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Uber eine Verallgemeinerung
des Satzes von Fatou fiir Potentialfunktionen

Von WALTER NEF, Ziirich

1.
Von Fatou stammt der Satz:

Wenn eine analytische Funktion im Innern des Einheitskreises regulir
und beschrinkt ist, so existiert bei radialer Anniherung von innen an ernen
Punkt des Einheitskreises der Grenzwert der Funktionswerte fiir alle Punkte
des Kreises, mit eventueller Ausnahme einer Menge vom Maf 0 von Punkten
auf dem Kreis').

Da zu Real- und Imaginérteil einer analytischen Funktion w = u 4 w
der komplexen Variabeln 2z = z + ¢ty stets eine Potentialfunktion
D(xz, y) existiert, so dafl
I s

dy ’ ox

ist; da umgekehrt fiir jede Potentialfunktion @(z,y) die Funktion

oo .0D
oy T ox

w =

analytisch in der Variabeln z = x + 4y ist, konnen wir den Fafouschen
Satz auch so aussprechen:

Ist eine Potentialfunktion @ (xz, y) itm Innern des Kreises
|22+ y* | =1
requldir und sind daselbst die Ableitungen

o 9
ox ’ 0oy

1) Fatou, Séries trigonométriques et séries de Taylor, Acta Mathematica,
vol. 30, pag. 335.

Ein zweiter, einfacher Beweis wurde von Caratheodory gegeben:

C. Caratheodory, Uber die gegenseitige Beziehung der Rander bei der kon-
formen Abbildung des Innern einer Jordanschen Kurve auf einen Kreis,
Mathematische Annalen, Bd. 73, pag. 305. Der Beweis, den wir fiir unseren Satz geben,
ist eine Verallgemeinerung dieses Beweises von Caratheodory.
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beschrinkt, so konvergieren die Werte dieser Ableitungen bei radialer An-
ndherung von innen an irgendeinen Punkt des Kreises, mit eventueller
Ausnahme einer Menge vom Maf 0 von Punkten.

Es ist das Ziel der vorliegenden Arbeit, die Giiltigkeit dieses Satzes
fiir Potentialfunktionen von beliebig vielen Variabeln zu zeigen, also zu
beweisen:

Hauptsatz 1. Wenn eine sm Innern der Einheitskugel

al a4 - a2k =1
requlire harmonische Funktion ¢(x,,..., x,) der n Variabeln z,,..., x,
Ableitungen

% (=1 n)

5% j=1, ...,

hat, die alle im Innern derselben Einheitskugel beschrinkt sind, so konver-
gieren diese Ableitungen ber radialer Anndiherung von innen an einen Rend-
punkt der Kugel, mit eventueller Ausnahme einer Menge vom (n — I)-
dimensionalen Maf 0 von Punkten auf der Kugel.

Die Grundlage des Beweises wird von einer Theorie reguldr hyper-
komplexer Funktionen gebildet, die im folgenden entwickelt werden
wird. Vorbild waren mir dabei die Arbeiten von Herrn Rud. Fueter iiber
die reguliren Funktionen einer Quaternionenvariabeln, iiber den Satz
von Hartogs?) und seine Arbeit iiber die Funktionentheorie der Dirac-
schen Differentialgleichungen3).

Ich bemerke noch, dafl die analytischen Funktionen einer kom-
plexen Variabeln unter meinen reguliren Funktionen enthalten sind.
Ist ndmlich

w=7f(z)=u-+w

analytisch in der Variabeln z = « -+ 1y, so ist

ou . ov ou ov

W= W

2) Rud. Fueter, Uber einen Hartogsschen Satz in der Theorie der analy-
tischen Funktionen von n komplexen Variabeln, C. M. H. vol. 14, pag. 394.

3) Rud. Fueter, Die Funktionentheorie der Diracschen Differentialglei-
chungen, C. M. H. vol. 16, pag. 19,
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Bilden wir nun die hyperkomplexe Funktion
w* = e u + ey,
und fassen sie auf als Funktion der Variabeln

2* = ey + ey,
so lauten fiir w* die Regularitdtsbedingungen (4a, b):

ou ov ou ov
w T Ty

und sind also erfiillt. Also ist immer, wenn die Funktion w = uw + w
eine analytische Funktion der Variabeln z = = + ¢y ist, die Funktion
w* = e;u + e,v eine im unten (3, 4) definierten Sinne regulidre Funktion
der Variabeln z* = e,y -+ e,x .

Ich erwihne schliefllich noch, daB fiir analytische Funktionen von zwei
komplexen Variabeln ein verwandter Satz bereits von Bergmann und
Marcinkrewicz*) bewiesen ist, welche zeigen, daf fiir in gewissen Be-
reichen mit ausgezeichneten Randflichen reguldre Funktionen zweier
komplexer Variabler bei einfachen Voraussetzungen iiber das mittlere
Wachstum der Funktion fast iiberall auf einer ausgezeichneten Rand-
fliche der Grenzwert existiert.

2.

