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Enden offener Raume
und unendliche diskontinuierliche Gruppen

Von HEeinz Hopr, Ziirich
Herrn C. Carathéodory zum 70.Geburtstag.

Die topologische Untersuchung geschlossener Mannigfaltigkeiten oder
allgemeinerer kompakter Riume fiihrt jn bekannter Weise zur Betrach-
tung von diskontinuierlichen, kompakte Fundamentalbereiche besitzenden
Transformationsgruppen offener — d. h. nicht-kompakter — Rédume:
der universelle Uberlagerungsraum R eines kompakten Raumes R, ist
im allgemeinen offen, und die Gruppe der Decktransformationen, welche
R, erzeugen, hat die genannten Eigenschaften; das Analoge gilt, wenn
man statt der universellen irgend eine reguliro Uberlagerung nimmt!).
Umgekehrt entsteht, wenn ein ofiener Raum R vorgelegt ist, die Frage,
ob er eine derartige Gruppe gestattet. Es zeigt sich nun, daB hierfiir nur
sehr spezielle offene Rédume in Frage kommen, und zwar selbst dann,
wenn man von den Transformationen nicht verlangt, daB sie, wie Deck-
transformationen, fixpunktfrei seien, und selbst dann, wenn man tiber-
dies darauf verzichtet, daf3 die Transformationen eine Gruppe bilden; es
soll also nur gefordert werden, dal es eine Menge & topologischer Selbst-
abbildungen von R gibt, welche diskontinuierlich ist und einen kompakten
Fundamentalbereich besitzt — wobei die Begriffe ,,diskontinuierlich*‘ und
»Fundamentalbereich‘ noch in einer Weise prizisiert werden sollen, die
von dem Ublichen kaum abweicht (Nr.'7, Nr.9); ein solcher offener
Raum R soll kurz ein ,,®-Raum‘‘ heilen.

Die im folgenden betrachtete Bedingung, welche ein (-Raum erfiillen
mufl, bezieht sich auf den anschaulichen Begriff der ,,unendlich fernen
Enden‘‘ eines offenen Raumes, und besonders auf die Anzahl dieser
Enden; iiber diesen Begriff sei im Augenblick zur Orientierung nur soviel
gesagt: man nehme aus einem kompakten Raum?) k£ Punkte oder Kon-
tinuen E,,...,E, heraus, die zueinander fremd sind und die Eigenschaft
haben, daB keine Umgebung von E; durch E, zerlegt wird (ist der
Raum eine Mannigfaltigkeit und seine Dimension > 2, so diirfen die
E, demnach beliebige Punkte sein); dann entsteht ein offener Raum,

1) Wegen der Theorie der Uberlagerungen vgl. man Seifert-Threlfall, Lehrbuch
der Topologie (Leipzig-Berlin 1934), 8. Kap.; ferner: H. Weyl, Die Idee der Rie-

mannschen Flache (Leipzig-Berlin 1913), § 9; H. Hopf, Zur Topologie der Ab-
bildungen von Mannigfaltigkeiten, 2. Teil, Math, Annalen 102 (1929), 562—623,

§ 1.
%) Der Raumbegriff wird in Nr. 1 prazisiert werden.
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der % unendlich ferne Enden hat; so besitzen die Ebene und die mehr-
dimensionalen euklidischen Réume ein Ende, die Gerade und der un-
endliche Kreiszylinder zwei Enden.

Eine allgemeine und befriedigende Theorie der Enden offener topolo-
gischer Riume — und zwar der Riume einer Klasse, welche jedenfalls die
Mannigfaltigkeiten und die Polyeder umfallt — ist von Freudenthal ent-
wickelt worden3); sie ist nahe verwandt mit Carathéodorys Theorie der
Primenden. Die fiir uns wichtigen Hauptpunkte der Freudenthalschen
Theorie werden im § 1 formuliert werden.

Unser Hauptsatz lautet nun:

Ein ®-Raum hat entweder genau ein Ende oder zwer Enden oder eine
Endenmenge von der Mdchtigkeit des Kontinuums?).

Der Beweis wird im § 2 gefiihrt werden; er lehnt sich an den Beweis
eines ihnlichen Satzes von Freudenthal an, in dem es sich nicht um
diskontinuierliche, sondern um kontinuierliche Scharen von Transforma-
tionen handelt?).

Auf Grund unseres Satzes lassen sich die ®-Riume in drei Klassen
einteilen, je nach der Anzahl 1, 2 oder co der Enden. Beispiele, und zwar
von universellen Uberlagerungen geschlossener Mannigfaltigkeiten, aus
den drei Klassen sind die folgenden: die universelle Uberlagerung des
Torus, also die Ebene, hat ein Ende; die universelle Uberlagerung des
Kreises, also die Gerade, hat zwei Enden; die universelle Uberlagerung
der 3-dimensionalen geschlossenen Mannigfaltigkeit, welche die Summe®)
zweier Exemplare des topologischen Produktes von Kreis und Kugel ist,
hat unendlich viele Enden (cf. Nr. 20); verzichtet man auf die Mannig-
faltigkeits-Eigenschaft, so wird das einfachste Beispiel fiir den Fall
unendlicher vieler Enden wohl durch den unendlichen Baumkomplex
gelicfert, der regulir vom Grade 4 ist?) und die universelle Uberlagerung
einer Lemniskate darstellt®).

3) H. Freudenthal, Uber die Enden topologischer Raume und Gruppen,
Math. Zeitschrift 33 (1931), 692—713.

¢) In dem letzten Fall bilden die Enden, in einem noch zu prézisierenden Sinne, eine
diskontinuierliche perfekte Menge (Nr. 11).

§) 1. c., Satz 15.

$) Seifert-Threlfall, 1. c., 218.

7) Ein Streckenkomplex heilt ein Baum, wenn er keinen geschlossenen Streckenzug
enthiilt; er heiBt regular vom Grade n, wenn von jedem Eckpunkt genau n Strecken
ausgehen.

*) Ein Beispiel einer offenen Flache mit unendlich vielen Enden, die regulare Uber-
lagerung einer geschlossenen Flache ist, findet man bei v. Kerékjérté, Vorlesungen
liber Topologie (Berlin 1923), 181-—182,
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Dagegen gibt es nach unserem Satz fiir kein endliches k¥ > 2 eine
n-dimensionale Mannigfaltigkeit, die von der k-mal punktierten Sphire
S” iiberlagert wiirde — im Gegensatz zu k¥ = 1 (die einmal punktierte
S* iiberlagert den n-dimensionalen Torus) und zu 4 = 2 (die zweimal
punktierte S* iiberlagert das Produkt S* x 8§"-!); damit ist eine Frage
beantwortet, die von Herrn Threlfall im Zusammenhang mit dem Pro-
blem der Klassifikation der geschlossenen 3-dimensionalen Mannigfaltig-
keiten formuliert worden war und die mich zu den hier entwickelten
Uberlegungen angeregt hat. Ubrigens ist unsere Einteilung der geschlos-
senen Mannigfaltigkeiten in vier Klassen — jenachdem die universelle
Uberlagerungsmannigfaltigkeit geschlossen ist oder ein Ende oder zwei
Enden oder unendlich viele Enden hat — vielleicht auch sonst niitzlich
fiir die weitere Behandlung des genannten Klassifikations-Problems.

