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Ûber den Begriff des Atoms IV

Von W. Scherber, Bern

Einleitung
Der vorliegende Teil IV*) ist die unmittelbare Fortsetzung der unter

demselben Titel erschienenen Teile I1) und II2). Er kann aber auch als
selbstàndige Studie uber das Problem der wellenmechanischen Trâgheit
eines Elementarteilchens gelesen werden und ich schicke zu diesem
Zwecke einige Erlâuterungen voraus.

1. Ein einzelnes Elementarteilchen der Ruhmasse m0 wird charak-
terisiert durch eine Wellenfunktion

u u(t, xl9 x2, x3) (1)

deren physikalischer Sinn darin besteht, dafi das ûber das Weltgebiet ©
erstreckte Intégral

W JXfJV d(c£) dxx dx2 dxs (2)

im Mittel die Zahl derjenigen Weltstellen angibt, welche von unserem
Teilchen innerhalb des Weltgebietes © eingenommen werden. Die
Funktion u stellt also nicht einen konkreten Einzelfall, sondern das Mittel
sehr vieler und voneinander vollstândig unabhàngiger Elementarteilchen
dar, die denselben Konkurrenzbedingungen unterliegen.

2. Als Tràgheitsgesetz postulieren wir, da6 die Wellenfunktion3) (1) eine

eindeutige Lôsung der krâftefreien relativistisehen Wellengleichung

d2u d2u

wo c die Lichtgeschwindigkeit und h das Planek'sche Wirkungsquantum
bedeutet.

l) Helv. Phys. Acta, XV, 1, 53 (1942).
*) Helv. Phys. Acta, XV, 5, 476 (1942).
3) respektive ihr Quadrat, Solange man mit dieser schwâcheren Forderung auskommt.

Teil III, Helv. Phys. Acta XVI, 4, 230 (1943), enthalt lediglich eine kurze Zu-
sammenfassung der in dem vorliegenden Artikel entwickelten Résultat©.
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3. Als Randbedingung postulieren wir das Verbot der Ùberlieht-
geschwindigkeit. Dasselbe wird sich von Fall zu Fall, je nach der zugrunde
liegenden Konfiguration, verschieden auswirken. Wie das zu verstehen ist,
wird ohne weiteres klar, wenn man die denkbaren Fâlle nacheinander
aufzâhlt.

I. Das ,,Einpunktproblem11.

Von einem Elementarteilchen sei bekannt, daB es an einer bestimmten
Weltstelle Q1 in Erscheinung trete. Welches ist die Wahrscheinlichkeit
dafur, dièses Teilchen an irgend einer anderen mit dem Verbot der Ùber-

lichtgeschwindigkeit vertràglichen Weltstelle Q anzutreffen?
Das damit umschriebene Grundgebiet umfaBt offenbar den Nach-

kegel (Zukunftskegel) und den Vorkegel (Vergangenheitskegel) der

,,GewiBheitsstelle" Q±.

IL Das ^Zweipunktproblem".
Von einem Elementarteilchen sei bekannt, daB es an zwei zueinander

zeitartig gelegenen Weltstellen Qx und Q2 in Erscheinung trete, wobei Q2

spàter sei als Q±. Dann wird genau dieselbe Frage gestellt wie beim
Einpunktproblem.

Das jetzt maBgebende Grundgebiet besteht offenbar aus dem Nach-
kegel von Q2, dem Vorkegel von Q± und dem Durchschnitt des Nach-
kegels von Qx mit dem Vorkegel von Q2. Den letzteren endlichen Bereich
wollen wir in Zukunft kurz als ,,Doppelkegel" bezeichnen.

So fortfahrend, gelangt man zum Begriff eines ,,n-Punktproblems",
wobei nattirlich irgend zwei der n ,,GewiBheitsstellen" Ql9 Q2,..., Qn,

zueinander zeitartig liegen miissen.

4. Die Hauptfrage wird nun sein, ob die nach den eben geschilderten
Gesichtspunkten ermittelten Wellenfunktionen die Erhaltung des Teil-
chens garantieren. Ein genauer mikrokosmischer Erhaltungssatz wird im
Rahmen der in Teil I und II entwickelten Weltpunktdynamik gar nicht
angestrebt. Dagegen ist es notwendig, daB das Teilchen asymptotisch fur
groBe Zeiten erhalten bleibe. Um den Sinn dieser Aussage prâziser zu

fassen, bezeichnen wir den zwischen den Ebenen t 0 und t T

gelegenen Teil des Grundgebietes mit ©(7") und betrachten im Sinne

von (2) das Intégral
W(T) $$$$u2d(ct) dxt dx2 dx3 (5)

Nun fragen wir nach der mittleren Zahl der von dem Teilchen zur Zeit
t T pro Sekunde eingenommenen Weltstellen. Sie wird gegeben durch
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dW

Ofïenbar hat es dann und nur dann einen Sinn, von der asymptotischen
Erhaltung des Teilchens ftir groBe Zeiten zu sprechen, wenn der Grenz-
wert

existiert.
Nach den eben entwickelten Gesichtspunkten wurde im Teil II das

Einpunktproblem gelôst. Die im Sinne von (7) brauchbaren Lôsungen
sind daselbst zusammengestellt in den Tafeln (56) und (70). Da wir sie

vorderhand nicht benôtigen, verzichte ich auf ihre Wiedergabe. Wichtig
fur uns ist die Feststellung, daB sâmtliche Lôsungen entweder auf dem
Nullkegel oder auf der Ruhachse singulâr werden. Ganz besonders hervor-
zuheben ist aber die Tatsache, daB sich unter diesen Lôsungen keine
befindet, die der vollkommenen Zentralsymmetrie des Einpunktproblems
in dem Sinne entspricht, daB sie nur von der Weltdistanz

r VcH*-xl-xl~xl (8)

abhângt. Die einzige vollkommen singularitâtenfreie Lôsung dieser Art
lautet

Mar)
(9)

(Jx Bessel'sche Funktion vom Index 1) und liefert in (7) v* oo. Um
also beim Einpunktproblem brauchbare Lôsungen zu erhalten, ist man
gezwungen, die Ruhachse auszuzeichnen und damit ein der Konfiguration
nicht angemessenes Elément zu benutzen.

