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Sur la convergence
des séries de polynomes orthogonaux

Par GrorcEs ALEXITS, Budapest

Il est connu que, dans l'intervalle fermé |— 1,1] toute fonction
+1

w(x) = 0 intégrable et de carré intégrable pour laquelle j‘w(x)dx >0
-1

détermine exactement un systéme de polynomes {p,(z)} tel que le n-iéme
terme p,(z) de ce systéme soit un polynome de degré n, orthogonal et
normé dans l’'intervalle [ — 1,1]:

+1 A "

; 0, s 157,

[ (@) pi (@) ps (@) do = T

1 ‘ 1, 81 2 =]).
A toute fonction f(z) intégrable et de carré intégrable, il correspond
alors un développement formel suivant les polynomes p, (x):

fa) ~ cnpa() (1)

o n=0
en = [0() f (@) po () de -

Le probléme de la convergence du développement (1) a été analysé
en premier lieu sous ’aspect de l’équiconvergence!) avec la série de
Fourier de la fonction f(z), si 'on y remplace la variable x par cos ¢.
Il est évident que cette analyse impose des conditions restrictives con-
cernant le systeéme {p,(x)}; il serait donc intéressant de traiter les pro-
blémes de convergence qui s’y rattachent, méme lorsque ces conditions
ne sont pas satisfaites. Il s’agit surtout des probléemes suivants:

1. Quelles sont les conditions concernant les coefficients ¢, pour que
la série (1) converge en [— 1,1] presque partout?

2. La convergence de (1) étant assurée dans un sous-intervalle de
[— 1,1], quelles sont les conditions concernant la fonction f(x) pour
que la série (1) y converge absolument et uniformément?

3. L’uniformité de la convergence du développement (1) étant établie,
quel est 1’ordre de grandeur de lerreur |f(z) — S,(x)| commise, si 'on
ne considére que les n + 1 premiers termes

1) En ce qui concerne les théorémes respectifs et les propriétés élémentaires des poly-
nomes orthogonaux, v. par exemple G. Szegd, Orthogonal Polynomials. Amer. Math.
Soc. Publ. T. XXIII. 1939.
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S (@) = 2 oups(2)

du développement (1) ?

Dans les paragraphes suivants, nous allons répondre & ces questions
pour une classe étendue de systémes orthogonaux {p,(x)}. Les résultats
obtenus sont analogues aux résultats correspondants bien connus dans
la théorie des séries de Fourier.

1. Convergence presque partout

St, dans Uintervalle [— 1,1], on a |p,(x)| < P pour tout n = 0,1,. ..
et 0 < w(x) < W (P et W sont des constantes absolues), alors la conver-

[o.2]
gence de la série X' ¢ log n entraine la convergence presque partout du
n=1

développement (1).

Nous n’avons qu’a rechercher l'ordre de grandeur des fonctions

+1
on(@) = [w(t) di
-1

() px ()

connues sous le nom de fonctions de Lebesgue du systéme {p,(x)}, parce
que M. Kaczmarz?) a démontré que g,(x) = O (log n) presque partout

et la convergence de 2 c2logn impliquent la convergence presque
n=1

partout de la série (1). Pour démontrer la relation p,(z) = O(log n),
divisons l'intégrale définissant p,(x) en trois parties:

+1 x—% a:+—:l— 1
j‘ - j + j‘ =} 5::"]1"{"']2“}‘*]3
-1 -1 z——l— x+;1l—

Envisageons d’abord J,; nous obtenons par application de l’inégalité
de Schwarz:

1
2

jw j“w [Zpk(npk(x)]z {

%) S. Kaczmarz-H. Steinhaus, Theorie der Orthogonalreihen, Warszawa, 1935,
p. 175,
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Il s’ensuit donc, les polynomes p,(¢f) étant orthogonaux et normés et
wit) = W:

gg = Op%( )%95.
Or pi(x) < P?, par conséquent
J, <P V2W(nn+ N @)

Pour évaluer l'intégrale J,, rappelons la formule de Christoffel-Dar-
boux3):
3 i () pr(x) = pﬂ()p(t)_..f()pﬂ()

k=0 Kp+1

ou «, désigne le coefficient de z" dans le polynome p,(x). On a alors

1
S (1 Puss ) Pu(@) = Pall) Pass @1 g
o‘n—i-l— l b — T l

Jy

IA

-

Mais
+1

f (%) Py (@) P (%) @ dar =

‘xn-i—l

- f () Pasy (@) (0, 21 4+

donc, par application de I'inégalité de Schwarz:

+1 +1 Py
J #(@) Py (@) do- | w(@) 5} (@) do

{ —1

Xp .