Obwohl der Hauptsatz allgemeinere Giiltigkeit hat, so ist der interes-
santeste Fall doch der, in dem & eine Gruppe ist. Hier entsteht die Frage
nach Zusammenhiingen zwischen der algebraischen Struktur von ® und
der Endenzahl des &-Raumes; sie wird im §3 behandelt, allerdings
hauptsichlich nur fiir den Spezialfall, in dem ® die Decktransformationen-
Gruppe einer reguliren Uberlagerung R eines endlichen Polyeders
(beliebiger Dimension) ist. Dann wird gezeigt, daB die Endenzahl des
Raumes R durch die Struktur der Gruppe ® bestimmt ist; mit anderen
Worten: zwei derartige ®-Polyeder mit isomorphen Gruppen & haben
die gleiche Endenzahl. Nun laBt sich aber jede abstrakte Gruppe ®,
die von endlich vielen Elementen erzeugt wird, als eine solche Deck-
transformationen-Gruppe — und zwar sogar eines Polygons, d. h. eines
eindimensionalen Polyeders — darstellen; somit darf man von der
Endenzahl einer abstrakten Gruppe sprechen, und es ergibt sich eine Ein-
teilung der Gesamtheit aller unendlichen, von endlich vielen Elementen
erzeugten Gruppen in drei Klassen; und nicht nur die Anzahl der Enden,
sondern auch die Enden selbst erweisen sich als Eigenschaften der ab-
strakten Gruppen: sie konnen durch gewisse unendliche Folgen von
Gruppen-Elementen charakterisiert werden. Aber eine rein algebraische
Theorie dieser Gruppen-Enden, ohne Bezugnahme auf spezielle Dar-
stellungen der Gruppen durch Uberlagerungs-Réume, ist mir nicht
bekannt, und das Problem, die Endenzahl 1, 2 oder oo aus der bekannten
Struktur einer Gruppe — oder aus Erzeugenden und definierenden Rela-
tionen — zu bestimamen, bleibt ungelést?); das Wenige, was xch hieriiber
weill, wird im § 3 gesagt.

) Man beachte jedoch FuBnote 17,
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$ 1. Allgemeines iiber Riume und ihre Enden

1. Unter einem ,,Raum‘‘ soll immer ein Hausdorffscher Raum mit
abzihlbarer Basis verstanden werden, der lokal kompakt, lokal zusam-
menhiingend und zusammenhingend ist. Alle zusammenhiingenden
Polyeder, endlich oder unendlich, also speziell alle Mannigfaltigkeiten,
geschlossen oder offen, sind derartige Riume. Wie es bei Mannigialtig-
keiten iiblich ist, nennen wir einen nicht-kompakten Raum ,offen‘;
(dagegen soll unter einer offenen Punktmenge eines Raumes immer eine
solche verstanden werden, deren Komplementirmenge abgeschlossen ist).

2. Rseiein offener Raum. Nach Freudenthal!?) sind seine ,, Endpunkte‘
oder kurz ,,Enden‘") folgendermaBen definiert: jede absteigende Folge
G,oG,> .- von Punktmengen @,, welche offen sind, kompakte
Begrenzungen besitzen und fiir welche der Durchschnitt ihrer abge-
schlossenen Hiillen leer ist, bestimmt ein Ende; zwei solche Folgen
{G.}, {G;} bestimmen dasselbe Ende, wenn es zu jedem 1 ein j mit G} c G,
gibt; (es gibt dann von selbst zu jedem j ein k mit G, c @)).

Freudenthal zeigt nun: Indem man zu der Menge aller Punkte von R
die Enden von R als neue ,,ideale‘* Punkte hinzufiigt und in dieser Ver-
einigungsmenge einen geeigneten Umgebungsbegriff einfiithrt, der den
in R gegebenen Umgebungsbegriff nicht dndert, wird R zu einem kom-
pakten Raum R erweitert, in welchem die Endenmenge € = R -- R
abgeschlossen und nirgends dicht ist und die folgende Eigenschaft hat
(durch welche diese AbschlieBung von R vor allen anderen ausgezeichnet
ist): jeder Punkt K ¢ € besitzt beliebig kleine Umgebungen H; derart,
daB nicht nur H,, sondern auch der Durchschnitt H : von H, und R
zusammenhiingend ist, und dall die Begrenzung von H; kompakt ist
und in R liegt; (daB es ,,beliebig kleine‘‘ H, gibt, bedeutet: in jeder
beliebigen Umgebung von E gibt es ein H,). Die topologische Struktur
von R und von € ist durch R vollstindig bestimmt ; (dies wird sich unten
in Nr. 5 noch einmal ergeben).

3. Man kann die Enden statt durch Mengenfolgen {G;} auch durch
Punktfolgen, die gegen ein Ende streben, charakterisieren.

Eine Punktfolge z;, z,,... in R heillt divergent, wenn sie keinen
Hiaufungspunkt hat, oder, was duasselbe ist: wenn in jeder kompakten
Teilmenge von R hichstens endlich viele z, liegen. Allgemeiner soll eine

19) le, §§1, 2.
11) Indem ich nicht zwischen ,,Endpunkt‘’ und ,,Ende** unterscheide, weiche ich etwas
von Freudenthals Terminologie ab.
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Folge von Punktmengen M,, M,,... divergent heiBen, wenn jede kom-
pakte Menge mit hochstens endlich vielen M, Punkte gemeinsam hat.

Es gilt nun folgendes:

Ist «,, #,,... eine in R divergente Punktfolge, so konvergiert sie in
R dann und nur dann gegen einen Punkt E ¢ €, wenn es fiir jedes n ein
solches, z, mit z,,, verbindendes Kontinuum (z. B. einen Weg) W, in
R gibt, da die Folge der W, in R divergiert. Sind «,, 2,,... und y,, ¥,,...
zwei Punktfolgen, welche die soeben ausgesprochene Bedingung erfiillen,
so streben sie dann und nur dann gegen denselben Punkt E, wenn es fiir
jedes n ein solches, z, mit y, verbindendes Kontinuum W, in R gibt,
daB die Folge der W, in R divergiert.

Diese Tatsachen charakterisieren die Enden von R mit Hilfe von
Punktfolgen in R.

Der Beweis ergibt sich leicht mit Hilfe der Umgebungen H,, die in
Nr. 2 besprochen wurden. Es sei erstens {z,} eine Punktfolge in R, die
in R gegen E strebt; dann nehme man eine absteigende Folge von Um-
gebungen H,, deren Durchschnitt der Punkt £ ist; fiir jedes (hinreichend
groBe) n sei ¢,, das grofte ¢, fir das «, und z,,, in H, liegen; dann strebt
t, mit n gegen unendlich; W, sei ein Kontinuum, das z, und «,,, in
H; (cf.Nr.2) verbindet; dann divergieren die W, in R. — Es sei
zweitens {z,} eine in R divergente Folge, die nicht gegen einen Endpunkt
E strebt; dann enthilt sie zwei Teilfolgen, die gegen zwei verschiedene
Endpunkte £ und E’ streben; man nehme eine Umgebung H von E,
die £’ nicht enthilt, und deren Rand K eine kompakte Menge in R ist;
fir unendlich viele n liegt x,,, aber nicht z,,, in A, und jedes Kontinuum,
das z, und =z, , verbindet, trifft K ; eine Folge von solchen W, kann
nicht divergieren. — Drittens: die Folgen {z,} und {y,} mégen beide
gegen K streben; dann strebt auch die Folge z,, y,, z,, ¥;,... gegen E,
und auf Grund der bereits bewiesenen ersten Behauptung kann man
z, mit y, durch ein Kontinuum W, so verbinden, daBB die Folge dieser
W, divergiert. — Viertens: wenn {z,} und {y,} gegen verschiedene End-
punkte £ und E’ streben, so habe K dieselbe Bedeutung wie beim Beweis
der zweiten Behauptung; wie dort sieht man, daB es keine divergente
Folge von Kontinuen W, geben kann, welche z, und y, verbinden.

