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L'itération directe des opérateurs hermitiens
Par R. WAVRE, Genéve

Nous dédions ce travail @ Monsieur le Professeur Carathéodory
a Uoccasion de son soixante-dixiéme anniversaire.

Rappel

Dans un article paru au numéro précédent des ,,Commentarii‘‘, nous
avons montré quel avantage il y a & entreprendre une étude directe de
I'itération d’un opérateur hermitien. Cela permet de reconstruire quelques
théories classiques en éliminant presque complétement l’appareil algé-
brique. Nous voulons ici apporter quelques compléments & cette étude
directe.

L’espace E, dans lequel nous opérons, a été défini dans l’article précé-
dent. Il recouvre 1’espace d’Hilbert et I'espace fonctionnel.

Nous posions, 4 étant un opérateur hermitien:

Apbozlx...pba ’ ll-..p=ll"'lp y “[),”=1 p=0,1,2,... .

Les §, sont donc les itérés normalisés de f),. Nous les appellerons les
conséquents. Nous formions également:

Tt
Cd

1

T
nombre liés & §,. On avait d’ailleurs [, <, << -+ 5 Uho) et @(ho)
sont des fonctionnelles de §,.

Nous avions, une parenthése désignant un produit scalaire:

l==liml,, -(;)—z 2-..

l : l
(bp: bp+2r) R 1 LB, (b” b"H)= l::: ’

p+r+i... p+ar

Le nombre @ existe toujours 8’il existe une infinité de conséquents, ce
qui est le cas dans tout 1’espace pour les opérateurs bornés, et nous avons
démontré que deux cas seulement sont possibles: si @ # 0 les éléments
D1, ot by,,, convergent fortement vers des limites, racines de

(42— 13)h=0.
Si @ = 0 ces deux suites convergent faiblement vers zéro.
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& 2. Remerques sur la série des carrés des distances de deux conséquents

Nous posons _ ) ]
a)l_q:'_--—-ll--.._.lg.
Supposons [ fini et posons
l; =1 I 1=
—i~=1-—8‘ 8¢—-——l——, "z""'—l"‘l"ﬂi) N = I, "
On a
1 l
= +m) Qtm) - +n),  Fus<asn
°q
puis

. 1 et
1+’7‘+’7’+”'+’7¢<51,q L ettt

donc suivant que X' 7, diverge ou converge @ = 0 ou @ % 0. Il en est
de méme suivant que J' ¢, diverge ou converge, donc en définitive

=0 s X(@—1) diverge; w#0 s XY (—1I) converge.
On a d’ailleurs

la“‘ll‘i‘la—la"}‘"'+l¢"’lt-1=lt“lx’

d’ou
li - ll ll lz li—l lt' - ll
l-gl—-ﬂ+1—-i;+...+l_ l¢< lz
et en posant:
l
8 exr = ll Zgs —qn*=2(l——,:—;)

carré de la distance de deux conséquents z, et z,,,

I, — 1,
l
donc si ! est fini

l—1 l—1
l‘<63'3+6f,3+"' gz ll;
3

p k=l

2 632+623+624+ +6¢-2i la »

2

relation vraie méme si @ = 0 donc aveo convergence faible des z, norma-
lisés vers zéro.

Pour tout opérateur hermitien borné, les carrés des distances qui sépa-
rent deux conséquents par 42 forment une série convergente.
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§ 3. Le rang d’un élément

Soit h un élément; I(h) et @ (h) les valeurs [ et @ qui lui sont attachézs.
La fréquence I et le caractére 1 ou 0 suivant que w 7% 0 ou @ = 0 ez
le rang de f) . On le notera ! ou I° . Deux éléments de méme rang auront
méme ! et méme caractére 1 ou 0. Un élément z sera dit avoir un rang
plus élevé que y, si I(x) > l(y), ou si I(x) =I(y) avec @(z) % 0 et
@ (y) = 0. Ce qui se notera: x o y. Cette relation est évidemment transi-
tive.

Les conséquents d'un élément ont méme rang que cet élément. Lo
" rang est également invariant quand on passe de 4 & 4*. On & quels que
solent z, et y,

(APzy, A%Y,) = (%o, A¥Y,) = (4%%2,, Y,)
d’od ‘
(%o, Yap) U 0p = (X255 Yo) .. 3p 5

si I > Ilv, on a, en faisant augmenter p indéfiniment:

I(xﬁp’ Yo)l =0 ;

et 81 I = [V avec @* # 0 et @¥ = 0 la méme conclusion s’impose. Donc
les conséquents d’un élément deviennent orthogonaux & tout élément de rang
inférieur. On démontrerait de méme que si le rang de z, est inférieur au
rang de ¥,: %y C Yo *
AP x l |
lim ” 0
pete || AP Yo |

Ce rapport tendrait vers une limite finie non nulle, celle de @ (z) et @ (y)
si les rangs sont égaux et de caractéres 1 ; s’ils sont de ca.ra.ctére 0 tous
deux, on ne peut rien dire par cette a.nalyse

§ 4. Le rang d’un ensemble
Le rang d’un ensemble ¢ d’éléments de E est la borne supérieure des
rangs des éléments de e. Dans le cas oll une suite tend vers une borne
supérieure ! sans 1’atteindre, le rang est 1°.
Soit une suite d’éléments normalisés z* et ¢, des constantes. Formons:
z=2Xcx* avec JX|c| oconvergente.

