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Ûber eine Verallgemeinerung
des Satzes von Fatou fur Potentialfunktionen

Von Walter Nef, Zurich

1.
Von Fatou stammt der Satz

Wenn eme analytische Funktion im Innern des Emheitskreises regular
und beschranht ist, so existiert bei radialer Annaherung von mnen an emen
Punkt des Emheitskreises der Grenzwert der Funkhonswerte fur aile Punkte
des Kreises, mit eventueller Ausnahme einer Menge vont Maji 0 von Punkten
auf dem Kreis1)

Da zu Real- und Imagmarteil emer analytischen Funktion w u + iv
der komplexen Variabeln z x + %y stets eme Potentialfunktion
0(x, y) existiert, so daB

30 30
Uf - V _

oy ox

ist, da umgekehrt fur jede Potentialfunktion @(x, y) die Funktion

d0 30
ni% _J_ n

dy dx

ana^isch m der Variabeln z x + %y ist, konnen wir den
Satz auch so aussprechen

Ist eme Potentialfunktion 0(x, y) im Innern des Kreises

regular und smd daselbst die Ableitungen

30 30
~3x~ ' ~3y~

*) Fatou, Séries trigonometriques et séries de Taylor, Acta Mathematica,
vol 30, pag 335

Ein zweiter, emfacher Beweis wurde von Caratheodory gegeben
C Caratheodory, Ûber die gegenseitige Beziehung der Bander bei der kon

formen Abbildung des Innern emer Jordanschen Kurve auf emen Kreis,
Mathematische Annalen, Bd 73, pag 305 Der Beweis, den wir fur unseren Satz geben,
ist eme Verallgemeinerung dièses Beweises von Caratheodory
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beschrankt, so konvergieren die Werte dieser Ableitungen bei radialer An-
naherung von innen an irgendeinen Punkt des Kreises, mit eventueller
Ausnahme einer Menge vom Mafi 0 von Punkten.

Es ist das Ziel der vorliegenden Arbeit, die Gultigkeit dièses Satzes
fur Potentialfunktionen von beliebig vielen Variabeln zu zeigen, also zu
beweisen :

Hauptsatz 1. Wenn eine im Innern der Einheitskugel

4 + A + •.. + x\ î

regulare harmonische Funktion cp (xx,. xn) der n Variabeln xx,..., xn
Ableitungen

hat, die aile im Innern derselben Einheitskugel beschrankt sind, so konvergieren

dièse Ableitungen bei radialer Annaherung von innen an einen Rand-
punkt der Kugel, mit eventueller Ausnahme einer Menge vom {n — 1)-
dimensionalen Ma(i 0 von Punkten auf der Kugel.

Die Grundlage des Beweises wird von einer Théorie regularhyper-
komplexer Funktionen gebildet, die im folgenden entwickelt werden
wird. Vorbild waren mir dabei die Arbeiten von Herrn Rud. Fueter uber
die regularen Funktionen einer Quaternionenvariabeln, uber den Satz

von Hartogs2) und seine Arbeit uber die Funktionentheorie der Dirac-
schen Difïerentialgleichungen3).

Ich bemerke noch, da8 die analytischen Funktionen einer kom-
plexen Variabeln unter meinen regularenFunktionen enthalten sind.
Ist namlieh

w f(z) u -f- iv

analytisch in der Variabeln z x + iy, so ist

^u
___

àv du
__

dv

dx ~~
dy ' dy

~~ dx

2) Rud Fueter, Ûber emen Hartogsschen Satz m der Théorie der
analytischen Funktionen von n komplexen Variabeln, C M H vol 14, pag 394

3) Rud Fueter, Die Funktionentheorie der Diracsehen Differentialglei-
chungen, C. M H vol 16, pag. 19.
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Bilden wir nun die hyperkomplexe Funktion

w* exu + e2v

und fassen sie auf als Funktion der Variabeln

z* exy + e2x

so lauten fur w* die Regularitatsbedingungen (4a, b):

du dv du dv

dy dx ' dx dy

und sind also erfullt. Also ist immer, wenn die Funktion w u + iv
eine analytische Funktion der Variabeln z — x + iy ist, die Funktion
w* exu + e2v eine im unten (3, 4) definierten Sinne regulâre Funktion
der Variabeln z* — exy + &2X •

Ich erwahne schlieBlich noch, daB fur analytische Funktionen von zwei
komplexen Variabeln ein verwandter Satz bereits von Bergmann und
Mardnkiewicz*) bewiesen ist, welche zeigen, daB fur in gewissen Be-
reichen mit ausgezeichneten Randflachen regulâre Funktionen zweier

komplexer Variabler bei einfaehen Voraussetzungen uber das mittlere
Wachstum der Funktion fast uberall auf einer ausgezeichneten Rand-
flache der Grenzwert existiert.

