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Sur une généralisation
des fonctions orthogonales de M. Rademacher

Par Paul Lévy, Lyon

L'objet du présent travail est de définir un système de fonctions
orthogonales dans l'intervalle (0,1) qui est lié à la numération à base p comme
le système bien connu de H. Rademacher l'est à la numération dyadique.
Seulement, tandis que les fonctions de Rademacher sont réelles, toujours
égales à — 1 ou à + 1, il s'agit ici de fonctions imaginaires, ayant p
valeurs possibles, qui sont les racines p-ièmes de l'unité, et elles sont
liées par la relation d'orthogonalité complexe (ou hermitienne)

1 Vh(x)vk(z)dx 0 (h^k) (1)
0

où cpk désigne l'imaginaire conjuguée de cpk ; leurs modules étant constamment

égaux à l'unité, elles sont de plus normales, c'est-à-dire que l'on a

]\<p\{x)\dx=]
o o
j I vl(*) I dx 1 ?>»(«) <Ph(x) dx=l (2)

Si simples que soient ces fonctions, il ne semble pas qu'elles aient encore
été signalées. Du moins Kaczmarz et Steinhaus, dans leur Théorie der

Orthogonalreihen publiée en 1935, n'en font pas mention.

1. Rappelons d'abord ce qui fait l'intérêt des systèmes de fonctions
définis successivement par A. Haar1) et par H. Rademacher2), et par là
même de celui que nous allons définir.

Lagrange et ses contemporains ne croyaient pas qu'il fût possible de

représenter n'importe quelle fonction continue, dans un intervalle fini,
par des combinaisons linéaires d'une infinité dénombrable de fonctions
données. Cette idée erronée provenait évidemment d'une induction
incorrecte faite en partant de la série de Taylor. Le moyen le plus simple
de montrer que Lagrange se trompait est fourni par l'étude des fonctions
à paliers. Une fonction à paliers est une fonction qui, dans un intervalle
fini (a, 6), n'admet qu'un nombre fini de discontinuités, et est constante

1) A. Haar, Zur Théorie der orthogonalen Funktionensysteme. Mathema-
tische Annalen, t. 69 (1910), p. 331—371.

2) H. Rademacher, Einige Sàtze ûber Reihen von allgemeinen Orthogonal-
funktionen. Mathematische Annalen, t. 87 (1922), p. 112—138.
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dans chacun des intervalles où elle est continue. Il résulte évidemment
de la continuité uniforme des fonctions continues dans l'intervalle fermé
(a, b) qu'une telle fonction f(x) peut être approchée, par des fonctions
à paliers, avec une erreur inférieure en tous les points de cet intervalle,
à un nombre positif arbitrairement petit près. Il est même évident
qu'on ne change rien à ce résultat en ne considérant que les fonctions
à paliers dont les points de discontinuité appartiennent à un ensemble
donné E, si cet ensemble est partout dense dans (a,b).

Nous prendrons pour (a, b) l'intervalle (0,1), et pour E l'ensemble Ep
des nombres rationnels représentés par des fractions dont les
dénominateurs sont des puissances de p. Pour chaque fonction à paliers
g(x) dont les point» de discontinuité appartiennent ainsi à Ep, il existe
un entier h tel que g(x) soit constant dans chacun des intervalles
ihik [(k — l)jph, k/ph]] g(x) est donc de la forme

<>iVhti(x) + c2rph,2(%) H \-cHy>h,H{x) (H=ph) (3)

ck désignant la valeur constante de g(x) dans l'intervalle ih k et iphk(x)
désignant la fonction à paliers égale à l'unité dans cet intervalle et nulle
partout ailleurs. Une fonction continue f(x) est donc une limite uniforme
d'expressions de la forme (3); elle est donc une combinaison linéaire de
l'ensemble des fonctions tphik(x) (h 0,1,... ; k 1, 2,..., H).

Il faut remarquer que ces fonctions ne sont pas linéairement indépendantes;

on a en effet

n,k{x) y*+i,(*-i>p+i(30 + y*+i,<*-i>p+2(s) H h Vh+i,k,{x) •

Pour obtenir une suite de fonctions linéairement indépendantes, il n'y
a qu'à supprimer les fonctions Vft+i,fc2>(#)- En rangeant les fonctions
conservées dans l'ordre des h croissants, et, pour chaque valeur de h, dans
l'ordre des k croissants, on obtient une suite de fonctions

qui est fermée dans l'espace des fonctions définies et continues dans (0,1),
c'est-à-dire qu'une telle fonction f(x) peut être approchée uniformément,
autant qu'on veut, par une combinaison linéaire d'un nombre fini de

fonctions ipn(x).
On peut naturellement normaliser ces fonctions, en les multipliant par

Vp ; pour p 2, on obtient ainsi les fonctions de M. Haar.
Pour terminer ces remarques préliminaires, observons que la suite (4),

fermée dans l'espace des fonctions continues, l'est aussi dans l'espace



La des fonctions dont la puissance d'exposant oc est sommable dans
l'intervalle (0,1). On sait en effet qu'une fonction f(x) de La peut être approchée

autant qu'on veut, en moyenne d'ordre oc, par des fonctions à paliers
dont les points de discontinuité appartiennent à l'ensemble Ev. La
conclusion, en ce qui concerne la suite (4), est alors la même que pour
l'approximation uniforme des fonctions continues.

