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Sur la convergence
des séries de polynômes orthogonaux

Par Georges Alexits, Budapest

II est connu que, dans l'intervalle fermé [— 1,1] toute fonction
+1+

w(x) ^ 0 intégrable et de carré intégrable pour laquelle §w(x)dx> 0

détermine exactement un système de polynômes {pn(x)} tel que le n-ième
terme pn(x) de ce système soit un polynôme de degré n, orthogonal et
norme dans l'intervalle [— 1,1]:

J fv (x) pt (x) p} (x) dx

-i

0 81 i yé: j
1 si i — j.

A toute fonction f(x) intégrable et de carré intégrable, il correspond
alors un développement formel suivant les polynômes pn(x):

1(x)~Z cnPn(x) (1)

OÙ +1

cn \w(x)f(x)pn(x)dx

Le problème de la convergence du développement (1) a été analysé
en premier lieu sous l'aspect de l'équiconvergence1) avec la série de

Fourier de la fonction f(x), si l'on y remplace la variable x par cos#.
Il est évident que cette analyse impose des conditions restrictives
concernant le système {pn(x)}; il serait donc intéressant de traiter les
problèmes de convergence qui s'y rattachent, même lorsque ces conditions
ne sont pas satisfaites. Il s'agit surtout des problèmes suivants:

1. Quelles sont les conditions concernant les coefficients cn pour que
la série (1) converge en [— 1,1] presque partout?

2. La convergence de (1) étant assurée dans un sous-intervalle de

[— 1,1], quelles sont les conditions concernant la fonction f(x) pour
que la série (1) y converge absolument et uniformément?

3. L'uniformité de la convergence du développement (1) étant établie,
quel est l'ordre de grandeur de l'erreur \f(x) — Sn(x)\ commise, si Ton

ne considère que les n + 1 premiers termes

*) En ce qui concerne les théorèmes respectifs et les propriétés élémentaires des
polynômes orthogonaux, v. par exemple G. Szego, Orthogonal Polynomials. Amer. Math
Soc. Publ. T. XXIII. 1939.
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Sn{x) =- £ckpk(x)
k=0

du développement (1)
Dans les paragraphes suivants, nous allons répondre à ces questions

pour une classe étendue de systèmes orthogonaux {pn(x)}. Les résultats
obtenus sont analogues aux résultats correspondants bien connus dans
la théorie des séries de Fourier.

1. Convergence presque partout

Si, dans Vintervalle [— 1,1], on a \pn{x)\ ^ P pour tout n 0,1,...
et 0 5j w(x) ^ W (P et W sont des constantes absolues), alors la conver-

oo

gence de la série 2J c\ log n entraîne la convergence presque partout du
71 1

développement (1).

Nous n'avons qu'à rechercher l'ordre de grandeur des fonctions

EvAt)Pk{x) dt

connues sous le nom de fonctions de Lebesgue du système {pn(x)}, parce
que M. Kaczmarz2) a démontré que gn(x) — 0 (log n) presque partout

oo

et la convergence de 27 <% log n impliquent la convergence presque
n l

partout de la série (1). Pour démontrer la relation Qn(x) O(log n),
divisons l'intégrale définissant Qn(x) en trois parties:

+1

j
-1

1

-î
- J H

1
£

n

1

h J

Envisageons d'abord J2 ; nous obtenons par application de l'inégalité
de Schwarz:

'2 =^
r .../j\ jj r -../j\ I ir1 /*\ /^,\ I ji 2

2) S. Kaczmarz-H. Steinhaus, Théorie der Orthogonalreihen, Warszawa, 1935,

p. 175.
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Il s'ensuit donc, les polynômes pk(t) étant orthogonaux et normes et
W:

Or p%(x) ^ P2, par conséquent

Pour évaluer l'intégrale Jl9 rappelons la formule de Christoffel-Dar-
boux3) :

V n lt\<n lr\ - *" Pn+l(t)P(x)P(t)P(x)
2* Pk \l) Pk \x) —
k oc

7

ko n+1 t — x

où <xn désigne le coefficient de xn dans le polynôme pn(x). On a alors

ix
n

i - — ¦—-
(Xnjll J \l — X |

-1
Mais

j w (x) pn+1 (x) pn (x) xdx

f oc rj w(x)pn+1(x) (ocnxn+1 -i )dx=- w(x)2
i -1

donc, par application de l'inégalité de Schwarz :

J w (x) pl+1 (x) dx • J w (x) p\ (x) dx i

II en résulte, vu que | pn+1(t) pn(x) — pn(t) pn+1(x) \ ^ 2P2 et w(x) ^W:

x

J1 ^ 2P* W f fdt 2P*W [log (1 + x) + log n] (3)
J I l X \

et on obtient de la même manière

J3 S 2P*tT [log (1 - x) + log n] (4)

3) L. c. p. 42.
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Les inégalités (2), (3) et (4) sont équivalentes à Qn(x) 0 (log n) pour
tout point intérieur de l'intervalle [— 1,1]. La démonstration de notre
théorème est donc achevée.