Dieser begriffliche Mangel soll uns nun ein AnlaB sein, in dem vor-
liegenden Teil III das Zweipunktproblem zu behandeln. Eine derartige
Untersuchung empfiehlt sich auch aus folgendem Grunde : In der klassi-
schen Mechanik wird die Tràgheitsbewegung eines Massenpunktes fest-
gelegt durch Ort und Geschwindigkeit zu einer bestimmten Zeit oder —
in der Ausdrucksweise der relativistischen Metrik — durch die Angabe
zweier zu einander zeitartig gelegener und infinitésimal benachbarter
Weltpunkte. Es ist also zu erwarten, daB das Zweipunktproblem der
klassischen Mechanik nâher steht als das Einpunktproblem. Dièse Er-
wartung wird sich tatsâchlich bestâtigen.
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§ 1. Koordinatenwalil und Séparation

Wir wàhlen das Koordinatensystem so, daB die beiden Weltstellen Qt
und Q2, welche unser Teilchen mit Sicherheit passiert, durch die Angaben

Qx ~ (et, zl9 x2, xz) (-4,0,0, 0) (10J
und

Q2 ~ (et, xl3 x2, xz) (A, 0, 0, 0) (102)

bestimmt erscheinen. Dann fûhren wir an Stelle von xx, x2, x3 ràumliche
Polarkoordinaten ein

xx~ q cos ê
x2 q sin # cos cp (11)

x3 q sin $ sin q>,

und schlieBlich ersetzen wir die Zeit t und den ràumlichen Abstand q durch
— der relativistischen Metrik angepaBte — Lamé'sehe Koordinaten x

und a gemàB den Gleichungen

{ — r2) (A2-a2)
Q a

(12)

Sind die Betrâge | x | und | g | beide kleiner als A, so bewegt sich der

Bildpunkt im Innern des Doppelkegels ; sind sie hingegen beide grôBer
als A, so bewegt er sich im Vorkegel von Qx oder im Nachkegel von Q2 je
nach den gewàhlten Vorzeichen.

Die durch (11) und (12) eingefûhrten krummlinigen Koordinaten

r, (T,#,9> bilden ein ,,Orthogonalsystem" im Sinne der herrschenden
Metrik. Das zugehôrige Linienelement lautet

dx2 do2

(13)

Daraus ergibt sich das vierdimensionale Volumenelement

d(ct) dxt <fc2 dxz —y— I^i= H_L |T2-ff2| sin & dx dadê dtp (14)

sowie der Wellenoperator
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1

ff2-
1 aIV

yA2 — r2dr[

A2

(A2 — t2) (A2— a2)

_2

sini

au] i ar a^i)

a ^7 i
>™\ »/ '

sin^a^

acrji
(15)

Die Séparation auf Grund des Produktansatzes

u== T(r)8(a)P(â)0(tp) (16)
S

j liefert dann die Gleichungen

-fm^^O, (0)

^2 J

0 (S)

j Hier sind in den beiden wohlbekannten Gleichungen (0) und (P) die
j Eigenwerte schon durch die gelâufîgen Quantenzahlen m und l ausge-

driickt worden. Neu und fur das Zweipunktproblem charakteristisch
sind die beiden gleichlautenden Gleichungen (S) und (T).

§ 2. Die Quantenbedingungen
Die Eigenlôsungen von (0) und (P) werden in bekannter Weise durch

Kreis- und Kugelfunktionen geliefert. Wir haben uns also nur noch mit
den Gleichungen (S) und (T) zu befassen. Es wird sich zeigen, daB ihre
Quantisierung im wesentlichen auf der Forderung der Eindeutigkeit
beruht.

Wir uniformisieren zuerst die Koeffizienten der beiden Gleichungen
vermittelst der Transformation

T AA C°S
(17)

G A COS (X

und erhalten
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oc doc \ doc
[SJ

sm p a

An Stellevon (12)tritt
Ct A COS P COBOL

q A sm p sm oc

Nun betrachten wir eine bestimmte Weltstelle Qo mit den Koordinaten
(t0, £0). Ihr entsprechen in der (oc, j8)-Ebene unendlich viele Punkte, die

gitterartig verteilt sind, nâmlich aile Lôsungen der Gleichungen

ct0 A cos p cos<%

^0 =isinpsui(x,
oder auch der Gleichungen

cto + ^o A cos (P — oc)

Ist also (ocq, p0) eine Lôsung von (19), so genûgen aile weiteren Lôsungen
(oc, P) dem System

cos (P + oc) cos (p0 + oco)

COS (P — Oc) COS (Po — (Xo)

Die Eindeutigkeit von u2 erfordert daher, da8 die Gleichung

fur sàmtliche Lôsungen der Gleichungen (20) erfullt ist.
Es gibt aber noch eine zweite Gruppe von Stellen (oc, P), fur die (21)

gelten mufi. Ersetzt man nâmlich die Winkelkoordinaten cp0 und ^0 der

Stelle Qo durch q?Q -f- n und n — ^0, so gelangt man wegen (11) und (18)

in denselben Punkt, wie wenn man oc0 durch — ocQ oder p0 durch — po

ersetzt. Es muB also gelten

Nun gilt aber fur die Kreis- und Kugelfunktionen
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Somit ergibt sich

Daraus folgt, daB auBer den Lôsungen von (20) auch noch die Lôsungen
des Systems

eos (p + a) cos (j80 - <%<>)

(22)
COS (fi — &) COS (|ft0 + OC0)

die Gleichung (21) erfûllen miissen.
Nun ergibt sich ohne Schwierigkeit folgendes Eindeutigkeitshriterium :

Die Gleichung
] (23)

muB erfullt sein, sobald entweder

oc ±oco + kn
P=±Po + l* l}

oder

gilt, wobei k und Z ganze Zahlen darstellen, die simultan entweder gerade
oder ungerade sein miissen, wàhrend die Vorzeichen von oco und f}0 un-
abhàngig gewâhlt werden durfen.

Dièses Kriterium wertet man bequem aus, wenn man nacheinander
die Spezialfâlle

oc fi0 p oco

OC (XQ P — p0
OC 0CQ + 71 P PQ -\- 71

behandelt. Es ergeben sich folgende

Quantenbedingungen :

1. Die Lôsung T(P) muB bis auf einen konstanten Faktor dieselbe
Funktion darstellen wie die Lôsung 8 (oc) :

T{x) CS(x) (24)

2. Die Lôsungsfunktion ist entweder gerade oder ungerade:

S(-x) ±S(x)

9 Commentarii Mathematici Helvetici L*L



3. Die Lôsungsfunktion ist entweder ganzperiodisch mit der Période n
oder halbperiodisch mit der Période 2n:

S(x + n) ±S(x)
Es herrscht also eine weitgehende Analogie zum Eigenwertsproblem der
Mathieu'schen Differentialgleichung4). Tatsàchlich lassen sich auch die
fur dièses Problem entwickelten Methoden verwerten, wenn man an
Stelle trigonometrischer Reihen Entwicklungen nach vierdimensionalen
Kugelfunktionen benutzt.