2.

51 sei eine Cliffordsche Algebra der Ordnung 2n mit den Basiselementen

1, 6j,..., en, e12,..., e12 n >

wo 1 die Haupteinheit ist und wo die BasisgroBen e} (j 1,..., n) den
Relationen

I. e) -1 (7=l,...,n)
II. e,ek= — eke, (j, k — 1 n, j ^ le)

genugen5). Die Zahlen, mit denen wir im folgenden rechnen werden, sind

4) St. Bergmann und J Marcmkiewtcz, Sur les valeurs limites des fonctions
de deux variables complexes, C R. Acad Sci., 208, pag 877.

5) Vgl. die Zurcher Dissertation:
Paul Bosshard, Die Chffordschen Zahlen, îhre Algebra und îhre Zahlen-

theone, Zurich 1940.
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die Zahlen dieser Algebra im Kôrper der reellen Zahlen, d. h. die GrôBen
der Form :

n
Z X -)- 2* &j Xq -J~ ' ' ' ~T~ ei2...n ' X12 n '

wo die x beliebige réelle Zahlen sind.
Der Zahl z ordnen wir nach der folgenden Définition den Betrag

\z\ zu:
_L V t2 _L A- 'v2 %z .„

Fur zwei beliebige Zahlen zx und z2 beweist man dann leicht :

a) |*i + z8| <l*il + l*2l
(l)

b) \z±-z2\ ^l^l-l^h^
Hierin bedeutet ju die Ordnung 2n der Algebra. In erster Linie werden
die GrôBen von der Form

n
z J£ x, e3 (2)

eine Rolle spielen. Damit ordnen wir den n reellen Variabeln (xx,..., xn)
der Funktion q>(xl9..., xn) die eine hyperkomplexe Variable z zu.

Wir werden im folgenden Funktionen zu betrachten haben, die als

Argumente Variable von der Form (2) haben und selber von der Gestalt

n
w f(z) Z u3 (x1 xn) e3

3 1

sind. w heiBt in einem Punkte (xx,..., xn) nach der Variabeln xk par-
tiell diffèrenzierbar, wenn aile Ableitungen

in diesem Punkte existieren. Als partielle Ableitung der Funktion w nach
der Variabeln xk bezeichnen wir dann den Ausdruck :

dw " du

dx "dxk " ;=1 dxk

w heiBt in einem Gebiete nach der Variabeln xk difïerenzierbar, wenn
die Difïerenzierbarkeit in jedem Punkt des Gebietes besteht.
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Définition: Die Funktion w f(z) heifit in einem Gebiete H regulàr,
wenn sie in H zweimal stetig nach beliebigen Variabeln x3 (j 1.. n)
differenzierbar ist, und wenn in H die Beziehung gilt :

n dw
Zj£-e, 0. (3)

OX

Zerlegt man die Bedingung (3) in ihre Komponenten, so erhâlt man die

Regularitàtsbedingung in der folgenden reellen Gestalt:

Auf dieselbe réelle Bedingung fùhrt die hyperkomplexe Gleichung

n dw1^ 0- (5)
j=! OX3

Dièse und (3) sind also âquivalent, ohne ubereinzustimmen.
Zwischen den regulâren Funktionen und den Potentialfunktionen

besteht ein naher Zusammenhang, der durch die folgenden vier Sàtze

klargelegt wird.

Satz 2. Die Funktion u(xx,..., xn) sei in einem Gebiete H harmonisai.
Dann ist die Funktion

w 2, -z— ek

in H reguldr.

