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Sur une généralisation
des fonctions orthogonales de M. Rademacher

Par Paur Livy, Lyon

L’objet du présent travail est de définir un systéme de fonctions ortho-
gonales dans l'intervalle (0,1) qui est lié & la numération & base p comme
le systéme bien connu de H. Rademacher ’est & la numération dyadique.
Seulement, tandis que les fonctions de Rademacher sont réelles, toujours
égales & — 1 ou a + 1, il s’agit ici de fonctions imaginaires, ayant p
valeurs possibles, qui sont les racines p-iémes de 1'unité, et elles sont
liées par la relation d’orthogonalité complexe (ou hermitienne)

1
[ or@ gr(@)de =0 (k) , (M)
0
ol ¢, désigne I'imaginaire conjuguée de ¢, ; leurs modules étant constam-
ment égaux a I'unité, elles sont de plus normales, c’est-a-dire que I'on a

6" | @5 (2) | da “Eéf‘}’h(w) pr(x)de =1 . (2)

Si simples que soient ces fonctions, il ne semble pas qu’elles aient encore
été signalées. Du moins Kaczmarz et Steinhaus, dans leur Theorie der
Orthogonalreihen publiée en 1935, n’en font pas mention.

1. Rappelons d’abord ce qui fait 'intérét des systémes de fonctions
définis successivement par A. Haar!) et par H. Rademacher?), et par 13
méme de celui que nous allons définir.

Lagrange et ses contemporains ne croyaient pas qu’il fiit possible de
représenter n’importe quelle fonction continue, dans un intervalle fini,
par des combinaisons linéaires d’une infinité dénombrable de fonctions
données. Cette idée erronée provenait évidemment d’une induction
incorrecte faite en partant de la série de Taylor. Le moyen le plus simple
de montrer que Lagrange se trompait est fourni par 1’étude des fonctions
a paliers. Une fonction a paliers est une fonction qui, dans un intervalle
fini (a, b), n’admet qu’un nombre fini de discontinuités, et est constante

1) A. Haar, Zur Theorie der orthogonalen Funktionensysteme. Mathema-
tische Annalen, t. 69 (1910), p. 331—371.

2) H. Rademacher, Einige Satze iiber Reihen von allgemeinen Orthogonal-
funktionen, Mathematische Annalen, t. 87 (1922), p. 112—138.
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dans chacun des intervalles ou elle est continue. Il résulte évidemment
de la continuité uniforme des fonctions continues dans I'intervalle fermé
(@, b) qu'une telle fonction f(x) peut étre approchée, par des fonctions
a paliers, avec une erreur inférieure en tous les points de cet intervalle,
a un nombre positif arbitrairement petit prés. Il est méme évident
qu’on ne change rien & ce résultat en ne considérant que les fonctions
a paliers dont les points de discontinuité appartiennent & un ensemble
donné E, si cet ensemble est partout dense dans (a, b).

Nous prendrons pour (a, b) 'intervalle (0,1), et pour E ’ensemble %
des nombres rationnels représentés par des fractions dont les dé-
nominateurs sont des puissances de p. Pour chaque fonction & paliers
g(x) dont les points de discontinuité appartiennent ainsi & £, il existe
un entier ~ tel que ¢g(x) soit constant dans chacun des intervalles
ik = [(k — 1)[p*, k[p"]; g(x) est donc de la forme

C1Yn,1(x) + Copn (@) +- -+ caynu(x) (H =ph , (3)

¢; désignant la valeur constante de g(x) dans I'intervalle i, ; et v, ()
désignant la fonction & paliers égale & 'unité dans cet intervalle et nulle
partout ailleurs. Une fonction continue f(x) est donc une limite uniforme
d’expressions de la forme (3); elle est donc une combinaison linéaire de
Iensemble des fonctions vy, () (A =0,1,...;k=1,2,..., H).

Il faut remarquer que ces fonctions ne sont pas linéairement indépen-
dantes; on a en effet

Yo, (X) = Yh+1, (k1) p+1 (x) + Ya+1, (k—1) p+2 () + -+« + 1l’h+1,7w(x) .

Pour obtenir une suite de fonctions linéairement indépendantes, il n’y
& qu’a supprimer les fonctions v, (). En rangeant les fonctions con-
servées dans I’ordre des h croissants, et, pour chaque valeur de 4, dans
l'ordre des % croissants, on obtient une suite de fonctions

Pi(®), ¥a(®), . - - Yul®)5. - s (4)

qui est fermée dans ’espace des fonctions définies et continues dans (0,1),
c’est-3-dire qu’une telle fonction f(x) peut étre approchée uniformément,
autant qu’on veut, par une combinaison linéaire d’un nombre fini de
fonctions y,(z) .

On peut naturellement normaliser ces fonctions, en les multipliant par
Vo, pour p = 2, on obtient ainsi les fonctions de M. Haar.

