
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 15 (1942-1943)

Artikel: Expression du produit de deux indéterminées en fonction de la somme.

Autor: Mirimanoff, D.

DOI: https://doi.org/10.5169/seals-14879

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-14879
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Expression du produit
de deux indéterminées en fonction de la somme
Par D. Mirimanoff, Genève

Introduction
Nous avons fait connaître récemment1) un procédé permettant de

former les expressions les plus simples de la somme p xx + x2 en fonction

du produit q xlx2, ainsi que celles de p et q en fonction de
G q -}- cp, c étant une constante. Nous nous occuperons maintenant
des problèmes inverses (expressions de q en fonction de p et expressions
de G en fonction de p et en fonction de g). Pour les résoudre, il suffit de
savoir former, outre les expressipns déjà indiquées, celles de q en fonction
de p (premier problème inverse). En remplaçant, en effet, dans G — q + cp,
le produit q par ces expressions, on en tire celles de G en fonction de p.
On en tire de même celles de G en fonction de q, en remplaçant p par les

expressions indiquées dans mon premier article. Nous pouvons donc nous
borner à la recherche des expressions les plus simples de q en fonction de p.
Nous ferons voir qu'on peut obtenir la solution de ce problème en partant
soit des polynômes JBt (première méthode), soit de l'expression de q en
fonction de G (deuxième méthode).

Chose curieuse: tandis que l'expression réduite de p en fonction de q
n'avait été obtenue, dans mon premier article, que par l'intermédiaire de
certaines expressions moins simples (expressions canoniques), nous
verrons que chacune de nos méthodes fournit directement la solution réduite,
c'est-à-dire l'expression la plus simple de q en fonction de p.

Désignons par ï$ le domaine d'intégrité F[p] (ensemble de tous les
polynômes en p dont les coefficients font partie de F). Je montrerai qu'on
peut établir les trois théorèmes suivants :

Théorème 1. Il existe, pour tout n > 3, une expression de q en fonction
de p, sous forme d'un quotient de deux polynômes 9ln et Dn faisant partie

/^ 2) ifi 3}
de ^5, dans laquelle le dénominateur î)n est du degré par

rapport à p et par rapport à l'ensemble x1, x2, xn

Théorème 2. Dans cette expression, le dénominateur î)n est égal, pour

11

CM. H., t. 14, p. 1 et 310.
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le produit II étant étendu à toutes les combinaisons x{, x} deux à deux
des n — 2 indéterminées xs, xA, xn

Théorème 3. Il n'existe pas d'expression de q en fonction de p, sous
forme d'un quotient de deux polynômes de S$, dans laquelle le degré du

(n—2) (n—3)dénominateur par rapport aux xx, x2,..., xn soit inférieur a ¦—
2i

T (n — 2) (n — 3) ,.xLe degré ~ — est donc le plus petit possible.

Première méthode

§ 1. Structure des polynômes !?*.

Au lieu de former les polynômes Ri} pour i > 2, à partir de R1 et i?2,
à l'aide de la relation de récurrence

Bi —qRt-2 + pRt-i (1)

il est plus simple de les définir directement par la formule

l-l ,^-x „ x

que je regrette de n'avoir pas indiquée dans mon premier article. Les
deux définitions sont équivalentes. Pour le voir, il suffit de montrer que
l'expression (2) coïncide avec celle du § 1 de l'article cité pour i 1 et

i 2 et que les R{ définis par (2) vérifient la relation (1).
On déduit de (2) l'expression suivante de jRt-

+ (- l)-^1 /-<+8 <?-* «! + ••• + (— l)71""1 /n «<-« (3)

qui nous sera très utile.

§ 2. Expression des polynômes «€ en fonction de p et q.

Pour tout i ^ 1, #f est un polynôme en p et q dont le d

à p est égal à i, mais dont le degré par rapport à q est E \—^-

•) JEf(aj), pour x>0, est la partie entière de x (Legendre).
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On a, quel que soit i ^ 1,

«« r&V - yiV""2 + rf p*"4 <?2 (4)

les coefficients y^l) 1, y^\ y2l\ étant les nombres du triangle
arithmétique de Pascal d'ordre i rangés le long de la bissectrice de l'angle
droit. On a, en effet,

-(V)-
Pour le voir, il suffit de montrer que la formule (5) est vraie pour i, si elle
est vraie pour i — 1 et i — 2. J'omets la démonstration, qui est élémentaire.