Beweis : Wir haben zu zeigen, da8 (3) erfullt ist. In
71 dw n n d2u

heben sich wegen
d2u

__
d2u

OXj 0Xk OXt. OX »

und

aile Terme mit j ^ k weg. Es bleibt also

3, dw
__ ^ d2u

2 _
» 52^

Da aber u harmonisch ist, ist dies tatsâchlich gleich 0.
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Satz 3. Die Funktion

w
7=1

sei in einem Gebiete H regular. Dann existiert eine in II harmonische
Funktion U, deren erste Ableitungen

Beweis: Auf Grund der Regularitâtsbedingungen (4b):

du, duk T

existiert m Jï eine Funktion U(x±,..., xn), deren Ableitungen

L
u, (j=l,...,n)

sind. Die lmke Seite der Potentialgleichung, fur dièse Funktion U ange-
schrieben, d. h. der Ausdruck

n d-U
1 ^

ist dann gleich

Dieser letzte Ausdruck ist aber gleich 0 nach der Regularitâtsbedingung
(4a). Also ist U in H harmonisch.

Satz 4. Die Funktion

sei in einem Gebiete H regular. Dann sind aile Funktionen uJ(x1,,.., xn)

in H harmonisch (j 1,..., n).

Beweis: Es sei
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Dies differenzieren wir naeh xj} multiplizieren reehtsseitig mit e.j und
summieren ûber j : n n

d. h.

2 1^2

Da, zwischen den eô keine Beziehung besteht, ist infolgedessen

Satz 5. H sei ein zylinderfôrmiges Gebiet, dessert Seitenlinien der xr
Achse parallel und dessen Grund- und Deckhyperebenen zu derselben senk-
recht sind. Die réelle Funktion u1{x1,..., xn) sei in H harmonisch. Dann
existieren in H (n—1) weitereFunktionen, u2(xx,..., xn),..., un{x1,... ,xn)
von solcher Art, da/5

n

w ]£ Uj ej

in H regidâr ist.

Beweis: y>(x2,..., xn) sei ein beliebiges Intégral der Difïerentialglei-
ehung in (n— 1) Variabeln:

2 CXj °X1

wo xx a eine das Gebiet H schneidende Hyperebene ist. Wir setzen

und behaupten, da8
n

w ^ Uj ej

regulâr ist. Um nâmlich (4 a) zu bestâtigen, beachten wir, daB

du, d2w C d2u,

a
ist. Also ist
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Um (4b) zu beweisen, berechnen wir fur j, k 2,..., n die Ausdrùcke

du, _ d2y) r d2ux duk

dxk dxkdx3 J dxkdx0 dx}
a

Ferner wird

dxx dxk yv --,...,-/
Also sind die Regularitàtsbedingungen (4a) und (4b) erfûllt.

Satz 6. Satz 5 gilt auch fur jedes einfach zusammenhdngende Gebiet H,
das sich in abzahlbar viele zylinderfôrmige Gebiete von der in Satz 4 6e-

schriebenen Art zerlegen làfit.

Beweis: Wir gehen von einem der zylinderfôrmigen Gebiete H1 aus
und konstruieren in demselben nach dem Beweis zu Satz 4 die
Funktionen u2,..., un. H2 sei ein zweites der zylinderfôrmigen Gebiete, das

mit Hx einen Teil der Hyperebene x1 6 gemeinsam habe. Die in der
Hyperebene xx b bis auf eine additive Konstante eindeutig bestimmte
Funktion y>*(x29. -., xn), die den Gleichungen

geniigt, erfullt dann auch die Difïerentialgleichung

/ri 3»,2 /ri ^ a»i

Also kônnen wir die Funktionen ul9.. ,,un in H2 wie folgt definieren:

Dièse Funktionen hàngen mit den entsprechenden in H1 definierten
stetig zusammen, da y)* bis auf eine additive Konstante eindeutig be-

stimmt ist, und ihre Ableitungen haben fur xx b dieselben Werte.
Auf dieselbe Art kônnen die Funktionen u2,..., un auf das ganze Gebiet
H ausgedehnt werden.
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Satz 7. Die Funktionen w und v sollen in einem Gebiet H und auf seinem
Rand R regular sein. R sei eine geschlossene orientierbare Hyperflâche
mit stetigem Normalenfeld. Dann ist

ÇwdZ v 0
S

wenn voir unit dZ die Gio/ie
n

dZ dr J£ Ç3 e3

bezeichnen, wo dr das {n—\)-dimensionale Hyperflachenelement auf R
bedeutet und wo die f3 (j 1,..., n) die Komponenten der {aufieren oder

inneren) Normalen auf R sind.