A sei eine Cliffordsche Algebra der Ordnung 2" mit den Basiselementen

l,ep,...,€,, €50, - ,€10 .5
wo 1 die Haupteinheit ist und wo die Basisgroflen e;(j = 1,...,n) den
Relationen
I. & =1 (j=1,...,n)
II. e;e, = — e, ¢ G, k=1,....,m,9 #k)

geniigen®). Die Zahlen, mit denen wir im folgenden rechnen werden, sind

1) St. Bergmann und J. Marcinkiewicz, Sur les valeurs limites des fonctions
de deux variables complexes, C. R. Acad. Sci., 208, pag. 877.

) Vgl. die Ziircher Dissertation:

Paul Bosshard, Die Cliffordschen Zahlen, ihre Algebra und ihre Zahlen-
theorie, Ziirich 1940.
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die Zahlen dieser Algebra im Korper der reellen Zahlen, d. h. die Grofien
der Form:

n
z=a+ X €; X, + -+ €o...n " Tia.. .0 >
j=1

wo die x beliebige reelle Zahlen sind.
Der Zahl z ordnen wir nach der folgenden Definition den Betrag

|z| zu:
1/2 .

[z|=]e*+ Zaf+
j=1
Fiir zwei beliebige Zahlen z, und z, beweist man dann leicht:

a) | 2y + 25| < | 2| 4 | 22

(1)
b) |21 2o < | 21| " 2] - .

Hierin bedeutet u die Ordnung 2" der Algebra. In erster Linie werden
die Groflen von der Form

j=1
eine Rolle spielen. Damit ordnen wir den = reellen Variabeln (z,,..., z,)
der Funktion ¢(«,,...,x,) die eine hyperkomplexe Variable z zu.

Wir werden im folgenden Funktionen zu betrachten haben, die als
Argumente Variable von der Form (2) haben und selber von der Gestalt

w = f(z) = 7éluj (g 5000, ,) €

sind. w hei3t in einem Punkte (z,,..., «,) nach der Variabeln z, par-
tiell differenzierbar, wenn alle Ableitungen

ou;
0x;,

G=1,...,m)

in diesem Punkte existieren. Als partielle Ableitung der Funktion w nach
der Variabeln z, bezeichnen wir dann den Ausdruck:

ow n o ou,

u."
ox;, /=1 Oxy

w heiBt in einem Gebiete nach der Variabeln x, differenzierbar, wenn
die Differenzierbarkeit in jedem Punkt des Gebietes besteht.
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Definition: Die Funktion w = f(z) heifst in einem Gebiete H reguldr,
wenn ste tn H zweimal stetig nach beliebigen Variabeln x,(j =1,..., n)
differenzierbar ist, und wenn in H die Bezichung gilt :

ow

=

e; =10 . (3)

Z;

Zerlegt man die Bedingung (3) in ihre Komponenten, so erhilt man die
Regularititsbedingung in der folgenden reellen Gestalt:

> ou, —0 ; %_.gg_’i:o G, k=1,...,m) . (4a) (4b)

Auf dieselbe reelle Bedingung fiihrt die hyperkomplexe Gleichung

n ow

Diese und (3) sind also dquivalent, ohne iibereinzustimmen.

Zwischen den reguliren Funktionen und den Potentialfunktionen
besteht ein naher Zusammenhang, der durch die folgenden vier Sitze
klargelegt wird.

Satz 2. Die Funktion u(x,,. .., x,) sei in einem Gebiete H harmonisch.
Dann st die Funktion
" ou
w=3Y —=¢
k‘:;l Lie F
wn H reguldr.
Bewezs : Wir haben zu zeigen, daB} (3) erfiillt ist. In
r dw h 0*u
e; == ex e
,E‘; ox; ,—f}; ,El 0x, 0x; * 7
heben sich wegen
cu  Cu
ox; 0x;, 0y 0%,
und
ee, = —ee; fur jJFk
alle Terme mit j % k weg. Es bleibt also
n . dw no 02w no 0%y
hy = ¥ =V
9'A=-,1 ax,- ! k:1 axk €k k‘=-’1 axi

Da aber « harmonisch ist, ist dies tatséichlich gleich 0.
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Satz 3. Die Funktion
n
i=1

set wn ewnem Gebiete H regulir. Dann existiert eine in H harmonische
Funktion U, deren erste Ableitungen

oU
ox;

uU; G=1,...,m)
sind.
Beweis : Auf Grund der Regularitidtsbedingungen (4b):

ou; ouy, .
ax,c'“ax,.“o (G, b=1,...,m)
existiert in H eine Funktion U(z,,..., z,), deren Ableitungen
oU

sind. Die linke Seite der Potentialgleichung, fiir diese Funktion U ange-
schrieben, d. h. der Ausdruck
U

T 0%

]

-,
i
<o

ist dann gleich

" du;
> 5.
j—1 0x;
Dieser letzte Ausdruck ist aber gleich 0 nach der Regularitédtsbedingung
(4a). Also ist U in H harmonisch.

Satz 4. Die Funktion

n
=1

~,

ser in einem Gebvete H requlir. Dann sind alle Funktionen w;(x,,. .., x,)
in H harmonisch (j = 1,..., n).