4. Es seien jetzt R und R’ zwei Riume. Eine stetige Abbildung f
von R in R’ heiBle ,,kompakt‘, wenn jede in R divergente Punktfolge
auf eine in R’ divergente Folge abgebildet wird. Wenn f kompakt und
{M,} eine divergente Mengenfolge in R ist, so divergiert auch die Folge
der Bildmengen f(M,) in R’; denn andernfalls gibe es eine kompakte
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Teilmenge K’ von R’, mit welcher unendlich viele Mengen f(J,) Punkte
gemeinsam hiitten; fiir jedes n giibe es also ein x, e M, mit f(z,) e K';
die Folge der x, wiire divergent, die der f(z,) aber nicht — im Widerspruch
zu der Kompaktheit von f.

Wir erweitern R und R’ durch ihre Endenmengen €, €’ zu den Riumen
£, R’ und behaupten:

Eine kompakte stetige Abbildung f von R in R’1iBt sich immer durch
Erklirung einer Abbildung von € in &’ zu einer stetigen Abbildung f
von R in R’ erweitern.

Beweis: E sei ein Punkt von €. Es gibt eine gegen £ strebende Punkt-
folge {z,} in R; da R’ kompakt und f kompakt ist, haben die Punkte
f(x,) wenigstens einen Héufungspunkt E’ ¢ €’; indem wir allenfalls zu
einer Teilfolge iibergehen, diirfen wir annehmen, daB die f(x,) gegen E’
streben. Wir behaupten zunichst: Ist {y,} irgend eine gegen E strcbende
Yolge in R, so streben die f(y,) gegen denselben E’. In der Tat: in R
existieren Kontinuen W,, die immer z, mit y, verbinden, so dall ihre
Folge divergiert; dann divergiert wegen der Kompaktheit von f auch die
Bildfolge f(W,), und hieraus folgt, daB8 keine Teilfolge der f(y,) gegen
einen von E’ verschiedenen Punkt von €’ streben kann (Nr. 3); daher
muB f(y,) - E’ gelten. Demnach kénnen wir fiir jeden Punkt E ¢ € das
Bild f(E) « €’ so erkliren, daB folgendes gilt: aus z,— E, z, ¢ R folgt
flz,) = f(E); fir x e R setzen wir f(x) == f(x). Um die Stetigkeit dieser
Abbildung f von R in B’ zu beweisen, bleibt noch zu zeigen: aus £, — E,
E, € € folgt f(E,) — f(E) ; mit anderen Worten: es gelte £, -~ E, E, € €,
und es sei K’ ein Hiufungspunkt der Folge {f(E,)}; dann ist E' = f(E).
Um dies zu zeigen, nehmen wir zunichst beliebige Umgebungen U, U’
von E bzw. E’; fiir ein gewisses n ist dann E, ¢ U, f(E,) ¢ U’; nach
Definition von f gibt es in R eine Folge z., 2,..., die gegen E, strebt,
so daB die f(«*) gegen f(E,) streben; es gibt daher einen Index i,, so
daB zin € U, f(xir) e U’ ist; auf diese Weise kann man, da U, U’ beliebige
Umgebungen von E bzw. E’ waren, in R eine Folge {x, = z"} so finden,
daB z, - E, f(x,) — E’' gilt; das bedeutet aber: E' = f(E).

8. Jede topologische Abbildung f eines Raumes R auf einen Raum
R’ ist kompakt; denn gibe es eine divergente Folge {z,} in R, deren
Bildfolge {f(,)} einen Haufungspunkt z’ hitte, so wiirde die Betrach-
tung der Abbildung f~! in der Umgebung von z’ zu einem Widerspruch
fiihren. Daher liBt sich nach Nr. 4 die topologische Abbildung f von R
auf R’ durch Erklirung einer Abbildung von € in &’ zu einer eindeutigen
und stetigen Abbildung f von B in R’ erweitern; analog existiert eine
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Abbildung g von R’ in R, welche eine Erweiterung der Umkehrungs-
abbildung g = f-! ist. Dann ist die Zusammensetzung gf eine stetize
Abbildung von R in sich, welche eine Erweiterung der identischen Ab-
bildung von R auf sich ist; da R iiberall dicht in Z ist, folgt hieraus, da8
g f die identische Abbildung von R auf sich ist; insbesondere ist g f(E) = E
fiir jeden E ¢ €. Ebenso ergibt sich fg(E’) = E’ fiir jeden E’ e ' . Aus
gf (E) = E folgt, daB die Abbildung f von (€ eineindeutig ist; aus fg(E’) =
E' folgt, daB f die Menge € auf die ganze Menge &’ abbildet; durch }
wird also € topologisch auf €', und daher auch R topologisch auf R’
abgebildet. Es gilt also folgendes:

Jede topologische Abbildung f von R auf R’ liBt sich durch eine
topologische Abbildung von € auf €’ zu einer topologischen Abbildung
f von R auf R’ erweitern.

Hierin ist noch einmal der Satz (cf. Nr. 2) enthalten, daB € und R
in topologisch invarianter Weise mit R verkniipft sind.

6. In dem Raume R sei R, eine Punktmenge, die nicht kompakt, aber
abgeschlossen ist. Da R, nicht kompakt ist, gibt es in R, divergente
Punktfolgen; da R, abgeschlossen ist, divergiert jede dieser Folgen auch
in R; ebenso divergiert jede in R, divergente Mengenfolge auch in R.
Hieraus ist auf Grund der in Nr.3 gegebenen Charakterisierung der
Enden ersichtlich, daBl jedem Ende von R, ein bestimmtes Ende von R
entspricht (man kann dasselbe auch so ausdriicken: die Abbildung, die
jeden Punkt von R, sich selbst zuordnet, ist infolge der Abgeschlossenheit
von R, eine kompakte Abbildung von R, in R, und nach Nr. 4 gehort
daher zu ihr eine Abbildung der Endenmenge von R, in die Endenmenge
von R) Es braucht aber nicht jedes Ende von R einem Ende von R, zu
entsprechen, und ein Ende von R kann mehreren Enden von R, ent-
sprechen.

Wir betrachten jetzt den Speziaifall, in dem R triangulierbar, also ein
unendliches Polyeder!?) und R; das Polygon ist, das aus den Kanten
einer festen Simplizialzerlegung von R besteht; dann ist R, nicht kom-
pakt, aber abgeschlossen. Wir behaupten, daBl dann jedes Ende £ von R
einem und nur einem Ende von R, entspricht.

Beweis: Es sei {z,} eine gegen E strebende Punktfolge in R, und fiir

13) Ein ,,Polyeder** ist ein Raum, der hom&omorph mit einem ,,Euklidischen Polyeder**
im Sinne von Alexandroff-Hopf, Topologie I (Berlin 1935), 129, ist; dies ist auf Grund
des ,,Einbettungssatzes'’, 1. c., 158—159, gleichbedeutend damit, da8 der Raum eine
Simplizialzerlegung gestattet, die ein ,,absoluter Komplex** (1. c., 156) ist. Fiir die unend-
lichen Polyeder ist die Eigenschaft der ,,lJokalen Endlichkeit* (1. 0., 129) wichtig; sis wird
im folgenden benutzt.
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jedes n sei W, ein Simplex der betrachteten Zerlegung von R, das =z,
enthilt; aus der Divergenz der z, folgt, da eine kompakte Menge immer
nur mit endlich vielen Simplexen Punkte gemeinsam hat, die Divergenz
der Mengenfolge {1V,}; hieraus folgt, wenn y, einen Eckpunkt von W,
bezeichnet, da auch die y, gegen E streben; das bedeutet: £ entspricht
dem durch die Folge {y,} reprisentierten Ende von R,. Es seien ferner
E,, E'{ zwei Enden von R, denen E entspricht; dann gibt es Punkt-
folgen {z,}, {z.} in R,, die gegen E, bzw. E; streben, und die, als Punkt-
folgen in E, beide gegen E streben; letzteres bedeutet: es gibt fiir jedes
n in R ein Kontinuum W,, das z, mit z, verbindet, so daB die W, diver-
gieren. Nun sei K, das Teilpolyeder von R, das aus allen Simplexen
besteht, die Punkte von W, enthalten, und k, das Polygon, das von allen
Kanten dieser Simplexe gebildet wird; mit den W, divergieren auch die
K, und mit diesen auch die k,; da aber die k£, Kontinuen in R, sind,
welche immer z, und 2, verbinden, ist E, = E;. Das heiBt: E entspricht
nur einem Ende von R,.