<

Kypt1

Il en résulte, vu que | p,.1(f) Pu() — Pa(t) Ppa(®)| = 2P2 ot w(x)<W:

X == =

J, < 2P2W f—l—?%—l——z 2P2W [log (1 + x) 4 logn] (3)

et on obtient de la méme maniére

Jy; < 2P2W[log (1 —x) + log n]. (4)

3) L.c. 1), p. 42.
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Les inégalités (2), (3) et (4) sont équivalentes & p,(x) =0 (log n) pour
tout point intérieur de l'intervalle [— 1,1]. La démonstration de notre
théoreme est donc achevée.

2. Un lemme

En introduisant la variable ¥ = arc cos x au lieu de z, on obtient,
au lieu de f(x), la fonction paire f(cos ¥) définie dans I’intervalle [ — &, ]
et ayant, par conséquent, une série de Fourier qui ne contient que des
cosinus. La n-iéme somme partielle de cette série de Fourier sera

s, (8) = %3+k2 @, cos kd
- =1

o
a, = —;—;—ff(cos ?#) cos kddd .

0
Nos recherches suivantes ont pour point de départ le lemme suivant:

St 0= w(x) < W dans Uintervalle [— 1,1], alors on a

> . (5)

Remarquons d’abord que le systéme {p,(x)} est, comme on sait,
complet dans 1’espace des fonctions intégrables avec leur carré, c’est
dire que I’égalité de Parseval

+1

[w@ @ de =3 o
L8 k=0

est valable. Or les polynomes p,(x) étant orthogonaux et normés, on a
aussi

+1 I n
Jr@lf@) — Su@)Fde = | wiw) fra)de — 3 ¢
-1 -1 =

par conséquent
1

+ ®
Jr@ o) = 8,@de= X ¢ - (6)

L’intégrale du premier membre de (6) représente, comme on sait, un
minimum en ce sens que, pour tout polynome P,(x) de degré »n, on a
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+1 +1
’ w(x) [flx) — 8, (z) Pdx < f w(x)[f(x) — P,(x) Pdz .

=1

Choisissons pour P,(x) le polynome de n-iéme degré engendré par la
n-ieme somme partielle s, () de la série de Fourier de f(cos ) en rem-
placant ¢ par la variable x = cos 4 . L’inégalité précédente s’écrit alors
sous la forme
1 x

[fw(@) [ fz) — S,(2) P de < Jw(cos 8) sin & [f(cos §) — s, (¢)]2dd .
1 o (7)
Par hypothése 0 < w(x)< W, donc

m

bj‘w(cos #) sin 9 [ f(cos F) — s,(9)]2dd =W 11[ f(cos @) — s, (9) Pdd ==
W - 3
= zn }S Ay »

k=n+1

et la relation (5) résulte immédiatement de (6) et (7).

3. Convergence absolue

De l'inégalité (5) on peut déduire un critére de convergence absolue
analogue & un critére connu dans la théorie des séries de Fourier. Pour
y aboutir, nous démontrerons d’abord par analogie avec un théoreéme
de M. Szasz*) concernant les coefficients de Fourier le théoréme suivant:

St 0=w(x)< W et si la fonction f(x) satisfait en [— 1,1] a une
condition de Lipschitz |f(x;) — f(x,)| = 4|2, — x,|* avec « > 0, alors
Y e ¥ < oo (8)

n=0

1
pour tout exposant f# > ————-o .

