Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 15 (1942-1943)

Artikel: Systeme von Richtungsfeldern in Spharen und stetige Lésungen
komplexer linearer Gleichungen.

Autor: Eckmann, Beno

DOl: https://doi.org/10.5169/seals-14875

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-14875
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Systeme von Richtungsfeldern in Sphéaren und
stetige Losungen komplexer linearer Gleichungen

Von BENo EckKMANN, Ziirich

§ 1. Einleitung

1. Die Frage, ob es in einer m-dimensionalen geschlossenen differenzier-
baren Mannigfaltigkeit M™ stetige Richtungsfelder gibt, kann durch
Homologiebetrachtungen vollstandig beantwortet werden; es gilt namlich
der bekannte Satz: Dann und nur dann gibt es in M™ stetige Richtungs-
felder, wenn die Eulersche Charakteristik von M™ den Wert 0 hat. In
Verallgemeinerung dieser Frage hat Stiefel') — ebenfalls mit Homologie-
methoden — untersucht, ob es sogar Systeme von k stetigen Richtungs-
feldern gibt, die in jedem Punkt von M™ linear unabhéngig sind (soge-
nannte ,,k-Felder*), und notwendige Bedingungen fiir ihre Existenz ge-
funden. In dieser Arbeit soll die Existenz solcher Systeme von Richtungs-
feldern in den einfachsten geschlossenen Mannigfaltigkeiten, den Sphéren,
untersucht werden; gerade weil die Sphéaren beziiglich ihrer Homologie-
eigenschaften so einfach sind, versagt namlich bei ihnen die Methode von
Stiefel, die im Falle der projektiven Raume zu weitgehenden Resultaten
gefiihrt hat [2]. Unsere Methode ist von der seinen wesentlich verschieden
und den Sphiren besonders angepaft; sie liegt im Rahmen der neuern
Homotopietheorie.

2. Es ist leicht, aus einem k-Feld in einer Sphire (oder allgemeiner in
einer mit Riemann’scher Metrik versehenen Mannigfaltigkeit) ein anderes
herzuleiten, bei welchem in jedem Punkte der Sphare die £ dort ange-
brachten Richtungen paarweise orthogonal sind; wir kénnen uns also auf
solche k-Felder beschranken und festsetzen:

Unter einem k-Feld in der m-dimensionalen Sphire 8™ (0 < k < m) ver-
stehen wir ein System von k tangentialen, stetigen, singularitatenfreien
Richtungsfeldern dieser Sphére, derart, daB in jedem ihrer Punkte die &
dort angebrachten Richtungen paarweise orthogonal sind. Die Sphare S™
geben wir dabei immer als Einheitssphire des (m + 1)-dimensionalen
Euklidischen Raumes R™t!, deren Ortsvektor x = (x;, %5, ..., Ty Tpya)
der Bedingung x2 = 1 geniigt, und ein Richtungsfeld in S™ durch ein Feld
von tangentialen Einheitsvektoren, d. h. durch eine fiir ¥2 = 1 definierte

1) vgl. [1] und [2]. — Die Zahlen in eckigen Klammern [ ] beziehen sich auf das Lite-
raturverzeichnis am SchluB der Arbeit.
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stetige Vektorfunktion y(x), fiir welche 1(x)? = 1 und x - y(x) = 0 ist;
wir nennen dies im folgenden kurz ein Vektorfeld in S™.

In einer Sphére gerader Dimension gibt es keine k-Felder; denn nach
dem klassischen Satz von Poincaré-Brouwer?) gibt es bei geradem m in
S™ nicht einmal ein Vektorfeld. Hingegen gibt es in jeder Sphére unge-
rader Dimension m ein Vektorfeld, nimlich z. B. das durch den Vektor

I* = (332, “—xl, ceey xm+1, _xm)

definierte (die Bedingungen x*2 =1, x - x* = 0 sind erfiillt). Die vor-
liegende Arbeit befafit sich mit der Aufgabe festzustellen, ob es auf
Sphéren ungerader Dimension auch fiir k£ > 1 k-Felder gibt; es wird ein
Beitrag zu ihrer Losung gegeben (Satz I), der mit stetigen Losungen
komplexer linearer Gleichungen eng zusammenhingt (Satz IV und V).

Besonders wichtig ist die Frage, ob es in 8™ ein m-Feld gibt; wenn dies
der Fall ist, so sagt man?), die Sphiare 8™ sei parallelisierbar, da man
dann einen Fernparallelismus zwischen Tangentialvektoren in verschie-
denen Punkten der Sphire definieren kann. Es ist bekannt, daB die
Sphéaren 81, 83, §7 parallelisierbar sind ; man kann in diesen Fallen beson-
ders einfache m-Felder auf S™ explizite angeben?); ob es noch andere
parallelisierbare Spharen gibt, weil man nicht.

3. Unser Beitrag zur Beantwortung der genannten Fragen besteht in
folgendem Satz:

Satz I. In einer Sphire der Dimension 4p + 1 gibt es kein 2-Feld.
Korollar. Die Sphiren der Dimensionen 4p + 1 sind nicht parallelisierbar.

Bemerkungen: a) In jeder Sphdre der Dimension 4p — 1 gibt es ein
2-Feld ; es gibt sogar ein 3-Feld, das man leicht explizite angeben kann
(siehe Nr. 4).

b) Der Satz I fiir p = 1 (,,in der 8° gibt es kein 2-Feld*‘) ist schon in
einer frithern Arbeit®) von mir bewiesen worden, und zwar unter Heran-
ziehung eines Satzes von Pontrjagin [4] iiber unitdre Gruppen; einen
ahnlichen Zusammenhang mit unitdren Gruppen gibt es aber fiir p > 1
nicht. Mit Satz I wird der Fall p = 1 (und zugleich der genannte Satz
von Pontrjagin) jetzt neu bewiesen; er spielt aber in dem vorliegenden
Beweis auch eine gewisse Ausnahmerolle (vgl. Nr. 9 h).

