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Uber den Begriff des Atoms IV

Von W. SCHERRER, Bern

Einleitung

Der vorliegende Teil IV*) ist die unmittelbare Fortsetzung der unter
demselben Titel erschienenen Teile 1') und I12). Er kann aber auch als
selbstdndige Studie iiber das Problem der wellenmechanischen Trigheit
eines Elementarteilchens gelesen werden und ich schicke zu diesem
Zwecke einige Erlduterungen voraus.

1. Ein einzelnes Elementarteilchen der Ruhmasse m, wird charak-
terisiert durch eine Wellenfunktion

’l,l,:u(t,x'l, xz, xa) (1)

deren physikalischer Sinn darin besteht, daBl das iiber das Weltgebiet &
erstreckte Integral

W = jlf@”uz d(ct) dx, dx, dx, (2)

im Mittel die Zahl derjenigen Weltstellen angibt, welche von unserem
Teilchen innerhalb des Weltgebietes ® eingenommen werden. Die
Funktion u stellt also nicht einen konkreten Einzelfall, sondern das Mittel
sehr vieler und voneinander vollstindig unabhéingiger Elementarteilchen
dar, die denselben Konkurrenzbedingungen unterliegen.

2. Als Trdagheitsgesetz postulieren wir, dafl die Wellenfunktion?) (1) eine
esndeutige Losung der kriftefreien relativistischen Wellengleichung

1 2*u 2u %u Au o
=G G T m  E am - Y (3)
sei, mit
’ 2mmyc

wo ¢ die Lichtgeschwindigkeit und 4 das Planck’sche Wirkungsquantum
bedeutet.

1) Helv. Phys. Acta, XV, 1, 53 (1942).

?) Helv. Phys. Acta, XV, 5, 476 (1942).

3) respektive ihr Quadrat, solange man mit dieser schwicheren Forderung auskommt.

*) Teil III, Helv. Phys. Acta XVI, 4, 230 (1943), enthalt lediglich eine kurze Zu-
sammenfassung der in dem vorliegenden Artikel entwickelten Resultate.
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3. Als Randbedingung postulieren wir das Verbot der Uberlicht-
geschwindigkeit. Dasselbe wird sich von Fall zu Fall, je nach der zugrunde
liegenden Konfiguration, verschieden auswirken. Wie das zu verstehen ist,
wird ohne weiteres klar, wenn man die denkbaren Fille nacheinander
aufzahlt.

I. Das ,,Einpunktproblem’’.

Von einem Elementarteilchen sei bekannt, dafl es an einer bestimmten
Weltstelle @, in Erscheinung trete. Welches ist die Wahrscheinlichkeit
dafiir, dieses Teilchen an irgend einer anderen mit dem Verbot der Uber-
lichtgeschwindigkeit vertriaglichen Weltstelle ¢ anzutreffen?

Das damit umschriebene Grundgebiet umfafit offenbar den Nach-
kegel (Zukunftskegel) und den Vorkegel (Vergangenheitskegel) der
,,GewiBheitsstelle* @, .

I1. Das ,,Zweipunktproblem®.

Von einem Elementarteilchen sei bekannt, dal es an zwei zueinander
zeitartig gelegenen Weltstellen @, und @, in Erscheinung trete, wobei ¢,
spiter sei als ;. Dann wird genau dieselbe Frage gestellt wie beim
Einpunktproblem.

Das jetzt maBBgebende Grundgebiet besteht offenbar aus dem Nach-
kegel von @,, dem Vorkegel von ¢, und dem Durchschnitt des Nach-
kegels von @, mit dem Vorkegel von @,. Den letzteren endlichen Bereich
wollen wir in Zukunft kurz als ,,Doppelkegel’* bezeichnen.

So fortfahrend, gelangt man zum Begriff eines ,,n-Punktproblems,
wobei natiirlich irgend zwei der n ,,GewiBheitsstellen @,, @,, ..., @x;
zueinander zeitartig liegen miissen.

4. Die Hauptfrage wird nun sein, ob die nach den eben geschilderten
Gesichtspunkten ermittelten Wellenfunktionen die Erhaltung des Teil-
chens garantieren. Ein genauer mikrokosmischer Erhaltungssatz wird im
Rahmen der in Teil I und IT entwickelten Weltpunktdynamik gar nicht
angestrebt. Dagegen ist es notwendig, daB das Teilchen asymptotisch fiir
groBBe Zeiten erhalten bleibe. Um den Sinn dieser Aussage préziser zu
fassen, bezeichnen wir den zwischen den Ebenen ¢t =0 und ¢t =T
gelegenen Teil des Grundgebietes mit & (7) und betrachten im Sinne
von (2) das Integral

W(T) = [fffu?d(ct) da, dx, dx, . (5)
&(T)

Nun fragen wir nach der mittleren Zahl der von dem Teilchen zur Zeit
t = T pro Sekunde eingenommenen Weltstellen. Sie wird gegeben durch
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_?3];’:: jj‘f‘ u?dr, de, dxy = »(T) . (6)
t=

Offenbar hat es dann und nur dann einen Sinn, von der asymptotischen
Erhaltung des Teilchens fiir grofe Zeiten zu sprechen, wenn der Grenz-
wert

lim »(7) = »* (7)

T-> o
existiert.

Nach den eben entwickelten Gesichtspunkten wurde im Teil IT das
Einpunktproblem gelost. Die im Sinne von (7) brauchbaren Loésungen
sind daselbst zusammengestellt in den Tafeln (56) und (70). Da wir sie
vorderhand nicht bendétigen, verzichte ich auf ihre Wiedergabe. Wichtig
fir uns ist die Feststellung, dafl simtliche Losungen entweder auf dem
Nullkegel oder auf der Ruhachse singuldr werden. Ganz besonders hervor-
zuheben ist aber die Tatsache, dal} sich unter diesen Losungen keine
befindet, die der vollkommenen Zentralsymmetrie des Einpunktproblems
in dem Sinne entspricht, daf} sie nur von der Weltdistanz

r="Vet —a} —a; — 2} (8)

abhingt. Die einzige vollkommen singularitdtenfreie Losung dieser Art

lautet

Ji(ar)
r

u=C- (9)
(J; = Bessel’sche Funktion vom Index 1) und liefert in (7) »* = co. Um
also beim Einpunktproblem brauchbare Lésungen zu erhalten, ist man
gezwungen, die Ruhachse auszuzeichnen und damit ein der Konfiguration
nicht angemessenes Element zu benutzen.