§ 3. Kugelfunktionen im JB4

Wir lassen den Parameter A in der Gleichung [$] des vorigen Para-
graphen gegen Null gehen und ersetzen die Zeichen 8, oc, E durch
G, 0, —- X. Es folgt die Differentialgleichung der zugeordneten
Kugelfunktionen im i24:

*faM) h}«+m 0 • (G)
sm20 dd \ dd J L sin20

Dièse Differentialgleichung folgt auch aus der Gleichung (22) von Teil II,
§ 2, vermittelst der Substitution Q->iO. Aus den Entwicklungen da-
selbst erhàlt man unmittelbar fur die bei 6 0 endlichen Lôsungen den
Ausdruck

faUs
A n(n + 2) (28)

gesetzt wird. Sollen dièse Lôsungen auch im Punkte 6 n endlich
bleiben, so mu8 n eine ganze Zahl sein. Wie man leicht erkennt, sind
dièse trigonometrischen Polynôme nur fur n ^ l von Null verschieden.

Die Funktionen Qln (cos 6) sind also die im abgeschlossenen Intervall
0 ^0 ^ ^ stetigen Eigenlosungen der Differentialgleichung (G) und die
GrôBen (28) die zugehôrigen Eigenwerte. Offenbar erfullen dièse
Eigenlosungen die im vorigen Paragraphen angegebenen Quantenbedingungen
(25) und (26), und zwar sind sie gerade oder ungerade, resp.
ganzperiodisch oder halbperiodisch, je nachdem l resp. n gerade oder ungerade
ist.

4) M. J.O. Strvit9 Lamé'sche, Mathieu'sche und verwandte Funktionen
inPhysik und Technik; Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. I,
1932.
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Zur Darstellung der Lôsungen von [$] benôtigen wir Serien von zu-
geordneten Kugelfunktionen Qln mit festem l und laufendem n. Das

wichtigste formale Hilfsmittel wird dabei eine dreigliedrige Rekursion
fur festes l sein. Ich entwickle daher kurz die wichtigsten Eigenschaften
der Funktionen Q^(cos 0). Dabei folge ich im Aufbau soweit als môglich
der von Bethe5) gegebenen Zusammenstellung uber die Kugelfunktionen
in Rz.

L Legendre'sche Kugelfunktionen Qn(cos 0) im JB4.

Wir setzen

cos 6 x (29)

und definieren die Qn (x) vermittelst der erzeugenden Funklion Q :

Ls*=kQ»{x)sn (30)

Die beiden hôchsten Glieder des Polynoms ergeben sich dann aus

(31)

(32)

(33)

Fur x 1 folgt

Weiter folgt aus

Q,
Qx

aus (30)

(30) die

~2xQ0

Ableitung von (33) ergibt

Aus der Relation

G»(i)

Rekursion

r

n+ 1

0 ',

r
'

(34)

s -^- {x — s) -=2L
ds ' dx

folgt als weitere Differentialrekursion neben (34)

nQn xQ'n-Q'n_l; (»=1,2>...). (35)

*) H. Bethe, Quantenmechanik der Ein- und Zweielektronenprobleme.
Handbuch der Physik, Bd. XXIV, S. 551 ff.
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Mit (34) und (35) âquivalent sind die beiden Relationen

xQ'n Q'n-i + nQn ; (n 1, 2, (36a)

*Q'n Qln-{n + 2)Q»; (« 0,1,2,...) (36b)

(36a) ist einfach eine Umstellung von (35) und (36b) erhâlt man, indem
man in (34) Qrn^x mit Hilfe von (35) eliminiert.

Multipliziert man (36a) mit x und wendet man hierauf (36b) auf das

Glied xQrn_x an, so folgt

(1 - x*)Q'n (n + VQ^ - nxQn

Wenn man nun dièse Gleichung differenziert und hernaeh Q!n^.x vermittels
(36a) eliminiert, so folgt die Differentialgleichung :

0. (37)

Fùhrt man hier wieder 6 ein gemàfi (29), so folgt:

^==0- (38)

Unser Polynom Qn(x) Qn(cos 6) ist also die zum Eigenwert
X n(n -\- 2) gehôrige Eigenlôsung der Differentialgleichung (G) im
Spezialfall l 0. Es muB also bis auf einen konstanten Faktor mit der

uns schon bekannten aus (28) sieh ergebenden Eigenlôsung

sfl)= Sin(sWinV)e (39)

ubereinstimmen. Der Vergleich von (32) und (39) zeigt aber, dafi dieser
Faktor gleieh 1 sein muB. Damit haben wir die durch (30) eingefïïhrten
Polynôme bestimmt zu

^ m
Die Legendre'schen Kugelfunktionen im iî4 sind also nichts anderes als

die Ableitungen der wohlbekannten Tschebyscheff'schen Polynôme.

//. Zugeordnete Kugelfunktionen Qln (cos 6).

Wir definieren sie durch (27), oder — mit Rûcksicht auf (29) und (40) —

durch
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wo

ist. Nach den Bemerkungen am Eingang dièses Paragraphen stellen dièse

Funktionen die im abgeschlossenen Intervall — 1 ^ x ^ 1 stetigen
Eigenlôsungen der Differentialgleichung

(1 - z2) G" - Sx Gf + h - l^ +J} 1 G 0 (43)

mit den Eigenwerten A n(n + 2), n l, l + 1,... dar.
Wir benôtigen eine ReJcursion fur festes l. Z-malige Ableitung von (35)

liefert

&»ft»ftîP (44)

ï-malige Ableitung von (33) ergibt

+ <&% (45)

Erniedrigt man nun in (44) den Index l uni 1, so kann man zwisehen der
entstehenden Gleichung und (45) den Term Q%~'1) eliminieren und erhàlt
mit Riicksicht auf (41):

(n - l + l)Qln+1 -2(n+l)xQln + (n + l+l) Q1^ 0 (46)

gultig fur 1= 0,1,2,... und n l, l + 1, l + 2,..., falls man
Q°_t Q_x als Null erklart. Die Gleiehung (46) stellt also die gesuchte
Rekursion fur festes l dar.

