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Uber symmetrische analytische Funktionen

Von ANDREAS SPEISER, Ziirich

Dem Meister der konformen Abbildung, Constantin Carathéodory,
mdchte ich zur Feier des siebzigsten Geburtstages diese Arbeit widmen,
welche sich mit den zahlen- und gruppentheoretischen Eigenschaften
der elliptischen Funktionen befaft, einem Gebiet, das noch lange nicht
erschopft 1st und zweifellos noch tiefe Geheimnisse enthilt.

1. Konstruktion der elliptischen Integrale

Wir gehen im folgenden von dem Theorem aus, daBl jede einfach
zusammenhéngende Riemannsche Flidche von elliptischem, parabolischem
oder hyperbolischem Typus ist, d. h. entweder auf die Kugelfliche oder
auf die Kuklidische Ebene oder auf das Innere des Einheitskreises
konform abgebildet werden kann. Die drei Fille unterscheiden sich vor
allem durch die Gruppe der konformen Selbstabbildungen. Nun kon-
struieren wir eine unendlich vielblittrige Riemannsche Flidche, welche
eine Gruppe von Selbstabbildungen gestattet. Aus ihrer Struktur kann
man schliefen, ob der parabolische oder der hyperbolische Fall vorliegt,
und man gelangt so tief ins Wesen der zugehorigen Funktionen unmittel-
bar hinein.

Als erstes Beispiel wihlen wir die logarithmische Fliche, welche bei
0 und oo je einen Verzweigungspunkt unendlich hoher Ordnung enthélt.
Sie gestattet eine zweifach kontinuierliche Schar von Abbildungen auf
sich selbst, welche eine Abelsche Gruppe bilden: Drehungen um den Null-
punkt von beliebigem Winkel und Dehnungen vom Nullpunkt aus. Die
Automorphismen der hyperbolischen Ebene besitzen keine solche Unter-
gruppe, daher liegt der parabolische Fall vor und die Automorphismen,
welche ja keinen Punkt invariant lassen, miissen Translationen sein,
deren Richtungen aufeinander senkrecht stehen. So erhilt man die
komplexe Logarithmusfunktion.

Als zweites Beispiel nehmen wir die elliptischen Integrale. In der
w-Ebene seien vier Punkte 4, B, C, D gegeben, ferner seien von einem
beliebig wihlbaren fiinften Punkte P aus Linien nach den vier Punkten
gezogen, welche sich nirgends schneiden. Léangs dieser vier Linien sei das
Blatt aufgeschnitten. Nun nehmen wir ein zweites kongruentes Exemplar
und heften es lings PA mit dem ersten kreuzweise zusammen, so da@
bei 4 ein Verzweigungspunkt erster Ordnung entsteht. An dieses zweite
Exemplar heften wir lings PB ein drittes an, an dieses dritte lings PC
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ein viertes und dieses vierte heften wir schliellich lings PD wieder an
das erste. An die iibrig bleibenden Schnitte heften wir in der ndémlichen
Weise neue Exemplare an, so dafl der Umlauf um P stets ins Ausgangs-
exemplar zuriickfiihrt und P nur scheinbar singulér ist. Die so entstehende
Riemannsche Fliche ist einfach zusammenhingend. Denn wir konnen
jedes Exemplar als Quadrat deuten, indem wir den Weg von P nach A
auf dem einen Ufer des Schnittes und von 4 nach P auf dem andern
Ufer als Seite des Quadrates annehmen, hierauf den Weg P BP als
nichste Seite usw. Die Verheftung der Blédtter ist dann identisch mit der
Pflasterung der Ebene mit Quadraten, woraus sich der einfache Zu-
sammenhang der Fliche ergibt.