Bewers : Es seil
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Dies differenzieren wir nach x,;, multiplizieren rechtsseitig mit e; und
summieren tiber j :

"<& 0*w
ere; =0
?::1 El ox, 0x; "’
d. h.
n 2w
' ——— = ()
= Ox;

Satz 5. H sei ein zylinderformages Gebiet, dessen Seitenlinien der x,-
Achse parallel und dessen Grund- und Deckhyperebenen zu derselben senk-
recht sind. Die reelle Funktion w,(x,,..., x,) sev in H harmonisch. Dann
existieren tn H (n— 1) weitere Funktionen, uy(x,,. .., 2,),. .., u,(2,,...,2,)
von solcher Art, daf3

n
w= X u;e;

j=1
tn H reguldr ist.
Beweis: w(x,,. .., x,) sei ein beliebiges Integral der Differentialglei-
chung in (n — 1) Variabeln:
no 2y ou
2 ot E’B—l. ’
j=2 j 1 {zy=a

wo z; = a eine das Gebiet H schneidende Hyperebene ist. Wir setzen

oy ¢ ou, -
ax’ _I_f axj dxl (7”—2""372’)
und behaupten, daf

n
w= X Uu;e;
j=1

regulir ist. Um ndmlich (4a) zu bestéitigen, beachten wir, da}

ou,; 0%y 02 u, .
= d — 2 g e oy
ox;  0x; h f o3 “ U )
18t. Also ist ’
noou;
=0
9§1 0,
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Um (4b) zu beweisen, berechnen wir fiir j, £ = 2,..., n die Ausdriicke

ou; n f 0% u, _ 0w

0x;, axk 3x ox;, 0x; x;
Ferner wird

ou;,  Ou, .

ox, 0x;, b=2,....m)

Also sind die Regularitidtsbedingungen (4a) und (4b) erfiillt.

Satz 6. Satz 5 gilt auch fir jedes einfach zusammenhdingende Gebiet H ,
das sich in abzihlbar viele zylinderférmige Gebiete von der in Satz 4 be-
schriebenen Art zerlegen lipSt.

Beweis: Wir gehen von einem der zylinderféormigen Gebiete H, aus
und konstruieren in demselben nach dem Beweis zu Satz 4 die Funk-
tionen u,,. .., u,. H, sei ein zweites der zylinderformigen Gebiete, das
mit H, einen Teil der Hyperebene x, = b gemeinsam habe. Die in der
Hyperebene z, = b bis auf eine additive Konstante eindeutig bestimmte
Funktion y*(x,,...,z,), die den Gleichungen

op*
ox;

:u:i (j:2a"':n)

geniigt, erfiillt dann auch die Differentialgleichung

no 92 y* noou; 0y
’§2 ox; ,§2 ox; oz,

Also konnen wir die Funktionen u,,..., u, in H, wie folgt definieren:
a"’ a“ld G=2,....m) .

Diese Funktionen hidngen mit den entsprechenden in H, definierten
stetig zusammen, da v* bis auf eine additive Konstante eindeutig be-
stimmt ist, und ihre Ableitungen haben fiir x; = b dieselben Werte.
Auf dieselbe Art konnen die Funktionen u,,. . ., u, auf das ganze Gebiet
H ausgedehnt werden.
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Satz 7. Die Funktionen w und v sollen in exnem Gebiet H und auf seinem
Rand R regulir sein. R sei eine geschlossene orientierbare Hyperfliche
mat stetigem Normalenfeld. Dann ist

fde'v::O ,

wenn wir mit dZ die Grofe

dZ =dr X & e

=1

bezeichnen, wo dr das (n — 1)-dimensionale Hyperflichenelement auf R
bedeutet und wo die &,(j = 1,..., n) die Komponenten der (duferen oder
inneren) Normalen auf R sind.

Beweis : Nach dem Satz von Gaup ist:

fdev-—E w & e;vdr =

j=1

nach der Regularitdtsbedingung (3) und der dazu &dquivalenten (5).

Die Funktion
> e;(l; — xy)

C——Z i=1

QUL —2) = ==
PR

& —=2[*

ist, als Funktion von (, fiir jeden Wert von z regulir fiir alle Werte von
¢, mit Ausnahme von { = z. Man bestétigt das leicht durch Einsetzen
in die Regularitdtsbedingungen 4a), b). Nun sei R eine geschlossene
orientierbare Hyperfliche mit stetigem Normalenfeld. Eine Funktion
f(z) sei im Innern von R und auf R regulir. z sei ein Punkt im Innern
von R und K, bedeute die Hyperkugel mit dem Radius ¢ und dem
Mittelpunkt z. o sei so klein, dal K, ganz im Innern von R liegt. dZ
bedeute sowohl auf R wie auf K, die Grofle

dZ =dr 3 ¢, & |
j=1

223



wo dr das Hyperflichenelement auf R bzw. K, bedeutet und wo die
§,j=1,...,n) die Komponenten der duBleren Normalen bedeuten.
Nach Satz 7 ist dann

[0 dzqe—»—[10dzee—2 =0
. .
fiir jeden Wert von g, also auch,

lim (/0)dZQE —»—[10)dZQE —2 =0 . (6)
R

Q—>0
K,

Wir berechnen zuerst:

lim [/(2) dZQ( —2) —

e>0
Ko

>0 0->0
Ko

—lim /() [d2Q —2) +lim [[©) —/@]dZQE—2 =) (7
Ko

= lim J, 4 lim J, .

