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Enden offener Râume
und unendliche diskontinuierliche Gruppen
Von Heinz Hopf, Zurich

Herrn C. Carathéodory zum 7O.Qeburtstag. %

Die topologische Untersuchung geschlossener Mannigfaltigkeiten oder
allgemeinerer kompakter Râume fûhrt jn bekannter Weise zur Betrach-
tung von diskontinuierlichen,kompakte Fiuidamentalbereiche besitzenden
Transformationsgruppen offener — d. h. nicht-kompakter — Râume:
der universelle Ùberlagerungsraum R eines kompakten Raumes Ro ist
im allgemeinen offen, und die Gruppe der Decktransformationen, welche
Eo erzeugen, hat die genannten Eigenschaften ; das Analoge gilt, wenn
man statt der universellen irgend eine regulàro Ûberlagerung nimmt1).
Umgekehrt entsteht, wenn ein offener Raum R vorgelegt ist, die Frage,
ob er eine derartige Gruppe gestattet. Es zeigt sich nun, daB hierfur nur
sehr spezielle offene Râume in Frage kommen, und zwar selbst dann,
wenn man von den Transformationen nicht verlangt, dafi sie, wie
Decktransformationen, fixpunktfrei seien, und selbst dann, wenn man ùber-
dies darauf verzichtet, daû die Transformationen eine Gruppe bilden ; es
soll also nur gefordert werden, daû es eine Menge © topologischer Selbst-
abbildungen von R gibt, welche diskontinuierlich ist und einen kompakten
Fundamentalbereich besitzt — wobei die Begriffe ,,diskontinuierlich" und
,,Fundamentalbereich" noch in einer Weise prâzisiert werden sollen, die
von dem Ûblichen kaum abweicht (Nr. 7, Nr. 9); ein solcher offener
Raum R soll kurz ein ,,(5-Raum" heiBen.

Die im folgenden betrachtete Bedingung, welche ein (5-Raum erfûllen
muB, bezieht sich auf den anschaulichen Begriff der ,,unendlich femen
Enden" eines offenen Raumes, und besonders auf die Anzahl dieser
Enden ; uber diesen Begriff sei im Augenblick zur Orientierung nur soviel
gesagt : man nehme aus einem kompakten Raum2) k Punkte oder Kon-
tinuen El9... tEk heraus, die zueinander fremd sind und die Eigenschaft
haben, daB keine Umgebung von Et durch E{ zerlegt wird (ist der
Raum eine Mannigfaltigkeit und seine Dimension > 2, so dûrfen die
Ei demnach beliebige Punkte sein); dann entsteht ein offener Raum,

l) Wegen der Théorie der Uberlagerungen vgl. man Seifert-Threlfall, Lehrbuoh
der Topologie (Leipzig-Berlin 1934), 8. Kap.; ferner: JET. Weyl, Die Idée der Rie-
mannsehen Flache (Leipzig-Berlin 1913), § 9; H. Hopf, Zur Topologie der Ab-
bildungen von Mannigfaltigkeiten, 2. Teil, Math. Annalen 102 (1929), 562—623,
11.

a) Der Raumbegriff wird in Nr. 1 praziaiert werden.
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der k unendlich ferne Enden hat ; so besitzen die Ebene und die mehr-
dimensionalen euklidischen Raume ein Ende, die Gerade und der un-
endliche Kreiszylinder zwei Enden.

Eine allgemeine und befriedigende Théorie der Enden offener topolo-
gischer Raume — und zwar der Raume einer Klasse, welche jedenfalls die

Mannigfaltigkeiten und die Polyeder umfafit — ist von Freudenthal ent-
wickelt worden3) ; sie ist nahe verwandt mit Carathéodorys Théorie der
Primenden Die fur uns wichtigen Hauptpunkte der Freudenthalschen
Théorie werden im § 1 formuliert werden.

Unser Hauptsatz lautet nun:

Ein (5-Raum hat entweder genau ein Ende oder zwei Enden oder eine

Endenmenge von der Màchtigkeit des Kontinuums*).

Der Beweis wird im § 2 gefuhrt werden ; er lehnt sich an den Beweis
eines alinlichen Satzes von Freudenthal an, in dem es sich nicht um
di^kontinuierliche, sondern um kontinuierliche Scharen von Transforma-
tionen handelt6).

Auf Grand unseres Satzes lassen sich die (5-Raume in drei Klassen
einteilen, je nach der Anzahl 1, 2 oder oo der Enden. Beispiele, und zwar
von universel!en Ùberlagerungen geschlossener Mannigfaltigkeiten, aus
den drei Klas&en sind die folgenden: die universelle Uberlagerung des

Torus, also die Ebene, hat ein Ende; die universelle Uberlagerung des

Kreises, also die Gerade, hat zwei Enden; die universelle Uberlagerung
der 3-dimensionalen geschlossenen Mannigfaitigkeit, welche die Sunime6)
zweier Exemplare des topologischen Produktes von Kreis und Kugel ist,
hat unendlich viele Enden (cf. Nr. 20) ; verzichtet man auf die Mannig-
faltigkeits-Eigenschaft, so wird das einfachste Beispiel fur den Fall
unendlicher vieler Enden wohl durch den unendlichen Baumkomplex
geliefert, der regular vom Grade 4 ist7) und die universelle lîberlagerung
einer Lemniskate darstellt8).

3) H Freudenthal, Ûber die Enden topologischor Raume und Gruppen,
Math Zeitschnft 33 (1931), 692—713.

4) In dem letzten Fall bilden die Enden, in einem noch zu prazisierenden Sinne, eine
diskontmuierhche perfekte Menge (Nr. 11).

6) 1. c, Satz 15

•) Setfert-Threlfall, 1. c, 218.
7) Ein Streckonkomplex heiÛt ein Baum, wenn er kemen geschlossenen Streckenzug

enthalt; er heiût regulàr vom Grade n, wenn von jedem Eckpunkt genau n Strecken
ausgehen.

8) Ein Beispiel einer offenen Floche mit unendlich vielen Enden, die regulare Ûber-
lagerung einer gesohlossenen Flache ist, findet man bei v. Kerékjârtâ, Vorlesungen
uber Topologie (Berlin 1023), 181—182.
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Dagegen gibt es nach unserem Satz fur kein endliches k > 2 eine
w-dimensionale Mannigfaltigkeit, die von der &-mal punktierten Sphare
Sn uberlagert wiirde — im Gegensatz zu k 1 (die einmal punktiorte
Sn ùberlagert den w-dimensionalen Torus) und zu k 2 (die zweimal
punktierte Sn uberlagert das Produkt S1 X S"""1); damit ist eine Frage
beantwortet, die von Herrn Threlfall im Zusammenhang mit dem Pro-
blem der Klassifikation der geschlossenen 3-dimensionalen Mannigfaltig-
keiten formuliert worden war und die mich zu den hier entwickelten
Ùberlegungen angeregt hat. Ûbrigens ist unsere Einteilung der geschlossenen

Mannigfaltigkeiten in vier Klassen — jenachdem die universelle
Uberlagerungsmannigfaltigkeit geschlossen ist oder ein Ende oder zwei
Enden oder unendlich viele Enden hat — vielleicht auch sonst nùtzlich
fur die weitere Behandlung des genannten Klassifikations-Problems.

