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Un théoréme d’invariance
projective relatif au mouvement brownien

Par Pauvr Livy, Lyon

1. La fonetion X ({) du mouvement brownien linéaire

L’étude du mouvement brownien conduit tout naturellement & I'idée
d’une fonction aléatoire X(t) vérifiant la condition suivante: quels que
soient t’ et t” >t’, Vaccroissement X(t") — X(t') est une variable aléatoire
gaussienne d’écart type V/'t" — t' , c’est-a-dire que U'on a

Ven
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A _E
PriX@"—X@¢t)<zVt' -t} = L fe 2dEY . (1)

Cette loi est d’ailleurs indépendante aussi bien de X(t') que des valeurs
prises par X(t) avant Uinstant t’.

D’apres les propriétés connues de la loi dite de Gauss?), cette condition
n’implique aucune contradiction. Comme elle ne peut définir la nature
stochastique de la fonction X (f) qu’a une constante pres, on la complete
par la condition que, pour une valeur {, de ¢, X(¢) ait une valeur donnée
%o, ou bien dépende d’une loi donnée. Sauf avis contraire, nous prendrons
pour condition initiale X(0) = 0. Alors, pour ¢ > 0, X(¢) est une variable
gaussienne d’écart type }/¢t . Si 0<t<t,, lensemble des variables
X = X(t) et X, = X(¢,) dépend de la loi de Gauss & deux variables, les
trois parameétres dont dépend cette loi étant définis par les formules

M{X? = M{XX,}=t, M{X}}=1,; (2)

le coefficient de corrélation entre X et X, est donc }/¢/t; .

Il n’est pas nécessaire de rien ajouter concernant la corrélation des
variables X(¢) groupées trois & trois (ou n & n). Si en effet ¢, < ¢, <l{,,
Paccroissement X, — X, étant indépendant du passé, la loi qui régit X,,
quand on connait X; et X,, ne dépend que de X, ; la connaissance de X,

1) Les notations Pr{A!, Pr{A, B} et Pr{A|/B/| désignent respectivement la proba-
bilité d’un événement A4, celle de 4 et B, et la probabilité conditionnelle de 4 si B est
réalisé. La notation M|z} désigne la valeur probable de z.

2) Nous nous conformons & l'usage en parlant de la loi de Gauss et de variables gaus-
siennes. Mais il convient de rappeler que cette loi, bien avant Gauss, a été considérée par
de Moivre et Laplace.
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est sans influence. Des différents renseignements dont on dispose, le plus
récent compte seul, et dispense de connaitre les autres. En d’autres
termes, & chaque instant, la connaissance de la valeur actuelle de X(¢)
sépare le passé et ’avenir, qui n’influent pas directement 'un sur 'autre.

Faisons maintenant une remarque importante. Quelle que soit la
loi & deux variables X, et X, on peut réaliser un choix régi par cette
loi en choisissant d’abord X, puis X, ce second choix devant alors étre
régl par la loi conditionnelle dont dépend X lorsque X, est connu. Si
te<<t<t, Xg= X(t,) étant connu, on voit qu’'on peut choisir d’abord
X, = X(,), X; — X, étant une variable gaussienne d’écart type

V't —t,, puis X = X(¢) d’aprés la formule

X () = p(t) + o) £Q), (3)

ou £(t) est une variable gaussienne réduite (c’est-a-dire que son écart
type est I'unité) et indépendante de X, et X,, et ou

_ ) X+ (4 — ) X,

p (t) - : (4)
o(f) = V (t ——tt:)w(t;('—— N (5)

sont la valeur probable conditionnelle et I’écart type conditionnel de X,
quand X, et X, sont connus.

Remarquons tout de suite que, pour ¢, infini, ¢ (t) se réduit & }/t—t,;
d’autre part, quelque petit que soit ¢ positif, I’ordre de grandeur probable
de X, étant celui de }/¢,, on a

lim Pr{|u®) — Xo| >} =0.

La formule (3) se réduit donc & la limite & la formule (1), appliquée &
Paccroissement X — X, ; 'influence de la donnée relative & l'instant ¢,
devient négligeable.

L’avantage de la méthode d’interpolation est qu’elle permet de choisir
une suite de valeurs distinctes

T AU T (6)

de ¢, qui constituent un ensemble partout dense, soit dans un intervalle
fini (¢, T'), soit de ¢, & 'infini, et de déterminer successivement tous les
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X(t,) en appliquant la formule (1) ou la formule (3) suivant que ¢, dépasse,
ou non, le plus grand des nombres ¢, ¢,,..., ¢, ;. Naturellement, les
valeurs de ¢ qui doivent intervenir dans chacune de ces applications sont
t,, le plus grand des ¢,(v =0,1,...,n —1) qui soit inférieur a t¢,, et,
éventuellement, le plus petit de ceux qui dépassent ¢, .