Beweis : Nach dem Satz von Gaufi ist :

I w dZ v ^ I w Ç9 e3 v dr
r J==1 r

nach der Regularitatsbedingung (3) und der dazu aquivalenten (5).

Die Funktion

ist, als Funktion von £, fur jeden Wert von z regular fur aile Werte von
£, mit Ausnahme von £ z. Man bestâtigt das leicht durch Einsetzen
in die Regularitatsbedingungen 4a), b). Nun sei R eine geschlossene
orientierbare Hyperflâche mit stetigem Normalenfeld. Eine Funktion
f(z) sei im Innern von R und auf R regular. z sei ein Punkt im Innern
von R und KQ bedeute die Hyperkugel mit dem Radius q und dem

Mittelpunkt z. q sei so klein, daB KQ ganz im Innern von R liegt. dZ
bedeute sowohl auf R wie auf KQ die GroBe

dZ dr £ e, £,
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wo dr das Hyperflâchenelement auf R bzw. KQ bedeutet und wo die
Çs (j 1,..., n) die Komponenten der âuBeren Normalen bedeuten.
Nach Satz 7 ist dann

dZQ(Ç-z) - f(Ç)dZQ(Ç-z) 0

KQ R

fur jeden Wert von g, also auch

J* r/(£) dZ Q (C — z) — /(£) dZ Q(Ç — z) 0 (6)

Wir berechnen zuerst :

lim ff(C)

(7)lim f(z) ÇdZQiÇ - z) + lim f[/(f) - /(z)]
KQ KQ

lira Jx -{- lim J2

Nun gilt auf
Q

:

Wenn ferner F das Maximum der Betràge aller ersten Ableitungen der
Funktion f(z) auf und innerhalb R bedeutet, so ist, wenn £ auf KQ liegt:

Daraus folgt auf Grund von (1):

wo Kn die Oberflâche der Einheitskugel im w-dimensionalen Raum
bedeutet, also

lim J2 0 (8)

Aus (6), (7), (8) folgt:

lim /(z) ÇdZQ(C-z)= f/(f) dZ6K-2) (9)

KQ
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Hier berechnen wir zuerst das auf der linken Seite stehende Intégral.
Es ist auf KQ :

dZ - ^^ dr
und

- *) ^->
also

wo Kn wiederum die Oberflâche der Einheitskugel im w-dimensionalen
Raum bedeutet. Somit wird nach (9):

f{z} -iR

Dies ist der

Satz 8. Die Funktion f(z) sei im Innern einer geschlossenen orientier-
baren Hyperflâche R und auf derselben regulàr. B môge in jedem ihrer
Punkte eine Normale besitzen. Dann gilt fur jeden Punkt z im Innern von R :

Dabei bedeutet dZ die Grôfie

wo dr das Flâchenelement auf R ist, und wo wir mit fj (j 1,. n) die
Komponenten der aufieren Normalen auf R bezeichnet haben. Kn ist die
Oberflâche der Einheitskugel im n-dimensionalen Raum.

Mit Hilfe von Satz 8 erhâlt man die Darstellung einer Potential-
funktion dureh das Poissonsche Intégral. Ich gebe den Beweis hier an,
trotzdem das Résultat natûrlich nichts Neues bietet.

Satz 9. Ist die Funktion <p (xx,..., xn) auf der Kugel

Ki x\ 4- x\ + • • • + x\ r*

und in ihrem Innern harmonisai, so gilt fur jeden im Innern der Kugel
gelegenen Punkt (x1,..., xn):
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J ~2qt cos

Dabei ist g V'x\ +•••+#„ und û bedeutet den Winkel zwischen den

zum Punkt (x-^,..., xn) und zum Integrationspunkt fûhrenden Kugelradien.

Beweis : (Dieser Beweis ist eine Verallgemeinerung eines Beweises von
Herrn Fueter6).)