Obwohl der Hauptsatz allgemeinere Gùltigkeit hat, so ist der interes-
santeste Fall doch der, in dem © eine Gruppe ist. Hier entsteht die Frage
nach Zusammenhângen zwischen der algebraischen Struktur von © und
der Endenzahl des ©-Raumes; sie wird im § 3 behandelt, allerdings
hauptsàchlich nur fur den Spezialfall, in dem © die Decktransformationen-
Gruppe einer regularen t)berlagerung R eines endlichen Polyeders
(beliebiger Dimension) ist. Dann wird gezeigt, daB die Endenzahl des

Baumes R durch die Struktur der Gruppe © bestimmt ist; mit anderen
Worten : zwei derartige ©-Polyeder mit isomorphen Gruppen © haben
die gleiche Endenzahl. Nun làût sich aber jede abstrakte Gruppe ©,
die von endlich vielen Elementen erzeugt wird, als eine solche Deck-
transformationen-Gruppe — und zwar sogar eines Polygons, d. h. eines
eindimensionalen Polyeders — darstellen; somit darf man von der
Endenzahl einer abstrakten Gruppe sprechen, und es ergibt sich eine
Einteilung der Gesamtheit aller unendlichen, von endlich vielen Elementen
erzeugten Gruppen in drei Klassen ; und nicht nur die Anzahl der Enden,
sondern auch die Enden selbst erweisen sich als Eigenschaften der
abstrakten Gruppen: sie kônnen durch gewisse unendliche Folgen von
Gruppen-Elementen charakterisiert werden. Aber eine rein algebraische
Théorie dieser Gruppen-Enden, ohne Bezugnahme auf spezielle Dar-
stellungen der Gruppen durch Ûberlagerungs-Ràume, ist mir nicht
bekannt, und das Problem, die Endenzahl 1, 2 oder oo aus der bekannten
Struktur einer Gruppe — oder aus Erzeugenden und definierenden Rela-
tionen — zu bestimmen, bleibt ungelôst9); das Wenige, was ioh hieruber
weilî, wird im § 3 gesagt.

•) Man beaohte jedooh Fuûnote 17.

83



S 1. Allgomeines iïber Râume und ihre Enden

1. Unter einem ,,Raum(< soll immer ein Hausdorffscher Raum mit
abzahlbarer Basis verstanden werden, der lokal kompakt, lokal zusam-
menhangend und zusammenhângend ist. Aile zusammenhangenden
Polyeder, endlich oder unendlich, also speziell aile Mannigfaltigkeiten,
geschlossen oder offen, sind derartige Raume. Wie es bei Mannigfaltigkeiten

ublich ist, nennen wir einen nicht-kompakten Raum ,,offen";
(dagegen soll unter einer offenen Punktmenge eines Raumes immer eine
solche verstanden werden, deren Komplementârmenge abgeschlossen ist).

2. R sei ein offener Raum. Nach Freudenthal10) sind seine ,,Endpunkte"
oder kurz ,,Enden"11) folgendermaBen definiert: jede absteigende Folge
GXZ)O2ZD''' von Punktmengen welche offen sind, kompakte
Begrenzungen besitzen und fur welche der Durchschnitt ihrer abge-
schlossenen Hullen leer ist, bestimmt ein Ende; zwei solche Folgen
{<?,}, {Q'}} bestimmen dasselbe Ende, wenn es zu jedem i ein j mit G\ c Ot

gibt ; (es gibt dann von selbst zu jedem j ein k mit Ok c G;').

Freudenthal zeigt nun : Indem man zu der Menge aller Punkte von R
die Enden von R als neue ,,idéale" Punkte hinzufugt und in dieser Ver-
einigungsmenge einen geeigneten Umgebungsbegriff einfuhrt, der den
in R gegebenen Umgebungsbegriff nîcht andert, wird R zu einem kom-
pakten Raum R erweitert, in welchem die Endenmenge (S R -- R
abgeschlossen und nirgends dicht ist und die folgende Eigenschaft hat
(durch welche dièse AbschlieBung von R vor allen anderen ausgozeichnet
ist): jeder Punkt E € © besitzt beliebig kleine Umgebungen Ht derart,
daB nicht nur Hit sondern auch der Durchschnitt H[ von Ht und R
zusammenhângend ist, und daB die Begrenzung von H% kompakt ist
und in R liegt; (daB es ,,beliebig kleine" H{ gibt, bedeutet: in jeder
beliebigen Umgebung von E gibt es ein #<). Die topologische Struktur
von R und von (£ ist durch R vollstândig bestimmt ; (dies wird sich unten
in Nr. 5 noch einmal ergeben).

3. Man kann die Enden statt durch Mengenfolgen {(?,} auch durch
Punktfolgen, die gegen ein Ende streben, charakterisieren.

Eine Punktfolge xx, x2,... in R heiBt divergent, wenn sie keinen
Haufungspunkt hat, oder, was dasselbe ist: wenn in jeder kompakten
Teilmenge von R hochstens endlich viele xn liegen. Allgemeiner soll eine

l0) i.c, §§1,2.
11 Indem ioh nicht zwischen (fEndpunkt** und MEnde<( untersoheide, weiche ioh etwaa

von Freudenthals Terminologie ab.
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Folge von Punktmengen Ml9 M2i... divergent heiBen, wenn jede kom-
pakte Menge mit hôchstens endlich vielen Mn Punkte gemeinsam hat.

Es gilt nun folgendes :

Ist xx, x2,... eine in R divergente Punktfolge, so konvergiert sie in
jR dann und nur dann gegen einen Punkt E c (S, wenn es fur jedes n ein
solches, xn mit #n+1 verbindendes Kontinuum (z. B. einen Weg) Wn in
R gibt, daû die Folge der Wn in R divergiert. Sind xl9 x29. und yx, y2,...
zwei Punktfolgen, welche die soeben ausgesprochene Bedingung erfûllen,
so streben sie dann und nur dann gegen denselben Punkt E, wenn es fur
jedes n ein solches, xn mit yn verbindendes Kontinuum Wn in R gibt,
daB die Folge der Wn in R divergiert.

Dièse Tatsachen charakterisieren die Enden von R mit Hilfe von
Punktfolgen in R.

Der Beweis ergibt sich leicht mit Hilfe der Umgebungen H{> die in
Nr. 2 besprochen wurden. Es sei erstens {xn} eine Punktfolge in R, die
in R gegen E strebt; dann nehme man eine absteigende Folge von
Umgebungen Hif deren Durchschnitt der Punkt E ist; fur jedes (hinreichend
grofie) n sei in das grôBte i, fur das xn und #n+1 in Ht liegen; dann strebt
in mit n gegen unendlich; Wn sei ein Kontinuum, das xn und xn+x in
H'i (cf. Nr. 2) verbindet; dann divergieren die Wn in R, —- Es sei
zweitens {xn} eine in R divergente Folge, die nicht gegen einen Endpunkt
E strebt; dann enthâlt sie zwei Teilfolgen, die gegen zwei verschiedene
Endpunkte E und E' streben; man nehme eine Umgebung H von E>
die Er nicht enthâlt, und deren Rand K eine kompakte Menge in jR ist;
fur unendlich viele n liegt xn, aber nicht xn+l in H, und jedes Kontinuum,
dak xn und xn+l verbindet, trifït K ; eine Folge von solchen Wn kann
nicht divergieren. — Drittens: die Folgen {xn} und {yn} môgen beide

gegen E streben; dann strebt auch die Folge xl9 ylt x2i y2>... gegen E,
und auf Grund der bereits bewiesenen ersten Behauptung kann man
xn mit yn durch ein Kontinuum Wn so verbinden, daB die Folge dieser
Wn divergiert. — Viertens: wenn {xn} und {yn} gegen verschiedene
Endpunkte E und E1 streben, so habe K dieselbe Bedeutung wie beim Beweis
der zweiten Behauptung; wie dort sieht man, daB es keine divergente
Folge von Kontinuen Wn geben kann, welche xn und yn verbinden.

