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Système von Richtungsfeldern in Sphâren und

stetige Lôsungen komplexer linearer Gleichungen

Von Beno Eckmann, Zurich

§ 1. Einleitung
1. Die Frage, ob es in einer ra-dimensionalen geschlossenen differenzier-

baren Mannigfaltigkeit Mm stetige Richtungsfelder gibt, kann durch
Homologiebetrachtungen vollstàndig beantwortet werden; es gilt nâmlich
der bekannte Satz : Dann und nur dann gibt es in Mm stetige Richtungsfelder,

wenn die Eulersche Charakteristik von Mm den Wert 0 hat. In
Verallgemeinerung dieser Frage hat Stiefel1) — ebenfalls mit Homologie-
methoden — untersucht, ob es sogar Système von Je stetigen Richtungsfeldern

gibt, die in jedem Punkt von Mm linear unabhângig sind (soge-
nannte ,,&-Felder"), und notwendige Bedingungen fur ihre Existenz ge-
funden. In dieser Arbeit soll die Existenz solcher Système von Richtungsfeldern

in den einfachsten geschlossenen Mannigfaltigkeiten, den Sphàren,
untersucht werden; gerade weil die Sphàren bezûglich ihrer Homologie-
eigenschaften so einfach sind, versagt nàmlich bei ihnen die Méthode von
Stiefel, die im Falle der projektiven Ràume zu weitgehenden Resultaten
gefuhrt hat [2]. Unsere Méthode ist von der seinen wesentlich verschieden
und den Sphâren besonders angepaBt; sie liegt im Rahmen der neuern
Homotopietheorie.

2. Es ist leicht, aus einem &-Feld in einer Sphâre (oder allgemeiner in
einer mit Riemann'scher Metrik versehenen Mannigfaltigkeit) ein anderes

herzuleiten, bei welchem in jedem Punkte der Sphàre die Je dort ange-
brachten Richtungen paarweise orthogonal sind; wir kônnen uns also auf
solche &-Felder beschrànken und festsetzen:

Unter einem k-Feld in der m-dimensionalen Sphàre Sm (0 < Je ^ m) ver-
stehen wir ein System von Je tangentialen, stetigen, singularitâtenfreien
Richtungsfeldern dieser Sphâre, derart, daB in jedem ihrer Punkte die Je

dort angebrachten Richtungen paarweise orthogonal sind. Die Sphàre 8m

geben wir dabei immer als Einheitssphâre des (m + l)-dimensionalen
Euklidischen Raumes B"1*1, deren Ortsvektor x (xl9 x2, xmf xm+1)

der Bedingung x2 1 genûgt, und ein Richtungsfeld in Sm durch ein Feld
von tangentialen Einheitsvektoren, d. h. durch eine fur xz 1 definierte

2) vgl« [1] u11^ [2]. — Di© Zahlen in eckigen Klammern [ ] beziehen sich auf das Lite-
raturverzeichnis am Schlufi der Arbeit.
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stetige Vektorfunktion X){x), fur welche x)(x)2 1 und x • ï)(x) 0 ist;
wir nennen dies im folgenden kurz ein Vektorfeld in 8m.

In einer Sphâre gerader Dimension gibt es keine &-Felder; denn nach
dem klassischen Satz von Poincaré-Brouwer2) gibt es bei geradem m in
8m nieht einmal ein Vektorfeld. Hingegen gibt es in jeder Sphàre unge-
rader Dimension m ein Vektorfeld, nàmlieh z. B. das durch den Vektor

X (%2 > xi > • • • xm+i > xm)

definierte (die Bedingungen x*2 1, x • 3e* 0 sind erfullt). Die vor-
liegende Arbeit befaBt sich mit der Aufgabe festzustellen, ob es auf
Sphàren xmgerader Dimension auch fur Je > 1 &-Felder gibt ; es wird ein
Beitrag zu ihrer Lôsung gegeben (Satz I), der mit stetigen Lôsungen
komplexer linearer Gleichungen eng zusammenhàngt (Satz IV und V).

Besonders wichtig ist die Frage, ob es in Sm ein m-Feld gibt; wenn dies
der Fall ist, so sagt man3), die Sphâre Sm sei jxirallelisierbar, da man
dann einen Fernparallelismus zwischen Tangentialvektoren in verschie-
denen Punkten der Sphâre definieren kann. Es ist bekannt, daB die
Sphâren S1, Sz, S1 parallelisierbar sind; man kann in diesen Fâllen besonders

einfache m-Felder auf Sm explizite angeben4); ob es noch andere
parallelisierbare Sphâren gibt, weiB man nicht.

3. Unser Beitrag zur Beantwortung der genannten Fragen besteht in
folgendem Satz:

Satz I. In einer Sphare der Dimension 4p + 1 gibt es kein 2-Feld.

Korollar. Die Spharen der Dimensionen 4^+1 sind nicht parallelisierbar.

Bemerkungen: a) In jeder Sphare der Dimension ip — 1 gibt es ein
2-Feld ; es gibt sogar ein 3-Feld, das man leicht explizite angeben kann
(siehe Nr. 4).

b) Der Satz I fur p 1 (,,in der S5 gibt es kein 2-Feld") ist schon in
einer frûhern Arbeit5) von mir bewiesen worden, und zwar unter Heran-
ziehung eines Satzes von Pontrjagin [4] ûber unitâre Gruppen; einen
âhnlichen Zusammenhang mit unitâren Gruppen gibt es aber fur p > 1

nicht. Mit Satz I wird der Fall p 1 (und zugleich der genannte Satz

von Pontrjagin) jetzt neu bewiesen; er spielt aber in dem vorliegenden
Beweis auch eine gewisse Ausnahmerolle (vgl. Nr. 9 h).

2) Alexandroff-Hopf, Topologie I (Berlin 1935), S. 481, Satz Illa.
») vgl. [1], S. 6.

*) s. Stiejd [1], S. 45.
6) s. [3], Nr. 16.



c) Dureh ein 2-Feld in einer Sphàre 8m wird immer ein stetiges Feld von
(orientierten oder nichtorientierten) tangentialen 2-dimensionalen
Flâchenelementen dieser Sphàre ,,aufgespannt"; wir nennen dies kurz
ein ,,Feld von Flâchenelementen in der Sphàre 8m". Es gilt aber auch
umgekehrt der Satz6), daB jedes Feld von Flâchenelementen in einer
Sphàre der Dimension m > 2 durch ein 2-Feld aufgespannt werden kann.
Es kann also in einer Sphàre gerader Dimension m > 2 und nach Satz I
auch in einer Sphàre der Dimension 4^> + 1 kein Feld von
Flâchenelementen geben; in den Sphâren der Dimension 4^> — 1 dagegen gibt
es ein solches Feld, und natiirlich auch in der Sphàre S2. Wir sehen
also :

In den Sphâren der Dimensionen ép — 1 und in der S2 gibt es Felder
von Flâchenelementen, in allen andern Spharen nicht,

Der Beweis von Satz I erfolgt in zwei Schritten :

Satz II. Wenn es in der Sphàre 8m ein 2-Feld gibt, so lâfit sich jedes

Vektorfeld in Sm zu einem 2-Feld ergânzen (durch Hinzufugen eines
zweiten Vektorfeldes, das in jedem Punkt der Sm zum ersten orthogonal
ist).

Satz III. Das oben genannte spezielle Vektorfeld x* in einer Sphàre
ungerader Dimension m làjit sich, wenn m ép + 1 ist, nicht zu einem
2-Feld ergânzen.