Voici les expressions des a^ pour i 1, 2, 6 :

*i P; oc2 p2 — q; oc3 p* — 2pq; *4 p4 — 3p2q + q2 ;

*6 p6 — 5p4g + Qp2q2 — qs 3) ^
§ 3. Choix des inconnues et indication de la méthode.

Soit d'abord n 3.

En remplaçant dans
E1 oc2 — f1oc1 + f2 0

les polynômes oc2 et a2 par leurs expressions (6), il vient

par suite
p2 — q —

„__ p2—hp + f2
q ¥° '

Supposons maintenant n ^ 4.

Les coefficients des oc dans J?t étant des polynômes en q, qui est
l'inconnue dont il s'agit précisément d'obtenir l'expression, la méthode dont
nous nous sommes servi dans notre premier travail, n'est plus applicable.
Mais remplaçons, dans JBf, les oc par leurs expressions (4) ; Ri devient un
polynôme en p et q, et il résulte alors des formules (3) et (4) que la
puissance la plus élevée de q dans J?, est fournie par son premier terme

(1)
______ n\

—-—J on voit que le

3) Cf. P. Bachmann, Niedere Zahlentheorie, zweiterTeil (additiveZahlentheorie),
Chap. 2.
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degré de Bt par rapport à q est une fonction croissante ou plutôt non
décroissante de i. Or le degré de Rn_z par rapport à q est égal à son indice

n — 3, puisque n — 3 — l+E1 j n — 3. Si donc Ton égale

à 0 les n — 3 polynômes B€, on obtiendra un système de n — 3 équations
linéaires an — 3 inconnues q, q2, qn~*. Ce système nous fournira en
particulier l'expression cherchée de q en fonction de p.

Il est préférable du reste de changer les signes des polynômes R{ et de
les ordonner ensuite suivant les puissances croissantes de q. L'utilité de

cette transformation élémentaire apparaîtra plus tard.
En désignant par !Dn le déterminant des coefficients de q, q2, qn~z

et par 5Rn le déterminant de Cramer correspondant à l'inconnue q,
l'expression cherchée de q s'écrira

!--%-. m

X)n et 9tn étant deux polynômes en p faisant partie de *p.

Exemples.
Soit d'abord n 4.
On n'a qu'une seule équation —Rx 0, qui s'écrit

— f2ocx + /3 0

et en remplaçant les <xt par leurs expressions (6)

— P* + hP2-f2P + h
d'où

q 2p-fx
On voit donc que

D4=2p —/l5 9l. P» —A

Soit maintenant n 5.

Le nombre des équations est égal à 2. Or,

—*,=
d'où

et
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§ 4. Démonstration du théorème 1.

La première partie de ce théorème étant déjà établie, il reste à montrer
que le degré de î)n par rapport à p et par rapport à l'ensemble xx, x2,..., xn

(n — 2) (n — 3)est égal a — ^~ ~
Egalons à zéro fx, /2, /n dans !Dn. Nous montrerons que !Dn se

réduit à (n-2) (n-3)

an étant un nombre entier positif et que par conséquent le degré de Dn

par rapport à p est bien égal à -^ Or, î)n étant une fonction

homogène par rapport à xx, x2, xn et le degré de p dans Xn étant
égal à 1, nous en conclurons que le degré de î)n par rapport à xx, x2, xn

est aussi égal à — -~ — et le théorème 1 sera établi.

Mais, pour fx /2 ••• fn 0, —^ se réduit, en vertu de (3), à
son premier terme — gr*~1^w-t » <ïuî s'écrit

— pn~l q1"1 + y^-V pn-i~2qi — y(2n~l) pn-*-4gi+1 + • • •

et par suite

— R% — pn~2 q + [ î>n~4 g2

— J?n-4 — P4 ^n~5 + 3 p2 qn~* — qn~

— -Bn-3 —* P3 5fn~4 -
et î)n se réduit à

p^-3 0

_ j>4 3^2 _
que je désignerai par Dn(0).

