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Expression du produit
de deux indéterminées en fonction de la somme

Par D. MiriMANOFF, Genéve

Introduction

Nous avons fait connaitre récemment!) un procédé permettant de
former les expressions les plus simples de la somme p = z; 4+ z, en fonc-
tion du produit ¢ = z,x,, ainsi que celles de p et ¢ en fonction de
G = q + c¢p, ¢ étant une constante. Nous nous occuperons maintenant
des problémes inverses (expressions de g en fonction de p et expressions
de G en fonction de p et en fonction de ¢q). Pour les résoudre, il suffit de
savoir former, outre les expressipns déja indiquées, celles de ¢ en fonction
de p (premier probléme inverse). En remplacant, en effet, dans @ =¢q +cp,
le produit ¢ par ces expressions, on en tire celles de G en fonction de p.
On en tire de méme celles de G en fonction de ¢, en remplagant p par les
expressions indiquées dans mon premier article. Nous pouvons donc nous
borner a la recherche des expressions les plus simples de g en fonction de .
Nous ferons voir qu’on peut obtenir la solution de ce probléme en partant
soit des polynémes R, (premiére méthode), soit de l'expression de ¢ en
fonction de G (deuxiéme méthode).

Chose curieuse: tandis que I’expression réduite de p en fonction de ¢
n’avait été obtenue, dans mon premier article, que par I'intermédiaire de
certaines expressions moins simples (expressions canoniques), nous ver-
rons que chacune de nos méthodes fournit directement la solution réduite,
c’est-a-dire ’expression la plus simple de ¢ en fonction de p.

Désignons par P le domaine d’intégrité F[p] (ensemble de tous les poly-
némes en p dont les coefficients font partie de F'). Je montrerai qu’on
peut établir les trois théorémes suivants:

Théoréme 1. 1l existe, pour tout » > 3, une expression de ¢ en fonction
de p, sous forme d’un quotient de deux polynémes N, et D, faisant partie
(n—2) (n—3)

2

de B, dans laquelle le dénominateur D, est du degré par

rapport & p et par rapport & ’ensemble x,, x,, ..., x, .

Théoréme 2. Dans cette expression, le dénominateur D, est égal, pour

n_>4, 4
II () + 2y —2x;,— %) ,

t.J

1) .M. H., t. 14, p. 1 et 310.
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le produit IT étant étendu & toutes les combinaisons z;, x; deux & deux
des n — 2 indéterminées z,, x,, ..., x,, .

Théoréme 3. 1l n’existe pas d’expression de ¢ en fonction de p, sous
forme d’un quotient de deux polynomes de 3, dans laquelle le degré du
dénominateur par rapport aux z,, Z,,..., z, soit inférieur a (n—2) 2(n——3) .
(n—2) (n—3)

2

Le degré

est donc le plus petit possible.

Premiére méthode

§ 1. Structure des polyndémes R;.

Au lieu de former les polynémes E,, pour 7+ > 2, & partir de R, et R,,
& l'aide de la relation de récurrence

R, = —qR, ,+ pR,_, (1)

il est plus simple de les définir directement par la formule

)  fl=) g-?
B = ( 2l it ) % X, — Xy (2)

que je regrette de n’avoir pas indiquée dans mon premier article. Les
deux définitions sont équivalentes. Pour le voir, il suffit de montrer que
P'expression (2) coincide avec celle du § 1 de I’article cité pour : = 1 et
1 = 2 et que les R, définis par (2) vérifient la relation (1).
On déduit de (2) I’expression suivante de R,
Bi=q¢" Y (dp—i—htnica -+ (—1)"f )+ (— 1) f, 0 q 2
(=) s @R e (=) (3)

qui nous sera tres utile.

§ 2. Expression des polyndmes «; en fonction de p et q.
Pour tout ¢ > 1, &, est un polyndéme en p et g dont le degré par rapport
> \ 2
& p est égal & ¢, mais dont le degré par rapport & q est E (-—;——) ).