Die Flache ist symmetrisch in sich, denn jedes Blatt derselben ist von
der ganzen Fliche gleich umgeben. Man kann eine kongruente Abbildung
herstellen, indem man irgendein Blatt auf ein anderes kongruent abbildet
und diese Abbildung auf die ganze Fliche nach dem Prinzip der gleichen
Umgebung iibertrigt. Wir haben nun die Gruppe dieser Automorphismen
zu bestimmen. Umlduft man den Punkt A4 einmal, so geht jedes Blatt
in ein benachbartes iiber. Diese Operation bezeichnen wir wieder mit 4 ;
sie ist offenbar eine Involution. So erhalten wir vier erzeugende Opera-
tionen A, B, C, D, deren Quadrate jeweils die Identitdt bilden. AuBer-
dem besteht nur noch folgende Relation: 4 BCD = 1. Umlduft man
alle vier Punkte, oder was dasselbe bedeutet, umliuft man bloB den
Punkt P, so kommt man ins Anfangsexemplar zuriick. Daraus ergibt
sich D = ABC und ferner, dal ABC eine Involution ist. Alle sechs
Produkte, die man durch Vertauschung der drei Buchstaben erhilt,
bilden auch eine Involution, denn BCA entsteht aus A BC durch Trans-
formation mit A4, ist also wieder eine Involution, ferner ist CBA als
inverses von ABC ebenfalls eine Involution. Man kann die Gruppe
vollstindig bestimmen, wenn man bedenkt, dal diejenigen Operationen,
welche eine gerade Anzahl von Buchstaben A, B, C enthalten, einen
Normalteiler vom Index 2 bilden, der durch folgende beiden Operationen
erzeugt werden kann: 4B und AC. So ist z. B. BCBC = (AB)"1 AC
(AB)t AC. Nun sind aber diese beiden Operationen miteinander ver-
tauschbar. Es ist ndmlich

AB-AC = A+BAC = A-CAB = AC-AB,
weil CAB invers zu BAC ist und letzteres ein Element der Ordnung 2,

daher mit seinem inversen identisch ist.
Zwischen den beiden Elementen AB und AC besteht keine weitere
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Relation mehr, sie erzeugen eine unendliche freie Abelsche Gruppe. Die
Automorphismen der hyperbolischen Ebene besitzen keine Abelsche
Untergruppe mit zwei Erzeugenden, die diskontinuierlich ist, denn ver-
tauschbare Elemente derselben gehoren stets einer und derselben ein-
parametrigen kontinuierlichen Schar an. Nimmt man zwei derselben
heraus, so konnen sie allerdings unabhéngig sein, aber es 1483t sich alsdann
eine Bewegung aus ihnen zusammensetzen, welche beliebig nahe bei der
identischen ist. Dies ist aber bei den Abbildungen der Riemannschen
Fliche, welche ja stets ganze Blitter kongruent in verschiedene iiber-
fihren, sicher nicht der Fall. So ergibt sich, dall unsere Riemannsche
Flache zum parabolischen Fall gehort.

Die einzelnen Bldtter gehen nun in Kuklidische Vierecke iiber. Die
Operation 4 mufl eine Abbildung der Euklidischen Ebene auf sich
selber liefern, welche eine Involution ist und einen Fixpunkt besitzt,
nédmlich den dem Punkte 4 entsprechenden Punkt derselben. Eine solche
Abbildung kann nur eine Drehung um 180° sein, mit dem eben ange-
gebenen Fixpunkt, denn die parabolische Ebene besitzt sonst keine
Involution mehr. Man erhélt also das Bild des lings PA mit dem ersten
zusammengehefteten Blattes, indem man das Viereck um den Bildpunkt
von A, der auf einer seiner Seiten liegt, um 180° dreht. Es ergibt sich
daraus, dal die vier Seiten unseres Vierecks Kurven mit Mittelpunkt
sein miissen, und daBl man die ganze Euklidische Ebene pflastern kann,
indem man das Viereck um die Mittelpunkte der Seiten dreht und so ins
Unendliche fortfihrt. Diejenigen Operationen, welche aus einer geraden
Anzahl solcher Drehungen entstehen, sind einfache Translationen. Die
Funktion, welche die Euklidische Ebene auf die Riemannsche Fliche
abbildet, ist daher doppelt periodisch, die Umkehrfunktion nimmt auf
den verschiedenen Blittern nur Werte an, die sich durch das Vorzeichen
oder durch additive Perioden unterscheiden, ihre Ableitung ist iiber der
w-Ebene zweiwertig.