Damit ist gezeigt: Ist R ein Polyeder und R, das von allen Kanten
einer Simplizialzerlegung von R gebildete Polygon, so ist die Enden-
menge € von R identisch mit der Endenmenge €, von R, ; bei der Unter-
suchung der Enden von R kann man sich also (im Sinne von Nr. 3) auf
die Betrachtung von Punkt- und Mengenfolgen in R, beschriinken.

§ 2. Enden und diskontinuierliche Abbildungsmengen

7. Wir betrachten stetige Abbildungen eines Raumes R in einen Raum
R’. Eine Menge ® solcher Abbildungen f heiBle ,,stark diskontinuierlich’,
wenn folgende Bedingung erfiillt ist

(4) Je zwei Punkte z e R, x’¢ R’ besitzen solche Umgebungen U
bzw. U’, daB fiir hochstens endlich viele f aus & die Bilder f(U) Punkte
mit U’ gemeinsam haben.

Diese Bedingung ist mit der folgenden iquivalent:

(4') Sind K, K’ kompakte Mengen in R bzw. R’, so haben fiir hoch-
stens endlich viele f aus ® die Bilder f(K) Punkte mit K’ gemeinsam.

Dafl (4) aus (A4') folgt, ergibt sich daraus, daB unsere Riume lokal
kompakt sind, daB also die Punkte z, 2’ Umgebungen besitzen, deren
abgeschlossenen Hiillen kompakt sind. Um zu sehen, da8 (4’) aus (4)
folgt, nehmen wir an, es gelte (4), aber nicht (4’); dann gibe es kom-
pakte Mengen K, K’ und unendliche Folgen von Punkten z,¢ K,
z, ¢ K’ und von Abbildungen f, ¢ G mit f,(z,) = x, ; die Mengen {z,},
{a:,,} hitten Hiufungspunkte x bzw. 2/, und diese besiBen Umgebungen
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U, U’, welche einerseits (4) erfiillten, wihrend andererseits fiir unendlich
viele n die z, in U, die 2 in U’ ligen; dies ist ein Widerspruch.

Der wichtigste Fall ist der, in dem R = R’ und ® eine Gruppe topo-
logischer Abbildungen ist; die dann iibliche Bedingung der ,,eigentlichen**
Diskontinuitdt!?) ist etwas schwiicher als unsere Bedingung der ,,starken‘
Diskontinuitét.

Wir bleiben aber vorliufig noch bei dem allgemeinen Fall, in dem
R # R’ und ® eine Menge beliebiger stetiger Abbildungen sein darf.

8. Die Bedeutung der Aussage, dafl fiir eine Abbildungsfolge {f.} und
einen Punkt y ¢ R die Bildfolge {f,.(y)} gegen ein Ende E’ von R’ konver-
giert, ist klar: es handelt sich um den gewohnlichen Konvergenzbegrift
in dem Raume R’; ebenso natiirlich ist die Erklirung der Aussage, daB
die Folge {f.} auf einer Punktmenge M von R gleichmdifig gegen den
Endpunkt E’ von R’ konvergiert: zu jeder Umgebung U von E’ in R’
gibt es ein solches 7,4, daB fiir alle n > %, die Bilder f,(3) in U liegen.

Hilfssatz 1. ® sei eine stark diskontinuierliche Menge von Abbil-
dungen des Raumes R in den Raum R’; es gebe in R eine gegen einen
Punkt x konvergierende Punktfolge {x,} und in ® eine Abbildungsfolge
{f.}, so daBl die Punktfolge {f.(x,)} gegen einen Endpunkt E’ von R’
konvergiert. Dann konvergiert fiir jeden Punkt y ¢ R die Folge {f.(v)}
gegen E’, und diese Konvergenz ist gleichméBig auf jeder kompakten
Teilmenge K von R. 14)

Beweis. Es seien z, z,, f,, E’, K so gegeben, daB die genannten Vor-
aussetzungen erfiillt sind; U sei eine Umgebung von E’ ; zu zeigen ist:
fast alle Mengen f,(K) — d.h. alle bis auf héchstens endlich viele
Ausnahmen — liegen in U.

Aus den in Nr. 1 formulierten Eigenschaften des Raumes R ergibt sich,
daf die folgende Konstruktion moglich ist: man nehme eine Umgebung
Vo von z und Umgebungen V,,..., V, von endlich vielen Punkten von
K derart, daf jedes V, zusammenhingend und da8 jede abgeschlossene
Hille V, kompakt ist (¢=0,1,...,7); dann ist 3 ¥V, eine kompakte
Menge, die aus endlich vielen Komponenten besteht und die man daher
durch Hinzufiigung von endlich vielen Kontinuen selbst zu einem kom-
pakten Kontinuum @ ergénzen kann; @ enthilt K und V,, also auch
fast alle z,.

13) Man vgl. z. B. van der Waerden, Gruppen von linearen Transformationen
(Berlin 1935), 35.

) Dieser Hilfssatz, wie auch der iibrige Inhalt unseres § 2, hingt eng zusammen mit
den Satzen des 2. Kapitels in der Arbeit *) von Freudenthal.
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In U gibt es (cf. Nr, 2) eine Umgebung H von E’, deren Begrenzung
K’ eine kompakte Menge in R’ ist. Da die Punkte f,(x,) gegen £’ streben,
hat H mit fast allen Mengen f,(Q) Punkte gemeinsam ; da ® stark diskon-
tinuierlich ist, ist auf Grund von (4’) die Menge K’ zu fast allen Mengen
f.(@) fremd; da diese Mengen zusammenhingend sind, liegen sie daher
fast allein H , alsoin U; da K c @ ist, ist damit die Behauptung bewiesen.

Bemerkung : Fiir Anwendungen wichtig ist der Fall, in dem die Folge
{z,} mit z zusammenfillt, in dem also fiir einen festen Punkt x die Kon-
vergenz f,(x) -> B’ vorausgesetzt wird.

9. Es sei wieder @ eine Menge stetiger Abbildungen des Raumes R
in den Raum R’. Eine Punktmenge F c R heiBe eine ,,Fundamental-
menge'' von &, wenn sie folgende Bedingung erfiillt: Zu jedem Punkt
z' € R’ gibt es wenigstens einen Punkt x ¢ / und wenigstens eine Abbil-
dung f e ® mit f(z) = z'.

Die in der tiblichen Weise erklirten Fundamentalbereiche von Gruppen
topologischer Selbstabbildungen!?) sind also spezielle Fundamental-
mengen.

Wir werden Abbildungsmengen ® betrachten, welche kompakte Funda-
mentalmengen besitzen.

Hilfssatz 2. ® besitze eine kompakte Fundamentalmenge F ; dann
gibt es zu jedem Ende £’ von R’ e¢ine Punktfolge {,} in R, die gegen
einen Punkt z konvergiert, und eine Abbildungsfolge {f,} in ®, so dal
die Folge {f.(z,)} gegen E’ konvergiert.

Beweis. Es sei {z,} eine gegen E' strebende Punktfolge in R’; zu jedem
n gibt es einen Punkt z, ¢ F und eine Abbildung f, ¢ ® mit f,(z,) = z. ;
wegen der Kompaktheit von F diirfen wir, indem wir allenfalls zu einer
Teilfolge iibergc.ien, annehmen, daB die z, gegen einen Punkt z kon-
vergieren. d

a

10. Aus den Hilfssitzen 1 und 2 ergibt sich unmittelbar

Hqlfssatz 3. Die Abbildungsmenge (& sei stark diskontinuierlich und
besitze eine kompakte Fundamentalmenge. Dann gibt es zu jedem Ende

E’von R’ eine Folge {f,} in &, welche die Behauptung des Hilfssatzes 1
erfiillt.