%) E(x), pour £ =0, est la partie entidtre de x (Legendre).
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On a, quel que soit 2 > 1,

&y = Vf)')

pr— PP+ P pi gt — (4)

les coefficients y{") = 1, p{¥, (", ... étant les nombres du triangle arith-
métique de Pascal d’ordre 7 rangés le long de la bissectrice de 1’angle

droit. On a, en effet,
V(Ic) = ( L ) . (5)

Pour le voir, il suffit de montrer que la formule (5) est vraie pour 7, si elle
est vraie pour ¢ — 1 et ¢+ — 2. J’omets la démonstration, qui est élémen-
taire.

Voici les expressions des «; pour ¢ =1, 2, ..., 6:

% =P; &g =P —¢q; o3 =P —2pq; a,= p*—3p*q¢ + ¢*; (6)
oy = P> — 4p°q + 3p¢®; g = p®— 5piq + 6pPg —¢*?).

§ 3. Choix des inconnues et indication de la méthode.

Soit d’abord n = 3.
En remplagant dans

Rlzo‘z"“flo‘1+f2=0

les polynémes «, et «, par leurs expressions (6), il vient

pz—q'——flp—i—fZ:O’
par suite

PP—fip -+
PO

q ===
Supposons maintenant n > 4.

Les coefficients des « dans R, étant des polyn6émes en ¢, qui est 1'in-
connue dont il s’agit précisément d’obtenir 1’expression, la méthode dont
nous nous sommes servi dans notre premier travail, n’est plus applicable.
Mais remplagons, dans R,, les « par leurs expressions (4); R; devient un
polynéme en p et ¢, et il résulte alors des formules (3) et (4) que la puis-
sance la plus élevée de ¢ dans R, est fournie par son premier terme

n—
2

3) Cf. P. Bachmann, Niedere Zahlentheorie, zweiter Teil (additive Zahlentheorie),
Chap. 2.

¢ 'x, ;; son exposant étant égal & 1 —1 -+ E ( Z) , on voit que le
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degré de R, par rapport a ¢ est une fonction croissante ou plutét non
décroissante de ¢. Or le degré de R,_, par rapport & ¢ est égal & son indice

. — 3 : .
n — 3, puisque n — 3 — 1 +E(L12b—+———) = n — 3. Sidonc I’'on égale
a 0 les » — 3 polynémes R;, on obtiendra un systéme de n — 3 équations
linéaires & n — 3 inconnues ¢, ¢, ..., g"3. Ce systéme nous fournira en

particulier I’expression cherchée de ¢ en fonction de p.

I1 est préférable du reste de changer les signes des polynémes R; et de
les ordonner ensuite suivant les puissances croissantes de ¢. L’'utilité de
cette transformation élémentaire apparaitra plus tard.

En désignant par D, le déterminant des coefficients de ¢, ¢?% ..., ¢"3
et par N, le déterminant de Cramer correspondant & I'inconnue ¢, I'ex-
pression cherchée de ¢ s’écrira

D, et N, étant deux polyndmes en p faisant partie de P.

Exemples.
Soit d’abord » = 4.
On n’a qu’une seule équation — R; = 0, qui 8’écrit

— oy + froa—foy + f3=10
et en remplagant les «, par leurs expressions (6)
—p*+hpP—fep+fh+92p—Ff)=0

g = P—hp+hr—/s
2p—1f

d’ou

On voit donc que
De=2p—f; Wu=pP—hLr*+fip—1f.

Soit maintenant n = 5.
Le nombre des équations est égal a 2. Or,

—R, = —p*+ (10 —fap* + fsp—fa+ BP*—2f,p + o) 4—¢*
—R, = —fs— (P*— 10+ fop—13) ¢+ (2p—f,) ¢,
d’ou D, — 3p*—2hHp+ /s —1

P —p*+hHpP—fo+fs 2p—h

) =5p*—6f,p*+ (2ft1 + fa)p—Fifa+ [
e
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RN — P—hpP+fpP—fho+fs —1
i fs 2p—H
= 2P5_3f11’4+(ﬁ+2f2)P3_(f1f2+2f3)P2+ (f1fs+2f)p—fifat+1s -

§ 4. Démonstration du théoréme 1.