2) Alexandroff-Hopf, Topologie I (Berlin 1935), S. 481, Satz IIIa.
3) vgl. [1], S. 8.

4) s. Stiefel [1], 8. 45.

8) 8. [3], Nr. 186.



¢) Durch ein 2-Feld in einer Sphare S™ wird immer ein stetiges Feld von
(orientierten oder nichtorientierten) tangentialen 2-dimensionalen
Flachenelementen dieser Sphéare ,,aufgespannt‘; wir nennen dies kurz
ein ,,Feld von Fliachenelementen in der Sphiare S™‘“. Es gilt aber auch
umgekehrt der Satz®), dafl jedes Feld von Flichenelementen in einer
Sphére der Dimension m > 2 durch ein 2-Feld aufgespannt werden kann.
Es kann also in einer Sphédre gerader Dimension m > 2 und nach Satz I
auch in einer Sphare der Dimension 4p + 1 kein Feld von Flichen-
elementen geben; in den Sphéiren der Dimension 4p — 1 dagegen gibt
es ein solches Feld, und natiirlich auch in der Sphire 82 Wir sehen
also:

In den Sphiren der Dimensionen 4p — 1 und in der S% gibt es Felder
von Flichenelementen, in allen andern Sphdren nichi.

Der Beweis von Satz I erfolgt in zwei Schritten:

Satz II. Wenn es in der Sphire S™ ein 2-Feld gibt, so lift sich jedes
Vektorfeld in S™ zu einem 2-Feld ergimzen (durch Hinzufiigen eines
zweiten Vektorfeldes, das in jedem Punkt der 8™ zum ersten orthogonal
ist).

Satz III. Das oben genamnte spezielle Vektorfeld x* in einer Sphire

ungerader Dimension m lapt sich, wenn m = 4p + 1 ist, nicht zu einem
2-Feld erginzen.

Der Satz I folgt offenbar aus den Satzen II und ITI. Den Satz IT habe
ich friither’) im Rahmen einer allgemeinen Theorie ,,gefaserter Raume‘
bewiesen. Wir haben somit nur noch den Satz IIl zu beweisen. Dieser
Satz ist aber nicht nur wegen seines Zusammenhanges mit der Existenz
von k-Feldern in Sphéren (Satz I) von Interesse; er ist namlich, wie wir
gleich sehen werden, dquivalent mit einem Satz iiber stetige Losungen
komplexer linearer Gleichungen (Satz IV), der mir selbstindiges Inter-
esse zu verdienen scheint und der zu algebraischen Folgerungen Anla@
gibt. Der Beweis dieses Satzes IV ist das Ziel der vorliegenden Arbeit;
mit Satz IV werden zugleich die Satze III und I bewiesen sein.

4. Wir betrachten die lineare Gleichung
7 e
2 u;v;, =0 (1)
i=1
in den Unbekannten v, und lassen die Koeffizienten u, alle komplexen

%) 8. Eckmann [3], Nr. 17, Satz 29.
) [3], Nr. 16, Satz 25.
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Werte mit ' u;u4; = 1 durchlaufen. Dann verstehen wir unter einer
j=1
,,stetigen Losung der komplexen linearen Gleichung (1) ein System von r
Funktionen

v, =y, ) =17,

die fiir alle Werte der u; mit 2 u;u; = 1 definiert und stetig sind und die
Beziehung ):’ v,v, =1 erfu]len und die die Gleichung (1) fiir alle zuge-

lassenen Werte der u, gleichzeitig losen; d. h. es soll

r
2 u; fiuy,. ., u) =0
j=1

r e
sein fiir alle Werte der u; mit ' u,u; = 1.
i=1

Satz IV. Bei ungeradem r besitzt die komplexe lineare Gleichung
2 U, v—:i =
§=1
keine stetige Losung.

Zusatz : Bei geradem r dagegen besitzt die komplexe lineare Gleichung
(1) eine stetige Losung:

Vo1 = Uy r

Vo, — —Ugp—

Der Satz IV fiir » = 3 148t sich auch aus dem schon erwihnten Satz
von Pontrjagin [4] folgern; er ist sogar mit ihm &quivalent (man ver-
gleiche Nr. 91i).

Dafl die Satze III und IV &quivalent sind, kann man folgendermafen
einsehen :
Durch die Gleichungen

uj:xzj_l—"‘ixzj ?.=1,...,1‘ (2)
V; = Yas1 + 1Yy j=1..,7
ordnen wir die (reellen) Vektoren x = (x,, ..., z,,) des R? eineindeutig

den komplexen r-Tupeln %, ..., %, und die Vektoren n = (v, ..., ¥a)
den 7r-Tupeln #,,...,%, zu. Dann ist, wenn x* wieder den Vektor
(x2, -— xl, ceey xzr, b xzr_l) bedeutet,
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r r
2 uu, =3 und X o,v;, =12
j=1 j=1

, (3)
Juv,=%-94Fix*.p9 .
i=1

Daraus sieht man: Wenn 1) (x) ein Vektorfeld auf S-1(x2 = 1) ist, welches
das spezielle Feld x* zu einem 2-Feld erginzt, so bilden wegen

pP=1, x-9@E)=x*-9(x)=0

die vermdoge (2) zu 1(x) gehorigen Funktionen v,, ..., v, von u,, ..., u,
eine stetige Losung der komplexen linearen Gleichung 3’ u,v; = 0; und
i=1

umgekehrt findet man vermittelst der Zuordnung (2) aus jeder solchen
stetigen Losung ein Vektorfeld 1 in S*-1, welches x* zu einem 2-Feld
erganzt. Die Satze I1I und IV sagen also beide aus, daB es fiirr = 2p + 1
weder ein solches Vektorfeld noch eine stetige Losung von (1) gibt.
(Anderseits folgt aus dem Zusatz zu Satz IV, daB es (r = 2p) in S4P—1
ein Vektorfeld 1 gibt, welches x* zu einem 2-Feld erginzt; man kann

dieses 2-Feld sogar zu einem 3-Feld erginzen, nédmlich durch das
Vektorfeld pn*.)