///. Normierung. Zu diesem Zwecke schreiben wir (G) resp. (43) in
selbstadjungierter Form :

f- [Asin20 — 1(1 + l)]G 0 (47)

resp.

dx L ^ J L |/j #2 J

In bekannter Weise stellt man fest, daB die Qln ein Orthogonalsystem
bilden : 1

f QLQlVl -*2 dx 0 ; (m^n) (49)
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Die Normierung ergibt

f {n +1 ~

Sie berechnet sich leicht genau naeh dem im klassischen Falle ûblichen
Verfahren8).

§ 4. Entwicklung nach Kugelfunktionen

Wir lôsen jetzt die Differentialgleichung [$] von § 2, oder — indem wir
vorderhand noch an den Bezeichnungen von § 3 festhalten — die

Gleichung

(51)
sm2O dd

durch eine Reihe von zugeordneten Kugelfunktionen

O SAnQln (52)
n l

wobei noch die Abkurzung
B2 (53)

eingefûhrt wurde. Es folgt vorerst

~Zn(n+2)AnQln= - {X +B* - B* *os*d) % AnQln

oder

Z[B* + X-n(n + 2)]AnQln= £ B>Ancos* d-Qln (54)

Nun ergibt die zweimalige Anwendung der Rekursion (46)

4(n + l) (n + 2) ^n+2

T-m #n (55)

Dièse Formel gilt fur aile l > 2 und ?i ^ Z, wobei zu beachten ist, da8

fur die genannten l die Relation

6) Vgl. Whittaker and Watson, Modem Analysis, S. 325.
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UQU 0 (56)

besteht. Die Formel gilt aber auch fur l 0 und 1, wenn man fur dièse
Fâlle (56) als Définition annimmt.

Einsetzen in (54) und koeffizientenweises AnnulKeren ergibt sehlieBlich
die Koeffizientenrekursion

mit

D

DnAn_2 + (A - En)An - FnAn+2 0

(n — l) (n — l —

én(n — 1)

n{n -f 2) + 1(1 + 1)

B*

F (n + l+l) (n + l + 3)
n 4(w + 1) (n + 3)

Fuhren wir nun noch die Abkurzungen

und

ein, so finden wir fur n l

~A
fur n l + 1

Lï+3

und sehlieBlich fur n > Z + 2

&.-¦

(57)

(58)

(59)

(60)

(61)

(62)

(63)

OflEenbar ergibt sieh aus der Rekursion (57), dafi nach Vorgabe von Ax
sàmtliche Koeffizienten Al+2, Al+i,..., und nach Vorgabe von Al+1
sàmtliche Koeffizienten Al+3, Al+5,... eindeutig bestimmt sind. Man
erhâlt so aus (52) das allgemeine Intégral von (51).

Unsere Eigenwertaufgabe erfordert nun, daB wir unter allen môg-
lichen Lôsungen solche herausgreifen, die im abgeschlossenen Intervall
O^e^Tr, oder — gemâB (29) — im abgeschlossenen Intervall
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— 1 ^ x < 1 stetig sind. Dm dièse Forderung auszuwerten, wollen wir
annehmen, 0 in (52) sei eine dieser gesuchten Lôsungen und schreiben
sie als Potenzreihe in x :

1
G(x) ZAnQln(x) (l-x*)*H(x) (64)

H{x) ZBnx" (65)
n=0

Nun zeigen wir, da8 zufolge unserer Forderung H(x) eine ganze Trans-
zendente sein muB. Zu dem Zwecke ermitteln wir nach dem bekannten
Verfahren je ein Hauptsystem fur die beiden singulâren Stellen x 1

und x — 1, die fur unsere Differentialgleichung Stellen der Bestimmt-
heit sind. Indem wir hierauf unsere Lôsung G(x) aus jedem dieser Haupt-
systeme kombinieren, erkennen wir, daB folgende Relationen gelten
mûssen :

L
Ctl(x+l)*

(66)

Hierbei sind die S$ und JQ Potenzreihen der eingeklammerten Argumente
mit nicht verschwindendem Anfangsglied. Damit also unsere Lôsung in
den Punkten x — 1 und x 1 endlich bleibt, mussen die Konstanten
C12 und (722 verschwinden. Dann aber folgt aus (66), daB H (x) an beiden
Stellen regulâr ist. Nun aber genugt auch H(x) einer homogenen linearen
Dififerentialgleichung, welche auBer —1,1 und oo keine Singularitaten
aufweist. Also hat H(x) nur den singulâren Punkt oo, womit die auf-
gestellte Behauptung bewiesen ist.

Die genaue Begrûndung der nun folgenden an sich durchaus plausiblen
Schlûsse erfordert vielleicht noch eingehendere Konvergenzbetrachtun-
gen, und ich teile sie daher unter diesem Vorbehalt mit.

Da die Potenzreihe (65) bestàndig konvergieren soll, ist zu erwarten, daB

lim -%tl o (67)

sein muB. Hieraus wird man gemâB (64) weiter schlieBen, daB auch
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gilt. Dann aber ergibt sich aus (63) eine Kettenbruchentwicklung fur
A
¦ *+2. Der letztere Wert ist aber schon gegeben durch (61). Somit ergibt

sich die Kettenbruchgleichung

bl=z ^±2 (69)
al+4:

In analoger Weise folgt aus (63) und (62) die Kettenbruchgleichung

bl+1 (70)
a

Trgend ein zulâssiger Eigenwert A mu6 also eine dieser beiden Gleichungen
erfullen. Ist ein A bekannt, so ergeben sich aus (57) die zugehôrigen
Koeffizienten An bis auf einen frei wàhlbaren konstanten Faktor, und die
Entwicklung (64) stellt die zu diesem A gehôrige Eigenlôsung dar.

Wir wollen uns noch uberlegen, wieviele Koeffizienten normalerweise
einem bestimmten Nâherungswert eines Eigenwertes A zuzuordnen sind.
Eine bestimmte Nâherungsstufe fur A wird dadurch gegeben, daB man
die zugehôrige Kettenbruchgleichung (69) resp. (70) mit dem Zeiger n
abbricht, oder — anders ausgedruckt — in der Rekursionsgleichung (63)
An+2 0 setzt. Dann bilden die Gleichungen (57) ein homogènes lineares
System mit ebensoviel Unbekannten wie Gleichungen, das fur den Fall,
daB man mit dem Index l einsetzt, folgende Gestalt hat:

Dl+2 A, + (A - El+2) A l+2 — Fl+2A l+i 0

JT\ A I ly JP \ A Jp A „ A
(71)

Die zugehôrige Sâkulargleichung ist dabei âquivalent der Kettenbruchgleichung

(69). Man wird also dem der Stufe (71) entsprechenden A gerade
auch die aus diesem System sich ergebenden ^4-Werte zuordnen. Ent-
sprechendes gilt naturlich fiir den Anfangsindex l + 1 und die Gleichung
(70). So betrachtet, erkennt man, daB das benutzte Verfahren im Effekt
identisch ist mit dem Ritz'schen Verfahren7) 8).

