si l'on pose

o(t)V(t),

de sorte que V(t) est à chaque instant un vecteur gaussien réduit, alors :

les propriétés stochastiques de la fonction aléatoire vectorielle V(t), dans
Vintervalle (to,^), sont invariantes par les substitutions homographiques
considérées au théorème 1.

2° Quelque simple que soit le calcul qui nous a conduit à l'expression
(9) du coefficient de corrélation g, il peut y avoir intérêt à donner du
théorème 1 une démonstration indépendante de ce calcul.

Tout d'abord le résultat énoncé est bien évident si la substitution
homographique considérée est linéaire.

Considérons maintenant le processus définissant X(t)l\/t dans l'intervalle

(0, oo), et dans l'hypothèse X(0) 0. La corrélation entre

X(t)j\/t et X(u)l\/ u est absolument symétrique. Comme elle ne dépend
que det/n, cela suffit à prouver que ce processus est invariant, non seulement

par le changement de t en A21, mais par celui de t en A2/£. 5)

4) V. les formules (15) et (19) du mémoire cité, note 3.
5) Cf. Paul Lévy, Le mouvement brownien plan. American journal of mathematics,

t. LXII (1940), p. 487—550 (v. le théorème 2 de ce mémoire).
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Cette invariance implique celle des probabilités conditionnelles
relatives au cas où Ton impose à X(t) certaines conditions restrictives. A
l'hypothèse X(0) 0, ajoutons l'hypothèse X(t0) 0 (t0 étant un nombre
positif donné). La fonction gaussienne initialement réduite X(t)/\/t a
alors une valeur probable nulle, et un écart type ait), égal à \/(t0 — t) jt0
si t < t0 et à ]/(t —10) fi si t > tQ Elle se ramène par la formule

à une nouvelle fonction réduite Ç(t), et il est bien évident que a(t) et
le processus dont dépend Ç(t) sont invariants par le changement de t

en £o/£(qui laisse t0 invariant).
Le résultat relatif à f (t) est précisément, pour le changement de t

entl/t, celui que nous voulions obtenir. La donnée de la valeur zéro pour
X(£o) sépare le passé et l'avenir, qui deviennent stochastiquement
indépendants, et l'intervalle infini (t0, oo) se trouve ramené sur l'intervalle
fini (0,£0). Comme d'ailleurs on peut placer l'origine à n'importe quel
instant antérieur à l'instant t0, et faire suivre le changement considéré
d'un changement linéaire sur t, le théorème 1 se trouve démontré pour
toutes les substitutions homographiques amenant l'intervalle (£0, oo) sur
un intervalle fini, et par suite aussi pour toutes celles amenant deux
intervalles finis l'un sur l'autre.

(Reçu le 1er septembre 1943.)
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