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Ûber symmetrische analytische Funktionen

Von Andkeas Speiser, Zurich

Dem Meister der konformenAbbildung, Constantin Carathéodory,
môchte ich zur Feier des siebzigsten Geburtstages dièse Arbeit widmen,
welche sich mit den zahlen- und gruppentheoretischen Eigenschajten
der elliptischen Funktionen befafît, einem Gebiet, das noch lange nicht
erschôpft ist und zweifellos noch tiefe Geheimnisse enthàlt.

1. Konstruktion der elliptischen Intégrale
Wir gehen im folgenden von dem Theorem aus, daB jede einfach

zusammenhângende Riemannsche Flâche von elliptischem, parabolischem
oder hyperbolischem Typus ist, d. h. entweder auf die Kugelflâche oder
auf die Euklidische Ebene oder auf das Innere\ des Einheitskreises
konform abgebildet werden kann. Die drei Fâlle unterscheiden sich vor
allem durch die Gruppe der konformen Selbstabbildungen. Nun kon-
struieren wir eine unendlich vielblâttrige Riemannsche Flâche, welche
eine Gruppe von Selbstabbildungen gestattet. Aus ihrer Struktur kann
man schlieBen, ob der parabolische oder der hyperbolische Fall vorliegt,
und man gelangt so tief ins Wesen der zugehôrigen Funktionen unmittel-
bar hinein.

Àls erstes Beispiel wâhlen wir die logarithmische Flâche, welche bei
0 und oo je einen Verzweigungspunkt unendlich hoher Ordnung enthàlt.
Sie gestattet eine zweifach kontinuierliche Schar von Abbildungen auf
sich selbst, welche eine Abelsche Gruppe bilden : Drehungen um den Null-
punkt von beliebigem Winkel und Dehnungen vom Nullpunkt aus. Die
Automorphismen der hyperbolischen Ebene besitzen keine solche Unter-
gruppe, daher liegt der parabolische Fall vor und die Automorphismen,
welche ja keinen Punkt invariant lassen, mussen Translationen sein,
deren Richtungen aufeinander senkrecht stehen. So erhâlt man die
komplexe Logarithmusfunktion.

Als zweites Beispiel nehmen wir die elliptischen Intégrale. In der
w-Ebene seien vier Punkte A, B> C, D gegeben, ferner seien von einem
beliebig wâhlbaren funften Punkte P aus Linien nach den vier Punkten
gezogen, welche sich nirgends schneiden. Lângs dieser vier Linien sei das

Blatt aufgeschnitten. Nun nehmen wir ein zweites kongruentes Exemplar
und heften es lângs PA mit dem ersten kreuzweise zusammen, so daB
bei A ein Verzweigungspunkt erster Ordnung entsteht. An dièses zweite
Exemplar heften wir làngs PB ein drittes an, an dièses dritte lângs PC
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ein viertes und dièses vierte heften wir schlieBlieh lângs PD wieder an
das erste. An die ubrig bleibenden Schnitte heften wir in der nâmlichen
Weise neue Exemplare an, so daB der Umlauf um P stets ins Ausgangs-
exemplar zuruekfiïhrt und P nur scheinbar singulâr ist. Die so entstehende
Riemannsche Flâche ist einfach zusammenhàngend. Denn wir kônnen
jedes Exemplar als Quadrat deuten, indem wir den Weg von P nach A
auf dem einen Ufer des Schnittes und von A nach P auf dem andern
Ufer als Seite des Quadrates annehmen, hierauf den Weg PBP als
nâchste Seite usw. Die Verheftung der Blâtter ist dann identisch mit der
Pflasterung der Ebene mit Quadraten, woraus sich der einfache Zu-
sammenhang der Flâche ergibt.