Auf diesem Wege gelangt man zu den elliptischen Integralen erster
Gattung, und das Umkehrproblem ist in seinem schwierigeren Teil
gelost, denn die Punkte 4, B, C, D sind ja beliebig wiahlbar. DaBl man
damit alle doppeltperiodischen Funktionen erhilt, kann nun durch die
Eisensteinschen Reihen bewiesen werden.

Bemerkenswert ist der Satz, da man mit einem beliebigen Viereck,
dessen Seiten Mittelpunkte haben, die Ebene pflastern kann. Man iiber-
zeugt sich leicht, daBl bei den Drehungen um die Seitenmittelpunkte sich
die vier Winkel, deren Summe ja 360° ist, um jede Ecke herumlegen,
wodurch die SchlieBung der Figur bewirkt wird.
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2. Der hyperelliptische Fall

Wir wollen nun in #dhnlicher Weise von einem Blatt ausgehen, das
sechs Punkte 4, B, C, D, E, F als Windungspunkte erster Ordnung
ergibt. Wir denken es wieder von einem beliebigen Punkte P aus nach
den sechs Punkten aufgeschnitten und heften wie vorher neue Exemplare
an, das zweite ans erste lings PA, das dritte ans zweite lings PB usw.,
schlieBlich das sechste wieder an das erste lings PF. Auch diese Fliche
ist einfach zusammenhingend. Das einzelne Blatt ist ein Sechseck mit
der Winkelsumme von 360° und wir erhalten eine Pflasterung mit Sechs-
ecken, wobei jedoch sechs derselben um eine Ecke herumliegen. Offenbar
befinden wir uns im hyperbolischen Fall, denn im Euklidischen hitte das
Sechseck die Winkelsumme 720°. Man beachte bei diesem Schluf3, daf} die
Abbildung bei P durchaus konform ist, da ja P nur scheinbar singulér
ist; auf der Riemannschen Fldche ist P als reguldr anzusehen, da sich
bei seiner Umlaufung das Blatt nicht éndert.

Man erhélt nun wie friither eine Pflasterung der Ebene, indem man das
Sechseck um die Mittelpunkte seiner Seiten dreht. Gleichzeitig ergibt
sich der Satz, dal man die hyperbolische Ebene mit einem beliebigen
n-Eck pflastern kann, dessen Seiten Mittelpunkte haben und bei dem
die Summe der Innenwinkel 360° oder ein echter Teiler davon ist.

Wir wollen statt des Einheitskreises lieber die obere Halbebene
nehmen und die Variable in derselben mit v bezeichnen. Die Funktion
w = f (t), welche die obere z-Halbebene auf die soeben konstruierte
unendlich vielblédttrige Riemannsche Flidche abbildet, ist nun automorph
unter der Gruppe, welche durch die Pflasterung der Ebene mit Sechs-
ecken gegeben ist. Wir wollen sie ndher bestimmen. Sie wird durch 6
Involutionen 4, B, C, D, E, F erzeugt. Zwischen diesen besteht die
Relation ABCDEF = 1. Also ist ABC DE selber eine Involution. Die-
jenigen Elemente der Gruppe, welche durch eine gerade Anzahl von
erzeugenden Elementen zusammengesetzt werden, bilden wieder einen
Normalteiler vom Index zwei. Er heie H. Seine Erzeugenden kénnen
gewidhlt werden als AB, AC, AD, A E und sie mogen in dieser Reihen-
folge mit S;, S,, S5, S, bezeichnet werden. Zwischen ihnen besteht fol-
gende Relation, und nur diese: §; S;'8;8;1= 8;'8;8;'8,, ndmlich

AB-CA-AD-EA-BA-AC-DA-AE =1 .
Betrachten wir nun die Riemannsche Fliche der Abelschen Integrale

erster oder zweiter Gattung. Umlduft man mit dem Integranden eine
ungerade Anzahl von Verzweigungspunkten, so dndert er blof das Vor-
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zeichen. Integriert man daher zweimal iiber einen solchen Weg, so ge-
langt man in den Anfangswert zuriick. Dadurch werden Blédtter identi-
fiziert, welche vorher verschieden waren. Die Gruppe erhilt folgende
weiteren Relationen zwischen den erzeugenden Elementen: Die Produkte
einer ungeraden Anzahl von Erzeugenden sind stets Involutionen.
Hieraus ergibt sich nach bekannten und einfachen Schliissen, daB die
,,Translationen* §;, §,, 85, 8, vertauschbar werden. Die Gruppe der
Abelschen Integrale gegeniiber der Quadratwurzel (der zweiblittrigen
Riemannschen Fldche) ist daher eine Abelsche Gruppe mit vier freien
Erzeugenden. Die obige Relation ist alsdann trivial.