>0 2->0
Nun gilt auf K, :
1

1R —2)| = =

Wenn ferner F' das Maximum der Betrige aller ersten Ableitungen der
Funktion f(z) auf und innerhalb R bedeutet, so ist, wenn { auf K, liegt:

[1@) — () | <neF .

Daraus folgt auf Grund von (1):
1

n—1

|y < ut-K,-o"1-nok- =pu*- K, nFp ,

wo K, die Oberfliche der Einheitskugel im »-dimensionalen Raum be-
deutet, also

lim J, = 0. (8)
Aus (6), (7), (8) folgt: Q—>
lim /() [42Q¢ —2) = [1©) dZ@E—7) - (9)
>0y 5
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Hier berechnen wir zuerst das auf der linken Seite stehende Integral.
Es ist auf K, :

Q7 — "% g,
0

und
{ —2

Q(C_z): 0" )

also

» 1 n 1
j AZQL —2)= 5| X(—2)idr= n_lfdran ,
Q 3 j=1 Q X

e

wo K, wiederum die Oberfliche der Einheitskugel im n-dimensionalen
Raum bedeutet. Somit wird nach (9):

ff ) A2 QU —7) = Kff(:dz =t

f(z) =

Dies ist der

Satz 8. Die Funktion f(z) sei vm Innern einer geschlossenen oriemtier-
baren Hyperfliche R und auf derselben regulir. R moge in jedem threr
Punkte eine Normale besitzen. Dann gilt fir jeden Punkt z im Innern von R :

1 ( — 2)
f(Z)——-K—nff(C)dZ—————-IC__z,n -
R

Daber bedeutet dZ die Grofle
dZ =dr X e, &;

i=1

wo dr das Flichenelement auf R ist, und wo wir mit &;(j =1,..., n) die
Komponenten der duferen Normalen auf R bezeichnet haben. K, ist die
Oberfliche der Einheitskugel im n-dimensionalen Raum.

Mit Hilfe von Satz 8 erhilt man die Darstellung einer Potential-
funktion durch das Poissonsche Integral. Ich gebe den Beweis hier an,
trotzdem das Resultat natiirlich nichts Neues bietet.

Satz 9. Ist die Funktion ¢ (x,,. .., x,) auf der Kugel
K: 2+a2+ - + a2 =r?

und in threm Innern harmonisch, so gilt fir jeden im Innern der Kugel
gelegenen Punkt (x,,..., x,):
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(@ ) = s f pdr
P ) =77, (0% + 72 — 207 cos 9)"2
K

+
Daber ist p = l/xf + -+ 4 a2 und 9 bedeutet den Winkel zwischen den
zum Punkt (x,,. .., x,) und zum Integrationspunkt fihrenden Kugelradien.

Beweis : (Dieser Beweis ist eine Verallgemeinerung eines Beweises von
Herrn Fueter®).)

Nach Satz 6 geniigt es, fiir eine auf und innerhalb der Kugel regulire
Funktion f(z) zu zeigen:

rt —|zf?
fe) == - K, le*ZI" (10)

Nach Satz 8 ist

1 ('f(é“) dZ({ —2)

o Co t—n
=X, f GF Y

K
o T
SRS .

1 2 __ 2
= Kff(é)“l%—:fi—n"dr-iﬂ]:

f(z) =

r-.

_ rt — |z

_TK ff |C~Zl"dT+J’

wo J die Bedeutung hat:
. —(z /
r- K ff |C z]" "

Wenn wir zeigen konnen, da J =0 ist, haben wir (10) und damit
Satz 8 bewiesen. Nun ist:

6) Rud. Fueter, Zur Theorie der reguldren Funktionen einer Quater-
nionenvariablen, Monatshefte f. Math. u. Phys. Bd. 43, S. 69.

226



1 2z —
J= ff(f)-—-_———dr-z—_—

IC zln
(C —2)
n(ff T —2) dr-z =

8 & =27 (¢ —2)tdroz .

Es ist aber:
—“(C—Z):—(ngul—-—‘ lg _1__:
::w|z12z—1<l . 2—C>C 1 __
= lzl22“1< IZTZ z)é‘*l .
Somit ist:
—1
_~(C——-z)—le<C TR ‘2 ) ‘2|z =
v -1
— 2z — V.,
(s ) e
Ferner ist:

=27 =[—(C—2) =

:'z'—4’""[(c“ ) | =

2 |2
=
und
— | r=2) — |p|— (n=2) p(n—2) o r? —(n—2)
|l — 2| || r z mE 2
und folglich
— | —2|m 2 —2) Y dr =
Ll F R e F R ]
|z ’ | ' I ‘1 |zl?- /
rz —(n—-2) , T2 \ —1
= [l C 5 < i
(5 : r )
= |z|™" ™1 dZ _
2|2 |
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Nun ist die Funktion

7'2
SRR
g () = R
f i 2
e
2
als Funktion von { iiberall dort reguldr, wo { # -Tgl—i z ist, was auf
der Kugel K und in ihrem Innern stets der Fall ist; denn die Funktion
9
w(l) =

ist iiberall regulér, auBer fir { = 0. Man sieht aber leicht, dafl mit einer
Funktion w({) auch alle Funktionen w({— «) - reguldr sind, wo «
und g beliebige hyperkomplexe Konstanten sind.