7) W. Ritz, Journal f. Math. 135 (1909), S. 1—61.
8) E. Kamke, Differentialgleichungen, Lôsungsmethoden. Berlin 1942, S. 220.
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§ 5. Entwicklung in eine Potenzreihe

Um eine solche zu erhalten, schreiben wir (51) wieder mit x cos 0

als unabhàngiger Variablen in der Form

und machen entsprechend (64) wieder den Ansatz

G(x) (1 - x2)2 H(x) (73)

Die Berechnung gestaltet sich besonders bequem, wenn man (72) vorerst
einmal in der Kiecati'schen Form

d*LgG (dLgOy Sx riLgQ l 1(1+1)
dx* ^\ dx l-x* dx "*" ^ l-x* (l-o;2)2""

(73)
schreibt. Man erhâlt schlieBlich

(1 - x2) ^- - {2l+S)x~ + [jB2 + A - 1(1 + 2) - B2x2] H 0

(74)

Nun setzen wir H(x) gemàB (65) als Potenzreihe

H(x) ZBnx* (65)

an.
Als Eingangsgleichungen der Rekursion ergeben sich

[X + 52 + x _ (i + 1)2] ^+2^ 0 (750)

fur n 0 und
[ 0

fur 7i 1. Fiir ti ^ 2 aber folgt die dreigliedrige Rekursion

2 0. (75)

Wiederum haben wir zu verlangen, daB H(x) eine ganze Transzendente
sei und die weiteren Entwicklungen laufen den entsprechenden des

vorausgehenden Paragraphen parallel. Wir setzen
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fin

und

"" (n + 1) (n + 2)
(77)

und erhalten die den Eingangsindizes n 0 resp. n 1 entsprechenden
Kettenbruchgleichungen

A —„ (78)

und

0i ^ • (79)

Sie dienen wiederum zur Bestimmung der Eigenwerte A. Aus den Glei-
chungen (750), (75t) und (75) erhàlt man dann anschlieBend die Koeffi-
zienten Bn der zugehôrigen Eigenlôsung (65) resp. (64).

§ 6. Nâherungen im Nachkegel

Aus dem Vorausgehenden ist ersichtlich, daB die Quantisierung aus-
schlieBlich auf dem Verhalten der Wellenfunktion im Bereich des Doppel-
kegels beruht. Um nun zu beurteilen, ob die gewonnenen Lôsungen als

plausible wellenmechanische Beschreibung einer Trâgheitsbewegung ge-
deutet werden kônnen, muB man sich einen Ûberblick ûber den Total-
verlauf der Lôsungen verschafïen. Das kommt natùrlich darauf hinaus,
das asymptotische Verhalten der Lôsungen im Naehkegel (resp. Vorkegel)
zu ermitteln. Falls es — wie im vorausgehenden — môglich ist, den engen
AnschluB an die Théorie der Mathieu'schen Funktionen aufrecht zu
erhalten, so kann man sich dabei auf Arbeiten von Horn, Erdely9) und
Bickley10) stutzen.

Um aber die charakteristische Abweichung des Zweipunktproblems
vom Einpunktproblem zu erkennen, genùgen schon rohere Nâherungen.
Wir greifen zu dem Zweck zuriick auf die Gleichungen (8) und (T) von
§ 1 und fûhren zuerst vermittels

9) Math. Zeitschrift 41 (1936), 653—664, wo auch die verschiedenen einschlâgigen
Arbeiten von Horn zitiert sind.

10) Philos. Mag. VII. s. 30, 312—322 (1940).
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(81)

eine rationelle Lângeneinheit ein. Dureh die weitere Festsetzung

V > x > 1 (82)

kônnen wir dann jeden Punkt des Nachkegels erfassen. An Stelle von
(12) tritt

et — A yx* (83)

und die Gleichungen (S) und (T) nehmen wegen (53) und mit die Gestalt
(72) an:

(Iy2 y2 \ ^y

Nun ist zu beachten, daB aus groBen £-Werten zufolge (82) mit Sicherheit

nur auf groBe £-Werte, nicht aber auf groBe #-Werte geschlossen werden
kann. So sind ja die Punkte der Ruhachse fur beliebig groBe t durch
x 1 charakterisiert. Wir brauchen also die Gleichung (84) auch fur
beliebig groBe Werte t T im ganzen Intervall

TT- (86)

wâhrend y entsprechend der Ungleichung

anwàchst.

Wir ersetzen nun die Gleichung (85) approximativ durch eine andere,
dT

indem wir den Koeffizienten von -=— bis zur ersten Nàherung und den
dy 1

Koeffizienten von T bis zur zweiten Nâherung nach — entwickeln.
y

Es folgt

^+(4) (88)
y dy ^ \ y*J
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Die Losung dieser Gleichung mit Hilfe BessePscher Funktionen lautet

T CiJv(By) + G2J-v(By) (89)
y

wobei der Index p durch

p VX + i (90)

gegeben ist. Fur groBe By gilt also naherungsweise

Eine entsprechende Formel

8 ° COS {B^Z ^ (92)

gilt nur fur x-Werte oberhalb einer genugend groBen Schranke a:0, und
zwar durfen wir hier zufolge der Quantenbedingung (24) genau dieselbe
Formel verwenden.