Man findet so den Satz: die Gruppe der Abelschen Integrale ist die
Faktorgruppe der Kommutatorgruppe von H unter H. Die Abelschen
Integrale sind eindeutige Funktionen von 7, aber diese sind nicht mehr
automorph unter H, sondern nur noch unter der Kommutatorgruppe von
H. Der Bereich der Abelschen Integrale bildet Funktionen, welche zur
Kommutatorgruppe gehéren, wenn auch einzelne derselben bei umfassen-
deren Gruppen invariant sein kénnen. Die Riemannsche Fliche der
Integrale ist von unendlichem Zusammenhang, trotzdem ist die Ab-
bildung euklidisch. Das einzelne Blatt wird auf ein Sechseck mit der
Winkelsumme 360° abgebildet, was nur so moglich ist, daB es zweimal
um einen Verzweigungspunkt herumlduft. Auch hier erhilt man die
ganze Abbildung, indem man dieses Sechseck um die Mittelpunkte seiner
Seiten dreht und in dieser Weise fortfihrt.

3. Modulfunktionen

Wir beginnen mit der Riemannschen Flidche der Funktion 4 (7). Sie
enthilt an den Stellen 0,1 und oo in allen Bldttern logarithmische Ver-
zweigungspunkte. Thre Gruppe ist daher die freie Gruppe von 2 Er-
zeugenden, welche man als Drehungen um 0 und 1 deuten kann. In der
oberen 7-Ebene erhilt man entsprechend die Modulsubstitutionen
zweiter Stufe

o — at+ b .
ct+d

Die Zahlen a, b, ¢, d geniigen der Gleichung ad — bc = 1. Ferner sind
@ und d ungerade, b und ¢ gerade. Den Substitutionen kann man die

Matrix
a b
cd
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zuordnen, wobei zunéchst jeder Substitution zwei Matrizen entsprechen,
die sich durch eine Vorzeichendnderung aller vier Zahlen unterscheiden.
Man kann aber eine derselben ausschalten, indem man verlangt, daB
a = b = 1 (mod 4) ist. Diese Matrizen bilden, wie man sich leicht iiber-
zeugt, eine Gruppe. Die Erzeugenden sind die beiden Matrizen

12 10
a=(12) wa 2= ().

Die Modulfunktion 4 () bildet die obere z-Halbebene auf eine Rie-
mannsche Fliche ab, welche bei 0 Verzweigungspunkte zweiter, bei 1
solche erster Ordnung besitzt und bei oo logarithmische Verzweigungs-
punkte aufweist. Um sie kennen zu lernen, ist es am besten, die vorige
modulare Fliche von A in diejenige von j direkt iiberzufiihren. Hierzu
bildet man die Punkte 0, 1 und oo auf die Punkte 1, o und p2 ab, wo ¢
eine dritte Einheitswurzel ist, durch die lineare Substitution

_eA+41
= SirT

Hierdurch werden keine neuen Verzweigungspunkte eingefiihrt. Dies
erhebe man in die dritte Potenz. Dadurch fallen alle logarithmischen
Verzweigungspunkte in den Punkt 1, dagegen entstehen bei 0 und oo je
Verzweigungspunkte zweiter Ordnung. Nun bringe man oo, 0 und 1
nach —1, +1, co durch die Substitution:

1@ 2B — 32— 3442
T 1—p 3(e—)AR—3(g—NA

Diese quadriere man, dann fallen die beiden Verzweigungspunkte zweiter
Ordnung in den Punkt 1 und bei 0 entsteht ein Verzweigungspunkt erster
Ordnung. Derjenige bei oo verschmilzt mit den dort schon vorhandenen
logarithmischen Verzweigungspunkten. Das Resultat wird

23 922 2
@F —3k 3442 _ o und j() =1+

w 4 (1—A4 2%
— 2722 (1 — )2 2 27

27 27 22(A—1) °

Dre Kommutatorgruppe der Modulsubstitutionen zwetter Stufe.