Dem Beweis des Satzes IV sind die §§ 2 und 3 gewidmet; wir geben
diesem Satz dort wiederum eine topologische, aber von Satz III ver-
schiedene Deutung, indem wir ihn als Satz iiber gewisse, zunachst naher
zu beschreibende ,,unitire Vektormannigfaltigkeiten formulieren und
auf die Wesentlichkeit spezieller Spharenabbildungen zuriickfiihren.
Dabei werden Sétze aus der ,,Homotopietheorie gefaserter Raume* be-
niitzt, die ich an anderer Stelle [3] ausfiihrlich dargelegt habe, ferner
Satze iiber Abbildungen von Sphéren auf Sphéiren [6] und Eigenschaften
der Fundamentalgruppe der Mannigfaltigkeiten der orthogonalen
Gruppen. ‘

Der Diskussion der speziellen Sphdrenabbildung, auf welche der ganze
Beweis schliellich hinauslduft, messen wir auch selbsténdiges Interesse
bei ; der betreffende Abschnitt (§ 3) ist unabhiingig vom iibrigen lesbar.
Die dort angewendete Methode ist einer weitgehenden Verallgemei-
nerung fihig, und ich hoffe mit ihrer Hilfe weitere Resultate iiber
Abbildungen von Sphédren auf Spharen niedrigerer Dimension zu er-
halten ; diese Methode ist iibrigens teilweise inspiriert von einer Note
von Pontrjagin [11].



b. Aus dem Satz IV folgt:

Satz V. r ser ungerade, und f,(u,,...,u,), j=1,...,r, seien r stetige
komplexe Funktionen der komplexen Variabeln w,, ..., u,. Wenn fir alle
Werte der u,

r
2 wifi(uy, oo ,u)=0
i=1
ist, so haben die Funktionen f; mindestens eine von (0, ..., 0) verschiedene

gemeinsame Nullstelle.

Denn wenn keine solche Nullstelle vorhanden ware, so kénnte man aus

den Funktionen f, eine stetige Losung der komplexen linearen Gleichung
r

2 u;v; = 0 konstruieren, indem man
j=1
1 _

(kéfkﬁ>% - f; j=1,...,r

setzt. Man braucht iibrigens in Satz V nur vorauszusetzen, daf die f; fiir
(uyy «..s %) # (0, ..., 0) stetig sind; in dieser Form ist er mit Satz IV
aquivalent.

Wenn man den Satz V statt fiir beliebige stetige Funktionen fiir
Polynome ausspricht, so erhilt man einen algebraischen Satz; es wire
interessant zu wissen, ob dieser Satz, den wir auf topologischem Wege
gefunden und bewiesen haben, sich auch rein algebraisch beweisen 1aft,
bzw. in welchen Korpern er gilt. Satz V ist iibrigens auch im Korper der
reellen Zahlen, d. h. wenn sowohl die Variabeln als auch die Funktionen
nur reelle Werte annehmen, unveriandert giiltig, ebenso der Satz IV; das
ist eine direkte Folge des in Nr.2 erwiahnten Satzes von Poincaré-
Brouwer. Wenn man fiir die Funktionen f; nur Formen in den u; zulaft,
80.148¢ sich der Satz V (im Komplexen) auch schon aus einem Fixpunkt-
satz von Hopf®) folgern.

’Uj=

§ 2. Die unitiren Vektormannigtaltigkeiten U,,, .,

6. U, sei der unitdre Raum mit » komplexen bzw. 2n reellen Dimen-
sionen. Unter einem m-System des U, (0 < m < n), das wir mit 7, ,, be-
zeichnen, verstehen wir ein System von m paarweise unitir-orthogonalen
Einheitsvektoren des U, die im Ursprung des U,, angebracht sind. Fiihrt
man in der Menge aller m-Systeme z,, ,, des U, in naheliegender Weise

8) namlich aus dem Fixpunktsatz fiir die komplexen projektiven Réaume, s.[5],
S. 85, Satz VII.
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eine Metrik ein, so wird diese Menge zu einer Mannigfaltigkeit, deren
(reelle) Dimension leicht zu bestimmen wire, und die wir mit U, ,, be-
zeichnen. Diese Mannigfaltigkeiten U, ,, stellen genau das komplexe
Analogon der von Stiefel?) eingefiihrten reellen Vektormannigfaltig-
keiten V,, ,, dar. U, , ist die Mannigfaltigkeit aller im Ursprung des U,
angebrachten Einheitsvektoren, also homtomorph zur (27n — 1)-dimen-
sionalen Sphare S2"-1. Legt man im U, ein festes Koordinatensystem
zugrunde, so entspricht jedem m-System 7, ,, eine unitire Matrix von
m Zeilen und n Kolonnen; insbesondere ist U, ,; zur Mannigfaltigkeit
aller quadratischen n-reihigen unitidr-unimoduliren Matrizen, d. h. zur
Gruppe A4, ; (in der Killing-Cartan’schen Aufziahlung der einfachen
Gruppen), homdomorph (in einer solchen Matrix ist ndmlich die nte Zeile
durch die n — 1 ersten vollstandig bestimmt).