Der Satz I folgt offenbar aus den Sâtzen II und III. Den Satz II habe
ich fruher7) im Rahmen einer allgemeinen Théorie ,,gefaserter Ràume"
bewiesen. Wir haben somit nur noch den Satz III zu beweisen. Dieser
Satz ist aber nicht nur wegen seines Zusammenhanges mit der Existenz
von i-Feldern in Sphâren (Satz I) von Interesse; er ist nâmlich, wie wir
gleich sehen werden, âquivalent mit einem Satz iiber stetige Lôsungen
komplexer linearer Gleichungen (Satz IV), der mir selbstândiges Interesse

zu verdienen scheint und der zu algebraischen Folgerungen AnlaB
gibt. Der Beweis dièses Satzes IV ist das Ziel der vorliegenden Arbeit;
mit Satz IV werden zugleich die Sâtze III und I bewiesen sein.

4. Wir betrachten die lineare Gleichung

in den Unbekannten vs und lassen die Koeffizienten % aile komplexen

8) s. Eckmann [3], Nr. 17, Satz 29.

7) [3], Nr. 16, Satz 25.
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Werie mit £ uiui 1 durchlaufen. Dann verstehen wir unter einer

,,8tetigen Losung der komplexen linearen Gleichung (1)" ein System von r
Funktionen

r
die fur aile Werte der ui mit £ u^u^ 1 definiert und stetig sind und die

r _ ;=i
Beziehung 2Jvivj 1 erfûllen, und die die Gleichung (1) fur aile zuge-

lassenen Werte der ui gleichzeitig lôsen; d. h. es soll

E uj /,(%,..., ur) 0

r
sein fur aile Werte der ui mit Z w,-% 1.

Satz IV. Bei ungeradem r besitzt die komplexe lineare Gleichung

r%^ o

keine stetige Losung,

Zusatz : Bei geradem r dagegen besitzt die komplexe lineare Gleichung
(1) eine stetige Lôsung:

# — A > ^ > • • • i ^r •

Der Satz IV fur r 3 làBt sich auch aus dem schon erwâhnten Satz

von Pontrjagin [4] folgern; er ist sogar mit ihm âquivalent (man ver-
gleiche Nr. 9 i).

Dafi die Sâtze III und IV âquivalent sind, kann man folgendermaBen
einsehen:

Durch die Gleichungen

«*i xv-i + ix2i j 1, r

ordnen wir die (reellen) Vektoren x (xt, x2r) des i?21* eineindeutig
den komplexen r-Tupeln ul9 ...,ur und die Vektoren t) (yl9 2/2r)

den r-Tupeln vlf...9vr zu. Dann ist, wenn 3e* wieder den Vektor



r
jUj x2 und 27 vsvf t)2

' -21 ^Vjf X -X) + ÎX* -X)
7=1

Daraus sieht man : Wenn X) (x) ein Vektorfeld auf /S2r~1(3e2 1) ist, welches
das spezielle Feld 3e* zu einem 2-Peld ergànzt, so bilden wegen

die vermôge (2) zu X)(x) gehôrigen Funktionen vl9 vr von %, ur
r

eine stetige Lôsung der komplexen linearen Gleichung X UjVj 0 ; und

umgekehrt findet man vermittelst der Zuordnung (2) aus jeder solchen
stetigen Lôsung ein Vektorfeld X) in S2*-1, welches x* zu einem 2-Feld
ergânzt. Die Sàtze III und IV sagen also beide aus, daB es fur r 2p -f 1

weder ein solches Vektorfeld noch eine stetige Lôsung von (1) gibt.
(Anderseits folgt aus dem Zusatz zu Satz IV, daB es (r 2p) in S*1**1

ein Vektorfeld X) gibt, welches x* zu einem 2-Feld ergânzt ; man kann
dièses 2-Feld sogar zu einem 3-Feld ergânzen, nàmlich durch das
Vektorfeld r)*.)

Dem Beweis des Satzes IV sind die §§2 und 3 gewidmet; wir geben
diesem Satz dort wiederum eine topologische, aber von Satz III ver-
schiedene Deutung, indem wir ihn als Satz ûber gewisse, zunàchst nàher
zu beschreibende ,,unitàre Vektormannigfaltigkeiten" formulieren und
auf die Wesentlichkeit spezieller Sphàrenabbildungen zuruckfuhren.
Dabei werden Sàtze aus der ,,Homotopietheorie gefaserter Râume" be-

niitzt, die ich an anderer Stelle [3] ausfûhrlich dargelegt habe, ferner
Sàtze ùber Abbildungen von Sphàren auf Sphàren [6] und Eigenschaften
der Fundamentalgruppe der Mannigfaltigkeiten der orthogonalen
Gruppen.

Der Diskussion der speziellen Spharenabbildung, auf welche der ganze
Beweis schlieBlich hinauslâuft, messen wir auch selbstàndiges Interesse
bei ; der betrefïende Abschnitt (§3) ist unabhàngig vom ubrigen lesbar.
Die dort angewendete Méthode ist einer weitgehenden Verallgemei-
nerung fâhig, und ich hoffe mit ihrer Hilfe weitere Resultate uber
Abbildungen von Sphàren auf Sphàren niedrigerer Dimension zu er-
halten ; dièse Méthode ist iibrigens teilweise inspiriert von einer Note
von Pontrjagin [11].



6. Aus dem Satz IV folgt :

Satz V. r sei ungerade, und /,(%,..., ur), j 1, r, seien r stetige
komplexe Funktionen der komplexen Variabeln u1} ...,ur. Wenn fur aile
Werte der ui r

ist, so haben die Funktionen /, mindestens eine von (0, 0) verschiedene

gemeinsame Nulhtelle.

Denn wenn keine solche Nullstelle vorhanden wâre, so kônnte man aus
den Funktionen /, eine stetige Losung der komplexen linearen Gleichung

r
2J uj vj 0 konstruieren, indem man

T 1

setzt. Man braucht ûbrigens in Satz V nur vorauszusetzen, dafi die /, fxir
(%, ur) # (0, 0) stetig sind; in dieser Form ist er mit Satz IV
âquivalent.

Wenn man den Satz V statt fur beliebige stetige Funktionen fur
Polynôme aussprieht, so erhâlt man einen algebraischen Satz; es wâre
intéressant zu wissen, ob dieser Satz, den wir auf topologischem Wege
gefunden und bewiesen haben, sich auch rein algebraisch beweisen làBt,
bzw. in welchen Kôrpern er gilt. Satz V ist ûbrigens auch im Kôrper der
reellen Zahlen, d. h. wenn sowohl die Variabeln als auch die Funktionen
nur réelle Werte annehmen, unverândert gultig, ebenso der Satz IV; das

ist eine direkte Folge des in Nr. 2 erwâhnten Satzes von Poincaré-
Brouwer. Wenn man fur die Funktionen /, nur Formen in den u} zulâBt,
solâBt sich der Satz V (im Komplexen) auch schon aus einem Fixpunkt-
satz von Hopf8) folgern.