Nun konnen wir zeigen, daB die in der Einleitung in Betracht ge-
zogenen Wahxscheinlichkeitsintegrale vom Typus (6) auch beim Grenz-
ubergang zu beliebig groBen Zeiten ausnahmslos konvergieren. Zu diesem
Zwecke berechnen wir vorerst einmal die mittlere Anzahl derjenigen Welt-
stellen, welche von unserem Teilchen zur Zeit t T pro Sekunde ein-

genommen werden unter der Nebenbedingung, daB ihr raumlicher Ab-
stand q von der Ruhachse zwischen 0 und einer festen Schranke £0 liegt.
Dièse Zahl ist gegeben durch

Qq 7T 27C

v(T,qo)=$ J J u2 q2 sïn & dg d& d<p (93)
0 0 0

Entsprechend dem Separationsansatz (16) und nach Vornahme der fur
die Winkelvariablen ublichen Normierung wird daraus

2S>Q2dQ. (94)

Nun setzen wir in (83) t T und wahlen entsprechend dieser
Transformation statt q die GroBe x als unabhangige Variable, wobei der £0 zu-
geordnete x-Wert x0 heiBen moge. Lassen wir nun in dem so transfor-
mierten Intégral T gegen ex» gehen, so erhalten wir mit Rucksicht auf
(91) und (53) nach einiger Rechnung eine Zahl
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(95)

Dieselbe stellt die mittlere Anzahl der im Koordinatenintervall
1 ^ x ^ x0 von unserem Teilchen asymptotisch fur groBe Zeiten pro
Sekunde eingenommenen Weltstellen dar. Dièse Zahl kann folgender-
maBen anschaulich interpretiert werden. Setzt man in (83) t T, so

folgt
Q

c7" y

Hait man hier x fest, so gehen beim Grenziibergang 7"-> oo gleichzeitig
auch y und g nach oo und es folgt

Die linke Seite stellt offenbar eine Geschwindigkeitsabweichung von der
Ruhachse dar und wir definieren demgemâB eine Geschwindigkeit v durch

________

v c — (96)
x v '

Nun kônnen wir sagen : die Zahl v (x0) stellt asymptotisch fur groBe Zeiten
die mittlere Anzahl derjenigen von unserem Teilchen pro Sekunde

eingenommenen Weltstellen dar, deren Geschwindigkeitsabweichung von
der Ruhachse im Intervall

0 < v < c
Vx* ~ 1

(97)
x0

liegt.
Auf Grund von (92) erkennt man weiter ohne Schwierigkeit, daB das

Intégral (95) auch beim Grenzubergang #0->oo konvergiert. Man erhalt
so den Grenzwert (7) der Einleitung

na
1

- fffl VX* ~ 1
dx (98)

Die mittlere Anzahl der pro Sekunde uberhaupt eingenommenen
Weltstellen besitzt also fur T->oo einen festen Grenzwert. In diesem Sinne
kônnen wir sagen, das Teilchen bleibe erhalten.

Wir verwenden nun die gewonnene Nàherung, um das asymptotische
Verhalten der Frequenz der Wellenfunktion fur groBe Zeiten festzustellen.
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1. Fail: Wir betrachten eine feste Raumstelle

Q Qo # #o 9> Ç>o

im Laufe wachsender Zeiten t. Wie man leicht unter Beachtung von
(53), (83) und (91) feststellt, gilt asymptotisch fur groBe Zeiten

i/naci

oder
cos (act — y)

u ~ konst. —t r (99)
ctVct

Es handelt sich also um eine stehende Welle mit langsam abklingender
Amplitude von der Frequenz

Ein irgendwo an einer festen Stelle im Raum ruhender Beobachter stellt
also das Vorhandensein der de Broglie'sehen Ruhfrequenz fest.

Fur einen Beobachter, der nach geniigend langer Zeit sich an derselben
Raumstelle mit der Geschwindigkeit F relativ zu unserem System be-

wegt, ergibt sich in bekannter Weise eine ebene Welle, deren Frequenz
und Wellenlânge gegeben sind durch

y* vV (101)

2. Fall: Wir betrachten die Weltstellen

x x0 ê #o y 9a y t » l •

Sie bilden eine WeltUnie, die asymptotisch eine Geschwindigkeit

(102)

relativ zu unserem Ruhsystem reprâsentiert. Eine âhnliche Rechnung
wie oben ergibt mit Rûcksicht auf (83) asymptotisch fur groBe t

u ~ konst. 7=r^ ¥— (103)
ctVct
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Dièse Raumzeitfunktion stellt in der naheren Umgebung der Weltstelle

t t0 » 1 q q0 vct0 ê iï0 <p <p0

eine fortschreitende ebene Welle dar. Setzt man t t0 + A t und
q — qq-\-Aq,$o findet man durch Entwicklung der Wellenphase gemafi

Q2 aVc2t20 — qI + 2nvAt- =j- A g

fur die Frequenz v und die Wellenlange X die Werte

v
-o

; A — • (104)

Es resultieren also dieselben Formeln wie in (101). Hier aber bedeutet
v die zufallige Geschwindigkeit, mit der dasTeilehen von der ursprunglich
innegehaltenen Ruhrichtung abgewichen ist. (104) zeigt, daB nach
unserem Modell ein ruhendes Teilchen jederzeit sprunghaft eine
Geschwindigkeit annehmen kann, die beliebig nahe an die Lichtgeschwindig-
keit c herankommt. Doch sind dièse hohen Geschwindigkeiten entspre-
chend selten, denn als Mittelwert der Frequenz fur groBe t hat man zu
setzen

(105)

dx

Wegen (96) und (104) ergibt sich daraus der Wert
00

Çs2Vxi — ldx
(106)

welcher zufolge (92) endlich ist.
Die eben gesehilderten allen Lôsungen gemeinsamen Zuge bedeuten,

daB jede einzelne Lôsung eine virtuelle Streuung des einzelnen Teilchens
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darstellt. Dabei sind als Frequenz und Wellenlànge gerade diejenigen
Werte zu erwarten, welche nach de Broglie der ausgewâhlten Gesehwin-

digkeitsabweichung entsprechen. Die genauere individuelle Struktur der
einzelnen Streuung hângt naturlich von der zugrunde gelegten Konfigu-
ration — der Grunddistanz A — und dem Zustand — dem in Betracht
gezogenen Eigenwert X — ab. Die Ermittlung dieser Struktur erfordert
offenbar die numerische Auswertung der Lôsungsfunktionen S(x) resp.
T(y) der Difïerentialgleichungen (84) und (85), oder — entsprechend der
in § 1 gewàhlten Bezeichnung — der Lôsungen 8 (a) und T(r) der Glei-
chungen (S) und (T) daselbst. Die Inangrifïnahme dieser Aufgabe mu8
ich einer besonderen Untersuchung vorbehalten.