2a + 1)
I1 vient d’abord par application de I'inégalité de Holder:

ov+1 ; ov+1 8
Y el = 2““*"’( > )

k=2V41 k=2V+41

d’ol en vertu de l'inégalité (5):

4) 0. Szdsz, Sitzungsber. Bayer. Akad. Wiss. 1922, p. 135—150.
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2V+l

o B
> |cki”’é-"-““”"(-W';1 2 ) | )

k=2V41 k=2V+1

La fonction f(x) satisfait en [— 1,1], par hypothése, &4 une condition
de Lipschitz d’ordre «, ou ce qui revient au méme f(cos ) satisfait en
[0, =] et par conséquent aussi en [ — 7, #] & une condition de Lipschitz
d’ordre «. Il existe donc®) un polynome trigonométrique ¢,,(#) d’ordre
2v tel que

Max

f(cos &) — tzv(ﬁ)le(ziv ) ,

par conséquent?®)

+7 +m

= 1 1 1

kE ai = — f [ [(cos #) — s, (F)]2dP < —n—f [f(cosz‘/‘)—~t2v(v9)]2dz9::0(22av).
=2V 41 Zgp -7

Il s’ensuit donc d’apres (9)

2V+1

Q) 28 1
2.0 lclﬂ'l - 0 ( 2(2aﬁ+§_1) v ) ’

k=2V+1

c’est-a-dire

oV41

. & 1
E [ck|2 = 2& lcklzﬁ - 24 0( 2B+ p-1)v ) ‘
n=2 v=0

v=0 k=2V+1

Or B >(—l— , done 248+ —1 >0, etla série écrite en dernier

20 + 1)
lieu converge, ce qui établit notre proposition.

Admettons maintenant que |p,(z)| < P pour tout » = 0,1,... dans
un intervalle [a, b] contenu dans l'intervalle fondamental [— 1,1]; cet
intervalle [a, b] sera dit un intervalle de limitation du systéme {p,(x)}.
Le critére de convergence absolue en question est un corollaire immédiat

du théoreme précédent:

St 0=w(x)< W et si la fonction f(x) satisfait en [— 1,1] a une
condition de Lipschitz d’ordre « > %, la série (1) converge absolument
dans tout intervalle de limitation du systéme {p,(x)} .

En effet, « > 1 équivaut a < 4 ; on peut donc poser dans la

1
20 + 1

) S. Bernstein, Mém. Acad. Belge. (2), 4, 1912, p. 1—104,
+7
%) L’intégrale f [f(cos J) — t,v (9)]2 dI devient minimale, lorsque ¢y, () = syv (J).

-
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relation (8): 8 = 1, ce qui assure la convergence de la série Y |c,| et,
n=0
dans tout intervalle de limitation du systéme {p,(x)}, aussi la conver-

gence de J |c, p,(2)] .

n=0

4. L’ordre de grandeur de 1’approximation

L’inégalité (5) nous servira aussi & 1’évaluation de 1’ordre de grandeur
de I'approximation d'une fonction f(x) par les sommes partielles S,(x)
de son développement (1).

St la r-iéme dérivée [ (x) de f(x) existe en [— 1,1] presque partout?)
et st sa variation totale en [— 1,1] ne surpasse pas la valeur finie V, st,
de plus, 0 < w(x) < W, alors on a dans tout intervalle de limitation du

systéme {p,(x)}

Max [fla) — 8,0 | < [ prm o

En effet, la variation de f(x) en [— 1,1] étant < V, la variation de
f™(cos ¥) en [— 7z, ] est =<2V . 1l s’ensuit par application d’un théo-
reme connu®) sur la grandeur des coefficients de Fourier de la fonction

f(cos ) :

2V
la, | = k1
par suite
\ 4V 5 1 4y2
a: < .
k=§+1 k 772 k=§’+1 Je2r+2 < (2r 4+ 1)7t2 9@r+1) v (10)

Or, dans un intervalle de limitation du systéme {p,(x)}, on a en vertu
de I'inégalité de Cauchy

ov+1 ov+1 v ov+1 %
Y |eape)| =P X |c,..lgP-22( > ci) (11)

k=2V+1 k=2V+1 k=2V+1

et d’apres (5):

7) Aux points de ’ensemble de mesure nul ou f(r)(z) n’existe pas, on peut donner des
valeurs finies arbitraires & f(r)(z).