§ 2. Die unitâren Yektormannigfaltigkeiten r»,m
6. Un sei der unitàre Raum mit n komplexen bzw. 2n reellen Dimen-

sionen. Unter einem m-System des Un (0 < m < n), das wir mit rn m be-

zeichnen, verstehen wir ein System von m paarweise unitàr-orthogonalen
Einheitsvektoren des Un, die im Ursprung des Un angebracht sind. Fiihrt
man in der Menge aller m-Systeme rnt m d,es Un in naheliegender Weise

8) nâmlich aus dem Fixpunktsatz fur die komplexen projektiven Ràume, s. [5],
S. 85, Satz VII.



eine Metrik ein, so wird dièse Menge zu einer Mannigfaltigkeit, deren
(réelle) Dimension leieht zu bestimmen wàre, und die wir mit C7n m be-
zeichnen. Dièse Mannigfaltigkeiten Unm stellen genau das komplexe
Analogon der von Stiefel9) eingefûhrten reellen Vektormannigfaltig-
keiten Vnm dar. Un x ist die Mannigfaltigkeit aller im Ursprung des Un
angebrachten Einheitsvektoren, also homôomorph zur (2n — l)-dimen-
sionalen Sphâre S211-1. Legt man im Un ein festes Koordinatensystem
zugrunde, so entspricht jedem m-System xnm eine unitâre Matrix von
m Zeilen und n Kolonnen; insbesondere ist Un n_x zur Mannigfaltigkeit
aller quadratischen ?i-reihigen unitâr-unimodulàren Matrizen, d. h. zur
Gruppe An_t (in der Killing-Cartan'schen Aufzàhlung der einfachen
Gruppen), homôomorph (in einer solchen Matrix ist nàmlich die nie Zeile
durch die n — 1 ersten vollstàndig bestimmt).

Wir geben nun retrahierbare Zerlegungen10) der Mannigfaltigkeiten Î7n m

an. Man erhàlt eine Zerlegung 3 von Un m in abgeschlossene, disjunkte
Teilmengen, wenn man jeweils diejenigen Système rn m zusammenfaBt,
die in den Je <m ersten Vektoren iïbereinstimmen; jedes Elément dieser

Zerlegung ist eine Mannigfaltigkeit Un_k^ ^^ und wird charakterisiert
durch Angabe der ersten k Vektoren der in ihm enthaltenen Système,
also durch einen Punkt von TJn k ; ordnet man jedem Punkt ae Unm
den durch die ersten k Vektoren des m-Systems a gegebenen Punkt
A € Un^k zu, so entsteht eine stetige Abbildung P von Unm auf Unk,
die wir Projektion nennen, und bei welcher die Urbilder A P-1(^4)
der Punkte A e Un^k genau die Elemente der Zerlegung 3 smd (^e
auch ,,Fasernu genannt werden): Un k ist der ,,Zerlegungsraum" oder
,,Faserraumu der Zerlegung. GemàB der frùher10) festgesetzten
Terminologie ist eine solche Zerlegung eines Raumes R in Fasern, die
einem Raum F homôomorph sind, mit der Projektion P und dem Zer-
legungsraum Z PB durch eine Gleichung

zu beschreiben; fur die angegebene Zerlegung 3 von Unm lautet dièse

Gleichung
Un,JUn_t<m_t Untt. (1)

DaB dièse Zerlegung retrahierbar ist, beweist man genau so, wie wir dies

an anderer Stelle11) fur analoge Zerlegungen der reellen Vektormannig-

9) s. [1], S. 8 ff.
10) Wegen dièses Begriffes vgl. man [3], insbes. § 1 ; in dieser Arbeit ist die Homotopie-

theorie solcher Zerlegungen und Faserungen ausfûhrlich dargestellt.
") [3], Np. 2g.



faltigkeiten Vnm getan haben (man hat nur das gewôhnliche skalare
Produkt (x • X)) zweier reeller Vektoren x und t), das a. a. 0.11) verwendet
wird, durch das unitâre Produkt u • â der unitâren Vektoren u und t) zu
ersetzen).

7. Die Eigenschaften derartiger retrahierbarer Zerlegungen R / F Z
(wo R, F undZ zusammenhângende, lokal zusammenziehbare Kompakten
sind) sind an anderer Stelle [3] ausfûhrlich entwickelt worden; wir be-

richten hier nur kurz liber diejenigen, welche im folgenden gebrauoht
werden, insbesondere erinnern wir an die Begriffe Schnittflâche" und

Schnittelement' '.
Ist g eine stetige Abbildung (wir lassen das Beiwort ,,stetig" meistens

weg) eines Kompaktums X in R, so heiBt die Abbildung G Pg von X
in Z — wo P die zur Zerlegung $:R jF Z gehôrige Projektion ist —

die Spur von g. Eine Abbildung j von Z in R, deren Spur P\ die Identitât
von Z ist, heifit eine Schnittflâche von 3 ; j ist also eine topologische
Abbildung von Z in. R, bei welcher das Bild jede Faser genau einmal trifft.
Nicht jede Zerlegung besitzt eine Schnittflâche.

Wenn speziell der Zerlegungsraum Z eine Sphâre Sm ist, dann besitzt
die Zerlegung immer ein Schnittelement. Darunter verstehen wir folgen-
des: Vm sei die m-dimensionale Vollkugel, Em"x ihre Randsphâre, A ein
beliebiger, fest gewâlilter Punkt der 8m. Als Schnittelement bezeichnen

wir nun eine Abbildung t von Fm in R, derart, dafi Pt T das Innere
der Vm topologisch auf 8m — A und E™'1 auf A abbildet; wegen
y(jTm-i) .- ^ mujj ^(2>-i) in der Faser A P^A liegen; zu t gehôrt
also eine Abbildung t'von 27"1"1 in A, die wir als Rand des Schnittelements

t bezeichnen. Es gilt nun der Satz12) : In der Gesamtheit aller derjenigen
Abbildungen / von Vm in jB, bei welchen f(Zm-1) c A ist, ist die Klasse
eines Schnittelements t (bei naheliegender Festsetzung der Orientie-

rungen, vgl.12)) eindeutig bestimmt, d. h. sind aile Schnittelemente t ein-
ander homotop, und zwar derart, da8 auch bei der Déformation das Bild
von Z™-1 immer in A liegt. Also sind auch die Rànder tr aller
Schnittelemente als Abbildungen von 2Jm-x in 3 einander homotop ; oder : Die
Rânder aller Schnittelemente tr einer Zerlegung, bei welcher der Zerlegungsraum

eine Sphâre Sm ist, gehoren in eine durch die Zerlegung eindeutig
bestimmte Abbildungsklasse von 2Jm~x in A.

Wenn nun die Zerlegung eine Schnittflâche j besitzt, und wir unter T
eine Abbildung von Vm auf Sm verstehen, welche das Innere von Vm

topologisch auf Sm — A und Em~x auf A abbildet, so ist t \T ein

«) [3], Nr. 10b.



Schnittelement, dessen Rand tr eineAbbildung von Em'~1 auf einen Punkt
\A von A ist; wir finden also13):

Wenn eine Zerlegung RjF Z, deren Zerlegungsraum eine Sphare ist,
eine Schnittflâche besitzt, so ist der Rand t! eines jeden Schnittelementes t der

Zerlegung zusammenziehbar, d.h.t' lafit sich in eine Abbildung deformieren,
bei welcher dos Bild ein Punkt ist.

Oder: Wenn die Zerlegung ein Schnittelement t besitzt, dessen Rand tr
eine nicht-zusammenziehbare Abbildung von Zm"1 in A ist, so besitzt sie
keine Schnittflâche.

8. Wir betrachten nun spezielle der oben beschriebenen Zerlegungen (1)
und bezeichnen sie mit $r:

3r:^,2/tfr-l,X=tfr,l î (2)
sie kônnen auch durch

3r:UT92l8»-* =8»-* (20

dargestellt werden. Ein Punkt a e Ur 2 ist durch zwei Vektoren u, t) des

unitàren Raumes Ur, mit den Komponenten uk bzw. vk(k 1, r),
gegeben, die die Relationen

uû oï=l u5 0 (3)
d. h.

erfullen; die Projektion Pr, die zur Zerlegung 3r gehôrt, kônnen wir da-
durch geben, daB wir dem Punkt a (u, t)) c C7r 2 den Vektor u, auf-
gefafit als Ortsvektor (oder als Punkt) der S2'-1 im Ur, zuordnen:

Eine Schnittflâche von $r ist eine Abbildung j von S**1 in Ur 2, bei
welcher

Pi
ist, also

dabei bedeutet t>(u) ^in® fur uu 1 definierte, stetige Vektorfunktion
von u, die fur jedes solche u die Relationen

18 Diesen Satz wie auch seine Umkehrung haben wir schon in [3] bewiesen; aus den
Sâtzen 11 und 12 der Nr. 10 von [3] ist nâmlich zu entnehmen: es gibt dann und nur dann
eine Schnittflâche, wenn die von der Klasse von t' erzeugte Untergruppe der (m — l)-ten
Homotopiegruppe von Â die Nullgruppe ist; das bedeutet aber, daÛ t' zusammenziehbar

ist.