Die Flâche ist symmetrisch in sich, denn jedes Blatt derselben ist von
der ganzen Flâche gleich umgeben. Man kann eine kongruente Abbildung
herstellen, indem man irgendein Blatt auf ein anderes kongruent abbildet
und dièse Abbildung auf die ganze Flâche nach dem Prinzip der gleichen
Umgebung iibertrâgt. Wir haben nun die Gruppe dieser Automorphismen
zu bestimmen. Umlâuft man den Punkt A einmal, so geht jedes Blatt
in ein benachbartes uber. Dièse Opération bezeichnen wir wieder mit A ;

sie ist offenbar eine Involution. So erhalten wir vier erzeugende Opera-
tionen A, B, C, D, deren Quadrate jeweils die Identitât bilden. AuBer-
dem besteht nur noch folgende Relation: ABCD 1. Umlâuft man
aile vier Punkte, oder was dasselbe bedeutet, umlâuft man bloB den
Punkt P, so kommt man ins Anfangsexemplar zurùck. Daraus ergibt
sich D ABC und ferner, daB ABC eine Involution ist. Aile sechs

Produkte, die man durch Vertauschung der drei Buchstaben erhâlt,
bilden auch eine Involution, denn BCA entsteht aus ABC durch
Transformation mit A, ist also wieder eine Involution, ferner ist CBA als

inverses von ABC ebenfalls eine Involution. Man kann die Gruppe
vollstândig bestimmen, wenn man bedenkt, daB diejenigen Operationen,
welche eine gerade Anzahl von Buchstaben A, B, C enthalten, einen
Normalteiler vom Index 2 bilden, der durch folgende beiden Operationen
erzeugt werden kann: AB und AC. So ist z. B. BCBC (AB)-1 AC
(AB)-1 AC. Nun sind aber dièse beiden Operationen miteinander ver-
tauschbar. Es ist nâmlich

AB-AC A-BAC A-CAB AC-AB

weil CAB invers zu BAC ist und letzteres ein Elément der Ordnung 2,

daher mit seinem inversen identisch ist.
Zwischen den beiden Elementen AB und AC besteht keine weitere
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Relation mehr, sie erzeugen eine unendliche freie Abelsche Gruppe. Die
Automorphismen der hyperbolischen Ebene besitzen keine Abelsche

Untergruppe mit zwei Erzeugenden, die diskontinuierlich ist, denn ver-
tauschbare Elemente derselben gehôren stets einer und derselben ein-
parametrigen kontinuierlichen Schar an. Nimmt man zwei derselben
heraus, so kônnen sie allerdings unabhângig sein, aber es làBt sich alsdann
eine Bewegung aus ihnen zusammensetzen, welche beliebig nahe bei der
identischen ist. Dies ist aber bei den Abbildungen der Riemannschen
Flâche, welche ja stets ganze Blâtter kongruent in verschiedene uber-
fûhren, sicher nicht der Fall. So ergibt sich, daB unsere Riemannsche
Flâche zum parabolischen Fall gehôrt.

Die einzelnen Blàtter gehen nun in Euklidische Vierecke uber. Die
Opération A muB eine Abbildung der Euklidischen Ebene auf sich
selber liefern, welche eine Involution ist und einen Fixpunkt besitzt,
nâmlich den dem Punkte A entsprechenden Punkt derselben. Eine solche

Abbildung kann nur eine Drehung um 180° sein, mit dem eben ange-
gebenen Fixpunkt, denn die parabolische Ebene besitzt sonst keine
Involution mehr. Man erhàlt also das Bild des lângs PA mit dem ersten
zusammengehefteten Blattes, indem man das Viereck um den Bildpunkt
von A, der auf einer seiner Seiten liegt, um 180° dreht. Es ergibt sich
daraus, daB die vier Seiten unseres Vierecks Kurven mit Mittelpunkt
sein miissen, und daB man die ganze Euklidische Ebene pflastern kann,
indem man das Viereck um die Mittelpunkte der Seiten dreht und so ins
Unendliche fortfâhrt. Diejenigen Opérâtionen, welche aus einer geraden
Anzahl solcher Drehungen entstehen, sind einfache Translationen. Die
Funktion, welche die Euklidische Ebene auf die Riemannsche Flâche
abbildet, ist daher doppelt periodisch, die Umkehrfunktion nimmt auf
den verschiedenen Blâttern nur Werte an, die sich durch das Vorzeichen
oder durch additive Perioden unterscheiden, ihre Ableitung ist uber der
w-Ebene zweiwertig.