Wir geben nun retrahierbare Zerlegungen'®) der Mannigfaltigkeiten U, ,,
an. Man erhilt eine Zerlegung 3 von U, ,, in abgeschlossene, disjunkte
Teilmengen, wenn man jeweils diejenigen Systeme 7, ,, zusammenfaBt,
die in den k& << m ersten Vektoren iibereinstimmen; jedes Element dieser
Zerlegung ist eine Mannigfaltigkeit U,_; ,_, und wird charakterisiert
durch Angabe der ersten k¥ Vektoren der in ihm enthaltenen Systeme,
also durch einen Punkt von U, ,; ordnet man jedem Punkt aeU, ,
den durch die ersten k Vektoren des m-Systems a gegebenen Punkt
4 €U, ; zu, so entsteht eine stetige Abbildung P von U, ,, auf U, .,
die wir Projektion nennen, und bei welcher die Urbilder 4 = P-1(4)
der Punkte 4 ¢ U, ;, genau die Elemente der Zerlegung 3 sind (die
auch ,,Fasern“ genannt werden): U, , ist der ,,Zerlegungsraum oder
,,Faserraum‘ der Zerlegung. Gemif der friiher!®) festgesetzten Ter-
minologie ist eine solche Zerlegung eines Raumes R in Fasern, die
einem Raum F homdéomorph sind, mit der Projektion P und dem Zer-
legungsraum Z = PR durch eine Gleichung

R|/F =2
zu beschreiben; fiir die angegebene Zerlegung 3 von U, ,, lautet diese
Gleichung
U Un—tym—te = Up g - (1)

DaBl diese Zerlegung retrahierbar ist, beweist man genau so, wie wir dies
an anderer Stelle!!) fiir analoge Zerlegungen der reellen Vektormannig-

%) 8. [1], S. 8ff.

10) Wegen dieses Begriffes vgl. man [3], insbes. § 1; in dieser Arbeit ist die Homotopie-
theorie solcher Zerlegungen und Faserungen ausfiihrlich dargestellt.

1) [3], Nr. 2g.



faltigkeiten V, , getan haben (man hat nur das gewohnliche skalare
Produkt (x - 1) zweier reeller Vektoren x und 1), das a. a. 0.11) verwendet
wird, durch das unitidre Produkt u - v der unitiren Vektoren u und v zu
ersetzen).

7. Die Eigenschaften derartiger retrahierbarer Zerlegungen R /F = Z
(wo R, F und Z zusammenhéngende, lokal zusammenziehbare Kompakten
sind) sind an anderer Stelle [3] ausfiihrlich entwickelt worden; wir be-
richten hier nur kurz iiber diejenigen, welche im folgenden gebraucht
werden, insbesondere erinnern wir an die Begriffe ,,Schnittfliche’ und
,,Schnittelement.

Ist g eine stetige Abbildung (wir lassen das Beiwort ,,stetig* meistens
weg) eines Kompaktums X in R, so heifit die Abbildung G = Pg von X
in Z — wo P die zur Zerlegung 3 : R | F = Z gehorige Projektion ist —
die Spur von g. Eine Abbildung j von Z in R, deren Spur Pj die Identitat
von Z ist, heiBt eine Schnittfliche von 3 ; i ist also eine topologische Ab-
bildung von Z in R, bei welcher das Bild jede Faser genau einmal trifft.
Nicht jede Zerlegung besitzt eine Schnittflache.

Wenn speziell der Zerlegungsraum Z eine Sphire 8™ ist, dann besitzt
die Zerlegung immer ein Schnittelement. Darunter verstehen wir folgen-
des: V™ gei die m-dimensionale Vollkugel, 2™ ihre Randsphére, A ein
beliebiger, fest gewahlter Punkt der 8™. Als Schnittelement bezeichnen
wir nun eine Abbildung ¢ von V™ in R, derart, dal Pt = T das Innere
der V™ topologisch auf S — A und Xm1 auf A4 abbildet; wegen
T(Xm-1) = A muB t(Z™1) in der Faser A = P-4 liegen; zu t gehort
also eine Abbildung ¢’ von 2™~ in A, die wir als Rand des Schnittelements
¢ bezeichnen. Es gilt nun der Satz!?): In der Gesamtheit aller derjenigen
Abbildungen f von V™ in R, bei welchen f(X™1) c 4 ist, ist die Klasse
eines Schnittelements ¢ (bei naheliegender Festsetzung der Orientie-
rungen, vgl.1?)) eindeutig bestimmt, d. h. sind alle Schnittelemente ¢ ein-
ander homotop, und zwar derart, daf auch bei der Deformation das Bild
von Y™ 1 immer in 4 liegt. Also sind auch die Rander ¢’ aller Schnitt-
elemente als Abbildungen von ™! in 4 einander homotop; oder: Die
Riinder aller Schnittelemente t' einer Zerlegung, bei welcher der Zerlegungs-
raum eine Sphire S™ ist, gehoren in eine durch die Zerlegung eindeutig
bestimmie Abbildungsklasse von ™1 in A.

Wenn nun die Zerlegung eine Schnittfliche j besitzt, und wir unter 7’
eine Abbildung von V™ auf S™ verstehen, welche das Innere von V™
topologisch auf Sm — 4 und Xm! auf A abbildet, so ist ¢ = {7 ein

12) [3], Nr. 10b.



Schnittelement, dessen Rand t’ eine Abbildung von 2™ auf einen Punkt
j4 von 4 ist; wir finden also3):

Wenn eine Zerlegung R|F = Z, deren Zerlegungsraum eine Sphdre ist,
etne Schnittfliche besitzt, so ist der Rand t’ eines jeden Schnittelementes t der

Zerlegung zusammenziehbar, d. h. t' lipt sich in eine Abbildung deformieren,
bei welcher das Bild ein Punkt ist.

Oder: Wenn die Zerlegung ein Schnittelement ¢ besitzt, dessen Rand ¢’
eine nicht-zusammenziehbare Abbildung von Y™-1in 4 ist, so besitzt sie
keine Schnittflache.

8. Wir betrachten nun spezielle der oben beschriebenen Zerlegungen (1)
und bezeichnen sie mit 3,:

31': Ur, 2/Ur—1,1 = Us1 s (2)

3r: Uy o 8773 = 822 (2')

sie konnen auch durch

dargestellt werden. Ein Punkt a € U, , ist durch zwei Vektoren u, v des
unitdren Raumes U,, mit den Komponenten u, bzw. v, (k=1,...,7),
gegeben, die die Relationen

U =po90=1, up =0 (3)
d. h.

r r
2 Uyp Up = X
k=1

<

r
k?)k= 1 Py Zukvk"—:—o (3,)
k=1

erfiillen; die Projektion P,, die zur Zerlegung 3, gehort, konnen wir da-
durch geben, daB wir dem Punkt @ = (1, v) € U, , den Vektor u, auf-
gefallt als Ortsvektor (oder als Punkt) der S§*-! im U,, zuordnen:
P.a = P,(u,v) = u.