2. Les résultats relatifs aux fonctions y>n(x) s'étendent évidemment à

toutes les suites de fonctions cpn(x) définies dans l'intervalle (0,1) et
présentant les caractères suivants :

1. Ce sont des fonctions à paliers.
2. Elles sont linéairement indépendantes, c'est-à-dire qu'aucune d'elles

n'est une combinaison linéaire des précédentes.
3. Les seuls points de discontinuité possibles pour les H ph premières

de ces fonctions sont les points d'abscisses multiples de p~h

Ces conditions sont en effet suffisantes pour que l'ensemble des
combinaisons linéaires des H premières fonctions cpn{x) soit l'ensemble des

fonctions à paliers constantes dans chacun des intervalles ih^k(k

1,2,...,#).
Parmi les suites de fonctions réelles ou complexes qui présentent ces

caractères, celles qui sont orthogonales et normales (au point de vue
complexe, défini par les formules (1) et (2)) présentent un intérêt
particulier. Comme elles sont complètes dans L2, on sait que n'importe quelle
fonction f(x) de L2 peut être représentée par une série, convergente en

moyenne quadratique, de la forme Z ^n^ni00) \ les coefficients an sont
donnés par la formule de Fourier généralisée

an jf(z)ïn(x)dx (5)
o

et l'on a

Inversement, il résulte du théorème de Fischer et Riesz que, si l'on se

donne une suite de coefficients an telle que la série £ |aw|2 soit convergente,

la série Z an<Pn{x) converge en moyenne quadratique vers une
fonction /(#), de carré sommable et qui vérifie les formules (5) et (6).

L'orthogonalité d'un certain nombre de fonctions entraînant leur
indépendance linéaire, si, par un procédé quelconque, nous formons une suite
de fonctions <pn(x), deux à deux orthogonales, normales, et telles de plus
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que les H ph premières de ces fonctions soient constantes dans chacun
des intervalles ih k(k 1, 2,..., H), tous les résultats précédents
s'appliquent à cette suite. Elle est en particulier fermée, aussi bien dans

l'espace des fonctions continues que dans n'importe lequel des espaces
Lai et elle est équivalente à la suite (4) en ce sens que les combinaisons
linéaires des H premières fonctions considérées sont exactement les

mêmes pour l'une et l'autre de ces suites (dans cet énoncé on ne peut pas
remplacer H ph par un nombre entier quelconque).

3. Pour former une telle suite, désignons par <x une racine primitive
de l'équation

**=1, (7)

et par rj(x) la partie entière de a;, et posons

o)(phx) (h=l,2,...). (8)

Si r est un entier qui ne soit pas multiple de p, wrh(x) est une fonction
périodique, de période Ijp11-1, et prenant successivement dans une période
les valeurs 1, p, P2,..., pv~x (P ocr ^ 1 ; pv <xvr 1). On a donc

J ofls) dx=1 + P+v'h' + PPl ^I1!) - 0 • (9)

Vi k

Pour définir maintenant les fonctions (pn(x), utilisons la numération
à base p ; elle donne pour chaque entier n positif ou nul une représentation
et une seule de la forme

n Bl + e2p + e3p* + • • • + evpv~i + ¦ (10)

les ev étant des entiers > 0 et < p, un nombre fini d'entre eux étant
seuls différents de zéro. Si n 0, tous les ev sont nuls; si n > 0, il y a
au moins un ev positif, et la plus grande valeur de v pour laquelle ev

soit positif est le plus grand exposant entier h tel que jfl < n. Nous
définirons alors cpn{x) par la formule

<pn(x)= CDÏ(x)C0mx)...C0Svv(x)... (11)

qui représente bien entendu un produit fini, puisque les facteurs
d'indices > h sont égaux à l'unité. On a (pQ(x) — 1, tandis que, pour n > 0,
les h — 1 premiers facteurs étant constants dans chacun des intervalles
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t#*-i,«;» <Pn(x) es^> dans chacun de ces intervalles, de la forme ck(orh(x)y

l'exposant r eh étant un entier compris entre 0 et p. Compte tenu de

la formule (9), on a donc

J <pn(x) dx =- E J <pn(x) dx
»*-!,*

1, si n 0

0 si 7i > 0
(12)