4. Es seien jetzt R und Rr zwei Raume. Eine stetige Abbildung /
von R in Rf heiBe ,,kompakt", wenn jede in R divergente Punktfolge
auf eine in R1 divergente Folge abgebildet wird. Wenn / kompakt und
{Mn} eine divergente Mengenfolge in R ist, so divergiert auch die Folge
der Bildmengen f(Mn) in Rr\ denn andernfalls gâbe es eine kompakte
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Teilmenge K1 von R'f mit welcher unendlich viele Mengen f(Mn) Punkte

gemeinsam hàtten; fur jedes n gâbe es also ein xn € Mn mit f(xn) eK' \

die Foige der xn wiire divergent, die der / (xn) aber nicht — im Widerspruch
zu der Kompaktheit von /.

Wir ervveitern R und Rf durch ihre Endenmengen G, G' zu den Râumen

li, R' und behaupten :

Eine kompakte stetige Abbildung / von R in Rr laBt sich immer durch

Erklârung einer Abbildung von G in G' zu einer stetigen Abbildung /
von ~R in R' erweitern.

Beweis: E sei ein Punkt von G. Es gibt eine gegen E strebende Punkt-
folge {xn} in R\ da W kompakt und / kompakt ist, haben die Punkte
f(xn) wenigstens einen Haufungspunkt E'etè'; indem wir allenfalls zu
einer Teilfolge ùbergehen, durfen wir annehmen, daB die f(xn) gegen E'
fctreben. Wir behaupten zunàchst: Ist {yn} irgend eine gegen E strebende

Folge in R, so streben die f(yn) gegen denselben E'. In der Tat: in R
existieren Kontinuen Wn, die immer xn mit yn verbinden, so daB ihre
Folge divergiert ; dann divergiert wegen der Kompaktheit von / auch die

Bildfolge f(Wn), und hieraus folgt, daB keine Teilfolge der f(yn) gegen
einen von E1 verschiedenen Punkt von G' streben kann (Nr. 3); daher
muB f{yn) -> Ef gelten. Demnach kônnen wir fur jeden Punkt E c G da,s

Bild j(E) € G' so erklâren, daB folgendes gilt: aus xn-> E f xn e R folgt
f(xn) -> J(E)\ fur x € R setzen wir f(x) f(x). Um die Stetigkeit dieser

Abbildung / von R in R1 zu beweisen, bleibt noch zu zeigen: aus En-> E,
En e G folgt ]{En) -> J(E) ; mit anderen Worten : es gelte En->E,En€&t
und es sei Ef ein Haufungspunkt der Folge (f(En)} ; dann ist E1 f(E).
Um dies zu zeigen, nehmen wir zunàchst beliebige Umgebungen U\ Uf
von E bzw. E'\ fur ein gewisses n ist dann Enc U, f(En) * Uf nach
Définition von / gibt es in R eine Folge xln, x2n,..., die gegen En strebt,
so daB die /(#£) gegen ](En) streben; es gibt daher einen Index in, so
daB x%nn € C7, /(^n) c Uf ist; auf dièse Weise kann man, da U, Uf beliebige
Umgebungen von E bzw. Er waren, in R eine Folge {xn x^} so finden,
daB xn->E, f(xn) -> E' gilt ; das bedeutet aber: E'=](E).

5. Jede topologische Abbildung / eines Raumes R auf einen Raum
R' ist kompakt; denn gàbe es eine divergente Folge {a:n} in R, deren
Bildfolge {f(xn)} einen Haufungspunkt x' hatte, so wurde die Betrach-
tung der Abbildung /~l in der Umgebung von x1 zu einem Widerspruch
fùhren. Daher laBt sich nach Nr. 4 die topologische Abbildung / von R
auf Rf durch Erklarung einer Abbildung von G in (£' zu einer eindeutigen
und stetigen Abbildung / von "E in W erweitern ; analog existiert eine
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Abbildung g von W in ~R, welche eine Erweiterung der Umkehrungs-
abbildung g f*1 ist. Dann ist die Zusammensetzung g] eine stetige
Abbildung von R in sich, welche eine Erweiterung der identischen
Abbildung von R auf sich ist; da R ùberall dicht in R ist, folgt hieraus, dafi
gf die identische Abbildung von R auf sich ist; insbesondere ist gJ(E) E
fur jeden E € (£. Ebenso ergibt sich fg(Ef) E' fur jeden E1 c (£'. Aus
gf (E) E folgt, daB dieAbbildung / von (£ eineindeutig ist ; aus Jg(E')
E1 folgt, daB / die Menge G auf die ganze Menge (£' abbildet; durch J
wird also G topologisch auf (£', und daher auch R topologisch auf 1?
abgebildet. Es gilt also folgendes:

Jede topologische Abbildung / von R auf Rf làBt sich durch eine
topologische Abbildung von (£ auf (£' zu einer topologischen Abbildung
/ von R auf Rf erweitern.

Hierin ist noch einmal der Satz (cf. Nr. 2) enthalten, daB (£ und j?
in topologisch invarianter Weise mit R verknûpft sind.

6. In dem Raume R sei Rx eine Punktmenge, die nicht kompakt, aber
abgeschlossen ist. Da Rx nicht kompakt ist, gibt es in Rx divergente
Punktfolgen ; da Rx abgeschlossen ist, divergiert jede dieser Folgen auch
in R\ ebenso divergiert jede in Rx divergente Mengenfolge auch in R.
Hieraus ist auf Grund der in Nr. 3 gegebenen Charakterisierung der
Enden ersichtlich, daB jedem Ende von Rx ein bestimmtes Ende von R
entspricht (man kann dasselbe auch so ausdrucken: die Abbildung, die
jeden Punkt von Rx sich selbst zuordnet, ist infolge der Abgeschlossenheit
von Rx eine kompakte Abbildung von Rx in R, und nach Nr. 4 gehôrt
daher zu ilir eine Abbildung der Endenmenge von Rx in die Endenmenge
von R) Es braucht aber nicht jedes Ende von R einem Ende von Rx zu
entsprechen, und ein Ende von R kann mehreren Enden von Rx ent-
sprechen.

Wir betrachten jetzt den Spezialfall, in dem R triangulierbar, also ein
unendliches Polyeder12) und Rx das Polygon ist, das aus den Kanten
einer festen Simplizialzerlegung von R besteht; dann ist Rx nicht
kompakt, aber abgeschlossen. Wirbehaupten, daB dann jedes Ende E von R
einem und nur einem Ende von Rx entspricht.

Beweis: Es sei {xn} eine gegen E strebende Punktfolge in R, und fur

ls) Ein ,,Polyeder" ist ein Raum, der homôomorph mit einem MEuklidischen Polyeder"
ira Sinne von Alexandroff-Hopf, Topologie I (Berlin 1935), 129, ist; dies ist auf Grund
des ,,Einbettungssatzes", 1. e.v 158—159, gleichbedeutend damit, daû der Raum eino
Simplizialzerlegung gestattet, die ein ,,absoluter Komplex** (1. o., 156) ist. Fur die unend-
lichen Polyeder ist die Eigensohaft der ,,lokalen Endlichkeit44 (1. o., 129) wiohtig; si© wird
ira folgenden benutzt.
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jcdes n sei Wn ein Simplex der betrachteten Zerlegung von Jî, das xn

enthiilt; aus der Divergenz der xn folgt, da eine kompakte Menge immer
nur mit endlich vielen Simplexen Punkte gemeinsam hat, die Divergenz
der Mengenfolge {Wn}; hieraus folgt, wenn yn einen Eckpunkt von Wn

bezeichnet, da8 auch die yn gegen E streben; das bedeutet: E entspricht
dem durch die Folge {yn} repràsentierten Ende von Bx. Es seien ferner

Elt E[ zwei Enden von Blf denen E entspricht; dann gibt es Punkt-
folgen {zn}, {z'tt} in Bx, die gegen Ex bzw. E[ streben, und die, als Punkt-
folgen in B> beide gegen E streben; letzteres bedeutet: es gibt fur jedes
n in B ein Kontinuum Wn> das zn mit z'n verbindet, so daB die Wn diver-
gieren. Nun sei Kn das Teilpolyeder von B, das aus allen Simplexen
besteht, die Punkte von Wn enthalten, und kn das Polygon, das von allen
Kanten dieser Simplexe gebildet wird ; mit den Wn divergieren auch die
Kn und mit diesen auch die kn ; da aber die kn Kontinuen in Bx sind,
welche immer zn und zfn verbinden, ist Ex E[. Das heiût: E entspricht
nur einem Ende von Bx.