Auf diesem Wege gelangt man zu den elliptischen Integralen erster
Gattung, und das Umkehrproblem ist in seinem schwierigeren Teil
gelôst, denn die Punkte A, B, C, D sind ja beliebig wahlbar. DaB man
damit aile doppeltperiodischen Funktionen erhâlt, kann nun durch die
Eisensteinschen Reihen bewiesen werden.

Bemerkenswert ist der Satz, daB man mit einem beliebigen Viereck,
dessen Seiten Mittelpunkte haben, die Ebene pflastern kann. Man uber-
zeugt sich leicht, daB bei den Drehungen um die Seitenmittelpunkte sich
die vier Winkel, deren Summe ja 360° ist, um jede Ecke herumlegen,
wodurch die SchlieBung der Figur bewirkt wird.
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2. Der hyperelliptische Fall
Wir wollen nun in âhnlicher Weise von einem Blatt ausgehen, das

sechs Punkte A, B, C, D, E, F als Windungspunkte erster Ordnung
ergibt. Wir denken es wieder von einem beliebigen Punkte P ans nach
den sechs Punkten aufgeschnitten und heften wie vorher neue Exemplare
an, das zweite ans erste làngs PA, das dritte ans zweite làngs PB usw.,
schlieBlich das sechste wieder an das erste làngs PF. Auch dièse Flàche
ist einfaeh zusammenhàngend. Das einzelne Blatt ist ein Sechseck mit
der Winkelsumme von 360° und wir erhalten eine Pflasterung mit Sechs-

ecken, wobei jedoch sechs derselben um eine Ecke herumliegen. Offenbar
befinden wir uns im hyperbolischen Fall, denn im Euklidischen hàtte das
Sechseck die Winkelsumme 720°. Man beachte bei diesem SchluB, da6 die

Abbildung bei P durchaus konform ist, da ja P nur scheinbar singulâr
ist; auf der Riemannschen Flâche ist P als regulàr anzusehen, da sich
bei seiner Umlaufung das Blatt nicht ândert.

Man erhalt nun wie friiher eine Pflasterung der Ebene, indem man das

Sechseck um die Mittelpunkte seiner Seiten dreht. Gleichzeitig ergibt
sich der Satz, daB man die hyperbolische Ebene mit einem beliebigen
w-Eck pflastern kann, dessen Seiten Mittelpunkte haben und bei dem
die Summe der Innenwinkel 360° oder ein echter Teiler davon ist.

Wir wollen statt des Einheitskreises lieber die obère Halbebene
nehmen und die Variable in derselben mit t bezeichnen. Die Funktion
w /(r), welche die obère r-Halbebene auf die soeben konstruierte
unendlich vielblàttrige Riemannsche Flàche abbildet, ist nun automorph
unter der Gruppe, welche durch die Pflasterung der Ebene mit Sechs-

ecken gegeben ist. Wir wollen sie nàher bestimmen. Sie wird durch 6

Involutionen A, B, C, D, E, F erzeugt. Zwischen diesen besteht die
Relation ABCDEF 1. Also ist ABCDE selber eine Involution. Die-

jenigen Elemente der Gruppe, welche durch eine gerade Anzahl von
erzeugenden Elementen zusammengesetzt werden, bilden wieder einen
Normalteiler vom Index zwei. Er heiBe H. Seine Erzeugenden kônnen
gewàhlt werden als AB, AC, AD, AE und sie môgen in dieser Reihen-
folge mit Sl9 S2, 8Z, $4 bezeichnet werden. Zwischen ihnen besteht fol-
gende Relation, und nur dièse : 81 S^183 S^1 S^1 S3 S^1 Sx, nàmlich