Désignons maintenant par X, (f) la fonction continue égale & X, pour
t = t,, prenant pour t =1¢,,¢,,...,t,, les valeurs ainsi successivement
obtenues, et variant linéairement dans chacun des intervalles séparés
par ces valeurs de t; a droite de ces valeurs, elle conserve la derniére
valeur connue. C’est donc la valeur probable conditionnelle de X(¢) quand
on connait X(4,), X(¢),..., X(¢,). On démontre que, pour » infini, elle
tend presque sirement (c’est-a-dire que ’hypotheése contraire, théorique-
ment possible, a une probabilité nulle) vers une limite X(¢), fonction de ¢
bien définie et continue dans ’intervalle considéré (t,, 7') ou (f,, oo); la
convergence est uniforme dans toute partie finie de cet intervalle.

Par la maniere méme dont les X(¢,) ont été choisis, on peut a tout
moment affirmer que le résultat est stochastiquement le méme que si,
tists,. .., 1,, ayant été rangés par ordre de grandeur, on n’avait appliqué
que la formule (1). Cette formule est donc vérifiée, quels que soient les
nombres de la suite (6) que ’'on y substitue & ¢" et t”. On en déduit aisé-
ment, par continuité, qu’elle est vérifiée quels que soient t' >, et
t” >t’ (et < T). La fonction aléatoire X(t) est stochastiquement indé-
pendante du choix des ¢, .

2. La fonetion réduite & (¢)

Occupons-nous maintenant de la fonction aléatoire réduite &(t) définie
par la formule (3), et proposons-nous de I’étudier dans I'intervalle (¢,, ¢,).
Qu’il s’agisse de &(t) ou de la fonction & moitié réduite

X,(t) = X(8) — u(t) = o) £@), (7)

le processus dont dépend la fonction étudiée est indépendant de X(t,)
et X({,). Comme pour X(t), si, & un instant quelconque ¢, on connait
la valeur actuelle de la fonction étudiée, les renseignements qu’on peut
avoir sur ses valeurs antérieures sont sans influence sur les probabilités
conditionnelles des événements futurs, et réciproquement. Comme pour
X(t), il en résulte que le processus est bien défini si ’'on définit la corréla-
tion qui existe entre les valeurs de &(t) groupées deux & deux. Comme
enfin la loi & deux variables £(t) et £(u) est une loi de Gauss, et que ces
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variables, considérées séparément, sont réduites, il n’y a qu’a déterminer
le coefficient de corrélation o = g(¢t,u) de &(¢) et &(u), qui est aussi
celui de X (t) et X, (u).

Nous pouvons supposer ¢ < %. On a done

to<t<<u<t. (8)

Si X,(t) est connu, X,(¢;) étant nul, la formule (3) s’applique a la loi
conditionnelle dont dépend X;(u); il n’y a qu’'a y remplacer ¢,,t et X
part, u, et X,. Il vient ainsi

Kiw =52 a0 + B

&, (w) étant une variable gaussienne réduite, indépendante de X;(¢); on

en déduit l

M{Xl(t)X( )}: :

— M{Xi0)}

et, pour le coefficient de corrélation o, on trouve la valeur

_ MiX,0) Xi(w)} i —u ol
= T s o)t —t ou)’

c’est-a-dire, compte tenu de 'expression (5) de o (¢),

- . (9)
S ]/ u“‘to) (tl — 1)

D’apres cette expression, — g? est un des rapports anharmoniques des
quatre nombres t,, t, u, ¢;. Il est donc invariant par une substitution
homographique effectuée sur ces quatre nombres, cette substitution
étant soumise a la seule restriction que les inégalités (8) soient, ou bien

conservées, ou bien retournées. D’aprés une remarque du n° 1, le cas
limite ot I'un des nombres £, et ¢, est infini ne donne lieu & aucune difficulté.

Nous avons ainsi établi le théoréme suivant:

Théoréme 1. La fonction &(t), définte dans Uintervalle (ty,t,) par la
formule (7), a toutes ses propriétés stochastiques dans cet intervalle inva-
riantes pour n’importe quelle substitution homographique effectuée a la fois
sur ty,t, et t, avec cette seule restriction que, si t,, 1, et leurs transformés
ty, t, sont finis, Uintérieur de Uintervalle (ty, t,) corresponde d Uintérieur de
(to> 2) -
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3. Applications

Nous allons nous placer dans le cas o u(t) est identiquement nul dans
Pintervalle (¢,,¢,). Si £, et ¢, sont finis, cela implique que X(t) s’annule
en ces deux points; si I’'un d’eux, par exemple ¢, est infini, cela implique
seulement X(f,) = 0. Dans ces conditions les racines de X(f) comprises
entre £, et t, sont celles de £(¢), et le théoréeme 1 entraine l’invariance des
propriétés stochastiques de ’ensemble E de ces racines, pour toutes les
transformations homographiques considérées dans 1’énoncé de ce théo-
réme.

On peut alors, de propriétés établies dans le cas ou ¢, est infini, déduire
des propriétés relatives au cas ou {, et ¢, sont finis. Ainsi, dans un travail
antérieur®), nous avons établi les résultats suivants:

1° Si X(0) = 0, et 0 <t < u, la probabilité que l'intervalle (¢, ) ne
contienne aucune racine de X(t) est

2 , t
Arc sin V— .
7 U

20 Si X(0) =0, 0<t<wu, et si X(r) n’a aucune racine comprise
entre 0 et ¢, la probabilité qu’il n’y en ait aucune entre 0 et u est |/t/u .