9



d(u) • o(u) 1 u • o(u) 0

erfûllt. Die Existenz einer Schnittflâche } von 3r ^ somit vôllig gleich-
bedeutend mit der Existenz einer solehen Vektorfunktion t>(u), bzw.
mit der Existenz von r Funktionen vk fk(ux, ur), k 1, r, die

r
fur £ukuk 1 definiert und stetig sind und dort die Gleichungen

27M%,...,wr) ./fc (%,..., rr) 1 E ukfk{ul9 ...,ur) 0

erfullen. Solehe Funktionen bilden aber gerade eine stetige Lôsung der
r

komplexen linearen Gleichung £ukvk-= 0 (vgl. Nr. 4), und wir haben

damit gezeigt, dafi der Satz IV, dessen Beweis das Ziel unserer Aus-
fûhrungen ist, mit dem folgenden àquivalent ist :

Satz IV. Die Zerlegung 3r besitzt bei ungeradem r keine Schnittflâche.

Zusatz : Bei geradem r besitzt 3r e^e Schnittflâche (dièse wird durch den
Zusatz zu Satz IV und die Formel (4) explizite gegeben).

Den Beweis von Satz IVr erbringen wir nun auf Grund der in Nr. 7

genannten Beziehungen dadurch, da6 wir ein spezielles Schnittelement t
von 3r konstruieren und dann zeigen, daB dessen Rand tr bei ungeradem r
eine wesentliche (also nicht-zusammenziehbare) Abbildung der Rand-
sphâre 272r'"2 von F21"""1 auf die Faser (die hier eine Sphâre S^~z ist) dar-
stellt. Dagegen ist tf bei geradem r eine unwesentliche (zusammenzieh-
bare) Abbildung — das folgt schon aus dem Zusatz zu IVr, wir kônnen es

aber auch direkt beweisen.

9. Schnittelement der Zerlegung 3r •

a) Die (2n — l)-dimensionale Sphàre 82n~l lâBt sich im unitâren Raum
Un (vgl. Nr. 6) durch die Gleichung

n

SUjUj 1

darstellen, und die (2n — 2)-dimensionale Sphâre #2n~~2 als diejenige
GroBsphâre dieser S2*1*1, die durch die Bedingung

uk reell

(wo k eine der Zahlen 1, 2,..., n ist) bestimmt wird, und die wir gelegent-
lich als /S|n~2 bezeichnen.
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lfw-i (n ^ 2) sei der komplexe projektive Raum von {n — 1) komplexen,
2?i — 2 reellen Dimensionen. Seine Punkte z sind die Verhàltnisse kom-
plexer Zahlen zx : z2 : : zn, ausgenommen 0 : 0 : : 0 ; wenn wir sie

n
durch normierte w-Tupel z1,z2i ...fzn mit 27 ^ zi 1 geben, so bedeuten

1=1
zwei %-Tupel 2lJ22,...,zn und zrl9z2, ...,z'n dann und nur dann denselben
Punkt z von Kn_x, wenn

«J Xz§ 7 l,2,...,n
ist, mit AA 1.

b) Zwischen K^^ und den Sphàren /S27^"1 und 82n~2 gibt es zwei ,,natur-
liche" Abbildungen:

Mit / oder /(n) bezeichnen wir die Abbildung der im Un dargestellten
/S2*-1 auf Kn^x, die dem Punkt mit den Koordinaten ul9 u2, un der
S27^-1 den Punkt ux : u2 : : un des Kn_x zuordnet. Die Urbilder der ein-
zelnen Punkte des Kn_t sind dabei GroBkreise der /S271"*1, die eine ,,Fase-
rung" der /S271-1 bilden14). / soll deshalb kurz ,,Paserabbildung<c heiBen.

Ferner kann man den Kn_t mit dem Grade 1 auf die Sphâre #2n~2 ab-
bilden: Man wâhlt auf /S2n~2 einen Punkt p ; Kn__2 c Kn_1 sei der durch
zk 0 bestimmte Unterraum von Kn__x\ Kn_x — Kn_2 ist dem (2n — 2)-
dimensionalen Euklidischen Raum homôomorph. Man bilde nun
Kn__t — iTn_2 topologisch (mit dem Grade + 1) auf 82n~2 — p und Kn_2 auf
p ab. Eine derartige Abbildung erhàlt man leicht vermittelst stereo-
graphischer Projektion; dabei findet man folgende Formeln:

Durch
«*i(«) 2ii»i — ôhi j l,2,...,n, (5)

(wobei h eine bestimmte der Zahlen 1, 2, n ist) ist eine Abbildung sk
(oder s^, um die Dimensionszahl hervorzuheben) von Kn__x in den Un ge-
geben; denn es ist (Tz~k) {Xz^) Tkzi fur AÂ 1. Dabei gilt

ski(z) su(z)

n
27 ^^ àu — izkzt + izk z%. 27

also

Ferner ist

14) vgl. Hopf [7], 438—440; femer: [8], S. 52 und 55.
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Insbesondere ist also £skj(z) skj(z) 1 und skk(z) reell; sk ist also eine

Abbildung von Kn__t auf die Sphàre $|n"~2 im Un, und man verifiziert
leicht, daB sie die gewiinschten Eigenschaften hat: Kn_2(zk 0) wird auf
den Punkt pk mit den Koordinaten nj — ôki abgebildet, und
K„__! — Kn_2 topologisch auf /S|n~2 — pk.

c) Im unitaren Raum Ufn_t(n ^ 2) mit den Koordinaten w2, wz,..., wn
wird durch die Bedingung

n

£ wiwj ^ 1

eine (2?i — 2)-dimensionale Vollkugel F2n~2 mit der Randsphâre 272w~8

n

Z WiWi= 1

;=2

bestimmt. ^(n) sei die Abbildung dieser Vollkugel auf Kn_1, die dem
Punkt w € F2w~2 mit den Koordinaten w2, ...,wn den Punkt z c Knrml mit
den Koordinaten

«i=r1— E WjWs ; %i wii j 2,...,n

zuordnet. Bei dieser Abbildung wird die Randsphâre Z2n~z vermôge der
Abbildung pn-u (vgl. Nr. 9 a) auf den durch zt 0 bestimmten
Kn_2 c Kn^_1 abgebildet, und das Innere der V2n~2 topologisch auf
Kn_t — Kn^2 ; haben nâmlich zwei Punkte w2, wn und w2, wfn von

denselben Bildpunkt in iLn^, so mu8

w*< 4-2 3 n

sein, also

1 — £wkwk 1 — 27 wjfc t^J.

und daraus folgt £ wk wk £ Wk wk und w^ w^ (j 2,3, n).
ifc=2 *=2

d) Setzen wir nun

so ist dies eine Abbildung von Vlnr~% in den Un9 genauer auf die Sphâre
$|w~2, die durch Funktionen

12



hkj(w) skj(gin)(w)) y l,...,n
gegeben ist; dièse Funktionen genugen wegen (6), (6') den Relationen

Z hjw)-hu(w)^ôkl (7)