Eine Schnittfliche von 3, ist eine Abbildung j von 8%~ in U, ,, bei
welcher

P,j(u) =u

ist, also

j(u) = (u,o(u)) ; (4)

dabei bedeutet v(u) eine fiir uu = 1 definierte, stetige Vektorfunktion
von U, die fiir jedes solche u die Relationen

13) Diesen Satz wie auch seine Umkehrung haben wir schon in [3] bewiesen; aus den
Sitzen 11 und 12 der Nr. 10 von [3] ist néamlich zu entnehmen: es gibt dann und nur dann
eine Schnittfliche, wenn die von der Klasse von t’ erzeugte Untergruppe der (m — 1)-ten

Homotopiegruppe von A die Nullgruppe ist; das bedeutet aber, da8 ¢’ zusammen-
ziehbar ist.

9



p(u) o) =1, u-o(u)=0

erfiillt. Die Existenz einer Schnittfliche | von 3, ist somit vollig gleich-

bedeutend mit der Existenz einer solchen Vektorfunktion o(u), bzw.

mit der Existenz von r Funktionen v, = f,(u,, ..., ), k=1, ..., r, die
r

fiir Y'u,u, = 1 definiert und stetig sind und dort die Gleichungen

k=1

r r
kZ,’ feltyseo s ) o fro(@y, c,r,) =1, kZ,’l Upfre(WUyy oo, Uy) =0
=1 =

erfiillen. Solche Funktionen bilden aber gerade eine stetige Losung der
komplexen linearen Gleichung X'u,v, = 0 (vgl. Nr. 4), und wir haben
k=1

damit gezeigt, daBl der Satz IV, dessen Beweis das Ziel unserer Aus-
fithrungen ist, mit dem folgenden &quivalent ist:

Satz IV'. Die Zerlegung 3, besitzt bet ungeradem r keine Schnittfliche.

Zusatz : Bei geradem r besitzt 3, eine Schnittfliche (diese wird durch den
Zusatz zu Satz IV und die Formel (4) explizite gegeben).

Den Beweis von Satz IV’ erbringen wir nun auf Grund der in Nr. 7
genannten Beziehungen dadurch, daf3 wir ein spezielles Schnittelement ¢
von 3, konstruieren und dann zeigen, daBl dessen Rand ¢’ bei ungeradem r
eine wesentliche (also nicht-zusammenziehbare) Abbildung der Rand-
sphire 2'?—2 von V?-1 auf die Faser (die hier eine Sphare §*—3 ist) dar-
stellt. Dagegen ist ¢t/ bei geradem r eine unwesentliche (zusammenzieh-
bare) Abbildung — das folgt schon aus dem Zusatz zu IV’, wir kénnen es
aber auch direkt beweisen.

9. Schnattelement der Zerlegung 3, .
a) Die (2n» — 1)-dimensionale Sphare 8271 lat sich im unitdren Raum
U, (vgl. Nr. 6) durch die Gleichung
n s
2 uj ’u,- == 1
j=1

darstellen, und die (27 — 2)-dimensionale Sphéare S22 als diejenige
GroBsphéare dieser 8271, die durch die Bedingung

u,;, = reell

(wo k eine der Zahlen 1, 2, ..., n ist) bestimmt wird, und die wir gelegent-
lich als S7"~? bezeichnen.

10



K, _,(n = 2)sei der komplexe projektive Raum von (n — 1) komplexen,
2n — 2 reellen Dimensionen. Seine Punkte z sind die Verhiltnisse kom-
plexer Zahlen z,:2,:...:2,, ausgenommen 0:0:...:0; wenn wir sie

n
durch normierte n-Tupel z,, z,, ..., 2, mit 2 z; z;=1 geben, so bedeuten
j=1
zwei n-Tupel z,, 2,, ..., 2, und 21, 2, ..., 7, dann und nur dann denselben
Punkt z von K,_,, wenn

2y == A2, i=1,2,...,n
ist, mit A2 = 1.

b) Zwischen K,_, und den Sphiren 821 und §2"-2 gibt es zwei ,,natiir-
liche“ Abbildungen:

Mit f oder f™ bezeichnen wir die Abbildung der im U, dargestellten
S%-1 guf K, ,, die dem Punkt mit den Koordinaten u,, u,, ..., u, der
821 den Punkt %, : %,:...: u, des K, ; zuordnet. Die Urbilder der ein-
zelnen Punkte des K,_, sind dabei GroBkreise der S2»—1, die eine ,,Fase-
rung‘‘ der §?*-1 bilden??). f soll deshalb kurz ,,Faserabbildung‘‘ heilen.

Ferner kann man den K, ; mit dem Grade 1 auf die Sphare S22 ab-
bilden: Man wahlt auf 82"2 einen Punkt p; K, , c K, ; sei der durch
2, = 0 bestimmte Unterraum von K, ;; K, , — K,_, ist dem (2n — 2)-
dimensionalen Euklidischen Raum homéomorph. Man bilde nun
K, , — K,_, topologisch (mit dem Grade -+ 1) auf §2»-2 — pund K,_, auf
p ab. Eine derartige Abbildung erhélt man leicht vermittelst stereo-
graphischer Projektion; dabei findet man folgende Formeln:

Durch

8k5(2)=25;‘;25_6k5 ’ 7":1,2,...,”, (5)

(wobei k eine bestimmte der Zahlen 1, 2, ..., n ist) ist eine Abbildung s,
(oder s, um die Dimensionszahl hervorzuheben) von K,,_, in den U,, ge-
geben; denn es ist (12;) (A2;) = 2,2, fiir 42 = 1. Dabei gilt

n

21 ;1;(—2) 8;;(2) = 2 (2%5_6”) (2Zzi“‘6li)
j=

j=1

n n
= 2 6’05 615 -_ 4Zkzl + 4zk zl ¥ 2 iji )
P—1 y=1

also

2 815 (2) 8;;(2) = 0y - (6)
“
Ferner ist ,

8ks(2) = 84x(2) . (6")

M) vgl. Hopf [7], 438—440; ferner: [8], 8. 52 und 55.
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Insbesondere ist also 2's;,(2) 8;;(2) = 1 und s,,(z) = reell; s, ist also eine
j=1

Abbildung von K, ; auf die Sphire S;*~2 im U,, und man verifiziert

leicht, daB sie die gewiinschten Eigenschaften hat: K, _,(z, = 0) wird auf

den Punkt p, mit den XKoordinaten u; = — J,; abgebildet, und

K, , — K, , topologisch auf Si"% — p,.