Th. I. Le rang de la somme est au plus égal au rang de la suite des termes.

67



En effet, en affectant les I d’'un indice supérieur indiquant & quels
éléments z* ils se rapportent, on a, pour tout opérateur borné

s L . ¥
l;...p Ry = “:ci l;...p x;) ’ l;...p < Z" lcil l;...p .
1

Soit 4 la borne supérieure des I{ = lim I,; on a

I i

SRS Tl < 2l -

Donc I*<A. Sils =24 alors

_ e p
w;...p < Elcil w;...p (T) .

Si I* < A, quel que soit ¢, alors w* = 0.

Si pour quelques jon a I/ = 4, il n’y a que ceux-1a & retenir & la limite.
Si 'un des w’ est différent de zéro, alors @(z) %= 0. Si tous sont nuls
w(z) = 0; le théoréme est démontré.

Les développements en série d’éléments propres masntiennent le rang.
Soient, en effet:
z=2caxt, Azt = v, 2t

les v, étant tous différents. Alors

x; = x‘ ’ (xi, xi) - G‘J e

I1 suffit, pour que la série converge fortement, d’avoir 2’ |c,|? convergente.
Alors

Bopt=2eviat; I ,=2Xelvf
L]

d’ol en divisant encore par A? avec 4 = borne | v,|

@.p=Zlalaf., ()"
L’on déduit de 1a que, si la borne 4 n’est pas atteinte, @ = 0 et si elle
est atteinte par un ou plusieurs @/, on aura @ % 0 ou @ = 0 suivant
que l'un des w! est différent de zéro ou non.
St U'on a
Gr4 a4 .- =0

et 81 U'un des éléments z™ a un rang supérieur & tous les autres, ce rang est
aussy celui de la suite restante.
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En effet, on aurait rang de "< rang de la suite restante et d’autre
part on a par définition z" > rang de la suite restante; il n’y a que
I’égalité qui puisse convenir. |

Le lemme des trois fréquences, lemme % § 9 de notre précédent article,
est un cas particulier. Si ax + a’z’ 4+ d”2” = 0, on ne saurait avoir
I(x) > 1l(z"), I(xz) >l(z”), on ne saurait non plus avoir I(z) = I(z’) =
I(z") avec @*#0 et @* =0, ®% =0,

L’ensemble des éléments x de rang inférieur & A0 ou & Al constitue une
variété Linéaire fermée.

En effet, soient z et y deux tels éléments et 2 = xx + fy. Ona,

en vertu du théoréme I: rang de z< rang maximum de z et y. La
multiplicité est fermée. En effet, soit 2" — z (fortement). Alors:

=2t + (2 — at) + (@ — a?) + + -

et rang de x < rang de la suite 2" — a"~1, donc de la suite z".

§ 5. La semi-continuité des fonctionnelles I (x) et @ (x)
dans tout ’espace E

Nous considérons des opérateurs hermitiens bornés. A chaque élément
de E est attaché un nombre ! et un autre w.

La fonctionnelle ! est semi-continue inférieurement.

La fonctionnelle w est semi-continue supérieurement. C’est-a-dire que
pour toute suite 2¢ — 2 (fortement) 1'on a:

lim (2> Uz) , Tm B(a) < Bla) -
On a en effet I'inégalité triangulaire sous deux formes:

sih+e+yp=0, [[DlI<lell + 1wl et 1IblI=|llell —Illvll] .

Ensuite posons, § étant un élément fixe normalisé et y un élément tel
que ||y || =0
a=f4+7v.
On a:
H‘x“l;’q o‘q=llﬂ...qﬂq+ ”7” z;‘q Ya (1)

Divisions par le plus grand des 12, I8, 7 & la puissance ¢ et passons & la
limite pour ¢ — + oo. Différents cas seront & distinguer qui sont les
seuls possibles en vertu du lemme des trois fréquences:
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a) le<B=1r alors @B =|y|l @

b) B<lr=1 w o l7ller=|«| ®*
o) lr<le=1B w el wor=wk
d) ls=18=1 wo Alyller > | |la]l @ —wf|.