Nach Satz 6 genugt es, fiir eine auf und innerhalb der Kugel regulâre
Funktion f(z) zu zeigen:

Nach Satz 8 ist

Kn
-z)

wo J die Bedeutung hat:

Wenn wir zeigen kônnen, da6 J 0 ist, haben wir (10) und damit
Satz 8 bewiesen. Nun ist :

6) Bud. Fueter, Zur Théorie der regulâren Funktionen einer Quater-
nionenvariablen, Monatshefte f. Math. u. Phys. Bd. 43, S. 69.
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J

Es ist aber:

Somit ist:

— K—z-1 Ç C — t-ûtZ -z- z

Ferner ist :

und

und folglich

|«|— (n—2) r{n—2) s z dr

I \ n Z
-(n-2)
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Nun ist die Funktion

\z\2

r2
als Funktion von f iiberall dort regulâr, wo f ^ "Tli" z *s^' was

der Kugel JT und in ihrem Innern stets der Fall ist ; denn die Funktion

^' ICI"

ist ûberall regulâr, auBer fur f 0. Man sieht aber leicht, daB mit einer
Funktion w(Ç) auch aile Funktionen w(Ç — oc) • ft regulâr sind, wo oc

und fi beliebige hyperkomplexe Konstanten sind.

Nach Satz 7 folgt also J 0, womit Satz 9 bewiesen ist.

4.

Wir gehen jetzt zum Beweis von Hauptsatz 1 ùber. Unter den dort
liber die Ableitungen

gemachten Voraussetzungen ist die Funktion

im Innern der Einheitskugel beschrânkt. Nach Satz 2 ist sie daselbst

regulâr. Hauptsatz 1 ist somit bewiesen, wenn wir den folgenden Satz
bewiesen haben:

Satz 10. Wenn eine im Innern der Einheitskugel

regulàre Funktion
w f(z)

daselbst beschrânkt ist, so existiert bei radialer Annaherung von innen an
irgend einen Punkt der Kugel der Grenzwert der Funktion f(z), mit even-
tueller Ausnahme einer Menge vom (n—l)-dimensionalen Mafi 0 von
Punkten auf der Kugel.
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Fur den Beweis dièses Satzes brauchen wir zuerst einige Vor-
bereitungen.

® sei ein meBbares Gebiet auf der Einheitskugel, dessen Berandung
auf der Einheitskugel ein stetiges Normalenfeld besitzt. Mit ®(r)
(0 < r < 1) bezeichne ich das Gebiet, das aus © durch Projektion vom
Kugelmittelpunkt aus auf die konzentrische Kugel vom Radius r ent-
steht. rx und r2 seien zwei Zahlen mit 0 < r2 < rx < 1. Mit Q(r1,r2)
bezeichne ich die Menge aller Punkte derjenigen Radienstucke, die einen

Randpunkt von ©(^) mit dem entsprechenden Punkt des Randes von
®(r2) verbinden. Die Menge

ist dann eine geschlossene Hyperflâche. Wenden wir auf die Funktion
f(z) und auf die ebenfalls regulâre Funktion g(z) 1 den Satz 7 an, so

erhalten wir:

J/(C) dZ -J/(C) dZ =Jf(C) dZ (11)

©(ri) ®(r2) &(ri,r2)

wenn dZ auf ©(^J und auf ®(r2) die GrôBe— dr bzw. — dr, und auf

S (rx, r2) die GrôBe bezeichnet, die dem Betrage nach gleich dem Flàchen-
élément auf S (rx, r2) ist, und deren Komponenten einen Vektor bilden,
der der inneren Normalen auf £à parallel und gleichgerichtet ist. Nach
der Voraussetzung zu Satz 10 existiert eine positive Zahl M, so daB

innerhalb der Einheitskugel gilt:

Wegen (1) ist daim

J dZJ f(Ç)

wo L die Oberflache des Randes von © auf der Einheitskugel bedeutet.
Also ist nach (11):

dZ -jf(O dZ <ML{rl—r2)fi*

Daraus folgt aber, daB

lim ff{OdZ (12)
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existiert. Bedeutet m(©) das (n— l)-dimensionale Ma6 von ©, so ist,
wieder nach (1) :

|P(©)| <Jf((5)^2. (14)

Dièse Funktion, die fur aile meBbaren Gebiete auf der Einheitskugel
definiert ist, ist offenbar in diesem Définitîonsbereich additiv7). Wir
wollen jetzt ihren Definitionsbereich auf die Gesamtheit aller meBbaren
Mengen auf der Einheitskugel ausdehnen. 30? sei eine solche. ©1? ©2,...
sei eine Folge von meBbaren Gebieten auf der Einheitskugel mit den

Eigenschaften :

1. ©ïc©î+1 (i 1,2,...)
2. ©,c9K (i 1,2,...)
3. limra(©t)

Wegen der Additivitat im Bereich aller meBbaren Gebiete und (14)
konvergiert dann die Folge

und wir definieren :