Dieser begriffliche Mangel soll uns nun ein Anlafl sein, in dem vor-
liegenden Teil III das Zweipunktproblem zu behandeln. Eine derartige
Untersuchung empfiehlt sich auch aus folgendem Grunde: In der klassi-
schen Mechanik wird die Triagheitsbewegung eines Massenpunktes fest-
gelegt durch Ort und Geschwindigkeit zu einer bestimmten Zeit oder —
in der Ausdrucksweise der relativistischen Metrik — durch die Angabe
zweler zu einander zeitartig gelegener und infinitesimal benachbarter
Weltpunkte. Es ist also zu erwarten, daB das Zweipunktproblem der
klassischen Mechanik niher steht als das Einpunktproblem. Diese Er-
wartung wird sich tatséchlich bestétigen.
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§ 1. Koordinatenwahl und Separation

Wir wihlen das Koordinatensystem so, dal die beiden Weltstellen @,
und @, , welche unser Teilchen mit Sicherheit passiert, durch die Angaben

QlN(Ctaxl’xz’xa)z("A>0: O:O) (101)
und
Q, ~ (ct, x,, x5, 3) = (4,0,0,0) (10,)

bestimmt erscheinen. Dann fithren wir an Stelle von z,, z,, x, rdumliche
Polarkoordinaten ein
Z, = p cos ¥
X, = p sin ¥ cos ¢ (11)
Zy = psindsing,

und schlieBlich ersetzen wir die Zeit ¢ und den rdumlichen Abstand ¢ durch
— der relativistischen Metrik angepafite — Lamé’sche Koordinaten 7
und o geméif den Gleichungen

T0

A

V(42 —1?) (42— o?)
A

et ==

(12)

Sind die Betrdge | 7| und | o | beide kleiner als 4, so bewegt sich der
Bildpunkt im Innern des Doppelkegels; sind sie hingegen beide grofer
als A, so bewegt er sich im Vorkegel von @, oder im Nachkegel von @, je
nach den gewihlten Vorzeichen.

Die durch (11) und (12) eingefiihrten krummlinigen Koordinaten
7,0, 9%, ¢ bilden ein ,,Orthogonalsystem‘ im Sinne der herrschenden
Metrik. Das zugehorige Linienelement lautet

d82=(0'2——7:2)( d 2 d o? )

A2 — 2 A2 _ g2

A2 — 2 AZ 2 )
_ v )A(2 7) (d92 4 sin2 9 de?) . (13)
Daraus ergibt sich das vierdimensionale Volumenelement
V(42— 1?) (42 — ¢?)
A

d(ct) dz, dx, dz; =

|12—o0?| sind drdodd de , (14)

sowie der Wellenoperator
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1

0-2___ 12

1 0 1 ou
— (VA2 — 72)3 VA2 o2)3
VA2 — 2 ar[( ) Br] VA2 — o2 ao‘[( ) aa]

42 1 0 ” 06@& 1 62u$
@ =) (@ =) |snd 90 \ " 39 ) T sinEo 32

Die Separation auf Grund des Produktansatzes
u= T(tr) S(c) P(¥) D(¢p) (16)

liefert dann die Gleichungen

(15)

o 5
1 d | dP m? ]

Snd 9 \S‘“""W)Jf[’““)“md P=0, ®
r- - - 2"

, __i_____d_ (VA __0-2)3_@ .3 dz(Az_az)_E__l_(_l_:t_l_)_A_ S =0 , (S)
{/Az—azda i o i A2 — g |
- _ -

‘_1_____d__ (VAz Tz)3dT + dz(Az_,z)_E_M T—=0. (T)
A*— 72 dr | dr | | A% — 1 |

el o e o PRI st Uit o e

Hier sind in den beiden wohlbekannten Gleichungen (@) und (P) die
Eigenwerte schon durch die geldufigen Quantenzahlen m und I ausge-
driickt worden. Neu und fiir das Zweipunktproblem charakteristisch
sind die beiden gleichlautenden Gleichungen (S) und (7').

§ 2. Die Quantenbedingungen
Die Eigenlésungen von (®) und (P) werden in bekannter Weise durch
Kreis- und Kugelfunktionen geliefert. Wir haben uns also nur noch mit
den Gleichungen (S) und (7') zu befassen. Es wird sich zeigen, daB ihre
Quantisierung im wesentlichen auf der Forderung der Eindeutigkeit
beruht.
Wir uniformisieren zuerst die Koeffizienten der beiden Gleichungen
vermittelst der Transformation
T = Acosf
= A cosu (17)

und erhalten
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1 d (., dS i . LI+ 1)]
ma——&(sm “d_cx) -+ hAzazsmz(x——E— s |

1 d ... dT\ [ . L+ 1)1
—'S-E——ﬂ—zi—ﬂ‘(srnz ﬂg—fg) -+- bAzaz sin? ﬂ'—-E—- s ﬂ)# T—=20 . (T)

An Stelle von (12) tritt
ct = A cos f§ cos &

o = Asinfsinx. (18)

Nun betrachten wir eine bestimmte Weltstelle ¢, mit den Koordinaten
(to, 0o)- Ihr entsprechen in der (x, §)-Ebene unendlich viele Punkte, die
gitterartig verteilt sind, ndmlich alle Losungen der Gleichungen

cty = A cos f§ cos x

0o = Asinfsinx, (19)

oder auch der Gleichungen

cty + 0o = A cos (f — «) .
cto— o= A cos (f +«) .

Ist also (x,, B,) eine Losung von (19), so geniigen alle weiteren Losungen
(o, B) dem System
cos (f + &) = cos (Bo + o) (20)

cos (f — &) = cos (B — %) -

Die Eindeutigkeit von u? erfordert daher, dafl die Gleichung

T*[B]8%[x] = T°[Bo] 8%[x] (21)

fiir simtliche Losungen der Gleichungen (20) erfiillt ist.

Es gibt aber noch eine zweite Gruppe von Stellen (x, ), fiir die (21)
gelten muf3. Ersetzt man nidmlich die Winkelkoordinaten ¢, und 9, der
Stelle @, durch ¢, + 7 und & — 9,, so gelangt man wegen (11) und (18)
in denselben Punkt, wie wenn man «, durch — &, oder §, durch — f,
ersetzt. Es mul} also gelten

T[B0]8%[xo] P [n—D0] D*[@o+7u]=T*[ = B S+ oo ] P2 [ ] QZ[‘PO] '
Nun gilt aber fiir die Kreis- und Kugelfunktionen
P — 9,] D@, + ] = P2[D,] D*[g,] -
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Somit ergibt sich
T?[Bo]8*[xo] = T*[+ Bo] S* [+ o]

Daraus folgt, daB auller den Lésungen von (20) auch noch die Losungen
des Systems
cos (f + o) = cos (By — o) (22)
cos (B — o) = cos (B¢ + o)

die Gleichung (21) erfiillen miissen.
Nun ergibt sich ohne Schwierigkeit folgendes Eindeutigkeitskriterium :
Die Gleichung

T[] 8] = T*[Bo] 8*[x] (23)
muB erfiillt sein, sobald entweder
&= +4ou,+ kn 93
ﬂ — i ﬁo + l?t ( 1)
oder
o=+ B¢+ k=n
B =+ +ln (23,

gilt, wobei k und ! ganze Zahlen darstellen, die simultan entweder gerade
oder ungerade sein miissen, wihrend die Vorzeichen von «, und g, un-
abhédngig gewihlt werden diirfen.

Dieses Kriterium wertet man bequem aus, wenn man nacheinander
die Spezialfille

x = By, B = o,
& = &g, ﬁ=_ﬂ0
& =0y + 7T , B=PBo+

behandelt. Es ergeben sich folgende

Quantenbedingungen :

1. Die Losung 7'(B8) muf3 bis auf einen konstanten Faktor dieselbe
Funktion darstellen wie die Losung S (x):

T(x) =C8(x) . (24)
2. Die Losungsfunktion ist entweder gerade oder ungerade:
S(—z)= 4 8(x) .
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3. Die Losungsfunktion ist entweder ganzperiodisch mit der Periode =
oder halbperiodisch mit der Periode 2x:

S(x 4+ =) = 4 S(x)

Es herrscht also eine weitgehende Analogie zum Eigenwertsproblem der
Mathieu’schen Differentialgleichung?). Tatséchlich lassen sich auch die
fiir dieses Problem entwickelten Methoden verwerten, wenn man an
Stelle trigonometrischer Reihen Entwicklungen nach vierdimensionalen
Kugelfunktionen beniitzt.

