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L'itération directe des opérateurs hermifisns

Par R. Wavre, Genève

Nous dédions ce travail à Monsieur le Professeur Carathéodory
à Voccasion de son soixante-dixième anniversaire.

Rappel
Dans un article paru au numéro précédent des ,,Commentarii", nous

avons montré quel avantage il y a à entreprendre une étude directe de
l'itération d'un opérateur hermitien. Cela permet de reconstruire quelques
théories classiques en éliminant presque complètement l'appareil
algébrique. Nous voulons ici apporter quelques compléments à cette étude
directe.

L'espace Ey dans lequel nous opérons, a été défini dans l'article précédent.

Il recouvre l'espace d'Hilbert et l'espace fonctionnel.
Nous posions, A étant un opérateur hermitien:

Les î)P sont donc les itérés normalisés de fy0. Nous les appellerons les

conséquents. Nous formions également:

nombre liés à ï)0. On avait d'ailleurs Zx< Zt< Z3< • • • ; l(fy0) et
sont des fonctionnelles de ï)0.

Nous avions, une parenthèse désignant un produit scalaire :

U)î • U)j> » 9*+i) — 7
*>+r+l...p+2r b9

Le nombre a> existe toujours s'il existe une infinité de conséquents, ce

qui est le cas dans tout l'espace pour les opérateurs bornés, et nous avons
démontré que deux cas seulement sont possibles : si 75 ^ 0 les éléments

I)tj, st §2p+1 convergent fortement vers des limites, racines de

(A* - 12)1) « 0

Si 75 as 0 ces deux suites convergent faiblement vers zéro.
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§ 2. Remarques sur la série des carrés des distances de deux conséquents

Nous posons » j
«I..—J--»f.

Supposons l fini et posons

—i— 9 T" 1 + Vi » Vi —

On a

puis
1 + m + n% H H *l* < -g— < e1'^"'4"^ ;

donc suivant que Z rj{ diverge ou converge œ 0 ou œ # 0 Il en est
de même suivant que Z e{ diverge ou converge, donc en définitive

cô 0 si Z (l — h) diverge ; 75 # 0 si Z (l — l{) converge.

On a d'ailleurs

d'où:

et en posant:
A* — II r ^ 112 — 2 11 Q+1 1

carré de la distance de deux conséquents xq et xff+a,

2iL=jL ^ ^ + **, + ^ + + i?_M< 2 A

donc si l est fini

relation vraie même si a> 0 donc aveo convergence faible des xv normalisés

vers zéro.
Pour tout opérateur hermitien borné, les carrés des distances qui séparent

deux conséquents par A2 forment une série convergente.
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§ 3. Le rang d'un élément

Soit I) un élément ; Z(Ij) et <*> (fy) les valeurs l et 75 qui lui sont attachées.
La fréquence l et le caractère 1 ou 0 suivant que 7ô ^ 0 ou 75 0 sera
le rang de ï), On le notera ll ou 1° Deux éléments de même rang auront
même l et même caractère 1 ou 0 Un élément x sera dit avoir un rang
plus élevé que y, si l(x)>l(y)y ou si l(x) l(y) avec 75(x) # 0 et
7ô (y) 0 Ce qui se notera : x d y. Cette relation est évidemment transitive.

Les conséquents d'un élément ont même rang que cet élément. Le
rang est également invariant quand on passe de A à A*. On a quels que
soient xQ et yQ

(A»xot A*y0) « (s0, A*>y0) (A»z0, y0)
d'où

si lx>lv, on a, en faisant augmenter p indéfiniment:

?0 ;

et si lx Z1' avec cô* # 0 et ô>v 0 la même conclusion s'impose. Donc
les conséquents d'un élément deviennent orthogonaux à tout élément de rang
inférieur. On démontrerait de même que si le rang de x0 est inférieur au
rang de t/0: a;ocy0:

Ce rapport tendrait vers une limite finie non nulle, celle de 7ô(x) et 75 (y)
si les rangs sont égaux et de caractères 1 ; s'ils sont de caractère 0 tous
deux, on ne peut rien dire par cette analyse.