8) V. par exemple D. Jackson, The Theory of Approximation. Amer. Math. Soc.
Publ. T. X1, p. 50.
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cela donne combiné avec (10):

2§1 2 < 2W . 1€
E=2V41 g (27' - 1)75 2@r+1)v

Il résulte de la en vertu de I'inégalité (11):

,ckpk | 2 2 l%?’k ’<V27‘—{—1 S g
k=n+1 v=logan k=2V+41 ogg
PV
V 27 —l— nt (12)
La série ) ¢, p,(x) converge donc dans tout intervalle de limitation du
k=0

systeme {p,(x)} et elle y représente, {p,(x)} étant un systéme complet,
la fonction f(x). On en tire immédiatement

[> <]

fx) — S, (x) = 2 CxP(T)

k=n+1

et, tenant compte de l'inégalité (12), on obtient

PV
Maxlf(oc) |<l/27._+_1 nt ’

ce qui était justement notre proposition.

Du point de vue des applications, le probléme de 1’ordre de grandeur
de 'approximation est surtout intéressant lorsque f(x) est une fonction
composée d’un nombre fini de portions convexes, car les fonctions cor-
respondant aux courbes tracées par les appareils enrégistreurs sont
justement de cette nature. Pour cette classe de fonctions, le résultat
précédant nous fournit le théoreme suivant:

81 la fonction f(x) est, dans Uintervalle [ — 1,17, composée d’un nombre
fini g de portions convexes, si elle satisfart a la condition de Lipschitz propre-
ment dite |f(x;) — f(xs)| S 4|2y — 2|, et st OS w(x) = W, alors

Max |f(z) — 8, () | < 79’1;}/?7

dans tout intervalle de limitation du systéme {p,(x)}.
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En effet, la condition de Lipschitz entraine I’existence presque partout
de la dérivée f'(x) et |f'(x)| =< A. Mais f'(z) est monotone®) sur toute
portion convexe de la fonction f(x), sa variation est donc < 24 sur une
telle portion; vu que le nombre de ces portions est g, la variation totale
de f’(x) en [— 1,1] est < 2g 4. Ce fait, combiné avec le théoréme précé-
dent, implique I’'inégalité

32W gAP _ igiPVW
Max | (@) — 8, (2) | < |22 042 192D

Remarque. Les conditions concernant le systéme {p,(x)} dont nous
avons fait usage dans les démonstrations des paragraphes 3 et 4 étaient
les suivantes: 1. 0= w(x)< W; 2. le systeme {p,(x)} posséde en
[— 1,1] un intervalle de limitation. Les deux conditions sont satisfaites
par des systémes de polynomes orthogonaux pour lesquels M. Szego
a démontré!?) I’équiconvergence du développement (1) avec la série de
Fourier de la fonction f(cos#). Ces systémes possedent done, méme
en ce qui concerne la convergence absolue et 1’ordre de grandeur de
Papproximation, des propriétés analogues aux séries de Fourier. Nos
conditions sont satisfaites en particulier par les polynomes classiques de
Jacobi P (z), lorsque « =0,8=0; en effet, la fonction w(z) =
(1 — z)%(1 + x)B est bornée alors en [— 1,1] et pour tout nombre ¢ > 0
Pintervalle [— 1 + ¢, 1 — ¢] est un intervalle de limitation du systéme
{P,*® (z)}. Les théorémes des paragraphes 3 et 4 sont donc valables
pour les polynomes de Jacobi d’ordre non négatif, classe de polynomes
comprenant entre autres les polynomes de Legendre. Mais de quelque
fagon qu’on choisisse le systeme {p,(x)}, 'ordre d’approximation trouvé
en 4 ne se laisse pas améliorer sensiblement, parce que, en posant
f(x) = | x|, la fonction f(x) est composée d’une seule portion convexe
et, pourtant, 'ordre de grandeur de la meilleure approximation de

f(x) = || par un polynome de degré n est!) O (—717) Par conséquent,

Max|f(x) — S,(x)| ne peut pas avoir une borne essentiellement inférieure
79APVW 0 (_1_)

2n n

a celle du paragraphe 4, notamment a

(Recu le 19 mai 1943.)

9) Aux points & de l’ensemble de mesure nul ou f'(x) n’existe pas, nous posons
' =f(E—0).

10) 1.. c. 1), p. 306—321.

1) L. e. %), p. 60.
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