Hierin ist enthalten:

Hilfssatz 3'. ® sei stark diskontinuierlich und besitze eine kompakte
Fundamentalmenge; U sei eine vorgegebene Umgebung eines Endes E’
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von R/, und K sei eine vorgegebene kompakte Punktmenge in R. Dann
gibt es in ® eine Abbildung f mit f(K)c U.

11. Wir kommen zu unserem Hauptsatz:

Satz I. Der Raum R sei offen; es gebe eine Menge ® topologischer
Abbildungen von R auf sich, welche stark diskontinuierlich ist und eine
kompakte Fundamentalmenge besitzt. Dann hat R entweder genau ein Ende
oder zweir Enden oder eine Endenmenge von der Mdchtigkeit des Konti-
nuums.

Die Behauptung liBt sich noch folgendermafen prizisieren:

Zusatz. Der Raum R erfulle die Voraussetzungen des Satzes I und
besitze wenigstens drei Enden. Dann ist die Menge & seiner Endpunkte
in R eine perfekte diskontinuierliche Menge.

Da der Raum R kompakt ist und, ebenso wie R, eine iiberall dichte
abzihlbare Punktmenge enthilt, hat jede perfekte Teilmenge von R die
Michtigkeit des Kontinuums und ist, wenn sie diskontinuierlich ist, ein
topologisches Bild des Cantorschen Diskontinuums?®), Der ,,Zusatz*
enthilt also den Satz I.

Fiir jeden offenen Raum R ist € abgeschlossen und diskontinuierlich.
Fiir den Beweis des Zusatzes geniigt es daher, zu beweisen, dafl € in sich
dicht ist; diese Behauptung liBt sich so formulieren:

Der Raum R erfillle die Voraussetzungen des Satzes I und besitze wenig-
stens drev Enden; E set ein beliebiges Ende von R und U eine beliebige
Umgebung von E in R. Dann enthalt U wenigstens zweis voneinander ver-
schiedene Enden von R.

Zum Zweck des Beweises konstruieren wir zundchst — falls die Kom-
plementirmenge R — U = Q von U nicht selbst zusammenhingend ist
— eine in U enthaltene Umgebung U’ von E, deren Komplementiir-
menge B — U’ = Q' zusammenhingend ist: Man iiberdecke die kom-
pakte Menge @ mit solchen Umgebungen V,,..., ¥, von endlich vielen
ihrer Punkte, da8 keine V; den Punkt £ enthilt, daB jede V, zusaramen-
hingend ist, und daB die abgeschlossenen Hiillen V; kompakt sind; die
Vereinigungsmenge J 7, besteht dann aus endlich vielen Komponenten;
da € = B — R nirgends dicht in R ist, enthilt jede V;, also auch jede
der genannten Komponenten, Punkte von R; je zwei Punkte von R
lassen sich in R durch ein Kontinuum verbinden; daher kann man die

15) Man vgl. z. B, Hausdorff, Grundziige der Mengenlehre (Leipzig 1914), 320;
Alexandroff-Hopf, 1. c., 121,
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Mengo X V7, durch Hinzufiigung von endlich vielen Kontinuen, welche
in R liegen, also den Punkt E nicht enthalten, zu einer zusammenhingen-
den abgeschlossenen Menge @’ ergiinzen, welche E nicht enthilt; es ist
also, wenn wir I — Q' = U’ setzen, U’ eine Umgebung von E; da
Qc XV, c@’ist, ist U' ¢ U. DaB die hiermit beschriebene Konstrulk-
tion moglich ist, ergibt sich aus den in Nr. 1 formulierten Eigenschaften
von R. Falls bereits @ zusammenhiingerd ist, kann man natiirlich ein-
fach U’ = U setzen.

Nun seien E,, E,, E, drei voneinander verschiedene Enden von R,
und H,, H,, H, solche Umgebungen von ihnen, dal jede nur einen
der Punkte E, enthilt, und daB die Begrenzungen K, der H, in R gele-
gene kompakte Mengen sind (cf. Nr. 2) (einer der E; darf mit % zusam-

ienfallen). Nach dem Hilfssatz 3’ gibt es in ® eine solche Abbildung f,
daB f(K, + K, + K,) c U’ ist. Nach Nr. 5 lillt sich f zu einer topolo-
gischen Abbildung f von R auf sich erweitern, welche € auf sich abbildet.
Falls alle drei Punkte f(E,), f(E,), f(E,) in U’ liegen, ist unsere Behaup-
tung gewil richtig; es liege etwa f(E,) nicht in U’, sondern in Q’. Daraus,
daB Q' zusammenhiingend ist, den in f(H,) gelegenen Punkt f(E,) ent-
hiilt und zu der in U’ gelegenen Begrenzung f(K,) von f(H,) tromd ist,
folgt, da @’ in f(H,) liegt. Andererseits liegen, ca E,, E, mcht in H
liegen, die Bilder f(E ) f(E,) nicht in f(H,). Folglich liegen f(E,), f (& )
nicht in Q’, sondern in B — Q' = U’, also in U.

12. Die iibliche Theorie der (unverzweigten) Uberlagerungen!) besitzt
Giiltigkeit nicht nur fiir Mannigfaltigkeiten und Polyeder, sondern fiir
alle Rdume, welche aufler den i Nr. 1 formulierten Eigenschaften noch
die des ,,lokalen einfachen Zusammenhanges‘‘ besitzen; das soll bedeu-
ten: jeder Punkt besitzt beliebig kleine Umgebungen, die einfach zu-
sammenhéingenc sind, d. h. in denen sich jeder geschlossene Weg auf
einen Punkt zusammenziehen liBt. Diese Umgebungen spielen folgende
Rolle: wird bei der Uberlagerung des Raumes R, durch den Raum R
der Punkt z, ¢ R, von dem Punkt z € R iiberlagert, und ist U, eine ein-
fach zusammenhingende Umgebung von z,, so gibt es eine Umgebung
U von z, welche U, eineindeutig iiberlagert.

Der Raum R sei eine regulire Uberlagerung des Raumes R, ; es gebe
also eine Gruppe ® von topologischen Abbildungen von R auf sich,
. den Decktransformationen, welche in bekannter Weise R, erzeugen.
Dann ist & stark diskontinuierlich; sind ndmlich z, z’ Punkte von R
und z,, z, die entsprechenden Punkte von R,, so betrachte man, falls
T, 5 x, ist, zwei zueinander fremde, einfach zusammenhingende Um-
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gebungen U,, Uj von z,, z; und, falls z, == | ist, eine einfach zusammen-
hingende Umgebung U, dieses Punktes; in jedem Falle seien U, U’ die
entsprechenden Umgebungen von z, x’; dann gibt es im Falle z, # z;
iberhaupt keine Abbildung fe ®, fiir die f(U) und U’ gemeinsame
Punkte haben, und im Falle z, = z; gibt es genau eine solche Abbildung
f, ndmlich diejenige mit f(z) = z'.

Wir setzen weiter voraus, dafl R, kompakt ist. Dann besitzt ® eine
kompakte Fundamentalmenge #'. Um eine solche zu konstruieren, iiber-
decke man R, mit endlich vielen Umgebungen Uj,..., U}, die einfach
zusammenhéngend und deren abgeschlossenen Hiillen kompakt sind;
sind dann U* die den U} entsprechenden Umgebungen in R, so ist die
Vereinigungsmenge der abgeschlossenen Hiillen U eine kompakte Funda-
mentalmenge von ®.