Die Modulgruppe zweiter Stufe ist die freie Gruppe, welche von zwel
Elementen 4 und B erzeugt wird. Man erhilt die Faktorgruppe der
Kommutatorgruppe, indem man die Gruppe abelsch macht. Sie ist daher
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die von zwei Elementen erzeugt freie Abelsche Gruppe. Bezeichnet man
das allgemeine Element der Gruppe mit

A9 By ... Aon Bt |

so besteht die Kommutatorgruppe aus denjenigen KElementen, fiir
welche gilt

a+a+ ... +a,=0 und b, +b+ ... +0,=0 .

Denn fiir die Kommutatoren sind diese Gleichungen sicher erfiillt. Um-
gekehrt folgt aber auch aus ihnen, daBl das Element zur Kommutator-
gruppe gehort. Denn man darf die einzelnen Faktoren vertauschen,
wenn man einen Kommutator rechts hinzufiigt. So kann man das obige
Element folgendermafien darstellen

Antoattan, Bhitbet-tbn, ()
b

wo C ein Element der Kommutatorgruppe bezeichnet. Sind nun die
beiden Exponenten von A4 und B gleich Null, so reduziert sich das
Element auf C.

Wir suchen jetzt eine Funktion, welche zur Kommutatorgruppe gehort.
Sie muB unter den Substitutionen der ganzen Modulgruppe zweiter Stufe
eine freie Abelsche Gruppe von zwei Erzeugenden erfahren. Dies geschieht
mit Hilfe des Logarithmus. Man bildet log A4 und log (1 — 4). Umlduft
man in der A-Ebene den Punkt 0, so bleibt die zweite Funktion unge-
dndert, wihrend die erste den additiven Term 2x¢ erfihrt. Umlduft man
dagegen den Punkt 1, so verhalten sich die beiden Funktionen umgekehrt.
Wir wollen die Reihenentwicklungen dieser Funktionen geben. Es sind
eindeutige Funktionen von 7.

Wir setzen % = ¢™ und beginnen mit log (1 — 1). Bekanntlich ist

L% ma— ke

= =1,2,... .
Wit heyp 0 T

Daher wird
Ig(1—12) =8(Xlog (1 —h*1) — X log (14 h*1)) =

h2v-1 h32v—1) h52v—-1)
= —1ex (T T+ )
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In dieser Potenzreihenentwicklung nach » kommen nur ungerade Po-
tenzen vor und der Koeffizient ist gleich der Summe der reziproken
Teiler des Exponenten. Wir wollen fiir eine beliebige ganze Zahl m die
Summe der ungeraden Teiler inklusive 1 (und m) mit U(m) bezeichnen.
Alsdann ist fiir ungerade m die Summe der reziproken Teiler, wie man

U(m)

sich leicht iiberzeugt, = — Damit erhalten wir die Potenzreihen-

entwicklung

(m)

log(l—24)=—163% B,

die Summe iiber alle ungeraden ganzen positiven Zahlen erstreckt.
Gehen wir nun zu log 4. Bekanntlich ist

¥ 16AII(1 4 h*)
9 (1 4 vy

Daher wird
log A =log 16 + iz + 8( X log(1+A%) — X log(1+ A*7Y)) .

Entwickeln wir zunichst die Klammer. Man erhilt:

h2v h2-2v h3-2v
2(1"‘ 5 T3 ""')"‘

h2v— h2(2v—-1) h3(2v——1)
+2( e +)

Ungerade Exponenten kommen nur in den negativen Termen der zweiten
Summe vor und liefern, wie oben:
U (m)

— X
Die positiven Terme der ersten Reihe liefern fiir gerade m die reziproken

ungeraden Teiler als Koeffizienten. Setzt man m = 2%+.n, wo n ungerade

ist, so erhélt man:
20U (m) o

m

Die negativen Terme erfordern eine Zerlegung von m in zwei gerade
Teiler. Man hat also die reziproken Werte der geraden Teiler von
m

5 = 20-1.n zu summieren, also zu bilden:
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—§-+...+—§b—l

km(l 1).U(n)_(2b——2)U(m)hm.
n m

Dies ist zu subtrahieren.