Der Parameter A oder — im Sinne von (53) von § 4 — der Parameter
B A a wird also eine maBgebende Rolle spielen. Als Normalfall wird
man etwa B 1 oder B \ betrachten. Weiter ist zu erwarten, daB
0 < B «C 1 in die Nàhe des Einpunktproblems (starke Streuung) fuhrt.
Umgekehrt ist zu vermuten, da8 fur J5 )> 1 eine Annàherung an die

Tràgheitsbewegung eines klassischen Korpuskels (Konzentration auf die
Ruhachse) bewirken wird. Eine erste Bestàtigung fur dièse Vermutungen
werden wir im nâchsten Paragraphen bei der Behandlung der Grenzfâlle
B 0 und B oo finden.

§ 7. GrenzIâUe

Wir behalten das urspriingliche in § 1 zugrunde gelegte Koordinaten-
system bei. Der Effekt wird also darin bestehen, daB die ,,Gewi6heits-
stellen" Qt und Q2 in den Nullpunkt zusammenrûcken. SinngemâB
betrachten wir eine feste Stelle (et, q) — die iibrigen Winkelkoordinaten
spielen keine Rolle — im Nachkegel von Q2 und verwenden daher statt
(12) die Formeln

taet —

V{r*- A*) (cr2-
(107)

wobei dieVerabredung T>a>0 (108)

gelten soll. Man stellt nun leicht fest, daB a mit A gegen Null geht und
somit als Koordinate unbrauchbar wird. Wir setzen daher

o A(£ozoc. (109)

10 Commentarii Mathematici Helvetici 1O '



Weiter ersetzen wir die festen Werte et und q durch die ebenfalls festen
Werte r, 6 gemâB den Formeln

CtQZrr^6e\' W
Indem wir nun (109) und (110) in (107) einfiihren, erhalten wir

r (Eos 0 t Cos oc

r Sin 0 Vr* — A2 ®in oc

Aus diesen Gleichungen folgt nun leicht

lim t r

lim oc 0
A-+0

(111)

(112)

Die zugehôrigen Differentialgleichungen ergeben sich, indem man fur r
die entsprechend den Verhâltnissen im Nachkegel modifizierte Gleichung
(T) von § 1 und fur oc die analog modifizierte Gleichung [S] von § 2 zu-
grunde legt :

(113)

Fûhren wir noch an Stelle von T und S die Zeichen i2 und G ein, so liefert
der gemâB (112) durchzufuhrende Grenziibergang A ->0 die Gleichungen

Das sind genau die Gleichungen (i2) und (G) des Einpunktproblems
in § 1 von Teil II.

Offenbar ist es unmôglich, diesen Grenziibergang im Innern des

Doppelkegels durchzufuhren. Hingegen bleibt die Gleichung [8] von § 2

beim Grenziibergang sinnvoll. Es ergibt sich — worauf wir schon zu
Beginn von § 3 hinwiesen — die Gleichung
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die also aus (116) vermittels 6->id entsteht. Gemafi (28) von § 3 wissen
wir nun, daB die Eigenwerte von (117) dureh

A — E n{n + 2) (118)

gegeben sind. Wenn man also das Einpunktproblem als Grenzfall des

Zweipunktproblems auffaBt, so erweist sich das in Teil II nach einem

ganz anderen Gesichtspunkt behandelte ,,Gesehwindigkeitsspektrum"
als diskret.

Die Losungen von (115) und (116) lauten mit Rucksicht auf (118)

Die Wahrscheinlichkeitsdichte R2G2 ist im abgeschlossenen Nachkegel
eindeutig und stetig, beschrankt dagegen nur fur n l 0. Dièse eine
Losung ist aber nicht im Sinne der Relationen (6) und (7) der Einleitung
normierbar, wie schon daselbst erwahnt wurde. Im Gegensatz dazu sind,
wie wir in § 6 gesehen haben, samtliche Losungen des Zweipunktproblems
beschrankt und normierbar. Der Vergleich zeigt, daB das Einpunktproblem

eine wesentliche Entartung des Zweipunktproblems darstellt.

//. A -> oo unter Festhaltung des Ursprungs.
Der feste Punkt {et, q) liegt jetzt naturlich im Innern des Doppel-

kegels. Dementsprechend haben wir wieder (12) zu verwenden

xaCt= A
V(A2-r2) (A2 —a2)

(12)

Trifft man wieder die Verabredung (108), so muB r mit A gegen oo gehen.
Wir setzen daher

VA2 - t2 r (121)
und erhalten wegen (12)

lim r g \

t" #
• <122)

lim a et \

*) Wie ich aus einem Référât im Zentralblatt fur Maihematik 27, 2 u 6 (1943)
entnehme, haben Born und Fuchs in den Proc roy Soc. Edmburgh 60, 100—116 1940)
anlàfihch einer ebenfalls vierdimensional zentralsymmetrischen Behandlung der krâfte-
freien Wellengleiehung (3) dieselben Eigenwerte ermittelt. Doch ist die von diesen Autoren
getroffene Auswahl der Eigenlosungen wesentheh verschieden von der unseren.
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Der Grenzubergang ist durchzufiïhren an den Gleichungen (8) und (T)
von § 1, wobei die letztere zuerst gemâB (121) transformiert werden
muB in

^ (123)

Dividieren wir die genannten Gleichungen durch A2 und fuhren wir hier-
auf den Grenzûbertritt A->oo unter Beachtung von (122) durch, so

erhalten wir, wenn wir zuletzt die Zeichen T und S durch B und T er-
setzen :

1 d*T
dt* + (a* + E) 7=0 (124)

(E \
ïirl nicht etwa Null, sondern

einen endlichen Eigenwert E gesetzt. Das ist notwendig, denn wenn man
den Grenzubergang direkt am Operator (15) in § 1 durchfûhrt und nach-
her separiert, stellen sich die Eigenwertkonstanten von selbst ein. Wir
machen hier die Grenzûbergânge nur der Kûrze halber an den schon
separierten Gleichungen.

Die einzige eindeutige, stetige und beschrânkte Lôsung ergibt sich
bekanntlich fur E l 0 zu

T konst. sin (act — y) R konst. (126)

Es handelt sich also um die klassische de Broglie'sche Welle eines ruhen-
den Teilchens. Dabei zeigt die Herleitung, daB dièse Lôsung fur q oo

und £ ^ oo sinngemâB nicht mehr als zustândig betrachtet werden
kann.

///. A -> oo unter Festhaltung einer Gewifiheitsstelle.