Pour terminer ces remarques préliminaires, observons que la suite (4),
fermée dans I’espace des fonctions continues, I’est aussi dans l’espace
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L, des fonctions dont la puissance d’exposant « est sommable dans I'in-
tervalle (0,1). On sait en effet qu'une fonction f(x) de L, peut étre appro-
chée autant qu’on veut, en moyenne d’ordre «, par des fonctions a paliers
dont les points de discontinuité appartiennent & I’ensemble K. La con-
clusion, en ce qui concerne la suite (4), est alors la méme que pour 'appro-
ximation uniforme des fonctions continues.

2. Les résultats relatifs aux fonctions y,(z) s’étendent évidemment a
toutes les suites de fonctions ¢,(x) définies dans I'intervalle (0,1) et pré-
sentant les caractéres suivants:

1. Ce sont des fonctions & paliers.

2. Elles sont linéairement indépendantes, c’est-a-dire qu’aucune d’elles
n’est une combinaison linéaire des précédentes.

3. Les seuls points de discontinuité possibles pour les H = p”* premiéres
de ces fonctions sont les points d’abscisses multiples de p=* .

Ces conditions sont en effet suffisantes pour que I’ensemble des combi-
naisons linéaires des H premiéres fonctions ¢,(x) soit I’ensemble des
fonctions & paliers constantes dans chacun des intervalles i, ,(k =
1,2,...,H).

Parmi les suites de fonctions réelles ou complexes qui présentent ces
caractéres, celles qui sont orthogonales et normales (au point de wvue
complexe, défini par les formules (1) et (2)) présentent un intérét parti-
culier. Comme elles sont complétes dans L,, on sait que n’importe quelle
fonction f(x) de L, peut étre représentée par une série, convergente en
moyenne quadratique, de la forme 2} a,¢,(x); les coefficients a, sont
donnés par la formule de Fourier généralisée

1

= [ {(@) @, (2) dx | (5)
0
et 'on a

2|ail=j|f2(x)1dx<oo. (6)

Inversement, il résulte du théoréeme de Fischer et Riesz que, si 'on se
donne une suite de coefficients a, telle que la série 3 |a,|? soit conver-
gente, la série Y a,¢,(x) converge en moyenne quadratique vers une
fonction f(x), de carré sommable et qui vérifie les formules (5) et (6).

L’orthogonalité d’un certain nombre de fonctions entrainant leur indé-
pendance linéaire, si, par un procédé quelconque, nous formons une suite
de fonctions ¢,(x), deux & deux orthogonales, normales, et telles de plus
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que les H = p" premieres de ces fonctions soient constantes dans chacun
des intervalles 4, ,(k =1, 2,..., H), tous les résultats précédents s’ap-
pliquent & cette suite. Elle est en particulier fermée, aussi bien dans
I’espace des fonctions continues que dans n’importe lequel des espaces
L,, et elle est équivalente & la suite (4) en ce sens que les combinaisons
linéaires des H premiéres fonctions considérées sont exactement les
mémes pour l'une et 'autre de ces suites (dans cet énoncé on ne peut pas
remplacer H = p* par un nombre entier quelconque).

3. Pour former une telle suite, désignons par « une racine primitive
de 1’équation
x? =1, (7)

et par 7(x) la partie entiere de x, et posons
w(x):(x’?(z)’ wh(x)’:w(phx) (h=112»“') * (8)

Si 7 est un entier qui ne soit pas multiple de p, w}(x) est une fonction
périodique, de période 1/p*-1, et prenant successivement dans une période
les valeurs 1, B8, B2,..., BP 1 (B=0o"#%1; pf* = &’ = 1). On a donc

’ 148+ -+ prt pr — 1
wl(x) de = = == {J . 9
ij h( ) ph ph(ﬁ_l) ()
h—1 k
Pour définir maintenant les fonctions ¢,(x), utilisons la numération
a base p ; elle donne pour chaque entier » positif ou nul une représentation
et une seule de la forme

n=¢& + &P+ &P + - + Pt -0, (10)

les ¢, étant des entiers > 0 et << p, un nombre fini d’entre eux étant
seuls différents de zéro. Si n = 0, tous les ¢, sont nuls; sin >0,il y a
au moins un ¢, positif, et la plus grande valeur de » pour laquelle ¢,
soit positif est le plus grand exposant entier h tel que p* < n. Nous
définirons alors ¢,(x) par la formule

@ (2) = o' () wz2(x)...0;¥(x)... (11)
qui représente bien entendu un produit fini, puisque les facteurs d’in-

dices > % sont égaux & I'unité. On a ¢ (x) = 1, tandis que, pour n > 0,
les b — 1 premiers facteurs étant constants dans chacun des intervalles
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1h-1,%> Pn(¥) €st, dans chacun de ces intervalles, de la forme c,w} (),
Pexposant r = ¢, étant un entier compris entre 0 et p. Compte tenu de
la formule (9), on a donc

1 1 sin=20
x) dx = de = { °’ ’ 12
!%J) Zk:ih_jl"k‘i”n(x) x 0, sin>0. (12)

Pour évaluer maintenant 'intégrale (1), observons que, ¢,(z) et @.(«)
ayant respectivement les valeurs

r,

oa(@) =1 0,"@) , pe) =M o, @),
analogues & la valeur (11) de ¢,(x), on a
@ () &k(x) = Il wyv () , (13)