La premiére partie de ce théoréme étant déja établie, il reste & montrer
que le degré de D, par rapport a p et par rapport a ’ensemble x,, z,,...,z,
(n—2) (n—3)

2

Egalons a zéro f,,f,, ..., f, dans D,. Nous montrerons que D, se

réduit a

est égal a

(n—2) (n—38)
a,p ° )

a, étant un nombre entier positif et que par conséquent le degré de D,
(n—2) (n—3)
2
homogéne par rapport a z,, x,, ..., x, et le degré de p dans X, étant
égal a 1, nous en conclurons que le degré de D, par rapport a z,, x,, ..., Z,
(n—2) (n—3)
2

Mais, pour f, = f, = «++« = f, = 0, — R, se réduit, en vertu de (3), &
son premier terme — ¢*lx,_;, qui s’écrit

— Vg 4 T Pt R g — PT pn g
et par suite

par rapport a p est bien égal a

. Or, ®, étant une fonction

et le théoréme 1 sera établi.

est aussi égal a

n —3
__Rl=——p"“+( ] )p"“"q——(n2 )p”“”q2+---

n__
'—"-R2= —pn_2q+( 1 )pn—4q2_._-...
S .Rn._4 —_— — p4 q’n—'5 + 3p2 qn—'4 ____qn—s
— Rn—a p— —_ ps qn—4 + 2pqn-—3

(”*1“2) __(”‘;3)pn~s ......... 0

— pn? (n_;g) Pt L. L. 0

el /R 0

............................ - p43p2__ 1
—p 2p

que je désignerai par D, (0).
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Or, le degré du terme principal de D, (0) par rapport & p tant égal &
la somme

n—3) +n—4)+ .- +24+1=

il en résulte que

(n—2) (n—3)
2 ?

(n—2) (n—3)

Dn(o) =a,p 2 ’ (8)

a, étant un nombre entier.

Mais rien jusqu’d présent ne nous permet d’affirmer que a, n’est pas
nul. Je ferai voir que a, est positif.

Supposons que les a; soient différents de 0 pour ¢ < n. Je dis que cette
hypothese entraine a; > 0 pour + < n. Commengons par faire remarquer
que les sous déterminants principaux tirés de D,(0) en supprimant
1,2,...,n — 4 premiéres lignes et premieres colonnes sont égaux respec-
tivement a D,_,(0), D, _»(0), ..., D,(0) = 2.

Multiplions les éléments de la 1e, 2¢, ..., (n— 4)¢ colonne par
@p1> Bpg, ..., g = 2, ce qui a pour effet de multiplier D,(0) par le
produit @, ,+a, ,...a, # 0.

Effectuons ensuite les opérations suivantes, qui ne changent pas la
valeur du déterminant:

1) ajoutons aux éléments de la (n — 4)¢ (avant derniére) colonne les
éléments correspondants de la (n — 3)¢ (derniere) colonne multipliés
par p?,

2) ajoutons aux éléments de la (» — 5)¢ colonne les éléments corres-
pondants de la (» — 4)¢ colonne ainsi transformée aprés les avoir multi-
pliés par p?,

3) appliquons la méme opération aux éléments de la (n—6)e, (n—T7)e, ...
1€ colonne et soient

3 4 —_—
EnP"2, Eq PV o, EP=2D

les éléments rangés le long de la diagonale principale dans ’expression
finale du déterminant.
Comme la valeur de ce déterminant est fournie par son terme principal,

nous obtenons la relation
(n—2) (n—3)

Ay g ey D, (0) =66, 1...6D 2
et par suite, en vertu de (8)

anan__l e a'4 = snsn_l vee 84 .

Je dis que a;, = ¢; .
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En effet a, = ¢4 = 2. Donc en faisant » = 5, il vient a; = ¢;, etc.