¢) Im unitiren Raum U)_,(n > 2) mit den Koordinaten w,, w,, ..., w,
wird durch die Bedingung

wyw; <1

‘N

2

eine (2n — 2)-dimensionale Vollkugel V2*~2 mit der Randsphire 2'#»-3

-

-
I

J

bestimmt. g sei die Abbildung dieser Vollkugel auf K, ,, die dem
Punkt w ¢ V?*~% mit den Koordinaten w,, ..., w, den Punkt z ¢ K,_, mit
den Koordinaten

n Rt
wy;w; =1
=2

n
21=V1——-2wj’wj ; Zj=w’-, 722,-.0,,"/
j=2

zuordnet. Bei dieser Abbildung wird die Randsphire 223 vermoge der
Abbildung f»-1 (vgl. Nr.9a) auf den durch 2z = 0 bestimmten
K, ,c K, , abgebildet, und das Innere der V22 topologisch auf
K, ,— K,_,; haben namlich zwei Punkte w,, ..., w, und wj, ..., w, von
pan-z — 3'n-3 denselben Bildpunkt in K,,_;, so mufl

’

W — i , j=2,3,...,n
V1—Xw,w, V11— w,w,
sein, also -
1—Yw,w, 1—Xw,w, ’
n n
und daraus folgt X w,w, = XY wjw;, und wj=w, (j=2,3,...,n).
k=2 k=2

d) Setzen wir nun
h(kn)::: 8(k")g(n) R

so ist dies eine Abbildung von V22 in den U,, genauer auf die Sphire
S:*~2, die durch Funktionen
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hky’(w) = 8k§(g(n)(w)) ’ j= ly ey M

gegeben ist; diese Funktionen geniigen wegen (6), (6') den Relationen
2 hyy(w) « by (w) = 0y, (7)

hif(w) = hj(w) . (7)

Die Abbildung A{" zeichnet sich vor den andern dadurch aus, daB bei

ihr die ganze Randsphire 222 auf den Punkt p, von Si"~* abgebildet
wird.

e) « sei ein reeller Parameter, der die Strecke V!(—1 <a < + 1)
durchliuft. Wir definieren eine Abbildung H, (oder H{") des topologischen
Produktes V272 X V!in den U, durch die Funktionen

ij(w, (x) -—":hk,(w) COS ia—i“iak, Sin—g.f"(x .

2 2
Es ist
2 Hy(w, o) Hj(w,x) = cos? —g‘ + X his(w) by - (w) + sin® }2—0‘ - gy
j=1 i=1
+ % - sin -7-;— & + COS —g— &« (hg(w) — b, (w)) ,
also wegen (7), (7')
.Z;ij('w,fx) Hl;’(w:“) = 6kl ; (8)
7=

insbesondere ist 3 H;(w,«) Hy;(w,x) =1 .
j=1
Man sieht, daB H, eine Abbildung von V2*-2x V1 auf die Sphire S2»1
im U, ist, und zwar von folgender Art: 82"~* werde als ,,Aquator* der
S2n-1 gufgefaBt; V2m—2x (0) wird vermoge der Abbildung 4, auf 83”2 ab-

gebildet, V272X («) auf den ,,Parallelkreis‘‘ %, =1 sin % x, V¥-2x (41)

auf den ,,Nordpol*, V-2 x (— 1) auf den Siidpol der §2*-1. Man kann also
in naheliegender Weise H, auch auffassen als Abbildung der (27 — 1)-
dimensionalen Vollkugel V%1 auf die S2*1; dabei hat V22X (4 1) dem
Nordpol, V2—2x (—1) dem Siidpol, V*1x (x) bei festem « einem
Parallelkreis der V21 zu entsprechen, und 22"2x V! entspricht dann
der Randsphire 2?2 von V21, Bezeichnen wir die Abbildung, die
222 bei H, erfahrt, mit H; und die Abbildung, die Y>3 bei A, erfihrt,
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mit A}, so kann man den geschilderten Zusammenhang zwischen H, und
h, fir die Randabbildungen H) und A; kurz so formulieren: Die Ab-
bildung H; von 222 in §2»-1 geht durch Einkingung (im Sinne von
Freudenthal’®)) aus der Abbildung %) von X273 in SZ"~* hervor:

H, = Gk, .

Bei der Abbildung H; speziell wird 2?2 auf den zu p, € 83"~* gehorigen
(Halb-) Meridian u der S*! abgebildet; seine Punkte haben die
Koordinaten

Uy = ——-cos—-g——oc—}—i-sin——zﬂ— K, Ug=r e+ =, =0, (—1<a<+1).

f) Wir definieren nun eine Abbildung ¢, von V-1 bzw. von V#-2x V1
in die Mannigfaltigkeit U, , (vgl. Nr. 8) durch

w, = H{(w,on
! ::)( ) j=1,2,...,r .

Wegen (8) sind die Relationen (3) bzw. (3’) erfiillt, d. h. durch die u;, v,
ist wirklich ein Punkt von U, , gegeben. Wir behaupten, dal t, ein
Schnittelement der Zerlegung 3, von U, , ist.