AB'CA'AD.EA'BA.AC'DA'AE 1

Betrachten wir nun die Riemannsche Flàche der Abelschen Intégrale
erster oder zweiter Gattung. Umlàuft man mit dem Integranden eine

ungerade Anzahl von Verzweigungspunkten, so àndert er bloB das Vor-
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zeichen. Integriert man daher zweimal ûber einen solchen Weg, so ge-
langt man in den Anfangswert zurûck. Dadurch werden Blâtter identi-
fiziert, welche vorher verschieden waren. Die Gruppe erhâlt folgende
weiteren Relationen zwischen den erzeugenden Elementen : Die Produkte
einer ungeraden Anzahl von Erzeugenden sind stets Involutionen.
Hieraus ergibt sich nach bekannten und einfachen Schlussen, da6 die
,,Translationen" Sli S2, $3, $4 vertauschbar werden. Die Gruppe der
Abelschen Intégrale gegeniiber der Quadratwurzel (der zweiblàttrigen
Riemannschen Flâche) ist daher eine Abelsche Gruppe mit vier freien
Erzeugenden. Die obige Relation ist alsdann trivial.

Man findet so den Satz : die Gruppe der Abelschen Intégrale ist die
Faktorgruppe der Kommutatorgruppe von H unter H. Die Abelschen
Intégrale sind eindeutige Funktionen von r, aber dièse sind nicht mehr
automorph unter H, sondern nur noch unter der Kommutatorgruppe von
H. Der Bereich der Abelschen Intégrale bildet Funktionen, welche zur
Kommutatorgruppe gehôren, wenn auch einzelne derselben bei umfassen-
deren Gruppen invariant sein kônnen. Die Riemannsche Flàche der
Intégrale ist von unendlichem Zusammenhang, trotzdem ist die Ab-
bildung euklidisch. Das einzelne Blatt wird auf ein Sechseck mit der
Winkelsumme 360° abgebildet, was nur so moglich ist, daB es zweimal
um einen Verzweigungspunkt herumlàuft. Auch hier erhàlt man die
ganze Abbildung, indem man dièses Sechseck um die Mittelpunkte seiner
Seiten dreht und in dieser Weise fortfâhrt.

3. Modulfunktionen

Wir beginnen mit der Riemannschen Flàche der Funktion A (t). Sie
enthâlt an den Stellen 0,1 und oo in allen Blàttern logarithmische
Verzweigungspunkte. Ihre Gruppe ist daher die freie Gruppe von 2

Erzeugenden, welche man als Drehungen um 0 und 1 deuten kann. In der
oberen r-Ebene erhàlt man entsprechend die Modulsubstitutionen
zweiter Stufe

_ ar + b
~~

ex + d

Die Zahlen a, 6, c, d geniigen der Gleichung ad —- bc 1. Ferner sind
a und d ungerade, b und c gerade. Den Substitutionen kann man die
Matrix

/ab\
\ed)
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zuordnen, wobei zunâchst jeder Substitution zwei Matrizen entsprechen,
die sich durch eine Vorzeichenânderung aller vier Zahlen unterscheiden.
Man kann aber eine derselben ausschalten, indem man verlangt, daB

a b 1 (mod 4) ist. Dièse Matrizen bilden, wie man sich leicht ûber-
zeugt, eine Gruppe. Die Erzeugenden sind die beiden Matrizen