Or, ., .3
v — 11—
8i=( 1 )a’i-—l'—"( 9 )ai—2+"'

Nous obtenons done les relations

n—2 n—3

an—-—( 1 )an—1+< 9 )aﬂ_2 —0
n—3

an—l—"( 1 )an_2+... i 68 ews abe a6 =0

Bpg—— "+ vor soe oo cue =0

ae“_4a5+3a4 :0

a5—3a4—+—1=0

a/4""—2=0

Il est préférable, en introduisant @, = 1, d’écrire les deux derniéres
équations de la maniere suivante

a;—3a,+ a; =0
0/4—-—20/320

et de compléter ensuite le systeme par I’adjonction des deux égalités

a;—1=20
= 1.

Dans les équations de notre systéme ainsi complété, que j’appellerai le
systéeme S,, les coefficients de a;,a, ,, ..., abstraction faite de leurs
signes, sont les nombres du triangle arithmétique de Pascal d’ordre 2 — 1
rangés le long de la bissectrice de ’angle droit, pour tous les ¢ compris au
sens large entre 3 et n.

Je ferai voir que les a; vérifiant le systéme S,;, et en particulier le
coefficient a,, sont positifs.

A partir de S, formons un systéme nouveau S, de la maniere suivante:
remplagons la premiére équation de S, par la somme de toutes les équa-
tions de ce systéme, la deuxieme par la somme de celles qui suivent la
premiere, ete.

En vertu de la relation

()3 em (e

pour tout k <1,



les coefficients de la premiére équation de S, sont ceux de la seconde de
S, , les coefficients de la seconde équation de S, sont ceux de la troisiéme
de 8,, etc. Le nombre des équations diminue d’une unité et leurs seconds
membres sont tous égaux & 1, donc positifs. Les derniéres équations de
S, s’écrivent

05—2a4 =l
a“_a:;:l
a;, =1.

Appliquons la méme transformation & S,. On obtiendra un systéme de

n — 3 équations dont les seconds membres sont n — 2, n —3, ..., 2; la
derniére s’écrira a, = 2.
En appliquant toujours la méme opération, on formera S,, S;, ..., S,_;.

Le systéme 8, _, s’écrit
Ay — 0y =G
Ap1= G2,

g, et g, étant deux nombres positifs. Enfin
a, =g, + 9, -

Done a, > 0, et comme 7 est un nombre quelconque > 3, cette inéga-
lité a lieu pour tout » > 3 et le théoréme 1 est établi.

Exemples.
Soit n = 4.
Les systémes S,, 8,, S; s’écrivent
ay— 2a, =0
a3—1=0 (8y)
1=1
d4 -_— a3 _ 1
a3 — 1 (82)
a, = 2 (S5)
Soit maintenant n = 5. :
Les systémes 8,, S,, S;, S, s’écrivent
a,— 2a, =0
1 =]
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a,—a; =1 (S,)
a; =1
ay—a, =3
a4 — 2 (Sa)
as=>5 (%)

Voici les valeurs des a, pour n < 10: a;=1; a,=2; az;=5;
ag = 14, a, = 42; ay; = 132; a, = 429; a,, = 1430.

I1 résulte de la loi de formation des systémes 8,, S,, ... que a, croit
rapidement avec n.

§ 6. Démonstration du théoréme 2.

En raisonnant comme dans le § 4 de mon premier article, on démontre

que le dénominateur D, est divisible par II, = IT (%, + z, — z; — ;).
8,
Le degré de D, dans X, étant égal & celui du produit I7,, on en conclut

e
a D, = k1T,

k étant un nombre rationnel.

Je dis que k£ = 1.

En effet, égalons z,, z,,..., 2, a8 0.

— R, se réduit & — ¢*(x,_; — f1%n_s_1), C'est-a-dire & ¢‘«x,_, ,, puis-
que f; =x;=1p.

Le déterminant D, se réduit donc a

pn—s y(n——3) pn~—5
1

0 pn—:i
0 0 ..... P

c’est-a-dire a

(n—2) (n—3) (n—2) (n—3)
P 2 = x, 2
(n—2) (n—3)
Or, le produit I7, se réduit aussi a z, o , dot k=1 et le

théoréme 2 est démontré.