¢, étant indifféremment égal & ¢, — &’ ou & ¢, — &/ + p, ce qui permet
de rendre tous les ¢, > 0 et < p; il n’y en a d’ailleurs qu’'un nombre
fini qui soient différents de zéro. Le produit (13) est done de la forme (11);
il représente une fonction ¢, (x). D’ailleurs, si A = k, et dans ce cas
seulement, la suite des ¢, est identique & celle des ¢, tous les ¢, sont nuls,
et n, défini par la formule (10), est nul. La formule (13) donne donc

i - 0, sih#k,
gqﬁh(x)fpk(x) dr=1" bk (14)

Les fonctions ¢,(x) sont donc des fonctions & paliers, formant une
suite orthogonale et normale dans l'intervalle (0,1); si n < p®, ¢,(x) est
constant dans chacun des intervalles i, , . Ces fonctions vérifient donc
toutes les conditions énoncées au No. 2.

4. Duiscussion. Conditions de réaluité.

Si on remplace « par la racine imaginaire conjuguée x = 1/, les
fonctions w,(x), et par suite les fonctions ¢,(x), sont remplacées par les
fonctions imaginaires conjuguées w,(x) et @,(x). A l'ordre pres, la suite
des fonctions ¢, (z) ainsi obtenues est évidemment identique & celle des
fonctions ¢, () ; on ne change en effet pas le produit (11) en remplacant
w,(z) par w,(x) = 1]/w,(x), et, pour tous les indices » pour lesquels &,
n’est pas nul, ¢, par p — ¢,. Les fonctions ¢,(x) sont donc, ou bien réelles,
ou bien deux & deux imaginaires conjuguées. Tout indice » pour lequel
@.(x) n’est pas réel est donc associé & un autre indice n’ tel que

P (%) = @ () - (15)
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Pour h = n, k = n’ # n, la relation d’orthogonalité (14) s’écrit alors

1
| @i(x)de =0,
0

de sorte que, en désignant respectivement par R, (xz) et I, (x) la partie
réelle et la partie imaginaire de ¢,(z), on a

JR.(@)de=[I2(2)de=1% [ |¢i(a) |de =1} |

(11 0 0 (16)
j‘Rn(x) In(x) dx =0 ’

0

pour tous les couples de nombres associés n et n’, on obtient donc une
nouvelle suite orthogonale et normale, composée uniquement de fonctions
réelles.

Etudions maintenant les conditions de réalité des fonctions ¢,(x).
Remarquons a cet effet que toutes les valeurs possibles de ¢,(x) sont des
puissances de « ; les seules valeurs réelles possibles sont donec — 1 et
+ 1, la valeur — 1 n’étant possible que si p est pair.

Si done p est impair, la seule fonction @, (x) réelle est la fonction gy(x),
constamment égale a ’'unité. Toutes les autres sont deux & deux imagi-
naires conjuguées.

Pour p = 2, la seule racine primitive de I’équation (7) est « = —1;
toutes les fonctions ¢,(x) sont donc réelles; c’est le cas étudié par M. Rade-
macher.

Sienfin p = 2p’ > 2, si tous les ¢, sont égaux & 0 ou & p’, tous les
w,(x), et par suite ¢,(x), sont égaux & — 1 ou -+ 1; parmi les p* pre-
mieres fonctions ¢@,(x), on obtient ainsi 2* fonctions réelles, toujours
égales &4 — 1 et - 1. Pour montrer qu’il n’y en a pas d’autres, il suffit
d’observer que g@,(x) réel, c’est-a-dire n = n’, implique qu’aucun des
¢, ne soit changé quand on passe de n & n’; or, si ¢, n’est pas nul, il est
remplacé par p — ¢,, qui n’est égal & ¢, que si ¢, = p; les seules valeurs
Inchangées sont donc 0 et p’, et, pour que @,(x) soit réel, il est finalement
nécessaire et suffisant que tous les ¢, soient égaux 4 0 ou & p’.

5. Nouvelle extension. Au lieu de la numération & base p, considérons
la numération généralisée. Un systéme de numération généralisée est
défini par une suite d’entiers

D1sPosevesPhsess
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tous plus grands que I'unité. Pour chaque valeur de A, ¢, peut alors
prendre les valeurs 0, 1, 2,..., p, — 1, et, si 'on pose

P,=p,p; - pp,

chaque entier » positif ou nul peut étre représenté d’une manieére et d’une
seule par la formule

n=¢ + &P+ &P+ - + P, ,.
Désignons maintenant par «, une racine primitive de I’équation

g% =]

b

et posons
wk(x) - “'Z(ka) ’

P (Z) = 0 (T) wi(x)...0kx) .
On obtient ainsi, comme dans le cas ou tous les p, ont une méme

valeur p, une suite compléte de fonctions orthogonales et normales;
ce sont des fonctions & paliers, et les P, premiéres sont constantes dans

. o k
chacun des intervalles (—% , —P—;) .
En dehors du cas particulier ou tous les p, ont une méme valeur p,
un cas remarquable est celui ou

p,=h , donec P,=h!

(Regu le 1 septembre 1942)
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