Nach Satz 7 folgt also J = 0, womit Satz 9 bewiesen ist.

4.
Wir gehen jetzt zum Beweis von Hauptsatz 1 iiber. Unter den dort
iiber die Ableitungen

op
ox;

gemachten Voraussetzungen ist die Funktion

n

fo) = 3 5Ee

im Innern der Einheitskugel beschrinkt. Nach Satz 2 ist sie daselbst
regulir. Hauptsatz 1 ist somit bewiesen, wenn wir den folgenden Satz
bewiesen haben:

Satz 10. Wenn eine im Innern der Einhestskugel

- ay e Fal =1
regulire Funktion

w = {(z)

daselbst beschrdinkt ist, so existiert bei radialer Anndherung von innen an
irgend einen, Punkt der Kugel der Grenzwert der Funktion f(z), mit even-
tueller Ausnahme einer Menge vom (n — 1)-dimensionalen Maf3 0 von
Punkten auf der Kugel.
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Fir den Beweis dieses Satzes brauchen wir zuerst einige Vor-
bereitungen.

® sei ein meBbares Gebiet auf der Einheitskugel, dessen Berandung
auf der Einheitskugel ein stetiges Normalenfeld besitzt. Mit & (r)
(0 < r < 1) bezeichne ich das Gebiet, das aus ® durch Projektion vom
Kugelmittelpunkt aus auf die konzentrische Kugel vom Radius » ent-
steht. r, und 7, seien zwei Zahlen mit 0 <7, <7, < 1. Mit S(r,, 7,)
bezeichne ich die Menge aller Punkte derjenigen Radienstiicke, die einen
Randpunkt von & (r,) mit dem entsprechenden Punkt des Randes von
® () verbinden. Die Menge

Q= 06()+ S, ) + G(ry)

ist dann eine geschlossene Hyperfliche. Wenden wir auf die Funktion
f(z) und auf die ebenfalls regulire Funktion ¢(z) = 1 den Satz 7 an, so
erhalten wir:

Jiwaz —[10) az = (10 dz . (11)

®(r1) G (r2) S(ry,7s)

wenn dZ auf ® (r;) und auf ®(r,) die Gr(')Be;C— dr bzw. T—C— dr, und auf
1 2

S (ry, 75) die GroBe bezeichnet, die dem Betrage nach gleich dem Flidchen-

element auf &(r;, r,) ist, und deren Komponenten einen Vektor bilden,

der der inneren Normalen auf Q parallel und gleichgerichtet ist. Nach

der Voraussetzung zu Satz 10 existiert eine positive Zahl M, so daB

innerhalb der Einheitskugel gilt:

O <M.
Wegen (1) ist dann
) dZ“< ML(r, —ry) 2
€ (r1,72)

wo L die Oberfliche des Randes von ® auf der Einheitskugel bedeutet.
Also ist nach (11):

[10yaz —[1e dz‘ < ML(ry — 1)t .

® (1) ®(r2)
Daraus folgt aber, daB
F(®) = lim [ /() dZ (12)

r->»1
®(r)
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existiert. Bedeutet m (®) das (» — 1)-dimensionale MaBl von ®, so ist,
wieder nach (1):

| F(®) | < M -m(6) - u*. (14)

Diese Funktion, die fiir alle melbaren Gebiete auf der Einheitskugel
definiert ist, ist offenbar in diesem Definitionsbereich additiv?). Wir
wollen jetzt ihren Definitionsbereich auf die Gesamtheit aller meBbaren
Mengen auf der Einheitskugel ausdehnen. It sei eine solche. ., ®,,. ..
sei eine Folge von meBbaren Gebieten auf der Einheitskugel mit den
Eigenschaften:

1. 6,c6,,, (G=1,2,...)

2. &, cIN (t=1,2,...)
3. Iimm(®,) = m(MN) .

Wegen der Additivitdt im Bereich aller meflbaren Gebiete und (14)
konvergiert dann die Folge

F(®,), F(®,),...
und wir definieren:

hm F(®,) =F@N).
Man sieht leicht, daB diese Definition nicht von der besonderen Wahl
der Folge {®,} abhingig ist. Denn, sei {®;} eine zweite Folge von der-
selben Art wie {(,}. ¢ sei eine beliebige positive Zahl. — Wahlen wir i,
so groB3, daf3

mM) —m(®,) < e ist fir ¢ >4,,

und fiir jedes ¢ die GroBle j,(¢) so gro3, daf3

m(6,) < m(®)) wird fir § > j,(¢) ,
so wird

m(G;) —m(B,) <m(M) —m(6;)<e (i=4, j=75,9),
also
F(6) — F(®,) < Mepr (i=1, j=7400)),
d. h. es ist
lim F(®,) = lim F(®)) = F(M) .
Es ist natiirlich o o
| F(M) | < M m (M) p?