Si @B £ 0, a) est exclu dés le moment ou ||y || < @#, donc 12> 18;
alors, si b) @* — 0, si ¢) @* — @A, si d) @* - @B et c’est ce qu’il fallait
établir dans cette circonstance.

Si @f = 0, dans les cas b), ¢), d) 'on a:
1> 18 et @ —0.

Reste seulement & examiner le cas a).
Alors supposons que sur une suite «f on ait I < 18 — ¢, avec af — §;

on aura pour ¢ > Qe ; lﬁ > — -;-; alors par (1)

«—Q
lim [[of]| (F — e >lim =1 > 4 (l'g— _28*) '

Cette relation est absurde car @ est fixe et ¢ aussi grand que 'on veut;

elle équivaut a:
13— -Q
( i) >b(Q)
1Pt

2

quel que soit ¢ >@Q . Donc I* —18.
Nous avons établi lim l*>I# qui est la semi-continuité de .
11 suffit maintenant de prouver que lim @*¢ = 0 lorsque &f — f5.
Si @** > 2¢ on aurait aussi || a?|| @* >¢, d’ou

- €
[|a? || _‘f’gf..o> e et w1ﬂ...o<‘§ :

cette dernitre égalité pour Q(e) suffisamment grand. Alors

. flat |8, [ T\0
i QCF)=

ll...q
(')

" ) s
:h?ﬁwu—m=whw

avec m—»O;oequirevientb.-g—>s.
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On a dono bien :
Iim o*< @P lorsque « —f . C.Q.F.D.

Il est clair qu’en prenant des y tels que 17 > I8, les I~ tendront vers I7.
Ainsi les points d’accumulation de 1* sont toutes les valeurs I” et leurs
points d’accumulation.

On voit aussi que les seuls points d’acoumulation de @* sont @# et 0,
lorsque « — 8.

On démontrerait également sans difficulté ceci: de rang d'un élément
ne dépasse pas la plus grande limite des rangs des éléments vorsins.

§ 5. Opérateur racine d’un polynome

Supposons que l'on ait en quelque point z, de ¥ :
A"+ a 4" 4 - 4+ a,_jA+a,zy=0.
Cette relation donne avec nos notations; les a étant des constantes:
hen@nt oy gy Zpy+ o+ 0y 112+ 0,20 =0,

de sorte que z, est dans la multiplicité définie par z,,...,z,_,. Il en
est de méme de x,.,, Z,,4,.... Or cette suite de conséquents ne peut
pas tendre faiblement vers zéro car elle deviendrait orthogonale & tout
vecteur de cette variété & n dimensions en restant elle-méme dans cette
variété; donc ici @ % 0.

Les projecteurs satisfont & 42 — A = 0; quel que soit 1’élément de
I'espace . Danscecas Ah=¢ , dp=¢,do0 =l = ... =1,]l =1,
w=1.

Cette valeur I, n’est autre que le cosinus de 1’angle de | et de sa pro-
jection ¢ . La multiplicité linéaire de tout & I’heure se réduit ici & un seul
vecteur.

La seule fréquence est donc: I = 1, & laquelie correspond une infinité
d’éléments propres; tous les éléments de la variété ¥ sur laquelle on pro-
jette. En repérant V dans le cas ou elle est & une infinité de dimensions,
au moyen d’un systéme d’axes orthogonaux, on aura donc une infinité
2t d’éléments propres orthogonaux répondant & la méme valeur propre
l = 1. Les projecteurs ne sont donc pas complétement continus mais
‘toujours ,,réguliers*‘.
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§ 6. La décomposition des opérateurs bornés

Soit A un opérateur borné, puis v, et ' des valeurs et éléments propres
Azt = v,z*. Dans un espace séparable, il n’y a qu’une infinité dénom-
brable d’éiéments propres orthogonaux. Posons:

A’ =1lim Y vztz® alors A'(z?) = vizt .
n t=l
Puis
A=A4"+B dod B(z)=0 ;

B est hermitien comme 4 et A’. L’on a donc: BA’ = 0 et
0= (BA'y,z) = (4’y, Bz) = (y, A'Bz)

quels que soient y et z; et par conséquent: A’B=10. Lesdeux opérateurs
A’ et B sont orthogonaux. Je prétends que @?(y) = 0 quelque soit
I'élément y . Sinon @(y,) # 0 et alors les conséquents y,, —> y fortement

et I'on a: B*y) = v*y. Donc
Ay — A"y =o'y dou A'y — “,,ITA"BW) =vly, 4Py =o'y,
y serait un z* et B(y) = 0, d’ol v= 0 ou y = 0, ce qui est contra-
dictoire.

Tout opérateur borné se décompose en un opérateur formé avec le spectre
ponctuel et un autre @ @ = 0 . C’est donc dans 'opérateur B que I’on trou-

vera les autres formes du spectre.

(Regu le 9 juin 1943.)
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