2. Un lemme

En introduisant la variable û arc cos x au lieu de a;, on obtient,
au lieu de f(x), la fonction paire /(cos ê) définie dans l'intervalle [— tz, n]
et ayant, par conséquent, une série de Pourier qui ne contient que des

cosinus. La w-ième somme partielle de cette série de Fourier sera

8n(<ff) --—+ 2 aJc cos kïï

où
71

2 C
ak — /(/(cos #) cos

o

Nos recherches suivantes ont pour point de départ le lemme suivant:

Si 0 ^ w(x) fg W dans Vintervalle [— 1,1], alors on a

2 < (5)
k=n+l * fc=n+l

Remarquons d'abord que le système {pn(x)} est, comme on sait,
complet dans l'espace des fonctions intégrables avec leur carré, c'est
dire que l'égalité de Parseval

j w(x)f2(x)dx 2 <

est valable. Or les polynômes pn(x) étant orthogonaux et normes, on a
aussi

+1 +1 n

jw(x)[f(x) ~ Sn(x)f dx =j w(x) f\x) dx - 2 4

par conséquent

J w (x) [f(x) - Sn (x) dx S 4 (6)

L'intégrale du premier membre de (6) représente, comme on sait, un
minimum en ce sens que, pour tout polynôme Pn(x) de degré w, on a
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+1 +1

J w(x) [/(*) - Sn(x)fdx ^ j w(x)[f(x) - Pn(x)fdx
-1 -1

Choisissons pour Pn(x) le polynôme de 7i-ième degré engendré par la
n-ième somme partielle sn(&) de la série de Fourier de / (cos &) en
remplaçant ê par la variable x cos ê L'inégalité précédente s'écrit alors
sous la forme

j w(x) [ f(x) — Sn(x) ]2 dx fj I w(cos ^) sin #[/(cos ê) — 5w(^)]2d^
« (7)

Par hypothèse O^w(x)^ W, donc

w(co&&) sin ^ [/(cos ^) — sw(#)]2 rf^ gïF I [ f(cos&) - s

et la relation (5) résulte immédiatement de (6) et (7).

3. Convergence absolue

De l'inégalité (5) on peut déduire un critère de convergence absolue

analogue à un critère connu dans la théorie des séries de Fourier. Pour

y aboutir, nous démontrerons d'abord par analogie avec un théorème
de M. Szâsz4) concernant les coefficients de Fourier le théorème suivant:

Si 0 ^w(x)^ W et si la fonction f(x) satisfait en [— 1,1] à une
condition de Lipschitz [/(a^) — f(x2)\ ^ h\xx — x2\oc avec oc > 0, alors

pour tout exposant fï >

II vient d'abord par application de l'inégalité de Hôlder:

d'où en vertu de l'inégalité (5) :

4) O. Szâsz, Sitzungsber. Bayer. Akad. Wiss. 1922, p. 135—150.
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La fonction /(a;) satisfait en [— 1,1], par hypothèse, à une condition
de Lipschitz d'ordre <x, ou ce qui revient au même /(cos û) satisfait en
[0, n] et par conséquent aussi en [— n, n] à une condition de Lipschitz
d'ordre oc. Il existe donc5) un polynôme trigonométrique t2v(&) d'ordre
2" tel que

Max /(COS0)

par conséquent6)

II s'ensuit donc d'après (9)

2 ic*r=-oi
c'est-à-dire

/ l \
\ o(2arf+5-l) v I '

Or fi > — ——- donc 2^/? + j8 — 1 > 0, et la série écrite en dernier
(2oc + 1)

lieu converge, ce qui établit notre proposition.
Admettons maintenant que \pn(x) \ g P pour tout n — 0,1,... dans

un intervalle [a, 6] contenu dans l'intervalle fondamental [— 1,1]; cet
intervalle [a, 6] sera dit un intervalle de limitation du système {pn(x)}.
Le critère de convergence absolue en question est un corollaire immédiat
du théorème précédent:

Si 0^w(x)^ W et si la fonction f(x) satisfait en [— 1,1] à une
condition de Lipschitz d'ordre oc>^, la série (1) converge absolument
dans tout intervalle de limitation du système {pn(x)}

En effet, oc > \ équivaut à ——TTT~< i ' on Peu* ^onc Poser dans la

6) S Bernstein, Mém Acad Belge (2), 4, 1912, p 1—104

+r
8) L'intégrale f [/(cos S) — t2v(â)]2di9 devient minimale, lorsque t^v (#) s2v(â).

— 7T
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relation (8) : /? ^, ce qui assure la convergence de la série £ \ cn\ et,

dans tout intervalle de limitation du système {pn(x)}, aussi la conver-
oo

gence de Z \cnpn(x)\
w=0

4. L'ordre de grandeur de l'approximation

L'inégalité (5) nous servira aussi à l'évaluation de Tordre de grandeur
de l'approximation d'une fonction f(x) par les sommes partielles Sn(x)
de son développement (1).