§ 6. Démonstration du théoréme 3.

Elle est immédiate. En effet, un dénominateur D, dont le degré est
(n—2) (n—3)

5 ne saurait étre divisible par IT,.

inférieur &
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Deuxiéme méthode

§ 7. Expression de q en fonction de q’.

Partons de I'expression canonique de p en fonction de G ou plutét de
qg ' =G+ 2= q + pc + c2.

Je rappelle qu’on obtient cette expression en remplagant dans celle
de p en fonction de ¢, la somme p, le produit ¢ et les f; par la somme p’,
le produit ¢’ et les f; relatifs aux indéterminées x| liées aux z; par les
relations

x,=2z,+c.

De I’expression ainsi obtenue

.
D 7
'Dﬂ
on tire
N,
P= 7 — 2c¢ . (10)
Or,
g=q —pc—c* .
Par suite
N,e (¢ +¢)D,—N,ec
Q:q,+02‘— D’ = D (11)

C’est a partir de cette formule que nous obtiendrons I’expression cherchée
de g en fonction de p.

§ 8. Degrés du numérateur et du dénominateur de (11) par rapport a c.

Je dis que le numérateur et le dénominateur de (11) sont tous les deux
(n+2) (n—3)

3 par rapport a c.

du degré

Démonstration. 1l est évident d’abord que le degré du numérateur est
égal & celui du dénominateur. Si, en effet, il lui était inférieur ou supérieur,
on obtiendrait, en faisant ¢ = oo, ¢ = 0 ou ¢ = oo, conclusions absurdes.
11 suffit donc de déterminer le degré de Dy,.

Or, d’apres le théoréme 2 de mon premier article, D, a pour expression

(a) acp)n3 I (ay @ — ; )
t,5
= {(x,+¢) (gt )} T {2y 2y—, ;4 (%) + Ty —x;—2;)c} . (12)

LI
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Comme le degré du premier facteur est égal & 2 (n — 3) et celui du

second a (n— 2)2(n—— 3) , on voit que le degré de D, est bien égal &
(n + 2) 2(n —3) , que je désignerai par m.
§ 9. Posons

(@ + D, —N,c= vy+ nc+ 6>+ - + v,cm
D, =6, + 6,¢c+ 82+ --- +6,c,

et faisons ¢ = oo dans (11). Il vient
vm

q= B

(13)

Or, on tire immédiatement de (12) les expressions de §,, et »,, dans X,.
En effet, en vertu de (12)

6m=H(x1+x2——xi_xi)=Hn
i,

et par suite

P,, == Byig I, .

Il reste a montrer que é,, et »,, calculés a partir de (11) sont des poly-
nbémes en p. Or, les coefficients §, étant des polynémes en p et g, il suffit
de faire voir que

06,

dq

0V,

=0, 7e

=0 .

La démonstration est immédiate. On a, en effet,
oD/ B oD, aq’ oD,
op oq’ op aq’

oD, 8D, ag oD,
ag  oq a¢g  aq’

d’olt
oD, oD,
== c
op 0q
et par suite
360 351 m cm — aa aa1 c? m cm+1
+p ot + e+ Ot LY e :

(14)
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On a donc bien
dd,,

dq

et comme le méme raisonnement s’applique au numérateur de (11), on a
aussi

=0

ov,,
dq

=0

et par conséquent J,, et v, sont bien des polyndémes en p.
Je dis maintenant qu’on a identiquement

0=, e v,=N,.

En effet, les degrés de 4,, et de D, par rapport a p ne dépassent pas

(n—2) (n—3) n(n—
2 2

vérifiée par p. La méme remarque s’applique aux polynémes »,,, R, .

2 de I’équation

, nombre inférieur au degré

§ 10. Caleul de g a partir de (11).

Pour obtenir I'expression de ¢ & 1’aide de la deuxiéme méthode, on peut,
en vertu de la propriété qui vient d’étre établie, faire ¢ = 0 dans (11). Il
suffit alors de calculer les coefficients de ¢c™ dans le numérateur et le déno-
minateur de (11) ainsi simplifiés.