§ 3. Kugelfunktionen im R,

Wir lassen den Parameter A in der Gleichung [S] des vorigen Para-
graphen gegen Null gehen und ersetzen die Zeichen S, «, £ durch
G, 0, — A. Es folgt die Differentialgleichung der zugeordneten Kugel-
funktionen im R,:

L4 (.. d@ 1+1)7,
w7 a5 (0 Gg) + [~ g O =0 ®

Diese Differentialgleichung folgt auch aus der Gleichung (22) von Teil II,
§ 2, vermittelst der Substitution 6 —¢0. Aus den Entwicklungen da-
selbst erhilt man unmittelbar fiir die bei 6 = 0 endlichen Losungen den
Ausdruck

G(0) = (— sin 0)‘(

d _\lsin(m41)6 _
sinfdo ) sin 0 =@, (cos 0) , (27
falls

A=nn 4+ 2) (28)

gesetzt wird. Sollen diese Losungen auch im Punkte 6 = = endlich
bleiben, so mufl n eine ganze Zahl sein. Wie man leicht erkennt, sind
diese trigonometrischen Polynome nur fiir » > [ von Null verschieden.

Die Funktionen Q. (cos 0) sind also die im abgeschlossenen Intervall
0 < 0 < & stetigen Eigenlosungen der Differentialgleichung (G) und die
GroBlen (28) die zugehorigen Eigenwerte. Offenbar erfiillen diese Eigen-
l6sungen die im vorigen Paragraphen angegebenen Quantenbedingungen
(25) und (26), und zwar sind sie gerade oder ungerade, resp. ganz-
periodisch oder halbperiodisch, je nachdem [ resp. n gerade oder ungerade
ist.

4) M. J.O. Strutt, Lamé’sche, Mathieu’sche und verwandte Funktionen
in Physik und Technik; Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. I,
1932.
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Zur Darstellung der Losungen von [S] benétigen wir Serien von zu-
geordneten Kugelfunktionen @) mit festem ! und laufendem n. Das
wichtigste formale Hilfsmittel wird dabei eine dreigliedrige Rekursion
fiir festes [ sein. Ich entwickle daher kurz die wichtigsten Eigenschaften
der Funktionen @/ (cos 6). Dabei folge ich im Aufbau soweit als moglich
der von Bethe®) gegebenen Zusammenstellung iiber die Kugelfunktionen
in R,.

1. Legendre’sche Kugelfunktionen @, (cos 0) im R,.

Wir setzen
cos 0 = x (29)

und definieren die @, () vermittelst der erzeugenden Funktion Q :

—_ 1 —_ S n
Q: 1—28$+82 "‘gan(x)s (30)

Die beiden hochsten Glieder des Polynoms ergeben sich dann aus

@, (x) = 2"a™ + 0(a"7?) . (31)
Fiir « = 1 folgt aus (30)
Q.1)=n+1. (32)

Weiter folgt aus (30) die Rekursion

Qo = ]- ’
@ — 22 Q, =0, (33)
Qn+1—2xQn+Qn—1:O . (n:]-:z’"')
Ableitung von (33) ergibt
2Q, = Q! ;
A 'L o 2 (34)
2Q, =@, — 22Q,+@,_, - (n=1,2,...)
Aus der Relation
0Q 0Q
s~ T g
folgt als weitere Differentialrekursion neben (34)
nQ,=xQ, —Qp,; m=1,2,...). (35)

5) H. Bethe, Quantenmechanik der Ein- und Zweielektronenprobleme.
Handbuch der Physik, Bd. XXIV, 8. 551 ff.
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Mit (34) und (35) dquivalent sind die beiden Relationen

¥Qp = Quoy + 1Qy ; n=1,2,...) (36a)
2Qp =Qoyy—n+2)Q,; (m=0,1,2,...)  (36b)

(36a) ist einfach eine Umstellung von (35) und (36b) erhélt man, indem
man in (34) @/ _, mit Hilfe von (35) eliminiert.

Multipliziert man (36a) mit x und wendet man hierauf (36b) auf das
Glied @/ _, an, so folgt

1—23)Q, =+ 1)@, — n2Q, .

Wenn man nun diese Gleichung differenziert und hernach @,_, vermittels
(36a) eliminiert, so folgt die Differentialgleschung :

(1—23)Q, —32Q, +n(n+2)Q,=0. (37)
Fiihrt man hier wieder 6 ein geméf (29), so folgt:

1 d (. ,,d0Q, .

Unser Polynom @,(x) = @,(cos ) ist also die zum KEigenwert
A= mn(n + 2) gehorige Eigenlosung der Differentialgleichung (&) im
Spezialfall I = 0. Es muB also bis auf einen konstanten Faktor mit der
uns schon bekannten aus (28) sich ergebenden Eigenlosung

sin(n + 1) 0

sin 0 (39)

@, (cos 6) =

iibereinstimmen. Der Vergleich von (32) und (39) zeigt aber, dafl dieser
Faktor gleich 1 sein muB. Damit haben wir die durch (30) eingefiihrten
Polynome bestimmt zu

Q, (cos ) — sin (n + 1) 0

sin 0 (40)

Die Legendre’schen Kugelfunktionen im R, sind also nichts anderes als
die Ableitungen der wohlbekannten Tschebyscheff’schen Polynome.

I1. Zugeordnete Kugelfunktionen @ (cos 0).
Wir definieren sie durch (27), oder — mit Riicksicht auf (29) und (40) —
durch
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4
QL(2) = (1 — w2>‘2' QP () , (41)

wo

A (z) = 7 @u() (42)

ist. Nach den Bemerkungen am Eingang dieses Paragraphen stellen diese
Funktionen die im abgeschlossenen Intervall — 1 <z <{1 stetigen
Eigenlosungen der Differentialgleichung

1 — 22

u—wﬂm>wxw+{j—iiiﬁiazo (43)

mit den Eigenwerten A =n(n + 2), n =1,1+1,... dar.
Wir benétigen eine Rekursion fiir festes 1. l-malige Ableitung von (35)
liefert

(n )Q(l) xQ(l+1) Q(l+1) . (44)
l-malige Ableitung von (33) ergibt
QZQ(Z 1) Q(l) 2xQ”)+ Q(l) . (45)

Erniedrigt man nun in (44) den Index [ um 1, so kann man zwischen der
entstehenden Gleichung und (45) den Term @1 eliminieren und erhilt
mit Riicksicht auf (41):

m—14+ 1)@\, —2(n+ 1@, +n+1+1)Q; =0, (46)

giltig fir [=0,1,2,... und n=1[,1+1,1+2,..., falls man
O . =@Q_, als Null erkliirt. Die Gleichung (46) stellt also die gesuchte
Rekursion fiir festes ! dar.