Damit ist gezeigt: Ist B ein Polyeder und Bx das von allen Kanten
einer Simplizialzerlegung von B gebildete Polygon, so ist die Enden-
menge (£ von B identisch mit der Endenmenge Q^ von Bx ; bei der Unter-
suchung der Enden von B kann man sich also (im Sinne von Nr. 3) auf
die Betrachtung von Punkt- und Mengenfolgen in Bx beschrànken.

§ 2. Enden und diskontinuierliche Âbbildungsmengen

7. Wir betrachten stetige Abbildungen eines Raumes B in einen Raum
Rf. Eine Menge (5 solcher Abbildungen / heiûe >,stark diskontinuierlich">
wenn folgende Bedingung erfûllt ist:

(A) Je zwei Punkte xcJS, x' c Bf besitzen solche Umgebungen U
bzw. U'y daB fur hôchstens endlich viele / aus (5 die Bilder /([/) Punkte
mit U/ gemeinsam haben.

Dièse Bedingung ist mit der folgenden àquivalent :

(A/) Sind K, Kf kompakte Mengen in B bzw. Bf, so haben fur hôchstens

endlich viele / aus © die Bilder f(K) Punkte mit K' gemeinsam.
DaB (^4) aus (-4') folgt, ergibt sich daraus, daB unsere Râume lokal

kompakt sind, daB also die Punkte x, xr Umgebungen besitzen, deren
abgeschlossenen Hùllen kompakt sind. Um zu sehen, daB (A') aus (.4)
folgt, nehmen wir an, es gelte (^4), aber nicht (A')\ dann gâbe es
kompakte Mengen K,K' und unendliche Folgen von Punkten xn*K,
z'neKr und von Abbildungen /n € © mit fn(xn) xfn\ die Mengen {xn},
{xfn} hâtten Hàufungspunkte x bzw. x', und dièse besâBen Umgebungen
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U,U\ welche eînerseits (A) erfùllten, wahrend andererseits fur unendlich
viele n die xn in U, die x'n in U' làgen; dies ist ein Widerspruch.

Der wichtigste Fall ist der, in dem R Rf und © eine Grappe topo-
logischer Abbildungen ist; die dann ùbliche Bedingung der ,,eigentlichen"
Diskontinuitat13) ist etwas schwàcher als unsere Bedingung der ,,starken"
Diskontinuitât.

Wir bleiben aber vorlàufig noch bei dem allgemeinen Fall, in dem
R ^ R1 und © eine Menge beliebiger stetiger Abbildungen sein darf.

8. Die Bedeutung der Aussage, daB fur eine Abbildungsfolge {/n} und
einen Punkt y € R die Bildfolge {fn(y)} gegen ein Ende E' von R' konver-
giert, ist klar: es handelt sich um den gewôhnlichen Konvergenzbegriff
in dem Raume W ; ebenso natùrlich ist die Erklârung der Aussage, daB
die Folge {/n} auf einer Punktmenge M von R gleichmàflig gegen den
Endpunkt E' von R' konvergiert: zu jeder Umgebung U von Er in Rf
gibt es ein solches n0, daB fur aile n ^ n0 die Bilder fn(M) in U liegen.

Hilfssatz 1. © sei eine stark diskontinuierliche Menge von
Abbildungen des Raumes R in den Raum Rf\ es gebe in R eine gegen einen
Punkt x konvergierende Punktfolge {xn} und in © eine Abbildungsfolge
{/n}, so daB die Punktfolge {fn(xn)} gegen einen Endpunkt E' von R1

konvergiert. Dann konvergiert fur jeden Punkt y € R die Folge {fn(y)}
gegen E\ und dièse Konvergenz ist gleichmâBig auf jeder kompakten
Teilmenge K von R. 14)

Beweis. Es seien x, xn9 /n, E\ K so gegeben, daB die genannten Vor-
aussetzungen erfùllt sind ; U sei eine Umgebung von E1 ; zu zeigen ist :

fast aile Mengen fn(K) — d. h. aile bis auf hôchstens endlich viele
Ausnahmen — liegen in U.

Aus den in Nr. 1 formulierten Eigenschaften des Raumes R ergibt sich,
daB die folgende Konstruktion môglich ist : man nehme eine Umgebung
Fo von x und Umgebungen Vx,..., Vr von endlich vielen Punkten von
K derart, daB jedes Vt zusammenhàngend und daB jede abgeschlossene
Hiille T{ kompakt ist (i 0, 1,..., r); dann ist E T{ eine kompakte
Menge, die aus endlich vielen Komponenten besteht und die man daher
durch Hinzufugung von endlich vielen Kontinuen selbst zu einem
kompakten Kontinuum Q ergânzen kann; Q enthâlt K und VOi also auch
fast aile xn.

13) Man vgl. z. B. van der Waerden, Gruppen von linearen Transformationen
(Berlin 1935), 35.

u) Dieser Hilfssatz, wie auch der ùbrige Inhalt unsdres § 2, h&ngt eng zusainmen mit
den S&tzen des 2. Kapitels in der Arbeit *) von Freudenthal.

89



In U gibt es (cf. Nr, 2) eine Umgebung H von E\ deren Begrenzung
K* eine kompakte Menge in Bf ist. Da die Punkte /n(a?n) gegen Ef streben,
hat if mit fast allen Mengen fn(Q) Punkte gemeinsam; da © stark diskon-
tinuierlich ist, ist auf Grand von (Af) die Menge K' zu fast allen Mengen
fn(Q) fremd; da dièse Mengen zusammenhângend sind, liegen sie daher
fast aile in //, also in U ; da K c Q ist, ist damit die Behauptung bewiesen.

Bemerkung : Fur Anwendungen wichtig ist der Fall, in dem die Folge
{xn} mit x zusammenfâllt, in dem also fur einen festen Punkt x die Kon-
vergenz fn(x) ~> Ef vorausgesetzt wird.

9. Es sei wieder © eine Menge stetiger Abbildungen des Raumes R
in den Raum B\ Eine Punktmenge F a R heiBe eine ,yFundamental-
rnenge" von ©, wenn sie folgende Bedingung erfùllt: Zu jedem Punkt
x' € Rf gibt es wenigstens einen Punkt x c F und wenigstens eine Abbil-
dung / € © mit f(x) x'.

Die in der ùblichen Weise erklarten Fundamentalbereiche von Gruppen
topologischer Selbstabbildungen1J) sind also spezielle Fundamental-
mengen.

Wir werden Abbildungsmengen © betrachten, welche kompakte Funda-
mentalmengen besitzen.

Hilfssatz 2. © besitze eine kompakte Fundamentalmenge F ; dann
gibt es zu jedem Ende Ef von Bf eine Punktfolge {xn} in R> die gegen
einen Punkt x konvergiert, und eine Abbildungsfolge {/n} in ©, so daÛ
die Folge {fn(xn)} gegen El konvergiert.

Beweis. Es sei {x'n} eine gegen Er strebende Punktfolge in B'\ zu jedem
n gibt es einen Punkt xn eF und eine Abbildung fn e © mit fn(xn) x'n ;

wegen der Kompaktheit von F dtirfen wir, indem wir allenfalls zu einer
Teilfolge ubergclien, annehruen, daÛ die xn gegen einen Punkt x kon-
vergieren.