7) C. Caratheodory, Vorlesungen iiber reelle Funktionen, Leipzig 1927, pag. 470,
§ 425.
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fiir jede meBbare Menge It auf der Einheitskugel, d. h. die Mengenfunk-
tion F ist im Bereich aller meBbaren Mengen auf der Einheitskugel total-
stetig®). Ferner ist F additiv. Somit ist F(JR) auf der ganzen Einheits-
kugel mit eventueller Ausnahme einer Menge vom (n — 1)-dimensionalen
MaBl 0 von Punkten derselben differenzierbar und besitzt dort eine end-
liche Derivierte?). Wenn wir zeigen konnen, dafl bei radialer Annidherung
von innen an einen Punkt z, der Einheitskugel, in dem diese Derivierte
D(z,) existiert,
lim f(2) = D (zq) 2

2> 2,

ist, so ist Satz 10 bewiesen. Wir beweisen deshalb:

Hilfssatz 11: Existiert in einem Punkte z, auf der Hinheitskugel die
Derivierte

T FOR)
D (z) —m(lillﬁr)n->0 m(m) ,

ist ferner ¢ exne beliebige positive Zahl, so existiert eine positive Zahl 6 von
der Art, daf fir jede auf dem Radius Oz, gelegene Zahl z, deren Abstand
von z, kleiner als 0 ist, die Beziehung gilt :

| f(z) — D(z0) 257" | < &

Beweis : z, sei ein Punkt der Einheitskugel, in welchem die Derivierte
D(z,) existiert. Bedeuten dann &,,..., &, die Koordinaten irgend eines
Punktes in irgendeinem rechtwinkligen Koordinatensystem, dessen Null-
punkt im Kugelmittelpunkt liegt und dessen &,-Achse durch den Punkt
2o geht, so fithren wir durch die Gleichungen

&, =rcost,costy ... cost, ,c08¢, ;
&, =rcost,costy, ... cost, ,sint, ;
g =1rcost,costy...sInt,_,

&, =rsint

I'e

(Og?‘, O<t,,._1<27t, - g—gtigg(jzl,...,n-—~2))

8) C. Caratheodory, a. a. O. pag. 475, § 429.
%) C. Caratheodory, a. a. O. pag. 496, § 445, Satz 1.
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die Polarkoordinaten r,¢,,...,¢,_; ein. Das Hyperflichenelement auf
der Kugel K (r) vom Radius » mit 0 als Mittelpunkt ist dann

dr = "1 cos® 2t cos"3¢t,...co8t, ,dt dty...dt,_, . (15)

z sei irgendein Punkt im Innern der Einheitskugel, der auf demselben
Radius liegt wie der Punkt z,. Nach (10) und (15) ist dann:

r"”z

2
- f ff(g TE " I l cos"2¢,...cost, ,dt,...dt,_, ,

K(r)

wenn wir dieses Integral iiber die Kugel K (r) erstrecken (|z|<r<1).
Durch die Relationen

t
Z, ____J (cos t)y*i-1dt, (j=1,....,n—1) (16)
0

fiilhren wir die neuen Variabeln t; ein. Das Flidchenelement auf der Kugel
K (r) wird dann

; dr =rvtdr, ... dr,_,,
und wir erhalten:
n-—2 2|2
e R LG e R
K(r)
_m? | ST — [2°)
f fgf@’c“ T Sdtl"'drn—l
TRy
Durch sukzessive partielle Integration nach den Variabeln =,,...,7,;

erhilt man hieraus:

f(Z)Z(—l)"_l yn—2 1 f{f C}(fl,...,fn_l).

K(r)

e (e
0ty...0T, 4| |[E—z| |

dr,...dv,_, +R . (17
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U(C)C}(h """ 1) = tee 'f (0)-{-dry.. dr,y = Do(7y,. - -, Tp-1)
I

und R bedeutet eine Summe von Termen, die von den Integrations-
grenzen herrithren. Die Funktion @.(z,,..., 7,_;) hat die Eigenschaft,
daf

Lim @,(7,,. .., 7,_,)
r—->1

existiert. Bezeichnen wir nidmlich mit #f,¢f,...,¢t¥  die Werte der
Variabeln ¢,,...,¢,_;, die gemdf3 (16) den als Argumente der Funktion
@, auftretenden Werten von 7,,..., 7,_, entsprechen, und bedeutet &
das auf der Einheitskugel gelegene Gebiet, fiir dessen Punkte gilt:

0<t;<tf G=1,...,n—1),

so hat die durch (12) definierten Mengenfunktion F fiir die Menge &
den Wert

?

P =lim [f(2)dZ =lm 1) S dr =
T—)lKEr) T")%K(r)

2

= lim }f(@‘){dr:lim }(C)Cdtl"'dtn—lz

r>1 r->1

B(r) E(r)
= lim D, (¢) ,..., tF ) =F@F,...,t* ),
r>1
indem wir die letztere Funktion F(t,...,t¥ ) durch diese Gleichung

definieren. Also existiert der limr— 1 des in (17) auftretenden iiber
K(r) erstreckten Integrals, und somit auch derjenige von R. Wir setzen
lim R = 8§ und erhalten:

r>1

i = [ [Pt
TR (18)

. on—1 ( C71(1— |e|?) |
0Ty. .. 0T | | —2z|* |

dry...dv,_, + 8 .
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Wenden wir diese Formel auf die regulidre Funktion f(z) = 1 an, so finden
wir

1= (m};)n—l r . f‘](tl st t‘n—l)
RO (19)

gn—1 ‘ E1(1— |z)?) ) /
atl“'arn—lt Ic_zl,, sdTI...dz’n__l_*_S ,

wo die Funktion J wie folgt definiert ist:

J(tF,..., t¥ ) —_—.f- - .fg dz,...dr,_; , (20)
0 0
wo || =1, die Integration also iiber einen Bereich auf der Einheits-

kugel zu erstrecken ist.