Zunéchst gilt fiir die Projektion P, in der Zerlegung 3,:

Pt = H(lf) ;

das ist eine Abbildung von V21 auf S%-1, bei welcher }'#-2 auf den
Meridian z von S*-1 abgebildet wird, und das Innere von V#-! topolo-
gisch auf S#-1— u. Bei einem Schnittelement miiflte allerdings das Bild
von ' 22 ein Punkt sein; unsere Behauptung wird also erst dann richtig,
wenn wir alle Punkte von yu identifizieren und u als einen Punkt M be-
trachten (bzw. auf einen seiner Punkte zusammenziehen, etwa auf p,).
Dabei haben wir auch die in U, , zu den Punkten von u gehorigen Fasern,
die alle durch

7T .. T
u1=-——cos—§——cx+z sin 5 % Ug == oo+ =U, =0

r (9)
vnw=0, ZXvv=1,

i=2
charakterisiert sind und somit das topologische Produkt x X 8%-2 bilden,
zu identifizieren und als eine Faser M zu betrachten; das hat natiirlich so

15) Definition s. [6], 8. 303.
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zu geschehen, dal man immer alle die Punkte (9) von U, , identifiziert,

die in v,, v;, ..., v, iibereinstimmen. Die Punkte der Faser M sind dann
r

durch diese Zahlen v,,...,v, mit X v;v, =1 gegeben, also ist M zur
j=2

S§2-3 (mit den Koordinaten v,, ..., v,) homdomorph. Bei der beschrie-

benen Identifizierung geht offenbar U, , in eine zu ihr homéomorphe

Mannigfaltigkeit iiber.

g) Wir haben noch den Rand ¢, des Schnittelements ¢, zu untersuchen,
d. h. die durch ¢, bewirkte Abbildung von X'2-2 auf die Faser M. Sie ist
gegeben durch (vgl. e))

u; = Hy;(w,®) = 6, - (— cos%— x4 1 sin—y—;-oc)
, 1=1,2,...,r;
'Uj: sz(w,“)

wegen der oben vorgenommenen Identifizierung geniigt zur Beschreibung
dieser Abbildung die Angabe der v, (j = 2, 3, ..., 7). Also ist

t, = H, ,

wobei aber Hj nicht als Abbildung von 2?2 in §%-1, sondern in S2r-3
(v, = 0) aufzufassen ist. Fiir H, gilt nach e)

H, = Gh; ,

wobei wiederum k; als Abbildung von X%-3 in 8%"~* (v, = 0, v, = reell)
aufzufassen ist. Gemaf3 ihrer Definition ist

h; — 8(2"‘—-1)f(r—-1);

diese Abbildung entsteht also so: man bilde 23 vermdge der Faser-
abbildung {1 auf K, , ab und dann K,_, mit dem Grade 1 vermoge s"—1
auf §27* (den Index 2 lassen wir weg, da er jetzt keine Rolle mehr spielt).
Wir bezeichnen sie im folgenden mit ¢V, Also

/ —_
i = Eor-v |

Nach einem Satze von Freudenthal®) ist fiir n > 4 und eine beliebige
Abbildung » von 8" auf S** die Abbildung €% dann und nur dann wesent-
lich, wenn % es ist; also ist ¢, fiir > 3 dann und nur dann wesentlich,
wenn 91 eine wesentliche Abbildung von 223 auf S¥—*ist. Der Satz IV’

16) [6], S.300, Satz II, 1.
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wird, somat filr r > 3 bewiesen sein, sobald wir gezeigt haben, daf fir unge-
rades r die Abbildung 971 wesentlich ist. Dies werden wir im § 3 tun.

h) Den Fall »r = 3 konnen wir aber direkt erledigen. Wenn namlich A
eine beliebige Abbildung von 23 auf S?2 ist, so ist nach Freudenthal'?) €A
dann (und nur dann) wesentlich, wenn die Hopf’sche Invariante!®) von A
ungerade ist (daB ~ wesentlich ist, ist natiirlich fiir die Wesentlichkeit
von &% notwendig, aber in diesem Fall nicht hinreichend); das ist aber
bei #2 der Fall: K,, die komplexe projektive Gerade, ist zur 82 homéo-
morph, und 9 ist identisch mit der ,,Faserabbildung‘ f® (vgl. 9b) von
23 auf K,, abgesehen von der stereographischen Projektion, die K, topo-
logisch auf S% abbildet. 42 ist also nichts anderes als die von Hopf'?)
gefundene wesentliche Abbildung von 2% auf §2 mit der Invarianten

y = 1. Alsoist (= G 9

wesentlich.
Damit ist der Beweis der Satze IV’ und IV fiir » = 3, und des Satzes I
fiir die S°, schon beendet.

i) Der Satz IV’ (und infolgedessen auch der Satz IV) fiir r = 3 ist
iibrigens fast identisch mit dem Satz von Pontrjagin [4], mit dessen
Hilfe ich schon friiher den Satz I fiir den Spezialfall der S® bewiesen
habe, und der folgendermafBen lautet : Der Gruppenraum der unitiren
Gruppe 4, kann nicht einem topologischen Produkt homoomorph sein,
in welchem ein Faktor eine Sphére S? ist.

DaB aus diesem Satz der Satz IV’ fiir r = 3 folgt, ist leicht ein-
zusehen: U, , ist zur Gruppe 4, homéomorph, und die Zerlegung 3, ist
nichts anderes als die Zerlegung von 4, in Restklassen nach einer mit 4,
isomorphen Untergruppe A;, die zum Wirkungsraum S° der Gruppe 4,
gehort??). Wenn aber eine solche Zerlegung eine Schnittfliche besitzt, so
zerfallt der Gruppenraum in ein topologisches Produkt?!), in unserm
Falle in das Produkt S5 x A]; 4] ist aber zur Sphire S homdomorph.

Dafl umgekehrt aus der Nicht-Existenz einer Schnittfliche in dieser
Restklassenzerlegung leicht folgt, daB A4, nicht einem topologischen
Produkt 83x B homoomorph sein kann, habe ich an anderer Stelle
gezeigt??).

17) [6], 8. 301, bes. Satz III.