Supposons n = 4.

En faisant ¢ = 0, N et D, se réduisent respectivement &

(fr + 4¢) (pe + )2 —(fs + 2 foc + 3 f162 + 4 ¢®) (pe + ¢?)
et

(e + )2 —(fa + fsc + foc® + f1e® +¢¥) .
L’exposant m étant égal a 3, »,, et §,, sont les coefficients de ¢® dans

(pc + 2¢?) D, —cN,
et
D,

ainsi simplifiés, et I’on retrouve ’expression de ¢ fournie par la premiere
méthode
g = P—hrt+hor—1i
2p—f
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Remarque. En faisant ¢ = 0 dans (11), on obtient

ou
qao‘_vOz O . (15)

Or, en vertu de (14), d, et », sont des polynémes en ¢q et comme le

degré du premier membre de (15) est inférieur & m—;———}—)—, cette égalité

est une identité.

Pour n = 4, par exemple,
vo=¢—fq; do=¢—/.
Une remarque analogue s’applique & la formule

N N — 2D,
D == D’

Elle se réduit a une identité, si I'on fait ¢ = co. Pour n = 4 elle se
réduit &
2p2—fip

2p—f

p e
Corollaires.

§ 11. Expressions de p*(k > 1) en fonction de q.

Ces expressions s’obtiennent immédiatement, si 'exposant £ est
< n— 3. En effet, le procédé indiqué dans mon premier travail permet
d’obtenir les expressions de &, pour k¥ < n — 3. Et comme

oy = PF—-ee (16)
on en tire p*.

Pour calculer p*, lorsque I’exposant k est supérieur & » — 3, on peut
procéder de la maniere suivante:

Pour k = n— 2 et £k = n — 1, on calculera p* & partir de R, = 0 et
R, = 0. On peut, en effet, tirer de ces équations x,_, et x,_, en fonction
des «, d’indices k << n — 3 et finalement p"~2 et p"-1 a 'aide de (16).

Si k> n—1, on partira de la relation
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& — f10p1 + fatkgmg — ooo + (— )" f00, = 0, (17)

dont le premier membre est

f (o)) abmtt — f(,) 2kt

On en tirera de proche en proche «,,, &,,,, ... et par suite, en vertu de
(16), p™, p™*1, ... .

§ 12. Expressions de g*(k > 1) en fonction de p.

Les procédés indiqués dans ce travail permettent d’obtenir ces expres-
sions pour £k < n—3.

Si k& est supérieur & n — 3, on envisagera «,, qui contient le terme
(— 1)k g* (puissance la plus élevée de ¢ dans «,;). Le calcul de ¢* se
rameéne alors & celui de ¢%-1, g2, ... .

§ 13. Expressions de p*, g* et de p* q' en fonction de ¢’ = G + 2.

Comme p = p’ — 2¢, les expressions de p* se calculent & partir de
celles des puissances de p’ inférieures ou égales & k qu’on obtient de celles
du § 11, en remplagant p et ¢ par p’ et q'.

Et comme g = ¢’ — pc — ¢?, pour calculer ¢* on n’aura qu’a rem-
placer dans (¢’ — pc — c?)* les puissances de p par leurs expressions en
fonction de ¢’.

Quant aux expressions de p¥q!, on remplacera dans p*q! le facteur
q* par (9’ — pc — )L

En faisant ¢’ = G 4+ ¢?, on obtiendra les expressions de p*, ¢* et de
p*q* en fonction de G.

§ 14. Expressions d’une fonction symétrique entiére de x,, x,.

Soit S une fonction symétrique entiere de deux indéterminées z,, z,.

On sait que S est un polynéme en p et ¢ dont les coefficients font partie
de 7, .

Le probléme se rameéne donc a ceux des paragraphes 11, 12 et 13.

On en tire aussi les expressions d’une fonction symétrique rationnelle
de z,, x, & coefficients faisant partie de F,,.

(Regu le 26 février 1942.)
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