Aus (18), (19) folgt:

fe) — Deos? =g [ [(F = D) 57}
Lo

. o1 $C"1(1~‘|Z|2)?

07y..-0T, 4| |C—2z|* |

dTlo . .df,n_l + S ———D(zo).zo—‘l.Sl —

_ _(:_K%f:_l j~f {FJ=1 — D(z,) 71} J -

E(1)

o ;CT“" 121%) ldr, . . .dv,_, + S — Di(z)- 2728 .

'91,.. .07, E—z|n
Von hier aus gelangen wir in den folgenden vier Schritten zum Ziel:

1. Esist lim 8 = lim 8’ =0 .
z-> 2y z>2zq
Dabei beziehen sich die lim z—z, auf radiale Annéaherung des Punktes z
an den Punkt z,. S und S’ sind néimlich Summen von Termen, die teils
Integrale, teils integrallose Ausdriicke sind. Die letzteren enthalten
die GroBe
(1 — |2
[{—z]




oder eine ihrer Ableitungen als Faktor, bei den ersteren tritt eine solche
GroBe als Faktor des Integranden auf. Da S und S/ von den Integrations-
grenzen

0 und 2n fir 7,

bzw. —=x/2 und =x/2 fir =, (@G=1,...,n—2),

herriihren, sind die in S und S’ auftretenden Nenner |{—z|* nach
unten beschrinkt; weil ferner

lim |z| =1
Z2> 29

ist, folgt daraus die Behauptung.

Nun sei 7 irgendeine positive Zahl. Nach dem vorhergehenden gibt
es eine Zahl 6, > 0 derart, daB} fir |z—z,| < §,

|8 —Dfzo) 2" - 8" | <7y (21)
ist.
2. Wegen
51 Tn-1
JF .. ) -_—.’ = j ¢ dry...dr,,  (vgl (20))
.0 0
ist
lim ... lim F@f,... 60) (J@..., 600 ) =
tI—»o t;_1—>0
a T -1
— lim ... lim F(t;",...,t;:‘__l)U---fcdrl...dr,,_lz =
t:—>0 t;_l—>0 0 0
|
= lim ... lim ———E—z-‘—’—*—,
ti>0 ty >0 Tree s T
weil der den Werten ¢ =t = --- =tF_, = 0 entsprechende Wert von
¢ gleich z;! ist.
Ferner ist:

-1 -1
lim...lim;——ﬁl%——:nm---lim =~ m_;on =
>0 gy LTt g4Tho0 p >0 oo f dry..dr,,

0 0
, F(R) 21
= lim ... lim ——%@%ﬁ—=D(zo) zt  (vel-(16)) .
t,>0 ty1>0



Also existiert eine Zahl « > 0, so daB fiir
— <t <« G=1,...,n—1): (22)
| F(y ey tny) (J(eees tua))™ — Dlzq) 2571 |<n
ist. Wir nennen das Gebiet auf der Einheitskugel, fiir welches
— <t <ox G=1,....n—1)

ist, A. Mit B bezeichnen wir den Bereich K(1) — 9, also die Gesamtheit
der Punkte auf K(1), die nicht zu U gehoren. Dann ist:

o T R T oY _
K'nj "'f{FJ ! D(zo)zol}Jatl...arnq? |C—z|" Sdrl'”d%—l_

\__—k\(/r
1 1
—a — 8
1 ) »

S—— e t—

A

3. Esist

<

[ f " ” ot L (1-z]7) |
<an [1#=1-Dee) 271 1 !arl...arn_lz N | L
oS

(vgl. (1)) . (24)

Wegen
(1), = cos ¢, cos ty... CcOS ¢,
und
(7Y); =cost ... cos8t,; Sinl, ey (j=2,...,0)
18t - .
TT—ap 4 v?

wo die Funktionen y,({, z) spezielle Funktionen der allgemeineren Form

n—1
IT (sin t;)vk(cos t,)*k

D(,2) =0 TP e =0, up=0(k=1,...,n—1))

(25)



sind. Unter dem Index einer Funktion von der Gestalt (25) verstehen
wir die ganze Zahl

t=v— A,
WO
n—1
V=X v
k=1

ist. Zum Beispiel ist der Index der Funktion ,({, 2z) gleich —n, der-
jenige der Funktionen wy,({,2) (j = 2,...,n) gleich 1 —n.