§ 4. Le rang d'un ensemble

Le rang d'un ensemble c d'éléments de E est la borne supérieure des

rangs des éléments de e. Dans le cas où une suite tend vers une borne
supérieure l sans l'atteindre, le rang est 1°.

Soit une suite d'éléments normalisés xi et c, des constantes. Formons:

z Z c^ avec £ \ c<\ convergente.

Th. I. Le rang de la somme est au plus égal au rang de la suite des termes.
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En effet, en affectant les l d'un indice supérieur indiquant à quels
éléments a;* ils se rapportent, on a, pour tout opérateur borné

Soit X la borne supérieure des F lim l{p ; on a

Donc l' < A Si J* A alors

Si V < X, quel que soit i, alors a>c 0

Si pour quelques j on a V A, il n'y a que ceux-là à retenir à la limite.
Si l'un des c5* est différent de zéro, alors 7ô(z) ^ 0 Si tous sont nuls
ÔJ(z) 0 ; le théorème est démontré.

Les développements en série d'éléments propres maintiennent le rang.
Soient, en effet:

z EciX*, Ax* vixi
les v{ étant tous différents. Alors

Il suffit, pour que la série converge fortement, d'avoir Z |c<|2 convergente.
Alors

d'où en divisant encore par Xv avec A borne | vi \

L'on déduit de là que, si la borne A n'est pas atteinte, ô> 0 et si elle
est atteinte par un ou plusieurs ô>*, on aura ô> 96 0 ou oJ 0 suivant
que l'un des w1 est différent de zéro ou non.

Si Von a
cxxx + c2x2 + 0

et si Vun des éléments xn a un rang supérieur à tous les autres, ce rang est
aussi celui de la suite restante.
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En effet, on aurait rang de xn ^ rang de la suite restante et d'autre
part l'on a par définition xn ^ rang de la suite restante ; il n'y a que
l'égalité qui puisse convenir.

Le lemme des trois fréquences, lemme il § 9 de notre précédent article,
est un cas particulier. Si ocx + <x,'xf + dnxn 0, on ne saurait avoir
l(x) > l(x'), l(x) > l(xrr)y on ne saurait non plus avoir l(x) l{xf)
l(x") avec wx ^ 0 et 7ôx' 0, 7»x" 0

L'ensemble des éléments x de rang inférieur à XO ou à Al constitue une
variété linéaire fermée.

En effet, soient x et y deux tels éléments et z ocx + py. On a,
en vertu du théorème I: rang de 3 < rang maximum de a; et y. La
multiplicité est fermée. En effet, soit xn -* x (fortement). Alors:

x x1 + (x2 — s1) + (s3 — x2) +

et rang de x < rang de la suite xn — xn~x, donc de la suite xn.

§ 5. La semi-continuité dos fonctionnelles l (x) et <ô (x)
dans tout l'espace E

Nous considérons des opérateurs hermitiens bornés. A chaque élément
de E est attaché un nombre l et un autre ô>.

La fonctionnelle l est semi-continue inférieurement.
La fonctionnelle cô est semi-continue supérieurement. C'est-à-dire que

pour toute suite xi -* x (fortement) l'on a :

lim Hx*)^ l(x) 9 TïmaUx*)^ œ(x)

On a en effet l'inégalité triangulaire sous deux formes :

| \\9\\ -
Ensuite posons, fi étant un élément fixe normalisé et y un élément tel
que || y || ->0

On a:

Divisions par le plus grand des la, l&, l? à la puissance q et passons à la
limite pour q -> + oo. Différents cas seront à distinguer qui sont les
seuls possibles en vertu du lemme des trois fréquences:
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a) Za < 1$ Iy alors â)P || y || co^

r»\ 7v ^»" 7ot _ 7d II /*/ II T~îQt —— "77\SCi w* ^w. y ••-¦• l" »• 11 Cv II OJ —"~* UJ~

d) Z« Z^ Zv „ || y II côy 3

Si 7Ô& î& d, a) est exclu dès le moment où || y || < cû^, donc
alors, si b) ô>a -> 0, si c) ô>a -> cô^, si d) côa -? ô>^ et c'est ce qu'il fallait
établir dans cette circonstance.