4 Commentarii Mathematici Helvetici ^



Or, le degré du terme principal de ï)n(0) par rapport à p tant égal à
la somme

il en résulte que
(n-2) <n-3)

^n(0) anp 2 (8)

an étant un nombre entier.
Mais rien jusqu'à présent ne nous permet d'affirmer que an n'est pas

nul. Je ferai voir que an est positif.
Supposons que les ai soient différents de 0 pour i<n. Je dis que cette

hypothèse entraîne a{ > 0 pour i ^ n. Commençons par faire remarquer
que les sous déterminants principaux tirés de î>n(0) en supprimant
1, 2, % — 4 premières lignes et premières colonnes sont égaux
respectivement à 5)^(0), 3V.2(0), D^O) 2.

Multiplions les éléments de la Ie, 2e, (n — 4)e colonne par
an-i> an-2> «4 2, ce qui a pour effet de multiplier Dn(0) par le
produit an_! • an_2 a4 =£ 0

Effectuons ensuite les opérations suivantes, qui ne changent pas la
valeur du déterminant:

1) ajoutons aux éléments de la (n — 4)e (avant dernière) colonne les

éléments correspondants de la (n — 3)e (dernière) colonne multipliés
par p2,

2) ajoutons aux éléments de la (n — 5)e colonne les éléments
correspondants de la (n — 4)e colonne ainsi transformée après les avoir multipliés

par p2,
3) appliquons la même opération aux éléments de la (n—6)e, (n—7)e,...

Ie colonne et soient

les éléments rangés le long de la diagonale principale dans l'expression
finale du déterminant.

Comme la valeur de ce déterminant est fournie par son terme principal,
nous obtenons la relation

(n-2) (n-3)

«»-l «n-2 • • • «n 3>n(0) ^n ^n-1 • • • «4 P
%

et par suite, en vertu de (8)

ana«r-l ' • • a4 £nen-l • • • £4 •

Je dis que a{ s{
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En effet a4 e4 2. Donc en faisant n 5, il vient a5 eB, etc.
Or,

(i — 2\ /» — 3

Nous obtenons donc les relations

(n — 2\ (n — 3\
a« ~ \ i ;an-a + \ 2 ;an~2~ =0

n — 3\
j a*-2 + =0

«n-2— =0

a6 — 4a5 + 3a4 =0
a5 — 3a4 +1 0

a4 — 2 0

II est préférable, en introduisant a3 1, d'écrire les deux dernières
équations de la manière suivante

a5 — 3a4 + a3 0

aA — 2a3 0

et de compléter ensuite le système par l'adjonction des deux égalités

«3—1 0
1 1.

Dans les équations de notre système ainsi complété, que j'appellerai le

système 8l9 les coefficients de a{, at_l5 abstraction faite de leurs
signes, sont les nombres du triangle arithmétique de Pascal d'ordre i — 1

rangés le long de la bissectrice de l'angle droit, pour tous les i compris au
sens large entre 3 et n.

Je ferai voir que les ai vérifiant le système Sly et en particulier le
coefficient an, sont positifs.

A partir de Sx formons un système nouveau $2 de la manière suivante :

remplaçons la première équation de $a par la somme de toutes les équations

de ce système, la deuxième par la somme de celles qui suivent la
première, etc.

En vertu de la relation

pour tout k ^ i
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les coefficients de la première équation de S2 sont ceux de la seconde de

8l9 les coefficients de la seconde équation de S2 sont ceux de la troisième
de Sl9 etc. Le nombre des équations diminue d'une unité et leurs seconds
membres sont tous égaux à 1, donc positifs. Les dernières équations de
S2 s'écrivent

«5 — 2 a4 =1
«4 — «3 1

«3=1.

Appliquons la même transformation à 82. On obtiendra un système de

n — 3 équations dont les seconds membres sont n — 2, n — 3, 2 ; la
dernière s'écrira «4 2.

En appliquant toujours la même opération, on formera #4, S5, 8n_1.
Le système 8n_2 s'écrit

«n-1 92 y

<7i et g2 étant deux nombres positifs. Enfin

an 9i + 92 -

Donc an > 0, et comme n est un nombre quelconque ^ 3, cette inégalité

a lieu pour tout n ^ 3 et le théorème 1 est établi.
Exemples.
Soit n 4.
I^es systèmes Slf 82, 8B s'écrivent

a4 — 2a3 =0
a3—l 0 (flfj

1 1

a4 — «3=1 .^
«3=1

«4 2 (S3)

Soit maintenant n 5.