Si la r-ième dérivée fir)(x) de f(x) existe en [— 1,1] presque partout1)
et si sa variation totale en [— 1,1] ne surpasse pas la valeur finie V, si,
de plus, 0 ^ w(x) ^ W, alors on a dans tout intervalle de limitation du
système {pn(x)}

Max \f(z)-8n{x) |< ]/-
8PF PV

(2r + l)n nr

En effet, la variation de f{r)(x) en [— 1,1] étant ^ F, la variation de

/(r)(cos#) en [— n, n] est ^ 2F. Il s'ensuit par application d'un théorème

connu8) sur la grandeur des coefficients de Fourier de la fonction
/(eos#):

2F

par suite

2à ak^ —- lé

Or, dans un intervalle de limitation du système {pn(x)}, on a en vertu
de l'inégalité de Cauchy

'S I^P^I^P *2 |c,|gP.2^^ ^ ciV (11)

et d'après (5):
2V+1 TFtt °°

V r2 < V n2 -

7) Aux points de l'ensemble de mesure nul où f(r)(x) n'existe pas, on peut donner des
valeurs finies arbitraires à /(*")(#).

8) V. par exemple D. Jackson, The Theory of Approximation. Amer. Math. Soc.
Publ. T. XI, p. 50.
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cela donne combiné avec (10):

2W V*2v+l

II résulte de là en vertu de l'inégalité (11):

log2n k 2

%W

:—¦ (»)(2r+l)rc nr
00

La série 2J ckpk(x) converge donc dans tout intervalle de limitation du

système {pn(x)} et elle y représente, {pn(x)} étant un système complet,
la fonction f(x). On en tire immédiatement

- 8n(x) 2
k n+l

et, tenant compte de l'inégalité (12), on obtient

1/ SW PV

ce qui était justement notre proposition.
Du point de vue des applications, le problème de l'ordre de grandeur

de l'approximation est surtout intéressant lorsque f(x) est une fonction
composée d'un nombre fini de portions convexes, car les fonctions
correspondant aux courbes tracées par les appareils enregistreurs sont
justement de cette nature. Pour cette classe de fonctions, le résultat
précédant nous fournit le théorème suivant :

Si la fonction f(x) est, dans Vintervalle [— 1,1], composée d'un nombre

fini g de portions convexes, si elle satisfait à la condition de Lipschitz proprement

dite \f(xx) — f(x2)\ <g X\ xx — x2\, et si 0 ^ w(x) ^ W, alors

Max \f(x)-8n(x)\<7gXPVW
2n

dans tout intervalle de limitation du système {pn(x)}.
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En effet, la condition de Lipsehitz entraîne l'existence presque partout
de la dérivée f'(x) et \fr(x)\ ^ A. Mais j'(x) est monotone9) sur toute
portion convexe de la fonction /(#), sa variation est donc ^ 2 A sur une
telle portion ; vu que le nombre de ces portions est g, la variation totale
de fr(x) en [— 1,1] est ^ 2gr A. Ce fait, combiné avec le théorème précédent,

implique l'inégalité

at ,/ x o / x l/32lF gXP lgkP\/WMax l/^^^K^,£< * ^
Remarque. Les conditions concernant le système {pn{x)} dont nous

avons fait usage dans les démonstrations des paragraphes 3 et 4 étaient
les suivantes: 1. 0 ^ w(x) ^ W; 2. le système {pn(x)} possède en
[— 1,1] un intervalle de limitation. Les deux conditions sont satisfaites

par des systèmes de polynômes orthogonaux pour lesquels M. Szegô
a démontré10) l'équiconvergence du développement (1) avec la série de
Fourier de la fonction / (cos &). Ces systèmes possèdent donc, même
en ce qui concerne la convergence absolue et l'ordre de grandeur de

l'approximation, des propriétés analogues aux séries de Fourier. Nos
conditions sont satisfaites en particulier par les polynômes classiques de
Jacobi P^'P^x) lorsque oc ^ 0, fi ^ 0 ; en effet, la fonction w(x)
(1 — x)a(l + x)P est bornée alors en [— 1,1] et pour tout nombre e > 0

l'intervalle [— l -{- e, 1 — e] est un intervalle de limitation du système
{Pw(a'^(a;)}. Les théorèmes des paragraphes 3 et 4 sont donc valables

pour les polynômes de Jacobi d'ordre non négatif, classe de polynômes
comprenant entre autres les polynômes de Legendre. Mais de quelque
façon qu'on choisisse le système {pn(x)}, l'ordre d'approximation trouvé
en 4 ne se laisse pas améliorer sensiblement, parce que, en posant
f(x) \x\y la fonction f(x) est composée d'une seule portion convexe
et, pourtant, l'ordre de grandeur de la meilleure approximation de

f(x) | x\ par un polynôme de degré n est11) 01 — I. Par conséquent,

Max | f(x) — Sn(x) | ne peut pas avoir une borne essentiellement inférieure

à celle du paragraphe 4, notamment à ^ =0 l—l
2n \n

(Reçu le 19 mai 1943.)

•) Aux points £ de l'ensemble de mesure nul où f(x) n'existe pas, nous posons

10) L. e. p. 306—321.
n) L. c. 6), p. 60.
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