10. Aus den Hilfssâtzen 1 und 2 ergibt sich unmittelbar

Hilfssatz 3. Die Abbildungsmenge © sei stark diskontinuierlich und
besitze eine kompakte Fundamentalmenge. Dann gibt es zu jedem Ende
Ef von B' eine Folge {/n} in G, welche die Behauptung des Hilfssatzes 1

erfùllt.
Hierin ist enthalten:

Hilfssatz 3'. ffi sei stark diskontinuierlich und besitze eins kompakte
Fundamentalmenge; U sei eine vorgegebene Umgebung eines Endes E'
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von i?', und K sei eine vorgegebene kompakte Punktmenge in R. Dann
gibt es in © eine Abbildung / mit f(K) c U.

11. Wir kommen zu unserem Hauptsatz:

Satz I. Der Raum R sei offert; es gebe eine Menge (5 topologischer
Abbildungen von R auf sich, welche siark diskontinuierlich ist und eine
koînpakte Fundamentalmenge besitzt. Dann hat R entweder genau ein Ende
oder zwei Enden oder eine Endenmenge von der Màchtigkeit des Konti-
nuums.

Die Behauptung lâBt sich noch folgendermaBen prâzisieren:
Zusatz. Der Raum R erfûlle die Voraussetzungen des Satzes I und

besitze wenigstens drei Enden. Dann ist die Menge (£ seiner Endpunkte
in Ifï eine perfekte diskontinuierliche Menge.

Da der Raum H kompakt ist und, ebenso wie R, eine uberall dichte
abzàhlbare Punktmenge enthâlt, hat jede perfekte Teilmenge von R die
Màchtigkeit des Kontinuums und ist, wenn sie diskontinuierlich ist, ein
topologisches Bild des Cantorschen Diskontinuums16). Der ,,Zusatz"
enthâlt also den Satz I.

Fur jeden offenen Raum i? ist (E abgeschlossen und diskontinuierlich.
Fur den Beweis des Zusatzes geniigt es daher, zu beweisen, daB (£ in sich
dicht ist ; dièse Behauptung làût sich so formulieren :

Der Raum R erfûlle die Voraussetzungen des Satzes I und besitze wenigstens

drei Enden; E sei ein beliebiges Ende von R und U eine beliebige
Umgebung von E in R. Dann enthâlt U wenigstens zwei voneinander ver~
schiedene Enden von R.

Zum Zweck des Beweises konstruieren wir zunàchst — falls die Kom-
plementârmenge R — U Q von U nicht selbst zusammenhângend ist
— eine in U enthaltene Umgebung U' von E, deren Komplementâr-
menge R — U1 Q' zusammenhângend ist: Man uberdecke die
kompakte Menge Q mit solchen Umgebungen Vx,..., Vn von endlich vielen
ihrer Punkte, daB keine Vt den Punkt E enthâlt, daB jede V< zusammenhângend

ist, und daB die abgeschlossenen Hullen V{ kompakt sind ; die
Vereinigungsmenge Z "K besteht dann aus endlich vielen Komponenten ;

da (£ ~R — R nirgends dicht in 1? ist, enthèQt jede V{, also auch jede
der genannten Komponenten, Punkte von R; je zwei Punkte von R
lassen sich in R durch ein Kontinuum verbinden; daher kann man die

lf) Man vgl. z. B. Hausdorff, Grundzûge der Mengenlehre (Leipzig 1914), 320;
Alexandroff-Hopf, 1. c, 121.
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Mengo Z Vt durch Hinzufugung von endlich vielen Kontmuen, welche

m R liegen, also den Punkt E nicht enthalten, zu einer zusammenhangen-
den abgeschlossenen Menge Qr erganzen, welche E nicht enthalt; es ist
also, wenn wir ~R — Q' U' setzen, U' eine Umgebung von E ; da

Q c Z Vt <zQ' ist, ist V c U. Daû die hiermit beschriebene Konstruk-
tion moglich ist, ergibt sich aus den in Nr. 1 formulierten Eigenschaften

von R. Falls bereits Q zusammenhangerd ist, kann man naturlich em-
fach U' — U setzen.

Nun seien Ely E2> Ez drei voneinander verschiedene Enden von R,
und Hl9 H2, //3 solche Umgebungen von îhnen, daû jede nur einen

der Punkte Et enthalt, und daB die Begrenzungen Kt der Ht m R gele-

gene kompakte Mengen sind (cf. Nr. 2) (einer der Et darf mit E zusam-
menfallen). Nach dem Hilfssatz 3' gibt es in © eine solche Abbildung /,
daû f(Kl + K2 + KJc Uf ist. Nach Nr. 5 laÛt sich / zu emer topolo-
gi^chen Abbildung /von 7? auf sich erweitern, welche (£ auf sich abbildet.
Falls aile drei Punkte ](EX), ](E2), ]{EZ) in V liegen, ist unsere Behaup-

tung gev/iû richtig; es liège etwa f(Ex) nicht in U', sondern in Q1. Daraus,
daû Q' zusammenhangend ist, den in ](HX) gelegenen Punkt /(^j)
enthalt und zu der in V gelegenen Begrenzung ]{KX) von ]{HX) tromd ist,
folgt, daû Qr in ]{HX) liegt. Andererseits liegen, aa 2?2, E2 nicht in Hx
liegen, die Bilder J(E2)9 f{Ez) nicht in /(^J. Folglich liegen ](E2), J(ES)

nicht in Q', sondern in 3? — Qr U\ also in U.

12. Die ubliche Théorie der (unverzweigten) Uberlagerungen1) besitzt
Gultigkeit nicht nur fur Mannigfaltigkeiten und Polyeder, sondern fur
aile Raume, welche aufier den h* Nr. 1 formulierten Eigenschaften noch
die des ,,lokalen einfachen Zusammenhanges** besitzen; das soll bedeu-
ten: jeder Punkt besitzt beliebig kleine Umgebungen, die einfach
zusammenhangend sind, d. h. in denen sich jeder geschlossene Weg auf
einen Punkt zusammenziehen laÛt. Dièse Umgebungen spielen folgende
Rolle: wird bei der Ùberlagerung des Raumes Ro durch den Raum R
der Punkt x0 c Ro von dem Punkt x c R uberlagert, und ist Uo eme
einfach zusammenhangende Umgebung von xOi so gibt es eine Umgebung
U von x, welche Uo eineindeutig uberlagert.

Der Raum R sei eine regulare tîberlagerung des Raumes Ro ; es gebe
also eine Gruppe © von topologischen Abbildungen von R auf sich,
den Decktransformationen, welche in bekannter Weise Ro erzeugen.
Dann ist © stark diskontinuierlich; sind namlich x9 x' Punkte von R
und xOt xf0 die entsprechenden Punkte von jB0, so betrachte man, falls
x0 7e x'o ist, zwei zueinander fremde, einfach zusammenhangende Um-
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gebungen Uo, U'o von x0, xrQ und, falls x0 x'o ist, eine einfach zusammen-
hangende Umgebung Uo dièses Punktes; in jedem Falle seien U, Uf die
entsprechenden Umgebungen von xt xf\ dann gibt es im Falle x0 ^ x'o

ùberhaupt keine Abbildung /<©, fur die f{U) und U' gemeinsame
Punkte haben, und im Falle x0 xfQ gibt es genau eine solche Abbildung
/, nàmlich diejenige mit f(x) x'.

Wir setzen weiter voraus, daB Ro kompakt ist. Dann besitzt © eine

kompakte Fundamentalmenge F. Um eine solche zu konstruieren, uber-
decke man Ro mit endlich vielen Umgebungen Ul,..., U%, die einfach
zusammenhângend und deren abgeschlossenen Hûllen kompakt sind;
8ind dann 17* die den Uq entsprechenden Umgebungen in 22, so ist die
Vereinigungsmenge der abgeschlossenen Hûllen Vi eine kompakte
Fundamentalmenge von ©.