Les systèmes 8t, 82, S3f 84 s'écrivent

«5 — 3«4 -f- «3 =0
«<-2a3 =0 {8i)

«3 -—* 1 "
1 1
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as — 2a4 1

___ i

az 1

«5 <X4 3

a4 2

a6 5

Voici les valeurs des an pour n < 10: a3 1; a4 2; a5 5;
a6=14; a7 42; a8 132; a9 429; a10 1430.

Il résulte de la loi de formation des systèmes Sx, S2, que an croît
rapidement avec n.

§ 5. Démonstration du théorème 2.

En raisonnant comme dans le § 4 de mon premier article, on démontre
que le dénominateur !Dn est divisible par TIn= TI (xx + x2 — x{ — xj.
Le degré de X)n dans Xn étant égal à celui du produit IJn, on en conclut
que

k étant un nombre rationnel.
Je dis que k 1.

En effet, égalons x2, xz, xn à 0.

— Rt se réduit à —q*~x (<*»-{ — fi&n-i-i)i c'est-à-dire à qiocn_imm29 puisque

fx Xi p
Le déterminant î)w se réduit donc à

c'est-à-dire à

_ y(n-3) ^n-5

(n-2) (n-3)
>

2 #¦

0 ^

(n-2) (n-3)
2

(n-2) (n-3)
Or, le produit Iîn se réduit aussi à xx 2 d'où k 1 et le

théorème 2 est démontré.

§ 6. Démonstration du théorème 3.

Elle est immédiate. En effet, un dénominateur î)n dont le degré est

inférieur a ~ -~ — ne saurait être divisible par IJn.
2
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Deuxième méthode

§ 7. Expression de q en fonction de q'.

Partons de l'expression canonique de p en fonction de G ou plutôt de
q> =:G + c2 q + pc + c2.

Je rappelle qu'on obtient cette expression en remplaçant dans celle
de p en fonction de q, la somme p, le produit q et les /^ par la somme p ',
le produit qr et les j\ relatifs aux indéterminées x[ liées aux #t- par les

relations
x\ x{ + c

De l'expression ainsi obtenue

on tire

p —* 2c (10)
n

Or,

Par suite
qf — pç — #2

C'est à partir de cette formule que nous obtiendrons l'expression cherchée
de q en fonction de p.

§ 8. Degrés du numérateur et du dénominateur de (11) par rapport à c.

Je dis que le numérateur et le dénominateur de (11) sont tous les deux
(n + 2) (n — 3)

du degré ~—¦—-~ — par rapport a c.

Démonstration. Il est évident d'abord que le degré du numérateur est

égal à celui du dénominateur. Si, en effet, il lui était inférieur ou supérieur,
on obtiendrait, en faisant c= oo,g 0oug= oo, conclusions absurdes.

Il suffit donc de déterminer le degré de Dfn.

Or, d'après le théorème 2 de mon premier article, D'n a pour expression

{[2 ^^
{x1 + x2 — xi — xi)c} (12)
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Comme le degré du premier facteur est égal à 2 (n — 3) et celui du

second à — J~ '—, on voit que le degré de D'n est bien égal à

(n + 2) (n —3)
—z —, que je désignerai par m.

§ 9. Posons

(ï' +c2)D:-Kc=r0+v1c+v2c2+-" + Vm
^>n ^o + <5i<>+ (52c2+ + <5wcw

et faisons c oo dans (11). Il vient

î -£=-• (13)

Or, on tire immédiatement de (12) les expressions de ôm et i>m dans Xn.
En effet, en vertu de (12)

+ z2 — a?t — x,) IIn
*,?

et par suite

II reste à montrer que ôm et vm calculés à partir de (11) sont des
polynômes en p. Or, les coefficients è% étant des polynômes en p et q, il suffit
de faire voir que

dq
~" ' dq "

La démonstration est immédiate. On a, en effet,

dD'n dD'n dq' dD'n
_

d'où

et par
Mo
dp

suite

dp

dp

dD'n

dq

i

dq'

dD'n

dq'

dp

1âm m

dp

dq'

dq

H

dô0

H
c

dq' "

dD'n

dq'

C

+ dq C+"H
(14)
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On a donc bien
™m

0

et comme le même raisonnement supplique au numérateur de (11), on a
aussi

4^ 0
dq

et par conséquent ôm et vm sont bien des polynômes en p.
Je dis maintenant qu'on a identiquement

ôm Dn et ?w 3ln

En effet, les degrés de ôm et de X)n par rapport à p ne dépassent pas
(n — 2) (ti — 3) x, n(n—1)
- '— —, nombre inférieur au degré —— de 1 équation

vérifiée par p. La même remarque s'applique aux polynômes vm, SRn.