Man sieht leicht, daB dièse Définition nicht von der besonderen Wahl
der Folge {©J abhangig ist. Denn, sei {©£} eine zweite Folge von der-
selben Art wie {©J. s sei eine beliebige positive Zahl. — Wahlen wir i0

so groB, daB

m (30?) — ^(©z) < £ ist fur i ^ i0

und fur jedes i die GroBe /0(*) so

m(®t) ^ w&(©J) wird lur
so wird

î - m(©t)
also

F(<S't) -F(®t)^Me fi* (i > »0, / > j0 (i)
d. h. es ist

Um f(©,) lim !•(©,')

Es ist naturlich

7) (7. Caratheodory, Vorlesungen uber réelle Funktionen, Leipzig 1927, pag. 470,

§425.

230



flir jede meBbare Menge 9JÎ auf der Einheitskugel, d. h. die Mengenfunk-
tion F ist im Bereich aller meBbaren Mengen auf der Einheitskugel total-
stetig8). Ferner ist F additiv. Somit ist F($R) auf der ganzen Einheitskugel

mit eventueller Ausnahme einer Menge vom (n — l)-dimensionalen
MaB 0 von Punkten derselben difïerenzierbar und besitzt dort eine end-
liche Derivierte9). Wenn wir zeigen kônnen, daB bei radialer Annàherung
von innen an einen Punkt z0 der Einheitskugel, in dem dièse Derivierte
D(z0) existiert,

ist, so ist Satz 10 bewiesen. Wir beweisen deshalb :

Hilîssatz 11 : Existiert in einem Punkte z0 auf der Einheitskugel die
Derivierte

D(zo)= lim

ist ferner e eine beliebige positive Zahl, so existiert eine positive Zahl ô von
der Art, dajï fur jede auf dem Radius Oz0 gelegene Zahl z, deren Abstand
von zQ kleiner als à ist, die Beziehung gilt:

| /(*) - B(z0) V11 < e

Beweis : z0 sei ein Punkt der Einheitskugel, in welchem die Derivierte
D(z0) existiert. Bedeuten dann Çl9..., Çn die Koordinaten irgend eines

Punktes in irgendeinem rechtwinkligen Koordinatensystem, dessen Null-
punkt im Kugelmittelpunkt liegt und dessen £j-Achse durch den Punkt
20 geht, so fûhren wir durch die Gleichungen

|1 r cos tx cos t2 cos tn_2 cos tn__x

|2 r cos tx cos t2 cos tn_2 sin tn_x

|3 r cos tx cos t2 sin tn__2

r sin tx

2 <*<
8) G. Caratheodory, a. a. O. pag. 475, § 429.
9) G. Caratheodory, a. a. O. pag. 496, § 445, Satz 1.
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die Polarkoordmaten r,tly ,tn_1 em Das Hyperflachenelement auf
der Kugel K (r) vom Radius r mit 0 als Mittelpunkt ist dann

dr r71-1 cosn~2 tx cosn~3 t2... cos £n_2 dtx dt2... dtn^ (15)

z sei îrgendem Punkt îm Innern der Emheitskugel, der auf demselben
Radius liegt wie der Punkt z0 Nach (10) und (151 ist dann

f{z) ~K^J J /(C)
r2 U|2

wenn wir dièses Intégral uber die Kugel K{r) erstrecken (\z\<r<\)
Durch die Relationen

r.f

o

-, -J (cos *,)»-*-! rf«, 0 - 1 • -, n - 1) (16)

fuhren wir die neuen Vanabeln r3 em Das Flachenelement auf der Kugel
K(r) wird dann

d? rïl~1 dxx drn_l
und wir erhalten

Hz)
rn-2 f

Dureh sukzessive partielle Intégration nach den Vanabeln r1,. rn_x
erhalt man hieraus

.(Tl Tn_x)
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Darin hat {/(£) •£}(Tl'•••'Tw-l) die Bedeutung

und R bedeutet eine Summe von Termen, die von den Integrations-
grenzen herruhren. Die Funktion <&r{r1,. rn_1) hat die Eigenschaft,
dafi

existiert. Bezeichnen wir nâmlich mit t*, t*,. t*_x die Werte der
Variabeln tl9. ^n_1? die gemâB (16) den als Argumente der Funktion
0r auftretenden Werten von xx,..., rn_1 entsprechen, und bedeutet Si

das auf der Einheitskugel gelegene Gebiet, fur dessen Punkte gilt :