Die Abbildung A(1n) zeichnet sich vor den andern dadurch aus, daB bei
ihr die ganze Randsphâre 27271*"3 auf den Punkt px von $2n~2 abgebildet
wird.

e) oc sei ein reeller Parameter, der die Strecke F1(— 1 <<% ^ + 1)
durchlànft. Wir definieren eineAbbildung Hk (oder Hkn)) des topologischen
Produktes F27l~2 X F1 in den Un durch die Funktionen

oc) hki{w) cos ~y^c + iôki sin

Es ist

Z Hki(w, oc) Hu(w,oc) cos2 — oc - Z KÀw)hu-(w) + sin2 —<x - ôkl

sin — oc - cos — oc
2* 2t

also wegen (7), (7')
n

insbesondere ist Z Hkj (w, oc) Hkj (w, oc) 1

Man sieht, daB JET^ eine Abbildung von F2n~2 X F1 auf die Sphâre
im Un ist, und zwar von folgender Art : Skn"2 werde als ,,Âquator" der
S2"*1 aufgefaBt; F2w^2X (0) wird vermôge der Abbildung hk auf S|n"2

abgebildet, F2W~2 X (oc) auf den ,,Parallelkreis" uk i sin -^ *, F2w-2 X (+1)
aufden ,,Nordpol", F2n~2 X (— 1) auf den Sudpol der /S271"1. Man kann also
in naheliegender Weise Hk auch auffassen als Abbildung der (2n — 1)-
dimensionalen Vollkugel F271-1 auf die S271-1; dabei hat F2n~2 X (+ 1) dem
Nordpol, F2n-2X(—1) dem Sudpol, F2n~1x(^x) bei festem oc einem
Parallelkreis der F271""1 zu entsprechen, und Z2îlr~z X F1 entspricht dann
der Randsphâre Z2n~2 von F271"1. Bezeichnen wir die Abbildung, die
2>~2 bei Hk erfàhrt, mit Hk und die Abbildung, die Z2n~z bei hk erfàhrt,

13



mit hk, so kann man den gesehilderten Zusammenhang zwisehen Hk und
hk fur die Randabbildungen Hk und hk kurz so formulieren : Die Ab-
bildung Hrk von J?2n~2 in S271'1 geht durch Einhangung (im Sinne von
Freudenthal15)) aus der Abbildung hk von Z2n~z in 8kn~2 hervor:

Bei der Abbildung H[ speziell wird Z2r*-2 aufden zu p1 c Sln~2 gehôrigen
(Halb-) Meridian /u der S27^1 abgebildet; seine Punkte haben die
Koordinaten

ux — cos — oc -f i! • sin — a u2 • • • wn 0 (— 1 ^ oc ^ + 1).

f) Wir definieren nun eine Abbildung tr von V2r~x bzw. von F21*"2 X F1

in die Mannigfaltigkeit J7r> 2 (vgl. Nr. 8) durch

Wegen (8) sind die Relationen (3) bzw. (S7) erfûllt, d. h. durch die ujt vi
ist wirklich ein Punkt von Ur 2 gegeben. Wir behaupten, da8 tr ein
Schnittelement der Zerlegung Qr von Ur2 ist.

Zunâchst gilt fur die Projektion Pr in der Zerlegung 3r •

das ist eine Abbildung von F21^1 auf S2*"1, bei welcher i72r"~2 auf den
Meridian ju von S2*"1 abgebildet wird, und das Innere von F2**"1 topolo-
gisch auf S2r~1—/Â. Bei einem Schnittelement muBte allerdings das Bild
von Z 2r~2 ein Punkt sein; unsere Behauptung wird also erst dann richtig,
wenn wir aile Punkte von p identifizieren und [x als einen Punkt M be-
trachten (bzw. auf einen seiner Punkte zusammenziehen, etwa auf px).
Dabei haben wir auch die in Ur 2 zu den Punkten von fi gehôrigen Fasern,
die aile durch

ux — cos — oc Ar % sm -^r- oc u2 ur 0
z z

(9)

i\ 0 Z vj vi 1

charakterisiert sind und somit das topologische Produkt fi X /S21*-3 bilden,
zu identifizieren und als eine Faser M zu betrachten; das hat natiirlich so

™) Définition s. [6], S. 303.

14



zu geschehen, da6 man immer aile die Punkte (9) von Ur2 identifiziert,
die in v2, v3, vr ûbereinstimmen. Die Punkte der Faser M sind dann

r
durch dièse Zahlen v2, vr mit Z vô vj 1 gegeben, also ist H zur

;=2
82r~z (mit den Koordinaten v2, vr) homôomorph. Bei der beschrie-
benen Identifizierung geht ofifenbar C7r 2 in eine zu ihr homôomorphe
Mannigfaltigkeit tiber.

g) Wir haben noch den Rand t\ des Schnittelements tr zu untersuchen,
d. h. die durch tr bewirkte Abbildung von 272r~2 auf die Faser M, Sie ist
gegeben durch (vgl. e))

Uj H'lf{w,<x) ou • (— cos -^- oc + i sin — oc)

tir / v
y l,2,...,r ;

wegen der oben vorgenommenen Identifizierung genûgt zur Beschreibung
dieser Abbildung die Angabe der vi (j 2, 3, r). Also ist

wobei aber H2 nicht als Abbildung von Z2*-* in S2*-1, sondern in 82r~3

(vx 0) aufzufassen ist. Fur H2 gilt nach e)

H2 CA2

wobei wiederum h2 als Abbildung von 272f~*3 in fi^r~4 (vx 0, v2 reell)
aufzufassen ist. GemàB ihrer Définition ist

dièse Abbildung entsteht also so: man bilde Z2*"-* vermôge der Faser-
abbildung /(r-1) auf Kr_2 ab und dann Kr_2 mit dem Grade 1 vermôge s(r~1)

auf $2r-4 (den Index 2 lassen wir weg, da er jetzt keineRoUe mehr spielt).
Wir bezeichnen sie im folgenden mit #(r-1). Also

Nach einem Satze von Freudenthal16) ist fur n ^ 4 und eine beliebige
Abbildung h von 8n auf S71"1 die Abbildung (gh dann und nur dann. wesent-
lich, wenn h es ist; also ist trr fur r > 3 dann und nur dann wesentlich,
wenn i?(r~1) eine wesentlicheAbbildung von 272r~3 auf/S21*""4 ist. Der Satz IV1

16) [6], S. 300, Satz II, 1.
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wird somit fur r > 3 bewiesen sein, sobald wir gezeigt haben, da/5 fur unge-
rades r die Abbildung ^<r~1> wesentlich ist. Dies werden wir im § 3 tun.

h) Den Fall r 3 kônnen wir aber direkt erledigen. Wenn nâmlich h
eine beliebige Abbildxing von Uz auf S2 ist, so ist nach Freudenthal17) (£A

dann (und nur dann) wesentlich, wenn die Hopf'sche Invariante18) von h

ungerade ist (da8 h wesentlich ist, ist natûrlich fur die Wesentlichkeit
von (&h notwendig, aber in diesem Fall nicht hinreichend) ; das ist aber
bei êi2) der Fall: Kx, die komplexe projektive Gerade, ist zur S2 homôo-
morph, und ê{2) ist identisch mit der ,,Faserabbildung" /(2) (vgl. 9b) von
Ez auf Kx, abgesehen von der stereographischen Projektion, die Kx topo-
logisch auf S% abbildet. #(2) ist also nichts anderes als die von Hopf19)
gefundene wesentliche Abbildung von Us auf S2 mit der Invarianten
y 1. Also ist

wesentlich.
Damit ist der Beweis der Sàtze IV; und IV fur r 3, und des Satzes I

fur die /S5, schon beendet.

i) Der Satz IV7 (und infolgedessen auch der Satz IV) fur r 3 ist
ûbrigens fast identisch mit dem Satz von Pontrjagin [4], mit dessen

Hilfe ich schon fruher den Satz I fur den Spezialfall der S5 bewiesen
habe, und der folgendermaBen lautet : Der Gruppenraum der unitàren
Gruppe A2 kann nicht einem topologischen Produkt homôomorph sein,
in welchem ein Faktor eine Sphâre S* ist.