II1. Normierung. Zu diesem Zwecke schreiben wir (G) resp. (43) in
selbstadjungierter Form:

j@ (81n20dG)—|—[lsm29-——ll+l 1@ =0, (47)
I'eSp.
2 [V L g TSR I P
d[u x?) -][zm x mwaG"O' (48)

In bekannter Weise stellt man fest, daB die @} ein Orthogonalsystem
bilden :

QLALVI —a de=0 ; (m #n) . (49)

)-A.\—"'}pa
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Die Normierung ergibt

1
. 4l—1lx
_fl[Q,’,]zvl-—xdx_(n_l)!2(n+l) : (50)

Sie berechnet sich leicht genau nach dem im klassischen Falle iiblichen
Verfahren®).

§ 4. Entwicklung nach Kugeltunktionen

Wir 16sen jetzt die Differentialgleichung [S]von § 2, oder — indem wir
vorderhand noch an den Bezeichnungen von § 3 festhalten — die
Gleichung

1 d (., dG\ I0+1) .
m —a——o—— (81n20~‘—1—é~) S —m- G = — (l -+ B? sin? 0) G (5])

durch eine Reihe von zugeordneten Kugelfunktionen

¢=X4,! (52)
wobei noch die Abkiirzung "
A?a? = B? (563)
eingefiihrt wurde. Es folgt vorerst
— Sn(m+2 4,0 = — (A+ B — Bt oost0) X 4,0}
oder " "
X [Bi—n(n+2]4,0i= X B 4,00t 0.0, . (54

Nun ergibt die zweimalige Anwendung der Rekursion (46)

_m—l+) m—1+2)
cos? 0. Q! = Fy Py ) Qnt2
nn+2)—10+1)
+ 2n (n + 2) @ (55)
4 m+1+4+1) o+ 1) !
4(n 4 1)n n-2 t

Diese Formel gilt fiir alle I > 2 und » > I, wobei zu beachten ist, da@
fiir die genannten I die Relation

) Vgl. Whittaker and Watson, Modern Analysis, S. 325.
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Q_,=0Q! ,=0 (56)

besteht. Die Formel gilt aber auch fiir I = 0 und 1, wenn man fiir diese
Fille (56) als Definition annimmt.

Einsetzen in (54) und koeffizientenweises Annullieren ergibt schlieBlich
die Koeffizientenrekursion

- -DnAn-—2 + (}' - En)An - FnAn+2 =0 . (57)
mit '
m—1) (mn—1—1)
D = dn(n — 1) =
e gﬁ D B+ 2) (58)

I+ e+ 1+3) o, -
Fa= 4(n+1) (n + 3) B ,

Fithren wir nun noch die Abkiirzungen

a,= 5 (59)
und
A— En
b, = —F (60)
ein, so finden wir fiir » =1
Ay .
A, ~ b; , (61)
fir n=10+1
Al+3 = b (62)
Al+1 +1
und schlieBlich fir » >1 4 2
Ao (63)
A b — _‘_4_@:“_?.
n—2 n An
Offenbar ergibt sich aus der Rekursion (57), daB nach Vorgabe von 4,
simtliche Koeffizienten 4,.,, A, 4,..., und nach Vorgabe von 4,
sdmtliche Koeffizienten 4, 5, 4;,5,... eindeutig bestimmt sind. Man

erhilt so aus (52) das allgemeine Integral von (51).

Unsere Eigenwertaufgabe erfordert nun, daB wir unter allen mog-
lichen Lésungen solche herausgreifen, die im abgeschlossenen Intervall
0<0<m, oder — gemidB (29) — im abgeschlossenen Intervall
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— 1 < 2z <1 stetrg sind. Um diese Forderung auszuwerten, wollen wir
annehmen, G in (52) sei eine dieser gesuchten Losungen und schreiben

sie als Potenzreihe in z:
1

G (z) = ZA Ql(x) = (1 —2?)? H(z) , (64)
H(z)= X B,a" . (65)
n=0

Nun zeigen wir, dal zufolge unserer Forderung H (x) eine ganze Trans-
zendente sein muBl. Zu dem Zwecke ermitteln wir nach dem bekannten
Verfahren je ein Hauptsystem fiir die beiden singuléren Stellen x =1
und # = — 1, die fiir unsere Differentialgleichung Stellen der Bestimmt-
heit sind. Indem wir hierauf unsere Lésung G (x) aus jedem dieser Haupt-
systeme kombinieren, erkennen wir, dall folgende Relationen gelten

miissen :
1+1 \

!
(1 —a%)2 H(x) = Cy; (x—1)* %1(37“‘1 4+ Cro(x—1) T%z(x—l) ;
! 1 141

(1 — 2% H(x)=Cy (x+1)2 Q, (x+ 1)+ Oy (x + 1)_ 2 Qy(x1).

(66)

Hierbei sind die 8 und Q Potenzreihen der eingeklammerten Argumente
mit nicht verschwindendem Anfangsglied. Damit also unsere Losung in
den Punkten x = — 1 und x = 1 endlich bleibt, miissen die Konstanten
C,, und C,, verschwinden. Dann aber folgt aus (66), dall H (z) an beiden
Stellen reguldr ist. Nun aber geniigt auch H (x) einer homogenen linearen
Differentialgleichung, welche aufler — 1, 1 und oo keine Singularititen
aufweist. Also hat H(x) nur den singuliren Punkt co, womit die auf-
gestellte Behauptung bewiesen ist.

Die genaue Begriindung der nun folgenden an sich durchaus plausiblen
Schliisse erfordert vielleicht noch eingehendere Konvergenzbetrachtun-
gen, und ich teile sie daher unter diesem Vorbehalt mit.

Da die Potenzreihe (65) bestéindig konvergieren soll, ist zu erwarten, dafl

lim Buie _ 0 (67)

f~>»00 Bn

sein muB. Hieraus wird man geméifl (64) weiter schlieBen, dafl auch

Y|
]_i nt2
e Ay

=0
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gilt. Dann aber ergibt sich aus (63) eine Kettenbruchentwicklung fiir

A‘Ez . Der letztere Wert ist aber schon gegeben durch (61). Somit ergibt
sich die Kettenbruchgleichung
b, — adax. : (69)
b ____ Ayt
1+2 b

+4 = -

In analoger Weise folgt aus (63) und (62) die Kettenbruchgleichung

a
biy1 = = @rrg . (70)

bl+3 - b
+5 —

Irgend ein zulédssiger Eigenwert 2 muf} also eine dieser beiden Gleichungen
erfiillen. Ist ein A bekannt, so ergeben sich aus (57) die zugehérigen
Koeffizienten 4, bis auf einen frei wihlbaren konstanten Faktor, und die
Entwicklung (64) stellt die zu diesem A gehorige Eigenlosung dar.

Wir wollen uns noch iberlegen, wieviele Koeffizienten normalerweise
einem bestimmten Néaherungswert eines Eigenwertes 4 zuzuordnen sind.
Eine bestimmte Niherungsstufe fiir 4 wird dadurch gegeben, dafl man
die zugehorige Kettenbruchgleichung (69) resp. (70) mit dem Zeiger n
abbricht, oder — anders ausgedriickt — in der Rekursionsgleichung (63)
4,,, = 0 setzt. Dann bilden die Gleichungen (57) ein homogenes lineares
System mit ebensoviel Unbekannten wie Gleichungen, das fiir den Fall,
dafl man mit dem Index ! einsetzt, folgende Gestalt hat:

(A—E)d4, — F, A, = {)

- Dz+2 Az + ()- - Ez+2) Az+2“"Fz+2 Az+4 =0

......................................... (71)
- Dn—2 An—4 + (2 - En——2) An——2 - Fn—zAn =0

- DnAn—2 + (l - En) An =0 .