<><*,<«; u i,...,»—i),

so hat die durch (12) definierten Mengenfunktion F fur die Menge Si

den Wert

/ U» -

K{r) K(r)

— lim

- lim i f(C) dZ lim i f (0 — dr
K(r)

=\im /(£) C dx,..
JT(r) Jï(r)

lim 0r(t* Ci) F(t? -, C-

indem wir die letztere Funktion jP(^* £*_i) durch dièse Gleichung
definieren. Also existiert der Iimr->1 des in (17) auftretenden iiber
K(r) erstreckten Intégrais, und somit auch derjenige von R. Wir setzen
lim R S und erhalten :

16 Commentarii Mathematici Helvetici



Wenden wir dièse Formel auf die regulare Funktion f(z) 1 an. so finden

wir:

wo die Funktion J wie folgt definiert ist :

i > • • •, C-i) f ¦ ¦ ¦ fcdr,... drn_x (20)

wo | f | 1, die Intégration also ûber einen Bereich auf der Einheits-
kugel zu erstrecken ist.

Aus (18), (19) folgt:

l ^^ J • • • J {^

Von hier aus gelangen wir in den folgenden vier Schxitten zum Ziel:

1. Es ist Km S lim 8' 0

Dabei beziehen sich die lim z->z0 auf radiale Annâherung des Punktes z

an den Punkt z0. S und 5' sind nâmlich Summen von Termen, die teils
Intégrale, teils integrallose Ausdrûcke sind. Die letzteren enthalten
die GrôBe

\C-z\-
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oder eine ihrer Àbleitungen als Faktor, bei den ersteren tritt eine solche
GrôBe als Faktor des Integranden auf. Da 8 und 8 ' von den Integrations-
grenzen

0 und 2n fiir rn_x

bzw. — n/2 und n/2 fur xj (j 1,. n — 2)

herruhren, sind die in S und Sr auftretenden Nenner | £ — z \n nach
unten beschrânkt; weil ferner

lim \z\ =¦- 1

ist, folgt daraus die Behauptung.

Nun sei rj irgendeine positive Zahl. Nach dem vorhergehenden gibt
es eine Zahl ô± > 0 derart, daB fiir \z — z0 \ < ô1

\S-D(zo)'Z-1'S/\<rj (21)
ist.

2. Wegen

J(Ç ,• • •, Ci) f • • •

0 0

ist
lim lim F(t* Cx) (J (t*,..., Ci)^

lim lim F(t*,..., t*_x) • • • £ dr1... drn_x

tn-r" 0 0

lim lim
TM_j

weil der den Werten t* t* • • • ^*_! 0 entsprechende Wert von
C gleich Zq1 ist.

Ferner ist:

lim lim lim lim 9

lim lim
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Also existiert eine Zahl oc > 0, so da8 fur

{j-= l,...,n— 1) : (22)

,• • •, *«-i)^ - D(z0) 2-i | < iy

ist. Wir nennen das Gebiet auf der Einheitskugel, fur welches

— 0L<tj< & (j 1,. n — 1)

ist, %. Mit S bezeichnen wir den Bereich K(l) — %, also die Gesamtheit
der Punkte auf K(l), die nicht zu 31 gehôren. Dann ist:

K,

(23)

—ir
3. Es ist

JLÇ... f

<
nu i

^-^l-lgl^

(vgl.(l)) (24)

Wegen

und

ist

COS tx COS ^2. COS tn^x

cos ^ cos «M_, sin tn^j+1 (j 2,..., n)

£

wo die Funktionen ^(C, z) spezielle Funktionen der allgemeineren Form

n-l
(sin tk)vk(Go&

(25)
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sind. Unter dem Index einer Funktion von der Gestalt (25) verstehen
wir die ganze Zahl

i v — X

wo
n-X

ist. Zum Beispiel ist der Index der Funktion y)x(Ç, z) gleich —n, der-

jenige der Funktionen ip}(Ç,z) (j 2,. n) gleich 1 —n.
d&

Es gilt: Die Ableitung —— einer Funktion &(Ç, z) von der Gestalt (25)

nach einer Variabeln t% (l 1,..., n— 1) ist gleich einer Summe von
Funktionen derselben Art. Ist i der Index von &(Ç,z), so haben aile

B0
Summanden der Funktion -^— Indizes, die ^ i — 1 sind. Man findet

otl
nâmlich, wenn man berucksichtigt, daB

|C-*| |1 + \z\*-2\z\ cos«1...cos«n.1|%

ist:

(sin t%yi (cos

Daraus kann man die Behauptung ablesen.