Aus diesen Tatsachen und dem Satz I ergibt sich der folgende Satz,
in welchem von dem Raum R vorausgesetzt wird, daB er lokal einfach
zusammenhângend sei, was gewiB der Fall ist, wenn er ein Polyeder oder
eine Mannigfaltigkeit ist :

Satz IL Ein offener Raum i?, der eine reguldre tîberlagerung — z. B.
die universelle Vberlagefung — eines kompakten Raumea ist, hat entweder

genau ein Ende oder zwei Enden oder eine Endenmenge von der Mâchtigkeit
des Kontinuums.

Beispiele fur aile drei Falle sind in der Einleitung angegeben worden.
DaB dieselbe Behauptung fur nicht-regulâre Ûberlagerungen im allge-
meinen nicht richtig ist, zeigt folgendes Beispiel: man nehme vier Strah-
len, die von einem Punkt a ausgehen, und auf jedem von ihnen eine divergente

Folge von Punkten (^ a); in jedem dieser Punkte zeichne man
einen den betreffenden Strahl beruhrenden Kreis, so daB dièse Kreise
zueinander fremd sind ; die so entstandene Figur R hat vier Enden und
ist eine tîberlagerung der Figur Ro, die aus zwei sich beruhrenden Kreisen
besteht.

§ 3. Die Enden abstrakter Gruppen

13. Wenn der Raum R regulare Ùberlagerung des Raumes i?0 und
wenn die zugehôrige DeckMransfonnationen-Gruppo mit der abstrakten
Gruppe © isomorph ist, so wollen wir sagen, daB © durch dièse Ûber-

lagerung ,,dargestellt*' wird. Jede abstrakte Gruppe ©, welche durch
endlich viele ihrer Elemente erzeugt wird, laBt sich in dieser Weise dar-
stellen, und zwar so, daB RQ ein endliohes Polyeder, und sogar so, daB
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J?o ein endliches Polygon ist; denn die Erzeugbarkeit von © durch n
Eiemente bedeutet, daB © mit der Faktorgruppe der von n freien Er-
zeugenden erzeugten freien Gruppe gfn nach einem Normalteiler 9Î von
Jyn isomorph ist; 5n ist die Fundamentalgruppe endlicher Polygone RQ,

z. B. des Polygons, das von n Dreiecken gebildet wird, die einen Eck-
punkt gemeinsam haben; die zu der Untergruppe 91 gehorige Ûber-

lagerung R von Ro stellt © in der behaupteten Weise dar16).
Eine Gruppe © kann aber durch Uberlagerungen sehr verschiedener

endlicher Polyeder dargestellt werden. Eigenschaften, welche allen diesen
verschiedenen Darsteilungen gemeinsam sind, sind Eigenschaften der
Gruppe © selbst. Es wird sich zeigen, dafi die Enden der Polyeder R
und daher auch die Anzahl dieser Enden solche Eigenschaften sind.

14. Es handelt sich also darum, Beziehungen zwischen verschiedenen

Darstellungen einer Gruppe herzustellen ; hierzu dient

Hiljssatz 4. Die unendlichen Polygone R, R1 seien regularo Obeila-

gerungen der endlichen Polygone Ro, Rf0 ; die zugehôrigen Dcc\transfor-
mationen-Gruppen seien derselben Gruppe © isomorph; die beiden Deek-
transformationen, die einem Elément g c © e*vDsprechen, seien mit Tg
bzw. Tç bezeichnet. Dann gibt es eine stetige Abbildung / von R in Rf,
welche kompakt ist (cf. Xr. 4) und fur jedes g c © die Funktionalgleichung
jTg T'J erfullt.

Beweis. Fur jeden Eckpunkt p von Ro zeichnen wir einen ihn uber-
lagernden Eckpunkt von R aus und nennen diesen /?*; fur jeden dieser
endlich vielen p* verstehen wir unter f(p*) einen beliebigen Eckpunkt
von Rr\ fur jeden Eckpunkt q von R gibt es, da q einen Eckpunkt von
j?o ùberlagert, genau einen Punkt p* und genau ein Elément g e © mit
q Tg{p*)\ dann ist f(q) fTg(p*) Tfgf(p*) ein wohlbestimmter
Eckpunkt von Rr. Jetzt zeichnen wir fur jede Kante 5 von RQ eine sie uber-
lagenide Kante von R aus und nennen dièse s* ; fur jede dieser endlich
vielen Kanten s* verstehen wir unter /(s*) einen beliebigen Streckenzug
in R\ der die bereits erklarten Bilder der Endpunkte von s* verbindet;
fur jede Kante t von R gibt es genau eine Kante s* und genau ein Elément
g € © mit t Tg(s*)) dann ist f(t) fTg(s*) T'gf(s*) ein wohlbestimmter

Streckenzug in R'. Hiermit ist die Abbildung / von R in R' erklârt;
sie ist kompakt, da jeder Eekpunkt von R; Bild von hôchstens endlich
vielen Eckpunkten von R ist und da jede Kante von Rr durch die Bilder

M) Wenn man je^iee der oben genannten n Dreiecke nur als eine einzige ,,Strecke"
mit zusammenfallenden Endpunkten deutet, eo sind die unendhchen Polygone oder
Streekenkomplexe R die MDehnschen Gruppenbilder" von (5; zu jeder Erzeugung von
(5 durch endlich viele Eiemente gehôrt ein solches Gruppenbild.

94



von hôchstens endlich vielen Kanten von R bedeckt wird; daB / die
Funktionalgleichung fTg Tfgf erfûllt, ergibt sich unmitteibar aus der
Définition.

15. Wir prâzisieren jetzt die am SchluB von Nr. 13 angedeutete Rolle
der Enden. Die Ùberlagerung R des endlichen Polyeders Ro sei eine Dar-
stellung von © ; die einem Elément g c © entspreohende Decktransforma-
tion nennen wir wieder Tg ; die Grappe © sei unendlich, der Raum R
also ofïen. In Nr. 12 wurde gezeigt, daB die Menge der Decktransforma-
tionen stark diskontinuierlich ist und eine kompakte Fundamentalmenge
besitzt ; aus den Hilfssâtzen 3 und 1 folgt daher : zu jedem Ende E von
R gibt es in © Folgen von Elementen {gn}, so daÛ fur einen Punkt
x € R die Folgen {T0h{x)} gegen E streben; und zwar besteht dièse Kon-
vergenz, falls sie fur einen Punkt x besteht, fur jeden Punkt x (man
beachte hierfur die Bemerkung am SchluB von Nr. 8). Von einer solchen

Folge {gn} sagen wir, daB sie ,,zu dem Ende E von R gehôrt". Es gilt nun

Satz III. Die unendliche, von endlich vielen Elementen erzeuqtc Oruppe ©
werde durch die Uberlagemngen R bzw. Rr der tndlichen Polyeder Ro bzw.

Rq dargestelli ; {gn} sei eine Folge von Elementen aur ©, welche zu einem
Ende E von R gehôrt. Dann gehôrt dieselbe Folge auch zu einem Ende von R'.

Beweis. Wir nehmen zunàchst an, daB Ro und R'Q Polygone sind;
dann existiert eine Abbildung / mit den im Hilfssatz 4 genannten Eigen-
schaften. Da die Folge {gn} zu E gehôrt, strebt fur *inen Punkt x c R
die Folge der Punkte xn TOh(x) gegen E ; wegen der iCompaktheit von
/ strebt nach Nr. 4 dann die Folge der Punkte f(xn) geg^n ein Ende E'
von R'\ wegen der Funktionalgleichung fur / ist, wenn wir f(x) xr
setzen, f(xn) Tf9m(x') ; daB die Folge dieser Punkte gegen Ef strebt,
bedeutet aber: die Folge {^n} gehôrt zu dem Ende E' von R\

Der Fall beliebiger Polyeder Ro, R'o laBt sich auf den somit erlodigten
polygonalen Fall zuriickfûhren : die Polygone, die aus allen Kanten vcn
R bzw. R' (in festen Simplizialzerlegungen) bestehen, uberlagern die aus
den Kanten von Ro bzw. R'o bestehenden Polygone, und auch dièse Ûber-
lagerungen stellen (^ dar ; andererseits darf man sich nach Nr. 6 bei der
Untersuchung der Enden auf die Kantenpolygone von R und Rf be-
schrànken ; damit ist der Satz III bewiesen.