Die zugehorige Sikulargleichung ist dabei dquivalent der Kettenbruch-
gleichung (69). Man wird also dem der Stufe (71) entsprechenden A gerade
auch die aus diesem System sich ergebenden A-Werte zuordnen. Ent-
sprechendes gilt natiirlich fiir den Anfangsindex ! + 1 und die Gleichung
(70). So betrachtet, erkennt man, daf das benutzte Verfahren im Effekt
identisch ist mit dem Ritz’schen Verfahren?) 8).

) W. Ritz, Journal f. Math. 135 (1909), S. 1—61.
8) E. Kamke, Differentialgleichungen, Lésungsmethoden,. Berlin 1942, 8. 220.
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§ b. Entwicklung in eine Potenzreihe

Um eine solche zu erhalten, schreiben wir (51) wieder mit x = cos #
als unabhéngiger Variablen in der Form

az@ _ 3z d@
dx? 1— 22 dz

A 11+ 1)
2 — —
-+ [B + T2 xz)z] G=0, (72)
und machen entsprechend (64) wieder den Ansatz

)
G(z) = (1 — 2%)% H(x) . (73)

Die Berechnung gestaltet sich besonders bequem, wenn man (72) vorerst
einmal in der Riccati’schen Form

a2 Llg @ dLgQ\? 3z dlgd A Il+1)
da? +( dx ) S 1—2t dx +B+ 1 — a? —(1——:&2)2—*0
(73)
schreibt. Man erhélt schlieBlich
d*H dH
(1 — a?) T (2l+3)x75v_ +[B*+A—1(1+2)— B2a?|H=0 .
(74)
Nun setzen wir H (x) gemidl (65) als Potenzreihe
H@z) = S B,a (65)
n=0
an.
Als Eingangsgleichungen der Rekursion ergeben sich
[1+B2+1——(l+1)2]B0+232=0 (750)
fir » = 0 und
[A+B2+1—(1+2)2]B,+6B;,=0 (75,)

fiir n = 1. Fiir n > 2 aber folgt die dreigliedrige Rekursion
—B*B, ,+[A+B—1—(+n+1)2]B,+n(n+2)B, ,=0. (75)
Wiederum haben wir zu verlangen, dafl H (z) eine ganze Transzendente

sei und die weiteren Entwicklungen laufen den entsprechenden des
vorausgehenden Paragraphen parallel. Wir setzen
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A+ B+l ( a1y
N S NS (7!

und
_B2

(n 4-1) (n + 2)

und erhalten die den Eingangsindizes n = 0 resp. n = 1 entsprechenden
Kettenbruchgleichungen

(77)

&y =

Bo = = (78)
AR .
und
By = % : (79)
B+ 2

ot

Sie dienen wiederum zur Bestimmung der Eigenwerte 1. Aus den Glei-
chungen (75,), (75,) und (75) erhilt man dann anschlieBend die Koeffi-
zienten B, der zugehorigen Eigenlosung (65) resp. (64).

§ 6. Niherungen im Nachkegel

Aus dem Vorausgehenden ist ersichtlich, daf3 die Quantisierung aus-
schlieBlich auf dem Verhalten der Wellenfunktion im Bereich des Doppel-
kegels beruht. Um nun zu beurteilen, ob die gewonnenen Ldsungen als
plausible wellenmechanische Beschreibung einer Trigheitsbewegung ge-
deutet werden koénnen, mul man sich einen Uberblick iiber den Total-
verlauf der Losungen verschaffen. Das kommt natiirlich darauf hinaus,
das asymptotische Verhalten der Losungen im Nachkegel (resp. Vorkegel)
zu ermitteln. Falls es — wie im vorausgehenden — moglich ist, den engen
Anschluf3 an die Theorie der Mathieu’schen Funktionen aufrecht zu er-
halten, so kann man sich dabei auf Arbeiten von Horn, Erdely®) und
Bickley19) stiitzen.

Um aber die charakteristische Abweichung des Zweipunktproblems
vom Einpunktproblem zu erkennen, geniigen schon rohere Nédherungen.
Wir greifen zu dem Zweck zuriick auf die Gleichungen (§) und (7') von
§ 1 und fiihren zuerst vermittels

®) Math. Zeitschrift 41 (1936), 653—664, wo auch die verschiedenen einschlagigen
Arbeiten von Horn zitiert sind.
10) Philos. Mag. VII. s. 30, 312—322 (1940).
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c=Ax; T=Ay (81)

eine rationelle Lingeneinheit ein. Durch die weitere Festsetzung
y=z2>1 (82)
kénnen wir dann jeden Punkt des Nachkegels erfassen. An Stelle von

(12) tritt
ct=Ayx

o=AV(E —1) @ —1)

(83)

und die Gleichungen (S) und (7') nehmen wegen (53) und mit die Gestalt
(72) an:

d* 8 3z dS [ A W+ 1o
da? +x2._1 dx +LB2_—QS2—-1_ (x2—1)2_S~0 s (84)
T 3y dT [p_ _ 4 IW+1) 1,
dy? +y2-—1 dy +LB =1 (P—1) T=0. (85)

Nun ist zu beachten, daf3 aus groflen ¢-Werten zufolge (82) mit Sicherheit
nur auf grofle t-Werte, nicht aber auf grofle z-Werte geschlossen werden
kann. So sind ja die Punkte der Ruhachse fiir beliebig grole ¢ durch
& = 1 charakterisiert. Wir brauchen also die Gleichung (84) auch fiir
beliebig grolle Werte ¢t = 7 im ganzen Intervall

l<x<V%;, (86)

wihrend y entsprechend der Ungleichung

— SYS— (87)
anwéchst.
Wir ersetzen nun die Gleichung (85) approximativ durch eine andere,

indem wir den Koeffizienten von ar bis zur ersten Naherung und den

dy

Koeffizienten von 7 bis zur zweiten Niherung nach —?17 entwickeln.

Es folgt
azT 3 dT , A B
Gty gy () 10 )

y2
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Die Losung dieser Gleichung mit Hilfe Bessel’scher Funktionen lautet

T — OlJp(By)+02J—p(By) ; (89)

Y

wobei der Index p durch
p=Vi41 (90)

gegeben ist. Fiir groBle By gilt also niherungsweise

7 — C cos (By — y) (91)
n By
2
Eine entsprechende Formel
g — C cos (Bx — v) (92)

. '/n Bx
2
gilt nur fiir 2-Werte oberhalb einer geniigend grolen Schranke z,, und
zwar diirfen wir hier zufolge der Quantenbedingung (24) genau dieselbe
Formel verwenden.