§ 10. Calcul de q à partir de (11).

Pour obtenir l'expression de g à l'aide de la deuxième méthode, on peut,
en vertu de la propriété qui vient d'être établie, faire q 0 dans (11). Il
suffit alors de calculer les coefficients de cm dans le numérateur et le
dénominateur de (11) ainsi simplifiés.

Supposons n 4.
En faisant q 0, NfA et D[ se réduisent respectivement à

(ft + 4c) (pc + c2)2 — (/3 + 2 /2c + 3 /xc2 + 4 c3) (pc + c2)

et
c2)2 — (/4 + /,c + /2c2 + /lC» + c4)

L'exposant m étant égal à 3, vm et ôm sont les coefficients de c3 dans

et

ainsi simplifiés, et l'on retrouve l'expression de q fournie par la première
méthode
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Remarque. En faisant c 0 dans (11), on obtient

vo

°o
ou

qô0 — vo O. (15)

Or, en vertu de (14), <50 et vQ sont des polynômes en q et comme le

degré du premier membre de (15) est inférieur à —^———, cette égalité

est une identité.

Pour n 4, par exemple,

Une remarque analogue s'applique à la formule

Elle se réduit à une identité, si l'on fait c oo. Pour n 4 elle se

réduit à

2p'-/lP
P

§ 11. Expressions de pfe(fe > 1) en fonction de q.
Ces expressions s'obtiennent immédiatement, si l'exposant k est

^.n — 3. En effet, le procédé indiqué dans mon premier travail permet
d'obtenir les expressions de ock pour k ^.n — 3. Et comme

otk Pk (16)
on en tire pk.

Pour calculer pk, lorsque l'exposant k est supérieur an — 3, on peut
procéder de la manière suivante :

Pour k n — 2 et k n — 1, on calculera pk à partir de R2 0 et
R± 0. On peut, en effet, tirer de ces équations <xn__2 et ocn_x en fonction
des ock d'indices k < n — 3 et finalement pn~2 et pn~x à l'aide de (16).

Si k> n — 1, on partira de la relation
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"* — /l**-l + /2**-2 + (— l)n/n**-n 0 (17)

dont le premier membre est

On en tirera de proche en proche ocn, ocn+1, et par suite, en vertu de

(16), p",p"+\...

§ 12. Expressions de qk(k > 1) en fonction de p.
Les procédés indiqués dans ce travail permettent d'obtenir ces expressions

pour h < n — 3.
Si Je est supérieur à n — 3, on envisagera oc2k qui contient le terme

(—l)k qk (puissance la plus élevée de q dans oc2k). Le calcul de qk se

ramène alors à celui de qk~x, qk~2,

§ 13. Expressions de pk, qk et de pkql en fonction de qr G + c2.

Comme p p; — 2c, les expressions de pk se calculent à partir de
celles des puissances de p! inférieures ou égales à k qu'on obtient de celles
du § 11, en remplaçant p et q par pr et qr.

Et comme q q' — pc — c2, pour calculer qk on n'aura qu'à
remplacer dans (q' — pc — c2)k les puissances de p par leurs expressions en
fonction de qr.

Quant aux expressions de pkql, on remplacera dans pkql le facteur
q1 par {qf — pc — c2)1.

En faisant q! 0 + c2, on obtiendra les expressions de pk, qk et de

pkql en fonction de 0.

§ 14. Expressions d'une fonction symétrique entière de xx 9 x2.

Soit S une fonction symétrique entière de deux indéterminées xl9 x2.
On sait que 8 est un polynôme en p et q dont les coefficients font partie

Le problème se ramène donc à ceux des paragraphes 11, 12 et 13.

On en tire aussi les expressions d'une fonction symétrique rationnelle
de xl9 x2 à coefficients faisant partie de Fn.

(Reçu le 26 février 1942.)
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