Aus diesen Tatsachen und dem Satz I ergibt sich der folgende Satz,
in welchem von dem Raum R vorausgesetzt wird, daB3 er lokal einfach
zusammenhingend sei, was gewill der Fall ist, wenn er ein Polyeder oder

eine Mannigfaltigkeit ist:

Satz II. Ein offener Raum R, der eine reguliire Uberlagerung — z. B.
die universelle Uberlagetung — eines kompakten Rawmes ist, hat entweder
genau ein Ende oder zwet Enden oder eine Endenmenge von der Michtigket

des Kontinuums.

Beispiele fiir alle drei Fille sind in der Einleitung angegeben worden.
DaB dieselbe Behauptung fiir nicht-regulire Uberlagerungen im allge-
meinen nicht richtig ist, zeigt folgendes Beispiel : man nehme vier Strah-
len, die von einem Punkt a ausgehen, und auf jedem von ihnen eine diver-
gente Folge von Punkten (3 a); in jedem dieser Punkte zeichne man
einen den betreffenden Strahl beriihrenden Kreis, so da3 diese Kreise
zueinander fremd sind; die so entstandene Figur R hat vier Enden und
ist eine Uberlagerung der Figur R,, die aus zwei sich berithrenden Kreisen

besteht.

§ 3. Die Enden abstrakter Gruppen

13. Wenn der Raum R regulire Uberlagerung des Raumes R, und
wenn die zugehorige Deckiransformationen-Gruppe mit der abstrakten
Gruppe ® isomorph ist, so wollen wir sagen, daB & durch diese Uber-
lagerung ,,dargestellt‘‘ wird. Jede abstrakte Gruppe ®&, welche durch
endlich viele ihrer Elemente erzeugt wird, a8t sich in dieser Weise dar-
stellen, und zwar so, daB R, ein endliches Polyeder, und sogar so, da
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R, ein endliches Polygon ist; denn die Erzeugbarkeit von & durch =
Elemente bedeutet, daB & mit der Faktorgruppe der von = freien Er-
zeugenden erzeugten freien Gruppe {, nach einem Normalteiler )t von
%, isomorph ist; §, ist die Fundamentalgruppe endlicher Polygone R,,
z. B. des Polygons, das von n Dreiecken gebildet wird, die einen Eck-
punkt gemeinsam haben; die zu der Untergruppe 9N gehorige Uber-
lagerung R von R, stellt ® in der behaupteten Weise dar!®).

Eine Gruppe ® kann aber durch Uberlagerungen sehr verschiedener
endlicher Polyeder dargestellt werden. Eigenschaften, welche allen diesen
verschiedenen Darstellungen gemeinsam sind, sind Eigenschaften der
Gruppe ® selbst. Es wird sich zeigen, dafi die Enden der Polyeder R
und daher auch die Anzahl dieser Enden solche Eigenschaften sind.

14. Es handelt sich also darum, Beziehungen zwischen verschiedenen
Darstellungen einer Gruppe herzustellen; hierzu dient

Hilfssatz 4. Die unendlichen Polygone R, R’ seien regulire Uherla-
gerungen der endlichen Polygone R,, R, ; die zugehérigen Decitransfor-
mationen-Gruppen seien derselben Gruppe ® isomorph; die beiden Deck-
transformationen, die einem Element g ¢ () e.itsprechen, seien mit T,
bzw. T, bezeichnet. Dann gibt es eine stevige Abbildung f von R in R’,
welche kompakt ist (cf. INr. 4) und fur jedes g € ® die Funktionalgleichung
fT, = T.f erfiillt.

Beweis. Fir jeden Eckpunkt p von R, zeichnen wir einen ihn iiber-
lagernden Eckpunkt von R aus und nennen diesen p*; fiir jeden dieser
endlich vielen p* verstehen wir unter f(p*) einen beliebigen Eckpunkt
von R’; fiir jeden Eckpunkt ¢ von R gibt es, da ¢ einen Eckpunkt von
R, iiberlagert, genau einen Punkt p* und genau ein Element g ¢ ® mit
g = T,(p*); dann ist f(q) = {T,(p*) = T',{(p*) ein wohlbestimmter Eck-
punkt von R’. Jetzt zeichnen wir fiir jede Kante s von R, eine sie iiber-
lagernde Kante von R aus und nennen diese s*; fiir jede dieser endlich
vielen Kanten s* verstehen wir unter f(s*) einen beliebigen Streckenzug
in R’, der die bereits erklirten Bilder der Endpunkte von s* verbindet;
fiir jede Kante ¢ von R gibt es genau eine Kante s* und genau ein Element
g ¢ ® mit ¢t = T,(s*); dann ist f(t) = fT',(s*) = T',f(s*) ein wohlbestimm-
ter Streckenzug in R’. Hiermit ist die Abbildung f von R in R’ erklirt;
sie ist kompakt, da jeder Eckpunkt von R’ Bild von héchstens endlich
vielen Eckpunkten von R ist und da jede Kante von R’ durch die Bilder

14) Wenn man jedes der oben genannten n Dreiecke nur als eine einzige ,,Strecke"*
mit zusammenfallenden Endpunkten deutet, so sind die unendlichen Polygone oder

Streckenkomplexe R die ,,Dehnschen Gruppenbilder* von &; zu jeder Erzeugung von
® durch endlich viele Elemente gehort ein solches Gruppenbild.
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von héchstens endlich vielen Kanten von R bedeckt wird; daB f die
Funktionalgleichung fT,= T} erfiillt, ergibt sich unmitteibar aus der
Definition.

15. Wir prizisieren jetzt die am Schlufl von Nr. 13 angedeutete Rolle
der Enden. Die Uberlagerung R des endlichen Polyeders R, sei eine Dar-
stellung von ® ; die einem Element g ¢ ® entsprechende Decktransforma-
tion nennen wir wieder 7',; die Gruppe ® sei unendlich, der Raum R
also offen. In Nr. 12 wurde gezeigt, daB3 die Menge der Decktransforma-
tionen stark diskontinuierlich ist und eine kompakte Fundamentalmenge
besitzt; aus den Hilfssitzen 3 und 1 folgt daher: zu jedem Ende £ von
R gibt es in ® Folgen von Elementen {g,}, so daB fiir einen Punkt
x ¢ R die Folgen {T, (x)} gegen E streben; und zwar besteht diese Kon-
vergenz, falls sie fiir einen Punkt z besteht, fiir jeden Punkt x (man
beachte hierfiir die Bemerkung am Schlufl von Nr. 8). Von einer solchen
Folge {g,} sagen wir, daB sie ,,zu dem Ende E von R gehért®. Es gilt nun

Satz I11. Die unendliche, vor endlich vielen Elementen erzeugtc Gruppe &
werde durch die Uberlagerungen R bzw. R’ der endlichen Polyeder R, bzw.
R, dargestellt ; {g,} sei eine Folge von Elementen auc ®, welche zu einem
Ende E von R gehort. Dann gehort dieselbe Folge auch zu einem Ende von R’.

Beweis. Wir nehmen zuniichst an, da8 R, und R, Polygone sind;
dann existiert eine Abbildung f mit den im Hilfssatz 4 genannten Eigen-
. schaften. Da die Folge {g,} zu E gehort, strebt fiir ~inen Punkt z ¢ R
die Folge der Punkte z, = T, (x) gegen E ; wegen der ilompaktheit von
f strebt nach Nr. 4 dann die Folge der Punkte f(z,) gexen ein Ende E’
von R’; wegen der Funktionalgleichung fiir f ist, wenn wir f(z) = z’
setzen, f(z,) = T, (z’); daB die Folge dieser Punkte gegen E’ strebt,
bedeutet aber: die Folge {g,} gehért zu dem Ende E’ von R’.