Die positiven Terme der zweiten Summe erfordern eine Zerlegung von
m in einen geraden und einen ungeraden Faktor. Ersterer enthilt stets
2%, Daher erhilt man

U(m)

m

rm .

Faf3t man alles zusammen, so ergibt sich

3U(m)

m

hn .

Hiermit ist die Reihenentwicklung von log A berechnet. Es ist

log A =1log 16 +nit +a,h+a,h®2+ ...,

wo fiir ungerade m gilt o, = — 8 U7(nm) , fiur gerade m aber
a,, = 24 Ulm) .
m
. 1 1
Wir setzen nun ¢(7) = 5 log 4 und y(r) = 53 log (1— A) und
finden :
T
e+ =g +1,  o(zTg) —el
T
pie+2) =y, v(55) =vem + 1.

Beide Funktionen sind unter der Kommutatorgruppe invariant, sie ge-
horen aber zu zwei verschiedenen umfassenderen Untergruppen der
Modulgruppe zweiter Stufe; ¢ (7) bleibt bei B ungeindert, v () bei A.
Aus ihnen 148t sich ferner bilden

A
2(1) = p(2) — p(x) = 5 - log T2 .

Diese Funktion bleibt bei 4B und seinen Potenzen ungeindert. Ihre
Reihenentwicklung ist dieselbe, wie diejenige von ¢, nur haben die
Koeffizienten der ungeraden Potenzen von h ebenfalls das positive Vor-
zeichen.
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Leiten wir y (7) nach 7 ab, so erhalten wir, weil A’ = nih ist:

AI
———=ni(14+8 X Ulm)hm+2¢4 X Ulm)hm) .
2’(1 — A) 7”[( + mu‘n_g’er. (m) + mg‘e-r;de (m) )
Diese Reihe ist der Thetanullwert m:d3(7). Beachtet man ferner die
4 4
beiden Gleichungen 1= ﬁ—i und 1 — 4 = %2—, so ergibt sich:
3 3
194::———1 £=2’(r) 9% = 2y’ (1) P =29 (7)
0 ?:75 Z. ¢ ’ 2 Q/’ s 3 X .

Hieraus erhilt man
p(0) =3[ (D) dr, p(0)=}[ B dr, 2(z) =} [B(x) dr .
0 00 )

Die Grenzen werden so bestimmt: log A verschwindet fiir 4 = 1, also

A
1—4

7=0; log (1 — 1) verschwindet fiir A=0, also v = co, und log

verschwindet fiir 4 = 4, also v =1.

Wir haben gesehen, daBl eine Modulsubstitution zweiter Stufe, fiir
welche ¢ = d = 1 (mod 4) ist, auf eine und nur eine Weise sich in der
Gestalt 4% B% 4% B% .., 4% B’ darstellen 1i8t, wobei die Zahlen
a, und b, ganze positive oder negative Zahlen inklusive 0 sind, wahrend
b,,...,a, ganze positive oder negative von 0 verschiedene Zahlen sind.
Man kann nun das Problem stellen, eine Funktion der vier Koeffizienten
a, b, c,d der Matrix anzugeben, welche die Summe @, +a,+ :--a,,
und eine ebensolche, welche die Summe b, + b, + - -- + b, darstellt.
Solche Funktionen sind sicher nicht rational in a, b, ¢, d. Dagegen
bilden die beiden Funktionen ¢ (7) und o (7) eine Losung dieses Inter-
polationsproblemes. Es ist ndmlich

ai+b

cs+-d

a +a, -4 an=¢(z:-'jl__2)-— ¢(i)=%fﬂé(t)dt

at+b
cit-d

b+ by o by =y () — v = } [ dr

(Eingegangen den 3. Juli 1943.)
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