Nun kénnen wir zeigen, daf die in der Einleitung in Betracht ge-
zogenen Wahrscheinlichkeitsintegrale vom Typus (6) auch beim Grenz-
tibergang zu beliebig groBen Zeiten ausnahmslos konvergieren. Zu diesem
Zwecke berechnen wir vorerst einmal die mittlere Anzahl derjenigen Welt-
stellen, welche von unserem Teilchen zur Zeit ¢ = 7 pro Sekunde ein-
genommen werden unter der Nebenbedingung, da ihr rdumlicher Ab-

stand ¢ von der Ruhachse zwischen 0 und einer festen Schranke o, liegt.
Diese Zahl ist gegeben durch

2r

T
) j u? % sin ¥ dp dd dy . (93)
0

0

'V(T’ 90 =

Entsprechend dem Separationsansatz (16) und nach Vornahme der fiir
die Winkelvariablen iiblichen Normierung wird daraus

[
(T, o) = | T2 8202 dg . (94)
0

Nun setzen wir in (83) t = 7 und wihlen entsprechend dieser Trans-
formation statt o die GroBe x als unabhiingige Variable, wobei der g, zu-
geordnete x-Wert x, heilen moge. Lassen wir nun in dem so transfor-
mierten Integral 7 gegen oo gehen, so erhalten wir mit Riicksicht auf
(91) und (53) nach einiger Rechnung eine Zahl
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A2 02 sz - 1

(95)

Dieselbe stellt die mittlere Anzahl der im Koordinatenintervall
1 < x <z, von unserem Teilchen asymptotisch fiir groBle Zeiten pro
Sekunde eingenommenen Weltstellen dar. Diese Zahl kann folgender-
mallen anschaulich interpretiert werden. Setzt man in (83) t = T, so

folgt
e Vl 1 Va2 — 1
cT Y2 x

Héilt man hier x fest, so gehen beim Grenziibergang 7— oo gleichzeitig
auch y und g nach oo und es folgt

Va2 —1
1 0
T{f{.lo CT X

Die linke Seite stellt offenbar eine Geschwindigkeitsabweichung von der
Ruhachse dar und wir definieren demgeméf eine Geschwindigkeit v durch
Va? — 1

DZC-——E—“—"- (96)

Nun kénnen wir sagen: die Zahl v (z,) stellt asymptotisch fiir grofle Zeiten
die mittlere Anzahl derjenigen von unserem Teilchen pro Sekunde ein-
genommenen Weltstellen dar, deren Geschwindigkeitsabweichung von
der Ruhachse im Intervall

2 —
0<v<ec Jf@x___l (97)
0
liegt.
Auf Grund von (92) erkennt man weiter ohne Schwierigkeit, daf3 das
Integral (95) auch beim Grenziibergang x,>oco konvergiert. Man erhélt

so den Grenzwert (7) der Einleitung

p* — A2 C? sz sz—— 1 ] (98)

Die mittlere Anzahl der pro Sekunde iiberhaupt eingenommenen Welt-
stellen besitzt also fiir 7— co einen festen Grenzwert. In diesem Sinne
konnen wir sagen, das Teilchen bleibe erhalten.

Wir verwenden nun die gewonnene Niherung, um das asymptotische
Verhalten der Frequenz der Wellenfunktion fiir groBe Zeiten festzustellen.
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1. Fall: Wir betrachten eine feste Raumstelle
=20, ¥=7% , @¢=g

im Laufe wachsender Zeiten ¢{. Wie man leicht unter Beachtung von
(53), (83) und (91) feststellt, gilt asymptotisch fiir groe Zeiten

AC cos (act — y) g

U ~

(0) P(cos ?y) P (@)

ot mact
2
oder
% ~ konst. —2 (@ct — y) (99)

ctVet

Es handelt sich also um eine stehende Welle mit langsam abklingender
Amplitude von der Frequenz
) — 3 _ Mo c?
" 2x  h

(100)

Ein irgendwo an einer festen Stelle im Raum ruhender Beobachter stellt
also das Vorhandensein der de Broglie’schen Ruhfrequenz fest.

Fiir einen Beobachter, der nach geniigend langer Zeit sich an derselben
Raumstelle mit der Geschwindigkeit V relativ zu unserem System be-
wegt, ergibt sich in bekannter Weise eine ebene Welle, deren Frequenz
und Wellenléinge gegeben sind durch

2
y = Yo . oa=2 . (101)

2. Fall: Wir betrachten die Weltstellen
x=x, , 0=y , o=@, , tH»1 .

Sie bilden eine Weltlinie, die asymptotisch eine Geschwindigkeit
pmoYE—1 (102)

Lo

relativ zu unserem Ruhsystem représentiert. Eine &hnliche Rechnung
wie oben ergibt mit Riicksicht auf (83) asymptotisch fiir groBe ¢

cos [aV 22 — o2 — y] (103)
ct Vet

% ~ konst.
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Diese Raumzeitfunktion stellt in der niheren Umgebung der Weltstelle
t:t()))l, QZQOZ’UCtO, 19:——00, (p=(p0

eine fortschreitende ebene Welle dar. Setzt man ¢ =1¢,+ A¢ und
0 = g, + 4p, so findet man durch Entwicklung der Wellenphase gemif3

aVetr —p*=aVcetd — o3 + 2avAt — E;LAQ—I—

fir die Frequenz » und die Wellenlinge A die Werte

2
Yy = 'Vo ; A::-c—— N (104)
V2 Yo
)

Es resultieren also dieselben Formeln wie in (101). Hier aber bedeutet
v die zufillige Geschwindigkeit, mit der dasTeilchen von der urspriinglich
innegehaltenen Ruhrichtung abgewichen ist. (104) zeigt, dafl nach
unserem Modell ein ruhendes Teilchen jederzeit sprunghaft eine Ge-
schwindigkeit annehmen kann, die beliebig nahe an die Lichtgeschwindig-
keit ¢ herankommt. Doch sind diese hohen Geschwindigkeiten entspre-
chend selten, denn als Mittelwert der Frequenz fiir grofle ¢ hat man zu

setzen
o0

» 2 1
szle—————l~dx

r

y= 1 (105)
2 __
fS2 _!./_x____l_ dx
x
1
Wegen (96) und (104) ergibt sich daraus der Wert
f S2Va? —1dx
V= vy — (106)
J,'Sz l/_‘_”_z__:_l.dx
x

welcher zufolge (92) endlich ist.
Die eben geschilderten allen Losungen gemeinsamen Ziige bedeuten,
daB jede einzelne Losung eine virtuelle Streuung des einzelnen Teilchens
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darstellt. Dabei sind als Frequenz und Wellenlinge gerade diejenigen
Werte zu erwarten, welche nach de Broglie der ausgewéhlten Geschwin-
digkeitsabweichung entsprechen. Die genauere individuelle Struktur der
einzelnen Streuung héngt natiirlich von der zugrunde gelegten Konfigu-
ration — der Grunddistanz 4 — und dem Zustand — dem in Betracht
gezogenen Eigenwert 4 — ab. Die Ermittlung dieser Struktur erfordert
offenbar die numerische Auswertung der Losungsfunktionen S(x) resp.
T (y) der Differentialgleichungen (84) und (85), oder — entsprechend der
in § 1 gewidhlten Bezeichnung — der Losungen S(g) und 7' (z) der Glei-
chungen (8) und (7’) daselbst. Die Inangrifinahme dieser Aufgabe muf}
ich einer besonderen Untersuchung vorbehalten.

Der Parameter A oder — im Sinne von (53) von § 4 — der Parameter
B = Aa wird also eine maf3gebende Rolle spielen. Als Normalfall wird
man etwa B = 1 oder B = 1 betrachten. Weiter ist zu erwarten, daB
0 < B« 1 in die Nihe des Einpunktproblems (starke Streuung) fiihrt.
Umgekehrt ist zu vermuten, daB fiir B » 1 eine Annidherung an die
Trigheitsbewegung eines klassischen Korpuskels (Konzentration auf die
Ruhachse) bewirken wird. Eine erste Bestitigung fiir diese Vermutungen
werden wir im néchsten Paragraphen bei der Behandlung der Grenzfdlle
B =0 und B = oo finden.