Pour évaluer maintenant l'intégrale (1), observons que, cph(x) et
ayant respectivement les valeurs

vv<ph(x) n co£vv(x) <pk(x) n œ

analogues à la valeur (11) de <pn(x), on a

tph(x)vk(x) =nœ'vy(x) (13)

sv étant indifféremment égal h ev — err ou k efv~ e^ + p, ce qui permet
de rendre tous les ev > 0 et < p ; il n'y en a d'ailleurs qu'un nombre
fini qui soient différents de zéro. Le produit (13) est donc de la forme (11) ;

il représente une fonction <pn(x). D'ailleurs, si h Je, et dans ce cas

seulement, la suite des ev est identique à celle des e"v, tous les evsont nuls,
et n, défini par la formule (10), est nul. La formule (13) donne donc

J
0

0 si h ^ h

1 si h k
(14)

Les fonctions <pn(x) sont donc des fonctions à paliers, formant une
suite orthogonale et normale dans l'intervalle (0,1); si n < ph, <pn(x) est
constant dans chacun des intervalles ihk Ces fonctions vérifient donc
toutes les conditions énoncées au No. 2.

4. Discussion. Conditions de réalité.

Si on remplace oc par la racine imaginaire conjuguée oc l/<%, les

fonctions cov(x), et par suite les fonctions q>n(x), sont remplacées par les

fonctions imaginaires conjuguées cov(x) et q>n(x). A l'ordre près, la suite
des fonctions (pn(x) ainsi obtenues est évidemment identique à celle des

fonctions (pn(x) ; on ne change en effet pas le produit (11) en remplaçant
cov(x) par (ov(x) lja)v(x), et, pour tous les indices v pour lesquels ev

n'est pas nul, ev par p — ev. Les fonctions <pn(x) sont donc, ou bien réelles,

ou bien deux à deux imaginaires conjuguées. Tout indice n pour lequel
(pn(x) n'est pas réel est donc associé à un autre indice n ' tel que

yn,(x) (pn(x) (15)
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Pour h n, k n' ï^n, la relation d'orthogonalité (14) s'écrit alors

)2n (x) dx 0

de sorte que, en désignant respectivement par Bn(x) et /„(#) la partie
réelle et la partie imaginaire de y>n(x), on a

0 0 0
(16)

$Rn(x)In(x)dx 0

En remplaçant <pn(x) et cpn,(x) par j/2 -Rn(a;) et j/2 /n(#), et opérant ainsi

pour tous les couples de nombres associés n et n ', on obtient donc une
nouvelle suite orthogonale et normale, composée uniquement de fonctions
réelles.

Etudions maintenant les conditions de réalité des fonctions (pn{x).
Remarquons à cet effet que toutes les valeurs possibles de <pn(x) sont des

puissances de <x ; les seules valeurs réelles possibles sont donc — 1 et
+ 1, la valeur — 1 n'étant possible que si p est pair.

Si donc p est impair, la seule fonction <pn(x) réelle est la fonction q>0(x),

constamment égale à l'unité. Toutes les autres sont deux à deux imaginaires

conjuguées.
Pour p 2, la seule racine primitive de l'équation (7) est oc — 1 ;

toutes les fonctions cpn(x) sont donc réelles ; c'est le cas étudié par M. Rade-
mâcher.

Si enfin p 2p' > 2, si tous les ev sont égaux à 0 ou à p', tous les

cov(x), et par suite <pn(x), sont égaux à —- 1 ou + 1; parmi les ph
premières fonctions (pn(x), on obtient ainsi 2h fonctions réelles, toujours
égales à — 1 et + 1 • Pour montrer qu'il n'y en a pas d'autres, il suffit
d'observer que (pn(x) réel, c'est-à-dire n nr, implique qu'aucun des

£„ ne soit changé quand on passe de n à n1 \ or, si ev n'est pas nul, il est
remplacé par p — ev, qui n'est égal à ev que si ev p ; les seules valeurs
inchangées sont donc 0 et pf, et, pour que cpn{x) soit réel, il est finalement
nécessaire et suffisant que tous les ev soient égaux àOouà^'.

5. Nouvelle extension. Au lieu de la numération à base p, considérons
la numération généralisée. Un système de numération généralisée est
défini par une suite d'entiers
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tous plus grands que l'unité. Pour chaque valeur de h, eh peut alors
prendre les valeurs 0, 1, 2,..., ph — 1, et, si Ton pose

Ph P1P2 • • • Ph,

chaque entier n positif ou nul peut être représenté d'une manière et d'une
seule par la formule

Désignons maintenant par txk une racine primitive de l'équation

a?* 1

et posons
a>k(x) «2<^«)

On obtient ainsi, comme dans le cas où tous les ph ont une même
valeur p, une suite complète de fonctions orthogonales et normales;
ce sont des fonctions à paliers, et les Ph premières sont constantes dans

chacun des intervalles j-~- -^-J
En dehors du cas particulier où tous les ph ont une même valeur p,

un cas remarquable est celui où

ph h donc Ph h

(Reçu le 1 septembre 1942)
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