A

Die Modulfunktion j (r) bildet die obère r-Halbebene auf eine Rie-
mannsche Flàche ab, welche bei 0 Verzweigungspunkte zweiter, bei 1

solche erster Ordnung besitzt und bei oo logarithmische Verzweigungspunkte

aufweist. Um sie kennen zu lernen, ist es am besten, die vorige
modulare Flâche von A in diejenige von j direkt ûberzufûhren. Hierzu
bildet man die Punkte 0, 1 und oo auf die Punkte 1, q und q2 ab, wo q

eine dritte Einheitswurzel ist, durch die lineare Substitution

Hierdurch werden keine neuen Verzweigungspunkte eingefûhrt. Dies
erhebe man in die dritte Potenz. Dadurch fallen aile logarithmischen
Verzweigungspunkte in den Punkt 1, dagegen entstehen bei 0 und oo je
Verzweigungspunkte zweiter Ordnung. Nun bringe man oo, 0 und 1

nach —1, +1, oo durch die Substitution:

V — —r-

Dièse quadriere man, dann fallen die beiden Verzweigungspunkte zweiter
Ordnung in den Punkt 1 und bei 0 entsteht ein Verzweigungspunkt erster
Ordnung. Derjenige bei oo versehmilzt mit den dort schon vorhandenen
logarithmischen Verzweigungspunkten. Das Résultat wird

w ^ 4 (1 —A + A2)3
?(T)"~ +27"~27~27A*(1-A)2 "" 27 ?(T)"~ +27"~27

Die KommiUatorgruppe der Modulsubstitutionen zweiter Stufe.

Die Modulgruppe zweiter Stufe ist die freie Gruppe, welche von zwei

Elementen A und JS erzeugt wird. Man erhâlt die Faktorgruppe der

Kommutatorgruppe, indem man die Gruppe abelsch macht. Sie ist daher
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die von zwei Elementen erzeugt freie Abelsche Gruppe. Bezeichnet man
das allgemeine Elément der Gruppe mit

so besteht die Kommutatorgruppe aus denjenigen Elementen, fur
welche gilt

a± + a2 + + an 0 und bt + b2 + + bn 0

Denn fur die Kommutatoren sind dièse Gleichungen sicher erfûllt. Um-
gekehrt folgt aber auch aus ihnen, dafi das Elément zur Kommutator-
gruppe gehôrt. Denn man darf die einzelnen Faktoren vertauschen,
wenn man einen Kommutator rechts hinzufûgt. So kann man das obige
Elément folgendermaBen darstellen

wo C ein Elément der Kommutatorgruppe bezeichnet. Sind nun die
beiden Exponenten von A und B gleieh Null, so reduziert sich das
Elément auf C.

Wir suchen jetzt eine Funktion, welche zur Kommutatorgruppe gehôrt.
Sie mufi unter den Substitutionen der ganzen Modulgruppe zweiter Stufe
eine freie Abelsche Gruppe von zwei Erzeugenden erfahren. Dies geschieht
mit Hilfe des Logarithmus. Man bildet log X und log (1 — A). Umlâuft
man in der A-Ebene den Punkt 0, so bleibt die zweite Funktion unge-
àndert, wâhrend die erste den additiven Term Ini erfâhrt. Umlàuft man
dagegen den Punkt 1, so verhalten sich die beiden Funktionen umgekehrt.
Wir wollen die Reihenentwicklungen dieser Funktionen geben. Es sind
eindeutige Funktionen von r.

Wir setzen h entt und beginnen mit log (1 — X). Bekanntlich ist

Daher wird

ig(i - A) 8(2; log (î - vr-i) - x log (i +
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In dieser Potenzreihenentwicklung nach h kommen nur ungerade Po-
tenzen vor und der Koeffizient ist gleich der Summe der reziproken
Teiler des Exponenten. Wir wollen fur eine beliebige ganze Zahl m die
Summe der ungeraden Teiler inklusive 1 (und m) mit U(m) bezeichnen.
Alsdann ist fur ungerade m die Summe der reziproken Teiler, wie man

sich leicht uberzeugt, —-——. Damit erhalten wir die Potenzreihenentwicklung

die Summe ùber aile ungeraden ganzen positiven Zahlen erstreckt.
Gehen wir nun zu log L Bekanntlich ist