Da6 aus diesem Satz der Satz IV7 fur r 3 folgt, ist leicht ein-
zusehen: Uz 2 iflt zur Gruppe A2 homôomorph, und die Zerlegung 33 ist
nichts anderes als die Zerlegung von A2 in Restklassen nach einer mit Ax
isomorphen Untergruppe A'l9 die zum Wirkungsraum S5 der Gruppe A2
gehôrt20). Wenn aber eine solche Zerlegung eine Schnittflâche besitzt, so
zerfallt der Gruppenraum in ein topologisches Produkt21), in unserm
Falle in das Produkt S5 X Aft ; A[ ist aber zur Sphàre 8Z homôomorph.

DaB umgekehrt aus der Nicht-Existenz einer Schnittflâche in dieser

Restklassenzerlegung leicht folgt, daB A2 nicht einem topologischen
Produkt SzxR homôomorph sein kann, habe ich an anderer Stelle
gezeigt22).

17) [6], S. 301, bes. Satz III.
18) Définition s. [9], S. 645 &.; ferner [6], S. 304—305.
«) [9], S. 654.
*°) vgl. [3], Nr. 8d und 16c.

") nach einem allgemeinen Satz, s. [3], Nr. 11, Satz 16.
82) das ist den Ausfûhrungen von Nr. 16c der Arbeit [3] zu entnehmen, wenn es auch

dort nicht explizite formuliert wird.
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Unser Beweis des Satzes IV fur r 3 bzw. des Satzes von Pontrjagin
benûtzt aber keine gruppentheoretischen Eigenschaffcen der unitàren
Gruppen; wir haben keinen Gebrauch von der Tatsache gemacht, daB

U3i 2 e^ Gruppenxaum ist.

§ 3. Untersuchung einer speziellen Sphârenabbildung

10. Wir befassen uns in diesem Paragraphen mit der Abbildung ê{n)

der Sphâre S21^1 auf die Sphàre $2n~2, die fur den Beweis des Satzes IV'
eine entscheidende Rolle spielt; sie ist gemâB Nr. 9 g so definiert: Man
bilde S271"1 vermôge der Faserabbildung /(n) auf den komplexen projek-
tiven Raum Kn_x ab und dann Kn^ mit dem Grade 1 (vermôge der
Abbildung s<n>) auf 82n~2; die Abbildung von S271"1 auf 82r^2, die man so

erhàlt, heiBt êin). Wie aus der Définition von f{n) und s{n) und der Formel
(5) (siehe Nr. 9b) zu entnehmen ist, kann man dièse Abbildung &{n)

folgendermaBen explizite durch Formeln angeben: S271'1 sei im unitàren
n

Raum TJ'n mit denKoordinaten wx, ...,wn durch Z Wj wf=l dargestellt,

S2n~2 im Un mit den Koordinaten %, un durch Z % u^ l,u1==

reell; dann ist #(n) durch die Gleichungen

gegeben. Wir werden unabhàngig von den fruheren Betrachtungen zeigen :

Satz IV". Die Abbildung #(7l) ist bei geradem n wesentlich, bei ungeradem

n unwesentlich (n > 2).

Bemerkungen: a) In diesem Satz ist Satz IV ' (fur r > 3) enthalten, mit
ihm werden also auch die Sàtze IV, III, I und V vollstàndig bewiesen
sein.

b) Im Falle n 2 ist Satz IV " schon bekannt (siehe Nr. 9h); wir
haben den Satz IV " somit nur noch fur n > 3 zu beweisen.

c) Ein Korollar zu Satz IV". Im komplexen projektiven Raum Kn sei

Kn^x der durch zx 0 bestimmte Teilraum. Die Abbildung s{n) von
^n_i auf /S2n~2 vom Grade 1 lâBt sich bei geradem n nicht zu einer
Abbildung von Kn auf /S2w~2 erweitern, wohl aber bei ungeradem n.

Beweis : Die Abbildung s{n) von Jf,^ auf #2n-2 lâBt sich dann und nur
dann zu einer Abbildung 4n) von Kn au^ S2n~2 erweitern, wenn die
Abbildung ê{n) der Randsphâre E2nr~x der Vollkugel V2n auf 82Vr~2 sich zu

2 Commentarii Mathematici Helvetici ^*



einer Abbildung ^n) von V2n auf S2n~2 erweitern lâBt, d. h. wenn
unwesentKch ist; das sieht man ein, wenn man die Abbildung gin+u (siehe
Nr. 9 c) von V2n auf Kn zu Hilfe nimmt, bei welcher Z271"1 vermôge der
Faserabbildung f(n) auf Kn_,x abgebildet wird, und

bezw.

setzt.

11. a) Zum Beweis von Satz IV " stellen wir einige Hilfssàtze bereit, die
uns auch sonst zur Untersuchung spezieller, explizite gegebener Abbil-
dungen von Sphâren auf Sphàren niitzlich erscheinen (sie lassen sich zum
Teil auch auf andere Dimensionszahlen iibertragen).

Die Sphàre S***1 sei im Euklidischen Raum Bd+2 mit den Koordinaten
d+2

xi> •••> xd+2 durch Z rf 1 gegeben, die Sphâre 8d im Bd+1 mit den
/=1 d+1

Koordinaten y1,..., yd+1 durch Z y) 1. Bezeichnungen: Esbedeute
;=i

F' c 8d die Kalotte yd+1 > ~^= von 8d

Y" c Sd die Kalotte yd+1 < ~= von 8d

Z cz 8d den gemeinsamen Rand von Vf und V"

p c V den Punkt yj <5d+1 ;(? 1, ...,d + 1) der 8d ; ferner

y/ c sd+1 den ^volltorus" 21 a?} < x2d+1 + x2d+2 in der 8d+l

T" c /Sd+1 den ^Volltorus^ Z x) > aj+1 + «Î+, in der

d

P c /Srf+1 den gemeinsamen Rand Z x) a;|+1 + ^+2 | von î7'

und T", der dem topologischen Produkt S1 X £d homôomorph ist (ein

,,Torus"),
d

K czT' den GroBkreis Z rf 0, 4+i + ^+2 1 der â'cî+1 î seine

Punkte | kônnen wir durch zwei Zahlen fx xd+l9 |2 ^d+

18



d

Ein Punkt y c V! ist durch die Angabe von yl9 yd (mit £ y* ^ ^)

bestimmt. T; ist dem topologisohen Produkt Vr X K homôomorph : man
ordne dem Punkt x (xt, xd+2) c Tr den Punkt y e F':

nnd den Punkt f c if :

zu. Im folgenden soll in diesem Sinne ein Punkt x e Tf statt durch
d

xi> • • • > xd+2 immer durch xx, xd mit JJ %) ^ ^ und | € i? gegeben

werden.

b) Eine Abbildung / von Sd+1 in /S^ soll regular heiBen, wenn sie folgende
Eigenschaften hat :

1. f(Tf) V, f{T") c V". - Die von / in diesem Fall induzierten Ab-
bildungen von Tf auf Vr und von T" in F;/ sollen /; bzw. /;/ heiBen.

