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Uber ein Distanztheorem bei der A-Limitierung

Von H. HADWIGER, Bern
Herrn C. Carathéodory zum 70. Geburtstag gewidmet.

Es bezeichne

> o (1)
0
eine nicht notwendig konvergente unendliche Reihe, deren Glieder der
asymptotischen Beschrinkung

¢, =0 <—1—> (2)

v

unterworfen sind, so daf} also

lim sup » |¢, | =¢ (3)

existiert. Beim Versuch der A4-Limitierung der Reihe (1) studiert man
das Verhalten der Funktion

Fit)= Se,tv (4)

bei der linksseitigen Annidherung
t > 1 (5)

an den rechten Endpunkt des reellen Parameterintervalls. Unter einem
Abelschen Endwert der Reihe (1) wollen wir eine Zahl a von folgender
Eigenschaft verstehen:

Zu jedem &> 0 und jedem 0<t<1 gibt es stets ein ¢/, ¢t <t/ < 1,

8o, daf}
| F(t') —a|<e

ausfillt. Die Funktion F(¢f) kommt also dem Wert a in jeder beliebigen
linksseitigen Umgebung von 1 beliebig oft beliebig nahe.
A sei die Menge der Abelschen Endwerte. Besteht 4 aus einem einzigen

Wert a, so gilt offenbar
lim F(t) =a , (6)

t>1
und die Reihe (1) heift dann A4-limitierbar. Mit Riicksicht auf die Vor-
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aussetzung (2) gelangt hier aber der Satz von J. E. Littlewood!) zur
Anwendung, wonach in diesem Falle die urspriingliche Reihe (1) bereits

konvergiert, so dafl auch )
lim s, =a (7)

n > 00

gilt, wobei die Zahlen s, die Teilsummen
8, = X¢, (8)
0

der Reihe (1) bezeichnen. Dall aus der Konvergenz (7) umgekehrt (6)
folgt, ist Inhalt des &lteren und elementareren Abelschen Stetigkeits-
satzes. In den andern Fillen, in denen also keine der beiden Konvergenzen
(6) und (7) stattfindet, bestehen aber immerhin enge Beziehungen zwi-
schen der Menge 4 der Abelschen Endwerte der Reihe (1) und der
Héaufungswertmenge S der Folge ihrer Teilsummen (8). An erster Stelle
ware hier etwa der Knoppsche Kernsatz?) zu erwidhnen, auf den wir hier
nicht eintreten wollen.

Das Theorem, das wir in der vorliegenden Note behandeln, driickt
eine metrische Beziehung aus, die zwischen den beiden Mengen 4 und §
besteht, und besagt im wesentlichen, daB Abelsche Endwerte (Punkte
von A) und Teilsummenhdufungswerte (Punkte von S) einer Reihe mit
vorgeschriebenem ¢ (Formel 3) nicht zu weit voneinander entfernt sein
koénnen. Genauer gilt das folgende Theorem:

Es gibt eine beste (d. h. kleinste) positive Konstante g, fiir welche
die folgende Aussage richtig ist: Zu jedem Abelschen Endwert a, bzw.
zu jedem Teilsummenhiufungswert s der Reihe (1) gibt es stets einen ) (9)
Teilsummenhdufungswert s bzw. einen Abelschen Endwert a, so daf
|a — s | =< pc ausfdllt. )

Der genaue Wert der Konstanten g ist dem Verf. nicht bekannt. Aus
den nachfolgend durchgefiihrten Rechnungen ergibt sich nur, daB

(&)

1 270 ‘e
né—-[:l_“I/eﬂo_e-ﬂre]g@éo’{"z']—;v—dx (10)
1

1) Vgl. die Schilderung der Problemlage bei £. Landau, Darstellung und Begriin-
dung einiger neuerer Ergebnisse der Funktionentheorie. Zweite Auflage,
Berlin 1929, Drittes Kapitel; ferner J. E. Littlewood, The converse of Abels Theorem
on Power Series, Proceedings of the London Mathematical Society, Ser. 2, Bd. 9
(1911), S. 434—448, bes. S. 438.

?) K. Knopp, Zur Theorie der Limitierungsverfahren (Erste Mitteilung),
Mathematische Zeitschrift Bd. 31 (1930), S. 97—127, bes. S. 115.
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gilt; hierbei bezeichnet 0 einen beliebigen positiven Parameter und C
ist die Eulersche Konstante. Die angeschriebene Ungleichung wird offen-
bar dadurch extremal ausgenutzt, daf} die Funktion auf der linken Seite
durch ihr Maximum, das sie bei 6 = 1,1909 ... erreicht, ersetzt wird.
So ergibt sich

0,4858 ... <p < 1,0160 ... . (11)

Aus dem Distanztheorem (9) folgt z. B. fiir den Fall, daBl an Stelle
von (2) sogar o (__1_) )
v,
gilt, daf} fiir die Mengen 4 und S die Identitit
A=S8 (13)

gilt, gleichgiiltig, ob die Mengen einpunktig oder mehrpunktig sind. Die
Relation (13) stellt so eine Erweiterung des klassischen Abelschen Stetig-
keitssatzes samt der Umkehrung von Tauber®) auch auf die Fille dar,
wo die Reihe (1) bzw. die Funktion (4) gar nicht konvergent ausfillt.