Der Fall beliebiger Polyeder R,, R laBt sich auf den somit erledigten
polygonalen Fall zuriickfithren: die Polygone, die aus allen Kanten ven
R bzw. R’ (in festen Simplizialzerlegungen) bestehen, iiberlagern die aus
den Kanten von R, bzw. R/ bestehenden Polygone, und auch diese Uber-
lagerungen stellen % dar; andererseits darf man sich nach Nr. 6 bei der
Untersuchung der Enden auf die Kantenpolygone von R und R’ be-
schrinken; damit ist der Satz III bewiesen.

Zusatz zu dem Satz III: Wenn die Folgen {g,} und {h,} aus ® zu dem-
selben Ende von R gehoren, so gehéren sie auch zu demselben Ende von R’.

Denn wenn {g,} und {h,} zu demselben Ende von R gehéren, dann
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gehort auch die Folge {g,, &y, g5, k;,...} zu diesem Ende, also gehort
diese Folge nach dem Satz III zu einem Ende von R’, und dies bedeutet:
die Folgen {g,} und {h,} gehéren zu demselben Ende von R’.

16. ® bezeichne wie bisher eine abstrakte unendliche Gruppe mit
endlich vielen erzeugenden Elementen. Wir definieren: Eine Folge {g,}
von Elementen aus ® ,,gehért zu einem Ende von G, wenn sie bei einer
Darstellung von ® durch die Uberlagerung R eines endlichen Polyeders
R, zu einem £nde von R gehort; zwei Folgen {g,} und {%,} aus ® gehoren
zu,,demselben‘‘ Ende von &, wenn sie bei einer Darstellung der genannten
Art zu demselben Ende von R gehoren. Aus dem Satz III und dem Zusatz
zu ihm ergibt sich, daB diese Definitionen unabhingig sind von der als
Hilfsmittel herangezogenen speziellen Darstellung. Damit ist der Begriff
der ,,Enden einer abstrakten Gruppe'‘ erklirt.

Insbesondere gehort zu jeder Gruppe & eine bestimmte Anzahl ihrer
Enden ; nach dem Satz I ist diese Anzahl 1 oder 2 oder die Mdchtigkert
des Kontinuums; hierdurch ist also eine Einteilung der Gesamtheit der
Gruppen ® in drei Klassen gegeben.

Die Tatsache, dal die Anzahl der Enden cinerseits eine Eigenschaft
der abstrakten Gruppe ®, andererseits gleich der Anzahl der Enden
eines die Gruppe ® darstellenden Uberlagerungs-Polyeders R ist, liBt
sich folgendermaBen als Zusatz zu dem Satz II (Nr.12) formulieren:

Sind die unendlichen Polyeder R, R' regulire Uberlagerungen endlicher
Polyeder R,, R, und sind die zugehirigen Decktransformationen-Gruppen
etnander isomorph, so haben R und R’ die gleiche Anzahl von Enden.
Insbesondere ist die Endenzahl des universellen Uberlagerungsraumes R
evnes endlichen Polyeders R, durch die Struktur der Fundamentalgruppe ®
von R, bestimmdt.

17. Es liegen jetzt die Aufgaben nahe, die Enden einer Gruppe rein
algebraisch zu untersuchen oder wenigstens fiir die Anzahl der Enden ein
algebraisches Kriterium anzugeben!’). Wir werden hier nur die zweite
dieser Aufgaben etwas weiter verfolgen, aber auch dabei nur zu einem
Teilergebnis gelangen.

17 In einem gewissen Sinne sind diese Aufgaben natiirlich dadurch zu lésen, daB man
ein Gruppenbild!?) R von ® betrachtet und die Beschreibung der Enden von R aus der
Sprache unserer Nr. 3 ins Algebraische iibersetzt, was keine prinzipielle Schwierigkeit
bietet. Das Gruppenbild hangt aber noch von der speziellen Wahl der Erzeugenden von
© ab, und erwiinscht ware es, ohne Bezugnahme auf ein spezielles System von Erzeugenden
ein Kriterium dafiir zu kennen, wann eine Folge f,, f;, ... von Gruppenelementen zu
einem Ende gehért.
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Fast selbstverstindlich ist folgender Satz:

Satz 1V. Wenn U eine Untergruppe von endlichem Index in ® ist, so
hat U dieselbe Endenzahl wie ® .

Wenn nimlich die Uberlagerung R des endlichen Polyeders R, eine
Darstellung von ® ist, so gibt es bekanntlich zu der Untergruppe U
einen Raum R, der R, so iiberlagert und von R regulir so iiberlagert
wird, daf} folgendes gilt: seine Blitterzahl iiber R ist gleich dem Index
von !l in &, und die Decktransformationen-Gruppe, die zu seiner regu-
L.ren Uberlagerung R gehort, ist 2. Derselbe Raum R tritt also bei Dar-
stellungen von & und von U als Uberlagerung endlicher Polyeder auf;
daraus ist die Gleichheit der Endenzahlen von & und U ersichtlich. —

Der nichste Satz enthilt unser vorhin erwihntes Teilergebnis im Zu-
sammenhang mit der Aufgabe, algebraische Kriterien fiir die Endenzahl
einer Gruppe zu finden:

Satz V. Die Qruppe ® hat dann und nur dann genau zwer Enden, wenn
sie etne Untergruppe U enthdilt, die unendlich zyklisch ist und einen end-
lichen Index in ® hat.

Der eine Teil des Satzes folgt leicht aus dem Satz IV: wenn ® eine
Untergruppe der genannten Art enthilt, so hat & dieselbe Endenzehl
wie die unendliche zyklische Gruppe; deren Endenzahl aber ist 2, da
sie die Fundamentalgruppe der Kreislinie ist, und da der universelle
Uberlagerungsré.um der Kreislinie, also die Gerade, zwei Enden besitzt.
Der andere Teil des Satzes V ist in dem folgenden allgemeineren Satz
enthalten :

Satz Va. Der Raum R habe genau zweir Enden ; ® sei eine Gruppe topo-
logischer Selbstabbildungen von R ; sie sei stark diskontinuserlich und besitze
eine kompakte Fundamentalmenge F . Dann enthilt ® eine Untergruppe U,
die unendlich zyklisch ist und tn ® endlichen Index hat.

Hierbei braucht also R kein Polyeder, und insbesondere brauchen die
Transformationen aus ® keine Decktransformationen, sie brauchen also
nicht fixpunktfrei zu sein; der Satz gehért daher in den Rahmen unseres
§ 2; dies wird sich auch in der Beweismethode dulern.

18. Dem Beweis schicken wir einen Hilfssatz voraus:

Hilfssatz 5. Es sei R ein beliebiger offener Raum, ® eine stark dis-
kontinuierliche Gruppe topologischer Selbstabbildungen von R und U
eine Untergruppe von &, die eine kompakte Fundamentalmenge F
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besitzt. Dann ist die Gruppe U unendlich, und sie besitzt in & endlichen
Index.

Beweis. Da F Fundamentalmenge von U ist, ist die iiber alle Trans-
formationen u aus U erstreckte Summe J’ u(F') der ganze Raum R ; da
F kompakt und R offen ist, folgt hieraus die Unendlichkeit von .

Da ® stark diskontinuierlich und ¥ kompakt ist, gibt es infolge der in
Nr. 7 ausgesprochenen Bedingung (A’) nur endlich viele Elemente
g ¢ &, fiir welche g(F') und F Punkte gemeinsam haben; dies seien die
Elemente ¢,,...,¢,. Es sei nun ¢ ein beliebiges Element aus ®; man
nehme einen Punkt p € F'; da F Fundamentalmenge von U ist, gibt es
einen Punkt p’ ¢ F und ein Element u ¢ U mit u(p’) = g(p); dann ist
u~lg(p) = p’, also ist u~lg = g¢,, g = ug,, wobei g, eines der obigen Ele-
mente g¢,,. .., ¢, ist; damit ist die Endlichkeit des Index von U bewiesen.