2. Die Abbildung fr von Tr auf F; kann durch Gleichungen

d

ys Zajk(Ç) xk / 1,... d

beschrieben werden, wobei die aik stetige Funktionen von | € K sind und
die Matrix (ajk(£)) d fur jedes | c K orthogonal ist und die Déterminante

+ 1 hat.
Die Forderung 2. bedeutet mit andern Worten: Bei der Abbildung /'

wird, wenn man Tf wie oben als topologisches Produkt VrxK auffaBt,
V X (|) fur jedes Ç eK orthogonal auf V abgebildet. Dabei ist f'(K) p,
und der Rand P von T! wird auf den Rand <Tvon V abgebildet; dièse

Abbildung von P auf 27 soll //;/ heiBen.

c) Durch die eben in der Définition genannte Matrix (ajk(Ç)) ist eine

Abbildung von K in die Grappe Qd aller d-reihigen orthogonalen Matrizen
mit der Déterminante +1 gegeben, d. h. ein geschlossener Weg in Qd ;

da die Abbildung jr durch diesen Weg vôllig definiert ist, wollen wir ihn
auch /' nennen. Jeder solche Weg repràsentiert ein Elément der Funda-
mentalgruppe F(Qd) von Qdy das wir mit oc(f) bezeichnen. (Einen An-
fangspunkt fur dièse Wege auszuzeichnen, ist zwar nicht nôtig, da es sich
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um Wege in einem Gruppenraum handelt, aber fur die Zusammen-
setzung der Wege angenehm; man kann etwa verlangen, dafi fur den
Punkt |° € K mit # 1, g 0

sei.)
Zu jeder regulâren Abbildung f von Sd+1 in Sd gehort also ein Elément oc (/)

der Fundamentak/ruppe von Qd.

d) Hilfssatz 1 : / und g seien zwei regulàre Abbildungen von Sd+1 in
Sd; wenn <%(/) oc (g) ist, so sind die Abbildungen / und g homotop.

Beweis: oc(f) oc (g) bedeutet, dafi die zu / und g gehôrigen Wege /'
und g', also auch die Abbildungen ff und g1 von Tf auf Vr homotop sind;
es gibt also eine Déformation von ff in gf, d. h. eine stetige Schar von
Abbildungen <p't (0 < t < 1) von Tr auf V\ die aile die Eigenschaft 2.

haben, mit q>f0 /', <p[ gr. Es entsteht dabei auch eine Déformation
der Abbildung //;/ von P auf E in die Abbildung g"1 von P auf Z, wobei
das Bild von P immer E ist ; dièse Déformation làBt sich nach einem
elementaren Erweiterungssatz23) zu einer Déformation <p"(Q^t^il)
von /;/ erweitern, mit cprft(Tfr)(z V/f. Die Deformationen <pft und cprrt ergeben
zusammen eine Déformation ft(0 ^ t ^ 1) der Abbildung / /0 in eine

regulàre Abbildung /x, fur welche

ist; fur jeden innern Punkt y von Vf ist also f^iy) ÇT^y), und daraus
folgt24), daB fx und g, also auch / und g homotop sind.

e) Hilfssatz 2; Die Abbildung / von 8d+1 in Sd, gegeben durch die
Funktionen y^, xM), j l,...,rf+l, habe folgende Eigen-
schaften: /"1(p) iT ; in der Umgebung von K seien die î/?- stetig differen-

zierbar, und wir setzen 6ifc(|) I-5^-) fur j, h 1, d ;

\ ^fc / ^î— * • •= *&—°

fur aile | eK sei die Funktionaldeterminante |6i&(l)|>0. Dann ist /
einer regulâren Abbildung h von 8d+1 in Sd homotop, bei welcher h'
durckdiejenige orthogonale Matrix (ajk(i;)) mit der Déterminante +1
gegeben ist, die aus (bjk(Ç)) durch Orthogonalisieren hervorgeht (wobei
man natûrlich fur das Orthogonalisieren ein eindeutiges und stetiges
Verfahren festzulegen hat).

M) s. Alexandroff-Hopf*), S. 501, Hilfssatz I.
M) s. AUxandroff-Hopj*), S. 502, Hilfssatz III.
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Beweis (wir flihren nicht aile Einzelheiten ausftihrlich durch): Fur
einen Punkt x € 8d+1 mit den Koordinaten xx, xd+2 sei r(x)

tf analog fîir y cSd mit den Koordinaten yx,..., yd+1 r(y) V Z $
Ferner sei Vr(r< 1) die r-Umgebung von p(r(y) < r, yd+1 > 0) in 8d, Ur
die r-Umgebung von K, r(x)<r, in 8d+1 (also ein offener Volltorus,
homôomorpli dem topologischen Produkt VrxK), Pr der Rand von Ur,
r(x) r. Wir kônnen Vr normal in die Ebene t/d+1 — 0 projizieren und
dort als offene Vollkugel im d-dimensionalen Euklidischen Raum auf-
fassen.

g sei die Abbildung
d

(Ç)xk j 1, d
k=l

von Ur in die Umgebung von p. Es gibt eine Zahl <5 > 0, so da8 bei be-
liebigem r > 0, r(g(x)) > ôr ist fur aile x mit r(x) r. Mit Hilfe des

Mittelwertsatzes der Differentialrechnung stellt man leicht fest, daB man
r > 0 so wàhlen kann, daB

e(/(«). »(*)) <y»1
c

ist fur aile x e Pr. Wir wàhlen nun eine Zahl r '(< — r so daB

f,

Deformieren wir nun innerhalb Ur die Abbildung / in g, indem wir f(x)
geradlinig nach g (x) wandern lassen, so liegt bei dieser ganzen Déformation

das Bild von Pr in Sd — Vr, ; man kann also dièse Déformation zu
einer Déformation der ganzen Abbildung / von 8d+1 in Sd erweitern,
derart, daB das Bild von 8d+1— Ur immer in 8d — Vr, liegt. Man erhàlt
dadurch eine zu / homotope Abbildung ft von Sd+1 in 8d, bei welcher
fï1( Vr,) c Ur ist, und die in Ur durch g gegeben ist.

Aus (bjk(£)) bilden wir nun durch Orthogonalisieren der Zeilenvektoren
in bestimmter Reihenfolge eine orthogonale Matrix («5fe(|)) (wobei die
Déterminante |aifc(f)| +1 ist). Dann gibt es eine stetige Schar von
nichtsingulàren Matrizen bik(£91) (0 ^ t ^ 1), derart, daB

b*k(S> 0) bjk(Ç) und bik{S, 1) aiktf)

ist25) ; dièse Schar liefert uns eine Schar gt von Abbildungen, durch

28) das ist etwa den Ausfùhrungen von § 2.2 der Arbeit [1] von Stiefel zu entnehmen.
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welche die Abbildtuig g0 g von Ur in die Umgebung von p in die

Abbildung gx

deformiert wird. Dabei gibt es eine Umgebung Fr* von p (r/f < r'), derart,
da8 gt(Pr) c: 8d — Vr* ist, und infolgedessen lâBt sich dièse Déformation
von g in gt zu einer Déformation der Abbildung /x in eine Abbildung /2 von

in $d fortsetzen, fur welche gilt :

dabei ist die zugehôrige Abbildung von Urtt auf Vr* durch.

mit der orthogonalen Matrix (#ifc(f)) gegeben.
Dièse Abbildung /2 aber Ià8t sich leicht in eine regulàre Abbildung

deformieren, die aile im Hilfssatz 2 genannten Eigenschaften besitzt.

Hilfssatz 3 : Wenn / eine regulàre Abbildung von Sd+1 in Sd ist, so ist
die Abbildung (£/ von Sd+2 in 8d+1, die aus / durch Einhàngung15) hervor-
geht, auch regulàr; ist der Weg /; in Qd durch die Matrix a(|) gegeben,

so ist der Weg ((E/)7 in Qd+1 durch die Matrix A($) L
,^v

J gegeben.