Zusatz zu dem Satz III: Wenn die Folgen {gn} und {hn} aus © zu dem-

selben Ende von R gehoren, so gehoren sie auch zu demselben Ende von R'.

Denn wenn {gn} und {hn} zu demselben Ende von R gehôren, dann
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gehort auch die Folge {gly hly g2i A2,...} zu diesem Ende, also gehort
dièse Foîge nach dem Satz III zu einem Ende von Rr, und dies bedeutet:
die Folgen {gn} und {hn} gehoren zu demselben Ende von i?'.

16. © bezeichne wie bisher eine abstrakte unendliche Gruppe mit
endhch vielen erzeugenden Elementen. Wir definieren: Eine Folge {gn}

von Elementen aus © ,,gehort zu einem Ende von ©", wenn sie bei einer
Darstellung von © durch die Ùberlagerung R eines endlichen Polyeders
RQ zu einem Ende von R gehort ; zwei Folgen {gn} und {hn} aus © gehoren
zu,,demselben** Ende von ©, wenn sie bei einer Darstellung der genannten
Art zu demselben Ende von R gehoren. Aus dem Satz III und dem Zutsatz

zu îhm ergibt sich, daû dièse Definitionen unabhangig sind von der als

Hilfsmittel herangezogenen speziellen Darstellung. Damit ist der Begriff
der ^Enden einer abstrakten Gruppe" erklart.

Insbesondere gehort zu jeder Gruppe © eine bestimmte Anzahl ihrer
Enden ; nach dem Satz I ist dièse Anzahl 1 oder 2 oder die Machtigkeit
des Kontinuums ; hierdurch ist also eine Einteilung der Gesamtheit der
Gruppen © in drei Klassen gegeben.

Die Tatsaehe, daû die Anzahl der Enden cinerseits eine Eigenschaft
der abstrakten Gruppe ©, andererseits gleich der Anzahl der Enden
eines die Gruppe © darstellenden Uberlagerungs-Polyeders R ist, laût
sich folgendermaflen als Zusatz zu dem Satz II (Nr. 12) formulieren:

Sind die unendlichen Polyeder R, Rf regulare Vberlagerungen endlicher
Polyeder RO1 R'Q und sind die zugehôrigen Decktransformationen-Gruppen
einander isomorph, so haben R und Rf die gleiche Anzahl von Enden.
Insbesondere ist die Endenzahl des universellen Vberlagerungsraumes R
eines endlichen Polyeders Ro durch die Struktur der Fundamentalgruppe ©
von RQ bestimmt.

17. Es liegen jetzt die Aufgaben nahe, die Enden einer Gruppe rein
algebraisch zu untersuchen oder wenigstens fur die Anzahl der Enden ein
algebraisches Kriterium anzugeben17). Wir werden hier nur die zweite
dieser Aufgaben etwas weiter verfolgen, aber auch dabei nur zu einem
Teilergebnis gelangen.

17 In einem gewissen Sinne sind dièse Aufgaben naturhch dadurch zu losen, daû man
om Gruppenbild1*) R von © betrachtet und die Beschreibung der Enden von R aus der
Sprache unserer Nr. 3 ins Algebraische ubersetzt, was keme pnnzipielle Schwiengkeit
bietet. Das Gruppenbild hàngt aber noch von der speziellen Wahl der Erzeugenden von
© ab, und erwunscht ware es» ohne Bezugnahme aufein spezielles System von Erzeugenden
ein Kritenum dafur zu kennen, wann eine Folge fït ft, von Gruppenelementen zu
einem Ende gehort.
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Fast selbrftverstàndlich ist folgender Satz:

Satz IV, Wenn U eine Untergruppe von endlichem Index in © ist, so
hat U dieselbe Endenzahl wie ©.

Wenn namlich die t)b,erlagerung R des endlichen Polyeders Ro eine

Darstellung von © ist, so gibt es bekanntlich zu der Untergruppe U
einen Raum R'o, der RQ so iiberlagert und von R regulâr so ûberlagert
wird, daft folgendes gilt: seine Blàtterzahl iïber Ro ist gleich dera Index
von U in ©, und die Decktransformationen-Grappe, die zu seiner régulier*

tîberlagerung R gehort, ist U. Derselbe Raum R tritt also bei Dar-
stellungen von © und von U als Ûberlagerung endlicher Polyeder auf ;

daraus ist die Gleichheit der Endenzahlen von © und U ersichtlich. —

Der nâchste Satz enthalt unser vorhin erwàhntes Teilergebnis im Zu-
sammenhang mit der Aufgabe, algebraische Kriterien fur die Endenzahl
einer Gruppe zu finden:

Satz V. Die Oruppe © hat dann und nur dann genau zwei Enden, wenn
sie eine Untergruppe U enthalt, die unendlich zyklisch ist und einen end-

lichen Index in © hat,

Der eine Teil des Satzes folgt leicht aus dem Satz IV: wenn © eine

Untergruppe der genannten Art enthalt, so hat © dieselbe Endenzahl
wie die unendliche zyklisehe Gruppe; deren Endenzahl aber ist 2, da
sie die Fundamentalgruppe der Kreislinie ist, und da der universelle
t)berlagerungsraum der Kreislinie, also die Gerade, zwei Enden besitzt.
Der andere Teil des Satzes V ist in dem folgenden allgemeineren Satz
enthalten :

Satz Va, Der Raum R habe genau zwei Enden ; © sei eine Oruppe topo-
logischer Selbstabbildungen von R ; sie sei stark diskontinuierlich und besitze

eine kompakte Fundamentalmenge F. Dann enthalt © eine Untergruppe U.
die unendlich zyklisch ist und in © endlichen Index hat,

Hierbei braucht also R kein Polyeder, und insbesondere brauchen die
Transformationen aus © keine Decktransformationen, sie brauchen also

nicht fixpunktfrei zu sein ; der Satz gehort daher in den Rahmen unseres
§ 2; dies wird sich auch in der Beweismethode âufiern.

18. Dem Beweis schicken wir einen Hilfssatz voraus:

Hilfssatz 5. Es sei R ein beliebiger offener Raum, © eine stark dis-
kontinuierliche Gruppe topologischer Selbstabbildungen von R und U
eine Untergruppe von ©, die eine kompakte Fundamentalmenge F
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besitzl. Dann ist die Gruppe U unendlich, und sie besitzt in © endlichen
Index.

Beweis. Da F Fundamentalmenge von U ist, ist die uber aile Trans-
formationen u aus U erstreckte Summe £ u(F) der ganzeRaum R; da
F kompakt und R ofïen ist, folgt hieraus die Unendlichkeit von U.

Da © stark diskontinuierlich und F kompakt ist, gibt es infolge der in
Nr. 7 ausgesprochenen Bedingung (Af) nur endlich viele Elemente

g c ©, fur welche g (F) und F Punkte gemeinsam haben ; dies seien die
Elemente gx,..., gn. Es sei nun g ein beliebiges Elément aus © ; man
nehme einen Punkt pcF; da F Fundamentalmenge von U ist, gibt es

einen Punkt p1 €F und ein Elément u € U mit u{pf) =- g(p)\ dann ist
u~lg(p) p\ also ist u~lg gti g ?*#,, wobei grt eiiies der ob'gen
Elemente gx,..., gn ist ; damit ist die Endlichkeit des Index von U bewiesen.