Es gilt: Die Ableitung %? einer Funktion @({, z) von der Gestalt (25)
l

nach einer Variabeln ¢, ({ =1,...,n— 1) ist gleich einer Summe von
Funktionen derselben Art. Ist ¢ der Index von @({, z), so haben alle

Summanden der Funktion —%—? Indizes, die > 17— 1 sind. Man findet
l

ndmlich, wenn man beriicksichtigt, daf3

| —2z| =11+ |2]>*—2]|z| cost,...cost, ,|"
ist:
n—1
06 . £1 (sin £;)¥k(cos ;)¢
”é‘t‘l— - |6 — z M2
{ v (sin g;) -1 (cos g+l — p, (sin £;)*2+1 (cos £,)H - |&— 2|2
) (sin t,)" (cos t;)* +
+ Alz] - sint, " cost, | .
ost, j=1
Daraus kann man die Behauptung ablesen.
Es ist deshalb:
orn—1 s C—l ? . an—l ‘ C—l . dtl - dt'n——l .
0Tye e BTy ! | — 2| ) 0ty...0t, 4 LE—z|m) dry drn_,
3 () L 26
= El i(657) (cos t,)"2...co8t, , ’ (26)

wo die @,(¢, z) Funktionen der Gestalt (25) sind, deren Indizes > —(2n—1)
sind und wo N eine natiirliche Zahl bedeutet.
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An die Zahl « (vgl. (22)) stellen wir nun nachtréiglich noch die Forde-
rung, daf fir

— <t < G=1,...,n—1)

1
27
(cos t;,)*2... cost,_, <2 (27)
sein soll.
Aus (16), (20) folgt:
Tt | = | J---Ié,‘drl...drn__11<
0 0

* *
tl t‘n—l

< |f. . .f@dtl...dtn_1|<n|tl...t,,_1| . (28)
Aus (24), (26), (27), (28) folgt somit:
Ak
’
Yy ﬁf ful ] (L—[2l?) | ;61 2)] dry- - dzy - (29)

Nun ist

|E—2| = (1+ |2]2—2 |z| cos ¢, ... cos t, )% >(1+[2]2—2]z| cos t;)% >

> | sin ¢ | >

k = S
7 (k—l,...,’n 1),
wenn wir an « die weitere Forderung stellen, daff fir — o« <?; <«
(j =1,...,n— 1) die letzte Beziehung gilt. Daraus folgt auf Grund von

(25) und (29), wenn wir noch beriicksichtigen, daB fiir die Indizes :; der
Funktionen @,(¢, 2)

i, =>—@2n—1) (G=1,...,N) ist:

(— 1)1 u o B N * 11— [z)?
e R | et S L e S
*

WO
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ist. Nach BSatz 9, angewendet auf die harmonische Funktion
e@y,..., 2, ) =1, ist:

1 1 — |z|2

dr =1 .
K(1)

Also ist

‘o — 2
le;‘:"l?,‘?dr, da A ein Teilgebiet von K(1) ist,
A

fir z— 2, beschrinkt. Verlangen wir nun schlieflich von der Zahl «
noch, daBl im Gebiete

—a<ti<a (=1,....,n—1)
gilt:
| {—z|<1,
sobald
|z > 15

ist, so wird fir v <mn :
1 — |z]? 1— [2*
dr <f
fIC-—ZI" IC—zl"

T 1 —|z]?
1 IC———Z,V
Nn

und
dr

ist somit fiir z — z, auch beschrinkt. Also gibt es eine Konstante M > 0,
so daf} fiir alle Werte von |z]| (|z| < 1)

51:, Y1 —|z]?

)} T dr< M

ist. Dann wird nach (30)
(—1)m1 B f L » o1 (C1(L— 2|2
o R A ko T e et T
\-.-—-\9/1‘—’

dTl “ e drn_l

us
<2"nK My . (31)

4. Wir betrachten nun

i P S )

-1 ___ -1
LS E e et R F

dv,...dv,

(vgl. (23)).
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Da der Bereich B die Umgebung U des Punktes ¢, = -+ =1{, ;=0
auf K(1) nicht enthilt, ist auf B

| —2| = |1+ |2]2— 2]|z| cos t...cos ¢, ,|%

gleichméBig in 7 und | 2z | nach unten beschrinkt. Wegen des im Inte-

granden auftretenden Faktors (1 — |z (%) ist somit:
1 ¥
lim f e J — 0
2> 29 Kn
—

und es gibt eine Zahl d, > 0 von der Art, daB fiir |z — 24| < 0,:

2]
ist. R

Nun sei d eine positive Zahl, die sowohl < 8, (vgl. (21)) als auch < d,
ist. Dann ist nach (21), (23), (31), (32) fiir |z —2z,| < d:

1 4
16) = Die)-zt = | = [+ [ | < 2n+ wnf
L

Sei ¢ die Zahl, von der in Hilfssatz 11 die Rede ist, und setzen wir

&€

77:

b

L

go wird fir |z —2,|<d
| 7(2) — D(z)- 25| < &,
womit Hilfssatz 11 bewiesen ist.

5.

Es gilt schlieBlich die folgende Verallgemeinerung des Satzes von
Fatou fiir die reguliren Funktionen einer Quaternionenvariabeln :

Satz 12. Wenn eine tm Innern der Einheitshyperkugel

A+ttt ad= 1
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rechtsreguldre Funktion

w = f(z)

der Quaternionenvariabeln

z = Ty + 1% + 5% + 1573
daselbst beschrinkt ist, so existiert bei radialer Anndiherung von innen an
wrgendeinen Punkt der Kugel der Gremzwert der Funktion f(z), mit even-

tueller Ausnahme einer Menge vom Maf 0 von Punkten auf der Hyperkugel.

Man beweist diesen Satz genau wie Satz 10, nur hat man dabei unsere
Algebra W durch die Algebra der Quaternionen zu ersetzen.

(Eingegangen den 14. September 1943.)
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