§ 7. Grenzfille

I. A-0.

Wir behalten das urspriingliche in § 1 zugrunde gelegte Koordinaten-
system bei. Der Effekt wird also darin bestehen, dafl die ,,GewiBlheits-
stellen @, und @, in den Nullpunkt zusammenriicken. Sinngemaf be-
trachten wir eine feste Stelle (ct, ) — die iibrigen Winkelkoordinaten
spielen keine Rolle — im Nachkegel von ¢, und verwenden daher statt
(12) die Formeln

= 70
! (107)
_VE—A @4 [’
- 4
wobei die Verabredung r>a>0 (108)

gelten soll. Man stellt nun leicht fest, daB ¢ mit A gegen Null geht und
somit als Koordinate unbrauchbar wird. Wir setzen daher

o= ACos«x. (109)

10 Commentarii Mathematici Helvetici 137



Weiter ersetzen wir die festen Werte ¢t und ¢ durch die ebenfalls festen
Werte 7, 0 gemifl den Formeln
ct=r Qos 6

11
o= r Gin 6 (110

Indem wir nun (109) und (110) in (107) einfiihren, erhalten wir

r Cos6 =17 Cos «
rGinf = V2 — 42 Gin «

(111)

Aus diesen Gleichungen folgt nun leicht
lim v =r ?
A->0

ii_r::)a:ﬂ s

(112)

Die zugehoérigen Differentialgleichungen ergeben sich, indem man fiir =
die entsprechend den Verhiltnissen im Nachkegel modifizierte Gleichung
(T) von § 1 und fiir « die analog modifizierte Gleichung [S] von § 2 zu-
grunde legt:

L__ 4 2 OT) L (e — 4y + g — DA% 1o
Ve AZdtLVrz——Az) d7]+[a (v ) + T }
(113)
1 ds . I+,
Gm%cd (61]12 doc) -+ [A2a2 Sintx + E — W]S_ 0 . (114)

Fiihren wir noch an Stelle von 7" und S die Zeichen R und @ ein, so liefert
der gemédf (112) durchzufiihrende Grenziibergang 4 —0 die Gleichungen

1 d dR E
1 d d@ Lil+1) L
Ginzﬂﬁ_é_(e 0d0)+[E_ Ginze]a_o : (116)

Das sind genau die Gleichungen (R) und (G) des Einpunktproblems
in § 1 von Teil II.

Offenbar ist es unméglich, diesen Grenziibergang im Innern des
Doppelkegels durchzufiihren. Hingegen bleibt die Gleichung [S]von § 2
beim Grenziibergang sinnvoll. Es ergibt sich — worauf wir schon zu
Beginn von § 3 hinwiesen — die Gleichung

1 d e 11+ 1)
mdo( 297;‘9‘)—[E—W]G:°° (117)

138



die also aus (116) vermittels 6 —46 entsteht. Geméall (28) von § 3 wissen
wir nun, dafl die Eigenwerte von (117) durch

A=—E=n(n-+2)% (118)

gegeben sind. Wenn man also das Einpunktproblem als Grenzfall des
Zweipunktproblems auffaflt, so erweist sich das in Teil IT nach einem
ganz anderen Gesichtspunkt behandelte ,,Geschwindigkeitsspektrum*
als diskret.

Die Losungen von (115) und (116) lauten mit Riicksicht auf (118)

R— letl_r(f‘_’l , (119)
e d 'Sin(n +1)0
= LS B (Gin ; d()) g (120)

Die Wahrscheinlichkeitsdichte R? G2 ist im abgeschlossenen Nachkegel
eindeutig und stetig, beschrinkt dagegen nur fiir n = [ = 0. Diese eine
Losung ist aber nicht im Sinne der Relationen (6) und (7) der Einleitung
normierbar, wie schon daselbst erwdhnt wurde. Im Gegensatz dazu sind,
wie wir in § 6 gesehen haben, simtliche Losungen des Zweipunktproblems
beschrinkt und normierbar. Der Vergleich zeigt, daBl das Einpunktpro-
blem eine wesentliche Entartung des Zweipunktproblems darstellt.

II. A — co unter Festhaltung des Ursprungs.

Der feste Punkt (ct, o) liegt jetzt natiirlich im Innern des Doppel-
kegels. Dementsprechend haben wir wieder (12) zu verwenden

§ — TO

“=a 1o
VA ) (A — ) 3
0= 1 |

Trifftt man wieder die Verabredung (108), so muB3 = mit 4 gegen oo gehen.
Wir setzen daher

und erhalten wegen (12)
lim r = )
Aj>oo . (122)
lim ¢ = ¢t 5
A>

*) Wie ich aus einem Referat im Zentralblatt fir Mathematik 27, 2 u. 6 (1943)
entnehme, haben Born und Fuchs in den Proc. roy. Soc. Edinburgh 60, 100—116 (1940)
. anlaBlich einer ebenfalls vierdimensional zentralsymmetrischen Behandlung der kréfte-
freien Wellengleichung (3) dieselben Eigenwerte ermittelt. Doch ist die vor: diesen Autoren
getroffene Auswahl der Eigenlosungen wesentlich verschieden von der unseren.
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Der Grenziibergang ist durchzufithren an den Gleichungen (S) und (7')
von § 1, wobei die letztere zuerst gemafl (121) transformiert werden
mul} in

i R S

Dividieren wir die genannten Gleichungen durch 42 und fithren wir hier-
auf den Grenziibertritt A —oco unter Beachtung wvon (122) durch, so
erhalten wir, wenn wir zuletzt die Zeichen 7' und S durch R und 7T er-
setzen:

1 d*T

& dE T @+ E)T=0, (124)
1 d 2dR) [E__z(z+1) B ,
e* de (9 )™ 0* ]R_O' (126)

Hierbei haben wir an Stelle von lim (—-— —52—) nicht etwa Null, sondern
A->o0

einen endlichen Eigenwert £ gesetzt. Das ist notwendig, denn wenn man
den Grenziibergang direkt am Operator (15) in § 1 durchfiihrt und nach-
her separiert, stellen sich die Eigenwertkonstanten von selbst ein. Wir
machen hier die Grenziibergiinge nur der Kiirze halber an den schon
separierten Gleichungen.

Die einzige eindeutige, stetige und beschrinkte Losung ergibt sich
bekanntlich fiir £ =1 = 0 zu

T = konst. sin (act — ), R = konst. (126)

Es handelt sich also um die klassische de Broglie’sche Welle eines ruhen-
den Teilchens. Dabei zeigt die Herleitung, dal diese Losung fiir p = oo
und ¢ = 4 oo sinngemif nicht mehr als zustindig betrachtet werden
kann.