19. Bewcis des Satzes Va. Die Enden von R seien E,, K,. Nach Nr. 5
1iBt sich jede der Abbildungen g ¢ ® zu einer topologischen Abbildung g
des Raumes R = R + E, + E, erweitern; durch g wird entweder jeder
der beiden Endpunkte festgehalten, oder die beiden Enden werden ver-
tauscht; dicjenigen g, welche die Enden festhalten, bestimmen eine Unter-
gruppe &, von ®, die entweder mit ® identisch ist oder in ¢ den Index 2
hat. Im letzteren Falle sei ¢’ ein nicht in ®, enthaltenes Element von ®;
dann ist die Menge F + ¢/(F) eine kompakte Fundamentalmenge von
®,; aullerdem ist ®, als Untergruppe von ® selbst stark diskontinuierlich.

H sei eine Umgebung von E,, die zusammenhingend ist, deren Be-
grenzung A kompakt ist und in R liegt, und deren abgeschlossene Hiille H
den Endpunkt £, nicht enthilt (cf. Nr. 2). Nach dem Hilfssatz 3’ (Nr. 10),
angewandt auf ®,, gibt es eine Abbildung « ¢ ®,, fiir welche u(K) c R—H
ist. U sei die von u erzeugte Gruppe; wir behaupten:

U besitzt eine kompakte Fundamentalmenge.

Wenn diese Behauptung bewiesen ist, so folgt nach dem Hilfssatz 5,
daf3 die Gruppe U, die ja nach ihrer Definition zyklisch ist, die Behaup-
tung des Satzes Va erfiillt.

Wir betrachten die Potenzen ", also die Elemente von i, und setzen
uH)=H,, w(K)=K,. Da K,c R — H ist, ist H fremd zu der
Begrenzung K, von H,; da u ¢ ®,, also u(%,) = E, ist, haben H und H,
den Punkt E, gemeinsam; ferner ist H zusammenhingend; aus diesen
Tatsachen folgt: H c H,, und folglich: H,_, c H, fiir alle n, und folg-
lich: H c K, fiir alle n > 0. Hitte K, fiir ein n > 0 einen Punkt mit H
gemeinsam, 80 nach dem eben Bewiesenen auch mit H,, was nicht der
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Fall ist, da die H, offene Mengen sind; mithin sind die K, fiir n > 0
fremd zu H. Es sei nun z ein Punkt von K ; die Folge der Punkte u"(x)
mit n = 1, 2,... kann wegen der starken Diskontinuitit von ® keinen
Hiufungspunkt in R besitzen; auch X, ist nicht Héufungspunkt der
Folge, da, wie soeben gezeigt wurde, kein Punkt der Folge in H liegt;
folglich strebt die Folge gegen E,. Nach dem H:lfssatz 1 strebt daher
sowohl fiir jeden Punkt y ¢ R die Folge der Puniite u"(y), als auch die
Folge der Mengen K, mit » — 4 oo gleichmillig gegen E, (man beachte
die Bemerkung am SchluBl von Nr. 8); es gibt also inabesondere zu jeder
Umgebung U von E, ein solches positives n, dall K, c U .

Es sei jetzt y ein beliebiger Punkt von R. Die soeben genannte Um-
gebung U von E, wihlen wir so, dal} sie weder y noch K, enthilt, und
daB ihre Komplementirmenge E — U = @ zusammenhingend ist (daB
man diese letzte Bedingung erfiillen kann, ist in Nr. 11 gezeigt worden).
In U gibt es ein K, ; da die zusammenhingende Menge ¢ somit fremd zu
der Begrenzung K, von H, ist, mit H, aber den Punkt E, gemeinsam hat,
ist ¢ < H, und daher auch y ¢ H,,.

Andererseits kann y in hochstens endlich vielen Mengen H_, mit
n > 0 enthalten sein; denn andernfalls ligen fiir unendlich viele positive
n die Punkte w"(y) in H, entgegen der oben bewiesenen Tatsache, daf3
diese Punkte gegen E, streben.

Da also die Menge der Indizes =, fiir welche y ¢ H, ist, einerseits nicht
leer ist, andererseits hochstens endlich viele negative Zahlen enthiilt,
enthilt sie eine kleinste Zahl; diese heiBem + 1 ;dannisty e H,,,, — H,,
und folglich w~—™(y) e H, — H und erst recht uw—™(y) e H, — H. Das
bedeutet, daB die Menge H, —— H eine Fundamentalmenge von U ist;
da sie kompakt ist und in R liegt, ist damit die Behauptung bewiesen.

20. Dank dem Satz V reduziert sich die Aufgabe, algebraische Kriterien
fiir die Endenzahl einer Gruppe zu finden, auf die Frage nach einem alge-
braischen Unterscheidungsmerkmal zwischen den Gruppen mit einem
Ende und denen mit unendlich vielen Enden. Icn kenne kein solches
Merkmal und muB3 mich auf die Angabe der einfachsten Beispiele be-
schrianken.

Das direkte Produkt ® zweier unendlicher Gruppen hat stets genau ein
Ende ; denn in diesem Falle besitzt @ eine Darstellung durch eine Uber-
lagerung R eines offenen Polyeders, wobei R das topologische Produkt
zweier offener Riume ist, und ein solches Produkt hat nach einem Satz
von Freudenthal 18) immer nur ein Ende.

“18) 1.¢c., § 3.
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Zu diesen Gruppen gehoéren die Abelschen Gruppen, deren Rang > 1
ist. Andere Gruppen mit einem Ende sind die Fundamentalgruppen der
geschlossenen Flichen positiven Geschlechts; denn die universelle Uber-
lagerung dieser Flachen, die Ebene, hat ein Ende.

Die freien Gruppen §, mit n freien EKrzeugenden und n > 1 haben
unendlich viele Enden; denn §, ist die Fundamentalgruppe eines Poly-
gons R,, das von n Dreiecken mit einem gemeinsamen Eckpunkt gebildet
wird, und die universelle Uberlagerung von R, ist mit einem Baumkom-
plex homéomorph, der regulir vom Grade 2n ist?); dafl dieser Baum fiir
n > 1 unendlich viele Enden hat, sieht man sofort z. B. mit Hilfe des
Kriteriums aus Nr. 3.

Daraus, daf} §, unendlich viele Enden hat, folgt iibrigens mit Hilfe
des in Nr. 16 formulierten Zusatzes zu Satz II die in der Einleitung
erwihnte Tatsache, da die universelle Uberlagerung der 3-dimensionalen
Mannigfaltigkeit, welche die topologische Summe?®) zweier Exemplare
des topologischen Produktes von Kreis und Kugel ist, unendlich viele
Enden besitzt. _

Ohne Beweis'?) sei noch auf folgende Gruppen mit unendlich vielen
Enden hingewiesen: das freie Produkt®?) zweier Gruppen, von denen keine
die Identitdt ist, hat unendlich viele Enden — mit einer einzigen Aus-
nahme: das freie Produkt zweier Gruppen der Ordnung 2 hat zwei
Enden (diese Gruppe enthilt eine unendlich zyklische Untergruppe vom
Index 2). Hieraus folgt: sind AM,, M,, zwei geschlossene Mannigfaltig-
keiten, mindestens 3-dimensional und keine von ihnen einfach zusammen-
hingend, so hat die universelle Uberlagerung M ihrer topologischen
Summe unendlich viele Enden — abgesehen von dem Fall, in dem die
Fundamentalgruppen von M, und von M, die Ordnung 2 haben; dann
hat M zwei Enden; in der Tat wird die Summe zweier projektiver Riume
von dem topologischen Produkt von Gerade und Kugel iiberlagert.

(Eingegangen den 28. Juni 1943.)

1%) Der Beweis ist mit Hilfe von Gruppenbildern zu fiihren.
19) Sesfert-Threlfall, 1. ¢, 300,
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