Wir wâhlen die Stelle Q2 :

Q2 ~ {et, xl9 x2i xz) (A,0, 0, 0) (102)

Da also Q2 festbleiben soll, fuhren wir zuerst eine Koordinatenverschie-
bung durch:

et et — A
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Da wir die Verhàltnisse im Nachkegel von Q2 studieren wollen, haben wir
wiederum (107) zu verwenden:

et

Q

TOT

V(x2-A2) (a2 -A2)
(107)

SchlieBlich fûhreii wir noch durch

T VA2 + Ax2
VA2 + Ao~2

(128)

neue krummlinige Koordinaten ein, die auch noch nach vollzogenem
Grenziibergang A -> oo brauchbar sind. Es folgt

et A

g r a

Nach dem Grenziibergang gilt daher

+ G2) j
(129)

rcr

Die den Variablen r und o* entsprechenden Differentialgleichungen er-
halten wir, wenn wir in (113) und der âquivalenten Gleichung in a die
Substitution (128) machen und hernach zur Grenze ^4->oo ûbergehen.

LâBt man zum SchluB aile Querstriche fallen, so ergeben sich — jetzt
mit Bezugnahme auf Q2 als neuen Nullpunkt — folgende Gleichungen :

et -|(t2 + a2)

-r £1*^+1** + *- 1(1+1)

(130)

(131)

(132)

Um einen Vergleich mit bekannten Differentialgleichungen durchzu-
fuhren, fûhren wir an Stelle der Variablen r und a die Làngen y und x
gemâB
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y t2
(133)

ein. (131) und (132) gehen dann ùber in

d2 T 3 dT

und

mit

3 dS

(134)

(136)

Die gefundenen Gleichungen sind offenbar nahe verwandt mit der

Schrôdinger'schen Gleichung im Falle positiver Energie und bezogen
auf parabolische Koordinaten. Doch spielen sie hier eine wesentlich
andere Rolle, wie man schon daraus ersieht, dafi der Eigenwertparameter
E an der Stelle auftritt, wo ublicherweise die Ladung steht.

Die Behandlung nach wohlbekannten Methoden liefert fur die bei

x 0 regulàre Lôsung von (135)

S
21-1

4 (137)

Zwecks asymptotischer Entwicklung fur groBe x liefert eine geeignete
Verlagerung des Integrationsweges in Verbindung mit einer passenden
Substitution

\l-l Ei
4 + 4a - xt£ ajx

QX2 C2
¦ l / vv\1/4 4a 11 i IJ1 l1 + ir) dt (138)

Hieraus folgt asymptotisch in nullter Nâherung

oder also reell

aix 3 .Ei^"1 ~*«

S~Cx % cosl^

(139)

(140)

In diesen Formeln bedeutet natûrlich G nicht immer dieselbe Konstante.
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Fur T wâhlen wir angesichts der Quantenbedingung (24) von § 2 genau
dieselbe Lôsung :

K( ^^ (141)

Nun berechnen wir im Sinne des Intégrais (6) der Einleitung wieder die
EintrefiEwahrscheinKchkeit pro Sekunde fur einen Querschnitt t t0
im Falle groBer t0. Es genugt sich dabei auf den Fall E 0 zu be-
schrànken.

Die Zahl der ,,Wirkungen", die im Mittel pro Sekunde im Koordinaten-
intervall

ectQ < g < ct0

zur Zeit t t0 auftreten, wird asymptotisch fur groBe t0 gegeben durch

v(s,t0) S S S u* ^xi dx2 dxs

ecto< Q<ct0

BCtQ

ct0

ect0

Mit Riicksicht auf (136) folgt somit

^ (142)

Unser Intégral divergiert fur e 0, d. h. also bei der Ruhachse. Wir
kônnen daher das Ergebnis folgendermaBen formulieren:

Die relative Wahrscheinlichkeit, zur Zeit t t0 ein Teilchen anzutreffen,
dessen Oeschwindigkeitsabweichung von der Ruhachse von Null verschieden

tst, nàhert sich mit wachsendem t0 der Null,
Eine vollkommen analoge Rechnung im AnschluB an die Lôsung (9)

der Einleitung ergibt dagegen fur das Einpunktproblem folgendes
Résultat:

Die relative Wahrscheinlichkeit, zur Zeit t t0 ein Teilchen anzutreffen,
dessen Geschunndigkeitsabweichung von der Ruhachse kleiner ist als die
Lichtgeschurindigkeit, nàhert sich mit wachsendem t0 der Null.
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Der Grenzfall III ist also das genaue Gegenstuck zum Grenzfall I, dem

Einpunktproblem. Er stellt gewissermaBen den klassischen Korpuskel
dar, der nirgends von der geraden Trâgheitsbahn abweicht. Doch scheinen
aile Grenzfàlle wesentliche Entartungen des Normalfailes zu bilden.

Schlufibemerkungen

Zusammenfassend ist also festzustellen, daB das Zweipunktproblem
Lôsungen liefert, die im abgeschlossenen Definitionsbereich eindeutig,
stetig und endlich sind und uberdies im Sinne der Gleichung (7) der

Einleitung asymptotisch eine bestimmte Eintreffwahrscheinlichkeit pro
Sekunde ergeben. AuBerdem besteht die Moglichkeit, eine absolute Nor-
mierung vorzunehmen, indem man das Intégral (5) der Einleitung auf
den Doppelkegel bezieht.

Dièse Lôsungen besitzen damit aile Eigenschaften, welche notwendig
sind, um das in Teil II formulierte einfachste relativistiseh invariante
Mehrteilchenproblem

«»= -a*uk+e%M nui', (4=1,2, ...,n) (143)

in Angrifï zu nehmen zu kônnen, wobei also ux, u2,..., un die den ein-
zelnen Teilchen zuzuordnenden Wellenfunktionen bedeuten.

Zum Sehlusse sei noch darauf hingewiesen, daB es im AnschluB an die

zugrunde gelegte krâftefreie Wellengleichung (3)

u - a2 u (3)

môglich ist, einen exakten differentiellen Erhaltungssatz zu formulieren.
Definieren wir nâmlich unter Verwendung der Abkiirzung

/n a x, (duY (duY l duY lduY<Grad ^ s "?¦ dr) - fe) - fe) - te)
den ,,Energie-Impuls-Tensor'c

z} J[a««« - (Grad «)»] + -i
K du du

c dt dxk
(145)

(k,l 1, 2, 3)
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so gilt:
1 dT00 dT01

dTk0 dTkl (146)

Dabei ist K eine passend zu dimensionierende Konstante. Ein ent-
sprechender Satz lâBt sich auch fur das System (143) formulieren.

(Eingegangen den 30. Mârz 1943.)
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