Von dieser allgemeiner gefaflten Aussage gibt es nun allerdings keine
Littlewoodsche Erweiterung, d. h. wenn an Stelle von (12) wieder nur (2)
gilt, ist die Identitit (13) nur noch im Falle der Konvergenz richtig,
sonst aber nicht mehr, wie einfache Beispiele, u. a. auch das in der nach-
folgenden Rechnung erwihnte, darlegen.

Wir skizzieren nun die kurzen Rechnungen, die zu den Resultaten (9)
und (10) fithren:

Es sei ¢> 0 beliebig. Im Hinblick auf (2) 148t sich ein m =0 so
bestimmen, daB fiir alle v >m v|c,| < ¢+ ¢ ausfillt. Fir 0<t<1
1st nun

m n o0
8, —Ft)y=Xc, (1 - t")V+ Xc, (1 —¢)— Xec,t¥,
0 m-+1 n+1

und also

lsn--—F(tHg%ﬁlcvl(l—tvu—(cﬂ)[ﬁ_‘ =7, 5 5],

m+1 Y n+1 ¥
oder
12 n‘l 1 n v
= Xl |1 —¢t) 4+ (c+ ¢ 274“108 —2X—1.
1

0 1—1 1 Y

3) A. Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monats-
hefte fiir Mathematik und Physik, Bd. 8 (1897), S. 273—277, bes. S. 274.
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Durch eine Integraldarstellung der enthaltenen endlichen Reihe

gewinnt man zunichst
t

Ik

IA

) n ] 1 1 —on
|c,,|(1~t)—|—(c+s)[§lj-;——§—log1__t—2{l_ede],

e/

0

oder

IA

¢
m ] a1 1 *on do
%lcvl(1—~t)+<c+s)l§—; loglﬁt+2]1_9] :
0

x
Durch die Substitution 6 = e * erreicht man die Form

oo

m ) n ] 1 Yo
<%|cvl(1——t)—{—(c+e)[AIS,'—;—mlogl_qt—{—Zj —E-da:],

wenn man noch beriicksichtigt, daB n(e" — 1) = z ist.

Nun 148t sich offensichtlich eine nur von ¢ abhidngige Schranke N
angeben, daf fiir alle » > N und

1 1
— < -
= - St<l— (14)

stets die Relation

|8n~—F(t)]<8—{—(c+s)[C+2J E;dx—}—s] (15)
1

gilt. Damit ist die Schliisselformel gefunden, die in naheliegender Weise
durch Anwendung des Bolzano-Weierstrachen Héiufungsstellensatzes
sofort den Schluf3

=]

]s——~a|§c[0+2 f—;dx] (16)

gestattet, wobei man entweder von einem Abelschen Endwert a oder von
einem Teilsummenhdufungswert s ausgehen kann.
Im folgenden betrachten wir ein einfaches Beispiel. Es sei

cvz(—l)”<_w), 0>0, i=)—1, (17)

v
also
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F(t) = %3(._ 1)v<-vi0) o <T—_1—?>ze

oder

F(t)::cos<6 loglit>—}—isin <610g1j_t) : (18)

Fiir die eingesetzten Logarithmen sind die Hauptwerte zu nehmen.

Fiir t— 1 von links wandert der Funktionswert #(¢) ohne Ende auf
dem Einheitskreis im positiven Sinne herum. Die Menge |a| =1 ist
somit die Abelsche Endwertmenge 4 der betrachteten Menge. Wie man
induktiv leicht verifiziert, ist fir n =1 *)

5= X (= 1)”<_i6)= (1+0) (1 +-529/) -~<\1+%€/), (19)

v

und wie man ebenso miihelos rechnet, ist

Cp, = —8,1 - 2
n nsnl (O)

———

4) Vgl. K. Knopp, Theorie und Anwendung der unendlichen Reihen,
Berlin: J. Springer, 3. Auflage 1931, S. 441.
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Diese letzte Relation besagt, dafl der Zahlvektor ¢, auf dem Zahl-
vektor s, , senkrecht steht. Wird die in der Reihe (1) vorgeschriebene
Addition geometrisch vollzogen, so entsteht ein auBlerhalb des Einheits-
kreises sich 6ffnendes Spiralpolygon (vgl. obenstehende Figur). Nun ist

|3n|:l(1+ )(14—“4—:)( +'_7;§')9 (21)
so daBl nach einer bekannten Formel auf
. } - eTrG . e-—ﬂ'e
nl_lfg [snl - V 237:0 (22)
geschlossen wird. Dies bedeutet, dafl der Kreis vom Radius
B / e7r9 — e—10
"= l” 270 25

asymptotischer Kreis des oben bezeichneten Spiralpolygons ist. Die
Menge |s| = r ist somit identisch mit der Menge S der Teilsummen-
hiaufungswerte der betrachteten Reihe. Die kleinste zwischen Abelschen
Endwerten und Teilsummenhdufungswerten in Betracht fallende Distanz
ist bei dem gewidhlten Beispiel offensichtlich der Abstand des Einheits-
kreises (Menge A) vom genannten asymptotischen Kreis (Menge 8).
Diese betragt r — 1. Nach Definition der Konstanten g bei (9) gilt

L r—1=opc.

Im Hinblick auf (20) und (22) ist aber

T __ p—TO
¢ = lim vlc,,]:B]/e . (24)

V>0 27‘60 ’

L Yl

gefolgert werden kann. Damit ist zusammen mit (16) das Distanz-
theorem (9) bzw. (10) nachgewiesen.

so daBl jetzt

(Eingegangen den 5. August 1943.)
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