I11. A — oo unter Festhaltung einer Gewifheitsstelle.
Wir wihlen die Stelle @, :

Qz"’(Ct, x]) x23 xa)::(A’O;O’O) . (102)

Da also @, festbleiben soll, fiithren wir zuerst eine Koordinatenverschie-
bung durch:

ct =ct— A

0

Q .

|
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Da wir die Verhiltnisse im Nachkegel von ¢, studieren wollen, haben wir
wiederum (107) zu verwenden:

-

Ct — ..E..(i
A
. V(2 — A2) (0% — A?) \L07)
= A
Schliefilich fiithren wir noch durch
= VA2 + 47?2
‘ ___+___f__ (128)
o =VA2 + 4?2

neue krummlinige Koordinaten ein, die auch noch nach vollzogenem
Grenziibergang 4 — oo brauchbar sind. Es folgt

Vi) () -1

g .

ct =4

l
Al

e
Nach dem Grenziibergang gilt daher
(z2 + o?) |
o ﬁ
Die den Variablen 7 und ¢ entsprechenden Differentialgleichungen er-
halten wir, wenn wir in (113) und der dquivalenten Gleichung in o die
Substitution (128) machen und hernach zur Grenze A — co iibergehen.

LaBt man zum SchluB alle Querstriche fallen, so ergeben sich — jetzt
mit Bezugnahme auf @, als neuen Nullpunkt — folgende Gleichungen:

C
(129)

RN el
.
! o

ct = L (v + o?

0=TO

(130)

1 d (12 dT)+_a212+E—-M T=0, (131)

2 dt dt 72

1 d (02d8)+ 'a262+E__l_(£_;r__1_L'S:o . (132)

o* do do

[
™
{

Um einen Vergleich mit bekannten Differentialgleichungen durchzu-
fihren, fiihren wir an Stelle der Variablen v und ¢ die Lingen y und z
gemaif
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y =1

2z — o (133)
ein. (131) und (132) gehen dann iiber in
azT 3 dT a? E I(l 4+ 1) B
& 3y dy+[4 Ty T T ]T—O (134)
und
dzS 3 dS a? E I+1)74 .
dx2+2x dx+[4 +4x_ 4 22 ]S_O’ (135)
mit
ct=3(y+x) und o = Vyx . (136)

Die gefundenen Gleichungen sind offenbar nahe verwandt mit der
Schrodinger’schen Gleichung im Falle positiver Energie und bezogen
auf parabolische Koordinaten. Doch spielen sie hier eine wesentlich
andere Rolle, wie man schon daraus ersieht, dal der Eigenwertparameter
E an der Stelle auftritt, wo iiblicherweise die Ladung steht.

Die Behandlung nach wohlbekannten Methoden liefert fiir die bei
x = 0 regulire Losung von (135)

Eqi

arz l 1 2l—1 i
o 2 Y e _,;
8=0Cec? 22 | [{(l —0)] ¢ ( — ) e~%stqr . (137)

Zwecks asymptotischer Entwicklung fiir grole x liefert eine geeignete
Verlagerung des Integrationsweges in Verbindung mit einer passenden
Substitution

2l—-1  Ei

1 ajz o 2l-1 B i\ T Tae -
S=%R szczft4 4a(1+%—)4 e xtdt%. (138)

Hieraus folgt asymptotisch in nullter Néherung

gy % B¢
S~R{Ce? g 1 4a (139)
oder also reell
_ -3 ax FE
S~Cx * cos —2—-+ZELgx——y) . (140)

In diesen Formeln bedeutet natiirlich C nicht immer dieselbe Konstante.
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Fiir T wihlen wir angesichts der Quantenbedingung (24) von § 2 genau
dieselbe Losung:

— 3 ax E
I —— e St .
T~Cy * cos ( 5 -+ ia Lgz y) (141)

Nun berechnen wir im Sinne des Integrals (6) der Einleitung wieder die
Eintreffwahrscheinlichkeit pro Sekunde fiir einen Querschnitt ¢ = ¢,
im Falle groBer ¢,. Es geniigt sich dabei auf den Fall £ = 0 zu be-
schrinken.
Die Zahl der ,,Wirkungen®‘, die im Mittel pro Sekunde im Koordinaten-
intervall
ECty < @ < €l

zur Zeit t = t, auftreten, wird asymptotisch fiir grofe ¢, gegeben durch

vie,t)= [ ff wu*dx, dz,dx,
t=t
sctogegocto

cly
— J" T2 S2 02 dg

gcty

¢ty

Ct .
~/ ——— d .
f (Vyz)® eoe

gcty

Mit Riicksicht auf (136) folgt somit

v(e,t,) ~CtLg (-t—) . (142)
Unser Integral divergiert fiir ¢ = 0, d. h. also bei der Ruhachse. Wir
kénnen daher das Ergebnis folgendermaBen formulieren:

Die relative Wahrscheinlichkeit, zur Zeit t = t, ein Teilchen anzutreffen,
dessen Geschwindigkeitsabweichung von der Ruhachse von Null verschieden
ust, néhert sich mit wachsendem t, der Null.

Eine vollkommen analoge Rechnung im AnschluB an die Lésung (9)
der Einleitung ergibt dagegen fiir das Einpunktproblem folgendes
Resultat:

Die relative Wahrscheinlichkeit, zur Zeit t = t, ein Teilchen anzutreffen,
dessen Qeschwindighkeitsabweichung von der Ruhachse kleiner ist als die
I/ichtgeschwindigke’it, néhert sich mit wachsendem t, der Null.
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Der Grenzfall III ist also das genaue Gegenstiick zum Grenzfall I, dem
Einpunktproblem. Er stellt gewissermaBlen den klassischen Korpuskel
dar, der nirgends von der geraden Triagheitsbahn abweicht. Doch scheinen
alle Grenzfille wesentliche Entartungen des Normalfalles zu bilden.

SchluBbemerkungen

Zusammenfassend ist also festzustellen, daBl das Zweipunktproblem
Losungen liefert, die im abgeschlossenen Definitionsbereich eindeutig,
stetig und endlich sind und iiberdies im Sinne der Gleichung (7) der
Einleitung asymptotisch eine bestimmte Eintreffwahrscheinlichkeit pro
Sekunde ergeben. AuBlerdem besteht die Moglichkeit, eine absolute Nor-
mierung vorzunehmen, indem man das Integral (5) der Einleitung auf
den Doppelkegel bezieht.

Diese Losungen besitzen damit alle Eigenschaften, welche notwendig
sind, um das in Teil II formulierte einfachste relativistisch invariante
Mehrteilchenproblem

n

Ou,=—@a*u,+ ¢ X% OJu,; (k=1,2,...,n) (143)

I=1

in Angriff zu nehmen zu kénnen, wobei also u,, u,, ..., u, die den ein-
zelnen Teilchen zuzuordnenden Wellenfunktionen bedeuten.

Zum Schlusse sei noch darauf hingewiesen, dal es im Anschlufl an die
zugrunde gelegte kriftefreie Wellengleichung (3)

Ou=—a’u (3)

moglich ist, einen exakten differentiellen Erhaltungssatz zu formulieren.
Definieren wir nimlich unter Verwendung der Abkiirzung

o= () - (2 (&) - (@) oo

den ,,Energie-Impuls-Tensor*

700 — K |}[a*ut — (Grad )] + —¢ (92)3

c? \ dt
__K ou ou

ko
r ¢ Ot OJx;

(145)

ou ou
ox, 0x,

TH — K g — 3[a*u? — (Grad w)?] 8! 4

(k>l=1: 2, 3)
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so gilt:

1 o7 oTu

— —0

c ot ox, .

1 oTk0 9Tk (146)
c ot T ox, =90

Dabei ist K eine passend zu dimensionierende Konstante. Ein ent-
sprechender Satz 148t sich auch fiir das System (143) formulieren.

(Eingegangen den 30. Mirz 1943.)
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