Es ist deshalb:

dn-l f-l j g«-i /

wo die ^(C, z) Funktionen der Gestalt (25) sind, deren Indizes ^— (2n—1
sind und wo N eine natiirliche Zahl bedeutet.
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An die Zahl <x (vgl. (22)) stellen wir nun nachtràglich noch die Forde-

rung, da6 fur

sein soll.

Aus (16), (20) folgt:

(cos tx)n~2... cos tn^.1
<2 (27)

M ln-i

0 0

*

i

< I • • • I Çdtx... rf*M_i| <n h (28)

Aus (24), (26), (27), (28) folgt somit:

^4 * /•

Nun ist

(1+

...^.-! (29)

2--2|2| cos

sin tk (fc= l,...,n —1)

wenn wir an a die weitere Forderung stellen, da8 flir — (x < t3 < oc

(j 1,..., n — 1) die letzte Beziehung gilt. Daraus folgt auf Grund von
(25) und (29), wenn wir noch berùeksiehtigen, daB fur die Indizes i, der

Funktionen &j(Ç, z)

i3^ — (2n—l) {j l,...,N) ist:

-l)n x /^

-^ J-
C —

dr (30)

wo
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ist. Nach Satz 9, angewendet auf die harmonische Funkfcion
<p(x1,...,xn_-l) 1 ist:

Also ist

JL Ç l ~ l

KnJ \Ç-
m)

fjf^W da A ein Teilgebiet von £"(1) ist,

fur z-> zQ beschrankt. Verlangen wir nun schlieBlich von der Zahl oc

noch, da6 im Gebiete

— oc < t5 < oc (j 1,..., n — 1)

gilt:
If — *|<1,

sobald
i « i > y2

ist, so wird fur v < n :

und

./¦
1 -

ist somit fur z-> z0 auch beschrankt. Also gibt es eine Konstante Jf > 0,
so daB fur aile Werte von \z\ (| z | < 1)

dr<M

ist. Dann wird nach (30)

=JPf-Çi z~1\Z

(31)

4. Wir betrachten nun

J J {

(vgl. (23)).
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Da der Bereich fB die Umgebung 31 des Punktes tx • • • tn_j 0

auf if(l) nicht enthalt, ist auf 93

|£ —z| | 1+ |z|2 —2|z| cos ^...cos tn_x\K

gleichmàBig in r und | z | nach unten beschrànkt. Wegen des im Inte-
granden auftretenden Paktors (1 — | z |2) ist somit:

lim i r /*
im -w- r ¦ ¦ h °

und es gibt eine Zahl <52 > 0 von der Art, daB fur \z — z0 \ < ô2 :

KJ "J < (32)

ist.
Nun sei à eine positive Zahl, die sowohl < àx (vgl. (21)) als auch < ô2

ist. Dann ist nach (21), (23), (31), (32) fur | z — z0 \ < è :

\f{z)-D(zQ)-z-\\

Sei e die Zahl, von der in Hilfssatz 11 die Rede ist, und setzen wir

e
n —.t

Kn
so wird fur | z — z0 | < è

womit Hilfssatz 11 bewiesen ist.

5.

Es gilt schlieBlich die folgende Verallgemeinerung des Satzes von
Fatou fur die regulàren Funktionen einer Quaternionenvariabeln :

Satz 12. Wenn eine im Innern der EinheitshyperJcugel
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rechtsregulare Funktion
w f(z)

der Quaternionenvariabeln

z xQ + i1x1 + i2x2 + i3x3

daselbst beschrânkt ist, so existiert bei radialer Annâherung von innen an
irgendeinen Punkt der Kugel der Grenzwert der Funktion f(z), mit even-
tueller Ausnahme einer Menge vom Mafi 0 von Punkten auf der Hyperkugel.

Man beweist diesen Satz genau wie Satz 10, nur hat man dabei unsere
Algebra 91 durch die Algebra der Quaternionen zu ersetzen.

(Eingegangen den 14. September 1943.)
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