#2
_ 16^/7(1 + A2v)8

0$"
~~

77(1 + A2"-1)8

Daher wird

log A logl6

Entwickeln wir zunâchst die Klammer. Man erhâlt :

Ungerade Exponenten kommen nur in den negativen Termen der zweiten
Summe vor und liefern, wie oben :

m

Die positiven Terme der ersten Reihe liefern fur gerade m die reziproken
ungeraden Teiler als Koeffizienten. Setzt man m 2b •n, won ungerade
ist, so erhalt man:

26 U(m)
m

¦h"

Die negativen Terme erfordern eine Zerlegung von m in zwei gerade
Teiler. Man hat also die reziproken Werte der geraden Teiler von

— 2b"~1*n zu summieren, also zu bilden:
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1
i i .6) U(n) - (2b-2)U{m)

Dies ist zu subtrahieren.

Die positiven Terme der zweiten Summe erfordern eine Zerlegung von
m in einen geraden und einen ungeraden Faktor. Ersterer enthâlt stets
26. Daher erhàlt man U{)

m

Faut man ailes zusammen, so ergibt sich

m

Hiermit ist die Reihenentwicklung von log A berechnet. Es ist

log A log 16 + nir + ax h + a2 h2 +

gera<

U(m)

wo fur ungerade m gilt am — 8 —-—- fur gerade m aber

- m

Wir setzen nun ç>(t) ——^log X und xp{r) ——^log (1 —A) und

finden:

Beide Funktionen sind unter der Kommutatorgruppe invariant, sie ge-
hôren aber zu zwei verschiedenen umfassenderen Untergruppen der
Modulgruppe zweiter Stufe; cp (t) bleibt bei B ungeëndert, %p (r) bei A.
Aus ihnen laBt sich ferner bilden

X(r) q>(r) - ip(r) ^ 1 - X
•

Dièse Funktion bleibt bei AB und seinen Potenzen ungeândert. Ihre
Reihenentwicklung ist dieselbe, wie diejenige von <p, nur haben die
Koeffizienten der ungeraden Potenzen von h ebenfalls das positive Vor-
zeichen.
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Leiten wir % (t) nach r ab, so erhalten wir, weil hf nih ist:

w» unger.

Dièse Reihe ist der Thetanullwert

+ 24: v U(m)hm)
»n gerade /

Beachtet man ferner die

beiden Gleichungen A und 1 — A -~, so ergibt sich :

Hieraus erhâlt man

<P(t) x(r)

Die Grenzen werden so bestimmt : log X verschwindet fur A 1, also

t 0 ; log (1 — X) verschwindet fur A 0, also r oo, und log *
1 — A

verschwindet fur A ^, also t i
Wir haben gesehen, daB eine Modulsubstitution zweiter Stufe, fur

welche a d 1 (mod 4) ist, auf eine und nur eine Weise sich in der
Gestalt AaiBblAa*Bb* A«n Bbn darstellen lâBt, wobei die Zahlen

a± und bn ganze positive oder négative Zahlen inklusive 0 sind, wâhrend

fcj,...,^ ganze positive oder négative von 0 verschiedene Zahlen sind.
Man kann nun das Problem stellen, eine Funktion der vier Koeffizienten
a, 6, c, d der Matrix anzugeben, welche die Summe ax -f- ^2 + * • * an >

und eine ebensolche, welche die Summe b1 + 62 + * •# + bn darstellt.
Solche Funktionen sind sicher nicht rational in a, b, c, d. Dagegen
bilden die beiden Funktionen 9? (r) und y> (t) eine Lôsung dièses Inter-
polationsproblemes. Es ist nàmlich

ai+b
ci+d

a,

ai+b
ci+d

dr

(Eingegangen den 3. Juli 1943.)
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