Beweis: Man kann die Einhângung15) folgendermaBen beschreiben:
Wir fûgen zum Bd+2 bzw. jR^1 noch eine Koordinate x0 bzw. y0 hinzu
und erhalten die Râume Rf+3 bzw. jK*+2; S(+2 bzw. Sf+1 seien ihre
Einheitssphàren. Eine Abbildung g von Sd+1 in Sd sei gegeben durch
Gleichungen

^==â^i,...,*d+2) j l, ...,<* +1

Dann kann die eingehângte Abbildung (&g von /Sf+2 in Sf+1 durch die

d

Gleichungen (r ist als Abkurzung fur [/ £ x* gesetzt)

Vo xo

V^r.g^,...,^ ?=l)...,d+l,furr>0
yt 0 j l, ,d + l, fur r 0

d. h. x0 y0 ± 1)

beschrieben werden.
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/ sei eine regulâre Abbildung von 8d+1 in 8d, wie sie oben in der Définition

beschrieben ist. Dann folgt aus der eben genannten Darstellung der
Einhângung fur die Abbildung (£/ :

1. ((S/J-M^i) T[ (V'l9 T'lf seienanalog wie F', Tf, definiert).

2. Die Abbildung (©/) von Tfx auf V[ wird beschrieben durch

yo %o >

d

damit ist der Hilfssatz 3 bewiesen.

Hilfssatz 4 : Wenn fur eine regulâre Abbildung / von 8d+1 in8d <x(f) O

ist (d. h. der Weg / in Qd nullhomotop), so ist / unwesentlich (also null-
homotop).

Beweis: Nach Hilfssatz 1 geniigt es, eine unwesentliche regulâre
Abbildung g von Sd+1 in 8d anzugeben, bei welcher oc (g) 0 ist. Eine solche
ist die folgende:

Vi *j /= 1, -.,d ;

Vd+l — + y xd+l ~(~ Xd+2

dièse Abbildung ist unwesentlich, da das Bild g(Sd+1) ganz in der Halb-
sphàre yd+1 ^ 0 liegt. Ferner ist gf definiert durch

die zugehôrige Matrix ist fur aile | € K die Einheitsmatrix, also ist
der zugehôrige Weg in Qd ein Punkt.

Von diesem Hilfssatz gilt auch die Umkehrung : Wenn ftir die regulâre
Abbildung f von 8d+1 in 8d a (/) ^ 0 ist, so ist f wesentlich. Sie wird im
folgenden bei der Diskussion der Abbildungen #(n) bewiesen (nur flir d^ 3).

12. a) Die Abbildungen ïï(n) werden am einfachsten durch komplexe
Gleichungen beschrieben (siehe Nr. 10); um die Hilfssâtze der vorigen
Nummer anwenden zu kônnen, haben wir die unitâren Ràume TJ'n und Un
als Euklidische Râume R2n, bzw. den zu reellem ux gehôrigenTeilraum von
Un als R271"1, aufzufassen; dabei sollen die reellen Koordinaten mit dem
Real- und Imaginàrteil der komplexen Koordinaten identifiziert und so

nummeriert werden, daB K der GroBkreis

w2 wn 0 v)"1w1 1
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der /S2*-1 und p der Punkt ut ^(y 1, n) der S2n-2 ist. Dann ist

da êin) in der Umgebung von K stetig differenzierbar ist, berechnen wir
die im Hilfssatz 2 auftretende Funktionalmatrix, und zwar gerade in der
komplexen Schreibweise : êin) ist gegeben durch

u3 2 w1 w3 — ôl3- j 1,..., n ;

also ist (in allen Ableitungen ist w2 wn 0 zu setzen) fur
j 2, n und k 2, n

J-L « —
dwh

oder, wenn man w, w[ 4- iw" u4 u[ + iwf (w;' w;f w' u" reell)
und auf K— w1 cos 9? + i sin 9? setzt,

—__ __— 2ô3fc(cos <p -\- i sin 9?)

also

* y — îu • • •, 7i

k 2,..., 71,

i- 1 -— 2ôih{— sin^ + î cos cp)

owk

dui du"
j __ o* «™ „ j 2o,r. sin

dwk
3 ' 9i(;^

^/ fa" k=2,...,n;
\ — 2<5,fc sin 9? —\ 2^fc cos 9?

dadurch ist die Funktionalmatrix in jedem Punkt von Jf(O
bestimmt. Durch Orthogonalisieren (das hier nur in einem Normieren
besteht) erhalt man daraus die 2 (n — l)-reihige orthogonale Matrix

'A(<p) 0 0 \
0A{9) : \

• J e i^2(n-l) »

0

wobei A(w) AAw) ein 2-reihiges ,,Kastchenu I I bedeutet.vr/ lvr/ e \—sin <p cos 9?/
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Aus dem Hilfssatz 2 folgt also: Die Abbildung êin) von S271-1 auf 82n~2 ist
einer regularen Abbildung #^n) homotop, bei welcher der zugehôrige Weg in
^2(n-i) durch die Matrix An_1(q>) gegeben ist.

b) Insbesondere gehôrt zu der Abbildung &{n) von 8Z auf S2 (der Hopf-
schen Faserabbildung, vgl. Nr. 9), genauer zu #^2) der Weg Ax((p)

j SW\ cos ^ ^2 ' ^urc'1 wiederholte Einhàngung erhàlt man aus

#^2) eine Abbildung (£...(£ ê^ von 8d+1 auf /Sd (d ^ 3), die nach einem
Satze von Freudenthal17) wesentlich ist; der zugehôrige Weg in Qd
ist durch die d-reihige Matrix

1 0 0

0 1 0

0 0 A((p)

gegeben. Die Fundamentalgruppe F(Qd) hat fur d ^ 3 die Ordnung 2;
wir bezeichnen ihre Elemente26) mit 0 und oc. Es ist bekannt und
leicht zu sehen, daB die Matrix Bd(<p) das Elément oc^=0 reprâsentiert27)
(ebenso jede Matrix der Form

0

aus Qd).

Man findet also filr die wesentliche Abbildung (g

«((£... (£t?i2)) oc

2) von 8d+x auf 8d

Damit ist auch (fur d ^ 3) die Umkehrung von Hilfssatz 4 bewiesen ;
wenn nâmlich fur eine regulàre Abbildung / von 8d+1 auf Sd gilt : oc (/) ^ 0,

so ist oc (/) oc, also ist / nach Hilfssatz 1 der wesentlichen Abbildung
(£ C^^ homotop, also selbst wesentlich.

c) Der Weg in i22(n-i) »
^er zu ^er Abbildung fî^ gehôrt, ist durch die

Matrix A^^cp) gegeben, die man auch als Produkt

ae) Die Fundamentalgruppe von Jld ist abeisch, wir schreiben sie additiv.
27) man vgl. etwa H. Weyl, The classical groups (Princeton N. J., 1939), S. 269.
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schreiben kann; nach einem bekannten Satz28) ist dieser Weg homotop
der Summe26) der durch die Faktoren gegebenen Wege, die aile das
Elément oc reprasentieren. Also gilt

somit
<x(#<n)) « + « + ...+<% (n — 1)*

a (#^n)) 0 wenn n ungerade,

oc, wenn n gerade ist.

Nach Hilfssatz 4 und seiner Umkehrnng ist also fiir n ^ 3 die Abbildung
#^n) unwesentlich, wenn n ungerade, und wesentlich, wenn n gerade ist.
Da #^° zu ê{n) homotop ist, ist damit Satz IV" bewiesen.

(Eingegangen den 12. November 1941.)
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