Si aï? 0, dans les cas b), c), d) l'on a:

la ^ 1$ et côa -^ 0

Reste seulement à examiner le cas a).
Alors supposons que sur une suite of on ait l* <l& — e, avec oc* -> fi ;

on aura pour q > Qe ; Z^ > Z^ —; alors par (1)

/ « «\*~°

Cette relation est absurde car Q est fixe et q aussi grand que l'on veut ;

elle équivaut à:

quel que soit q > Q Donc l*' -> Z^

Nous avons établi lim l*^ Z^ qui est la semi-continuité de l
Il suffit maintenant de prouver que lim ô>a< 0 lorsque ot ->
Si 57°' > 2« on aurait aussi || ** \\ câa< > e d'où

cette dernière égalité pour Q(e) suffisamment grand. Alors

avec »;,->• 0 ; ce qui revient à — > e
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On a donc bien
lïm cU* < 7ôP lorsque oc -> fi C. Q. F. D.

Il est clair qu'en prenant des y tels que ly>lP, les l" tendront vers U.
Ainsi les points d'accumulation de Ie* sont toutes les valeurs lv et leurs

points d'accumulation.
On voit aussi que les seuls points d'accumulation de Tô* sont ai? et 0,

lorsque oc -> fi
On démontrerait également sans difficulté ceci : de rang d'un élément

ne dépasse pas la plus grande limite des rangs des éléments voisins.

§ 5. Opérateur racine d'un polynôme

Supposons que l'on ait en quelque point x0 de E :

* + • • • + an_xA + anx0 « 0

Cette relation donne avec nos notations ; les a étant des constantes :

de sorte que xn est dans la multiplicité définie par scO9...txnmml. Il en
est de même de xn+1, #n+a,.... Or cette suite de conséquents ne peut
pas tendre faiblement vers zéro car elle deviendrait orthogonale à tout
vecteur de cette variété à n dimensions en restant elle-même dans cette
variété ; donc ici cô ^ 0

Les projecteurs satisfont à A2 — A 0 ; quel que soit l'élément de

l'espace Jr. Dans ce ca,&A1) <p, A<p <pt d'où It=sls • • • 1, Z 1,
15> Zx

Cette valeur lx n'est autre que le cosinus de l'angle de I) et de sa
projection <p La multiplicité linéaire de tout à l'heure se réduit ici à un seul
vecteur.

La seule fréquence est donc : l 1, à laquelle correspond une infinité
d'éléments propres ; tous les éléments de la variété F sur laquelle on
projette. En repérant V dans le cas où elle est à une infinité de dimensions,
au moyen d'un système d'axes orthogonaux, on aura donc une infinité
zi d'éléments propres orthogonaux répondant à la même valeur propre
1=1. Les projecteurs ne sont donc pas complètement continus mais
toujours ,,réguliers".
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g 6. La décomposition des opérateurs bornés

Soit A un opérateur borné, puis v% et x1 des valeurs et éléments propres
Axl vtx{. Dans un espace séparable, il n'y a qu'une infinité dénom-
brable d'éléments propres orthogonaux. Posons:

A' lim Zvtx*xi alors A V) vi
n i-1

Puis
^4 A'+B d'où

est hermitien comme A et Af. L'on a donc: iM' 0 et

0 (BA V, 2) - (^ V

quels que soient y et z ; et par conséquent : -4 ;2? 0. Les deux opérateurs
A1 et B sont orthogonaux. Je prétends que aiB(y) 0 quelque soit
l'élément y Sinon œ(y0) ^ 0 et alors les conséquents y2p -> y fortement
et l'on a: B2(y) v2y Donc

A2y-A'%y v*y d'où A*y --^A'^iy) =v*y A*y =--v*y,

y serait un x*' et B(y) 0, d'où v=0ou2/ 0,ce qui est
contradictoire.

Tout opérateur borné se décompose en un opérateur formé avec le spectre
ponctuel et un autre à 73 0 C'est donc dans l'opérateur B que l'on trouvera

les autres formes du spectre.

(Reçu le 9 juin 1943.)
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