A Taide du théoréme 1, on en déduit immédiatement les théorémes
sulvants:

Théoréme 2. Si t,<t<u<t,, et si X(t,) = X(t,) = 0, la probabilité
que Uintervalle (¢, u) ne contienne aucune racine de X () est (2[n) Arcsin g.

Théoréme 3. St ty<t<u<t, st X(t,) = X(,) =0, et sl n’y a
aucune racine de X (t) comprise entre t, et t, la probabilité qu’il n’y en ait
aucune enlre ty et u est p.

On démontre de la méme maniére, en désignant par M(u) le maximum
de

ot g0 = | o=@ l=s Ll (10

quand ¢ varie de ¢, & v < ¢,, que:

3) Paul Lévy, Sur certains processus stochastiques homogénes. Compositio
mathematica, vol. 7 (1939), p. 283—339. V. formules (35), (42) et (44).
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Théoréme 4. On a

o
Pr{M(u) <y|X (t) = X (t;) = 0} =]/%fe “dy, (1)

yz

PriM(u)>y/X(t) =X(t) =0, Mu)=¢(@@)}=e . (12)

C’est en effet un énoncé de forme invariante. Pour ¢, infini, il se réduit
&4 un théoréme connu?).

Si ¢, est fini, la condition M(u) = &(u), dans la formule (12), indique
que X,(t)/(¢, — t) atteint, pour { = u, une valeur non encore dépassée.
Si ¢, est infini, elle exprime la méme circonstance pour X;(t).

4. Remarques

1° Le théoréeme 1 s’étend naturellement au cas de 1'espace. Si M = M (¢)
désigne le point mobile soumis au mouvement brownien, si 4 = A(t)
désigne un point qui coincide avec M aux instants #, et ¢, et a pendant
Pintervalle de temps (¢, ¢,) un mouvement rectiligne et uniforme, de sorte
que 4 est la position probable de M si M, = M(t,) et M, = M(¢,) sont.

connus, si ’on pose
AM =o(t) V(?),

de sorte que V(t) est & chaque instant un vecteur gaussien réduit, alors:
les propriétés stochastiques de la fonction aléatoire vectorielle V(t), dans

Uintervalle (ty,1t,), sont invariantes par les substitutions homographiques
considérées au théoréme 1.

2% Quelque simple que soit le calcul qui nous a conduit & I’expression
(9) du coefficient de corrélation g, il peut y avoir intérét & donner du
théoreme 1 une démonstration indépendante de ce calcul.

Tout d’abord le résultat énoncé est bien évident si la substitution
homographique considérée est linéaire.

Considérons maintenant le processus définissant X(t)/}1/t dans l'inter-
valle (0, o), et dans ’hypothése X(0) = 0. La corrélation entre
X))/t et X(u)]} u est absolument symétrique. Comme elle ne dépend
que de ¢/ u, cela suffit & prouver que ce processus est invariant, non seule-
ment par le changement de ¢ en A2¢, mais par celui de ¢ en 4%/¢. 5)

1) V. les formules (15) et (19) du mémoire cité, note 3.

8) Cf. Paul Lévy, Lemouvement brownien plan. American journal of mathematics,
t. LXII (1940), p. 487—550 (v. le théoréme 2 de ce mémoire).
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Cette invariance implique celle des probabilités conditionnelles rela-
tives au cas ou 'on impose & X(f) certaines conditions restrictives. A
I’hypothése X (0) = 0, ajoutons ’hypothese X (#,) = 0 (£, étant un nombre
positif donné). La fonction gaussienne initialement réduite X(¢)/}/t a
alors une valeur probable nulle, et un écart type o (), égal & 1/ (¢, — ?) /¢,
si t<t, eta Y (t—t,)/t si t>1t,. Elle se raméne par la formule

X(t)=o(t) @) VT

a une nouvelle fonction réduite £(¢), et il est bien évident que o(t) et
le processus dont dépend &(¢) sont invariants par le changement de ¢
en t3/¢t(qui laisse £, invariant).

Le résultat relatif & &(f) est précisément, pour le changement de ¢
en t3/¢, celui que nous voulions obtenir. La donnée de la valeur zéro pour
X(t,) sépare le passé et 'avenir, qui deviennent stochastiquement indé-
pendants, et l'intervalle infini (f,, co) se trouve ramené sur l'intervalle
fini (0, %,). Comme d’ailleurs on peut placer I'origine & n’importe quel
instant antérieur & l'instant ¢,, et faire suivre le changement considéré
d’un changement linéaire sur ¢, le théoréme 1 se trouve démontré pour
toutes les substitutions homographiques amenant l'intervalle (¢,, co) sur
un intervalle fini, et par suite aussi pour toutes celles amenant deux inter-
valles finis I'un sur 'autre.

(Recu le 1°r septembre 1943.)
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