19. Beweis des Satzes Va. Die Enden von R seien Ex, E2. Nach Nr. 5

laBt sich jede der Abbildungen g * © zu einer topologischcn Abbildung g
des Raumes JR R + Ex + E2 erweitern; durch g wird entweder jeder
der beiden Endpunkte festgehalten, oder die beiden Enden werden ver-
tauscht ; diejenigen g, welche die Enden festhalten, bestimmen eine Unter-
gruppe ©! von ®, die entweder mit © identisch ist oder in © den Index 2

hat. Im letzteren Falle sei g1 ein nicht in ©j enthaltenes Elément von © ;

dann ist die Menge F + g\F) eine kompakte Fundamentalmenge von
©j ; auBerdem ist ©j als Untergruppe von © selbst stark diskontinuierlich.

H sei eine Umgebung von Ex, die zusammenhangend ist, deren Be-

grenzung K kompakt ist und in R liegt, und deren abgeschlossene Huile H
den Endpunkt E2 nicht enthalt (cf. Nr. 2). Nach dem Hilfssatz 3; (Nr. 10),
angewandt auf ©2, gibt es eine Abbildung ut©!, fur welche u(K) cR — H
ist. U sei die von u erzeugte Gruppe; wir behaupten:

U besitzt eine kompakte Fundamentalmenge.

Wenn dièse Behauptung bewiesen ist, so folgt nach dem Hilfssatz 5,
daB die Gruppe U, die ja nach ihrer Définition zyklisch ist, die Behauptung

des Satzes Va erfullt.
Wir betrachten die Potenzen un, also die Elemente von U, und setzen

ûn(H) Hn, un(K) Kn. Da Kx c ~R_- II ist, ist // fremd zu der
Begrenzung Kx von Hl ; da u € ©x, also u{Ex) Et ist, haben H und Hl
den Punkt Ex gemeinsam; ferner ist H zusammenhangend; aus diesen
Tatsachen folgt: H cff1( und folglich: Hn_x c Hn fur aile n, und folg-
lich: H c Hn fiir aile n > 0. Hâtte Kn fiir ein n > 0 einen Punkt mit H
gemeinsam, so nach dem eben Bewiesenen auch mit Hn, was nicht der
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Fall ist, da die Hn oiïene Mengen sind ; mithin sind die Kn fur n > 0
fremd zufl.Es sei nun x ein Punkt von K\ die Folge der Punkte un{x)
mit n 1, 2,... kann wegen der starken Diskontinuitat von © keinen
Haufungspunkt in R besitzen; auch Ex ist nicht Haufungspunkt der
Folge, da, wie soeben gezeigt wurde, kein Punkt der Folge in H liegt;
folglich strebt die Folge gegen E2. Nach dem Hilfssatz 1 strebt daher
sowohl fur jeden Punkt y e R die Folge der Pun\te un(y), als auch die

Folge der Mengen Kn mit n -> + °o gleichmaBig gegen E2 (man beachte
die Bemerkung am SehluB von Nr. 8); es gibt also insbesondere zu jeder
Umgebung U von E2 ein solches positives n, daB Kn cz U l{

Es sei jetzt y ein beliebiger Punkt von if. Die soeben genannte
Umgebung U von E2 wahlen wir so, daB sie weder y noeh Ex enthalt, und
daB ihre Komplementarmenge R — U Q zusammenhangend ist (daB

man dièse letzte Bedingung erfullen kann, ist in Nr. 11 gezeigt worden).
In U gibt es ein Kn ; da die zusammenhangende Menge Q somit fremd zu
der Begrenzung Kn von IIn ist, mit Hn aber den Punkt Ex gemeinsam hat,
ist Q c Hn und daher auch y c Hn.

Andererseits kann y in hochstens endlich vielen Mengen H^n mit
n > 0 enthalten sein ; denn andernfalls lagen fur unendlich viele positive
n die Punkte un(y) in H, entgegen der oben bewiesenen Tatsache, daB
dièse Punkte gegen E2 streben.

Da also die Menge der Indizes n, fur welche y * Hn ist, einerseits nicht
leer ist, andererseits hochstens endlich viele négative Zahlen enthalt,
enthalt sie eine kleinste Zahl ; dièse heiÛe m + 1 ; dann ist y c Hm+l — Hm
und folglich u~m(y) eHx — H und erst recht urm(y) €TÎX — H. Das

bedeutet, daB die Menge Hl -- H eine Fundamentalmenge von U ist;
da sie kompakt ist und in R liegt, ist damit die Behauptung bewiesen.

20. Dank dem Satz V reduziert sich die Aufgabe, algebraische Kriterien
fur die Endenzahl einer Gruppe zu finden, auf die Frage nach einem alge-
braischen Unterscheidungsmerkmal zwischen den Gruppen mit einem
Ende und denen mit unendlich vielen Enden. Icn kenne kein solches

Merkma) und muB mich auf die Angabe der einfachsten Beispiele be-

schranken.
Das direkte Produkt © zweier unendlicher Gruppen hat stets genau ein

Ende ; denn in diesem Falle K sitzt © eine Darstellung durch eine Ûber-

lagerung R eines offenen Polyeders, wobei R das topologische Produkt
zweier offener Baume ist, und ein solches Produkt hat nach einem Satz

von Freudenthal18) immer nur ein Ende.
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Zu diesen Gruppen gehôren die Abelschen Gruppen, deren Rang > 1

ist. Andere Gruppen mit einem Ende sind die Fundamentalgruppen der

(jeschlossenen Flachen positiven Geschlechts ; demi die universelle t)ber-
lagerung dieser Flachen, die Ebene, hat ein Ende.

Die freien Oruppen 5n mit n freien Erzeugenden und n > 1 haben

unendlich viele Enden ; denn 5n ^ die Fundamentalgruppe eines Poly-
gons Ro, das von n Dreiecken mit einem gemeinsamen Eckpunkt gebildet
wird, und die universelle Ûberlagerung von Ro ist mit einem Baumkom-
plex homôomorph, der regulàr vom Grade 2n ist7); daû dieser Baum fur
n > 1 unendlich viele Enden hat, sieht man sofort z. B. mit Hilfe des

Kriteriums aus Nr. 3.

Daraus, daû J$f2 unendlich viele Enden hat, folgt ùbrigens mit Hilfe
des in Nr. 16 formulierten Zusatzes zu Satz II die in der Einleitung
erwàhnte Tatsache, daû die universelle Uberlagerung der 3-dimensionalen
Mannigfaltigkeit, welche die topologische Summe6) zweier Exemplare
des topologischen Produktes von Kreis und Kugel ist, unendlich viele
Enden besitzt.

Ohne Beweis19) sei noch auf folgende Gruppen mit unendlich vielen
Enden hingewiesen : das freie Produkt20) zweier Gruppen, von denen keine
die Identitàt ist, hat unendlich viele Enden — mit einer einzigen Aus-
nahme: das freie Produkt zweier Gruppen der Ordnung 2 hat zwei
Enden (dièse Gruppe enthàlt eine unendlich zyklische TJntergruppe vom
Index 2). Hieraus folgt: sind J/1, Af2, zwei geschlossene Mannigfaltig-
keiten, mindestens 3-dimensional und keine von ihnen einfach zusammen-
hàngend, so hat die universelle Ùberlagerung M ihrer topologischen
Summe unendlich viele Enden — abgesehen von dem Fall, in dem die
Fundamentalgruppen von Mx und von M2 die Ordnung 2 haben ; dann
hat M zwei Enden ; in der Tat wird die Summe zweier projektiver Râume
von dem topologischen Produkt von Gerade und Kugel ùberlagert.

(Eingegangen den 28. Juni 1943.)

Der Beweis ist mit Hilfe von Gruppenbildern zu fiihren.
Seifert-Threlfall, 1. c, 300.
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