18) Definition s. [9], S. 645 ff.; ferner [6], S. 304—305.

19) [9], S. 654.

20) vgl. [3], Nr. 8d und 16e¢.

1) nach einem allgemeinen Satz, s. [3], Nr. 11, Satz 16.

22) das ist den Ausfithrungen von Nr. 16¢ der Arbeit [3] zu entnehmen, wenn es auch
dort nicht explizite formuliert wird.
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Unser Beweis des Satzes IV’ fiir » = 3 bzw. des Satzes von Pontrjagin
beniitzt aber keine gruppentheoretischen Eigenschaften der unitéren
Gruppen; wir haben keinen Gebrauch von der Tatsache gemacht, daBl
U,, , ein Gruppenraum ist.

§ 3. Untersuchung einer speziellen Sphirenabbildung

10. Wir befassen uns in diesem Paragraphen mit der Abbildung 4™
der Sphire §27-1 auf die Sphire 8272, die fiir den Beweis des Satzes IV’
eine entscheidende Rolle spielt; sie ist gemafl Nr. 9g so definiert: Man
bilde S27-1 vermoge der Faserabbildung f™ auf den komplexen projek-
tiven Raum K, , ab und dann K, ; mit dem Grade 1 (vermoge der
Abbildung s™) auf 82»-2; die Abbildung von 82! auf §**-2, die man so
erhilt, heit 9. Wie aus der Definition von /" und s und der Formel
(5) (sieche Nr.9b) zu entnehmen ist, kann man diese Abbildung #™

folgendermaflen explizite durch Formeln angeben: §2*-1 gei im unitéren
n

Raum U/ mit den Koordinaten w,, ..., w, durch X w, w,= 1 dargestellt,
j=1 n
S#-2 im U, mit den Koordinaten w,,...,%, durch 3 w; u,=1,u,=

j=1
reell; dann ist 3 durch die Gleichungen

u; = 9 (wy,...,w,) = 2w, w; — &y j=1,...,n

J b
gegeben. Wir werden unabhingig von den fritheren Betrachtungen zeigen:

Satz IV". Die Abbildung 9™ ist bei geradem n wesentlich, bet ungeradem
n unwesentlich (n = 2).

Bemerkungen: a) In diesem Satz ist Satz IV’ (fiir r > 3) enthalten, mit
ihm werden also auch die Satze IV, III, I und V vollstandig bewiesen
sein.

b) Im Falle n = 2 ist Satz IV” schon bekannt (siehe Nr. 9h); wir
haben den Satz IV” somit nur noch fiir » > 3 zu beweisen.

¢) Ein Korollar zu Satz IV”. Im komplexen projektiven Raum K,, sei
K, , der durch z, = 0 bestimmte Teilraum. Die Abbildung s® von
K, , auf 8?2 vom Grade 1 1aBt sich bei geradem n nicht zu einer Ab-
bildung von K, auf S22 erweitern, wohl aber bei ungeradem n.

Beweis: Die Abbildung s'® von K, _, auf 82" ]a3t sich dann und nur
dann zu einer Abbildung s{® von K, auf S22 erweitern, wenn die Ab-
bildung #™ der Randsphire 2271 der Vollkugel V2* auf §2r—2 sich zu
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einer Abbildung ™ von V2r auf §27-2 erweitern 1aB8t, d. h. wenn 9
unwesentlich ist; das sieht man ein, wenn man die Abbildung ¢g»*+V (siehe
Nr. 9¢) von V2" auf K, zu Hilfe nimmt, bei welcher 22"~ vermoge der
Faserabbildung f™ auf K,_, abgebildet wird, und

— +1
198”) _— sf,”) g(ﬂ )
bezw.

sgn) —_ ﬂgn) (g(n+1))-—-1
setzt.

11. a) Zum Beweis von Satz IV” stellen wir einige Hilfssitze bereit, die
uns auch sonst zur Untersuchung spezieller, explizite gegebener Abbil-
dungen von Sphéren auf Sphiren niitzlich erscheinen (sie lassen sich zum
Teil auch auf andere Dimensionszahlen iibertragen).

Die Sphire S+ gei im Euklidischen Raum R%2 mit den Koordinaten
d+2

Ty, ey T gy durch X o = 1 gegeben, die Sphire 8¢ im R4+ mit den
j=1 d+1

Koordinaten y,, ..., y4,; durch Y 3} = 1. Bezeichnungen: Es bedeute
i=1

. 1
V' c 8¢ die Kalotte y,,, > Vs von §¢ ,

1
V" c 82 die Kalotte y,,, < V5 von 8¢,

Y < 8% den gemeinsamen Rand von ¥/ und V" ,

p € V' den Punkt y, =85, ,;(j=1,...,d4 1) der 8¢; ferner

d
T’ < 8%+ den ,,Volltorus*“ X % < a3, + «5,, in der 8¢+,
i=1

d
T" c 83+ den ,,Volltorus* X 2} > 2%, + «5,, in der 89+,
i=1
2 2 2 /
P c §4+1 den gemeinsamen Rand Y o} =25, + 3,, =3 von T

j=1
und 77, der dem topologischen Produkt S* X 8¢ homdomorph ist (ein
,,Lorus‘‘),
d
K c T’ den GroBkreis Y o} =0, aj,, + 25,, = 1 der 8%+ ; geine
i=1
Punkte & konnen wir durch zwei Zahlen & = z,;,,, & = %;, mit
& 4 & =1 geben.
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d
Ein Punkt y € V’ ist durch die Angabe von ¥, ..., ¥, (mit X 3} < 4)
j=1
bestimmt. 7' ist dem topologischen Produkt ¥V’ X K homéomorph: man
ordne dem Punkt z = (x,,..., Z4,,) € T/ den Punkt y e V':

y,i=x;, Jj=1...,d
nnd den Punkt £ € K :

Z s .
Ej = g ’ ] == 1,2
V“’¢21+1 + %340

zu. Im folgenden soll in diesem Sinne ein Punkt z ¢ 77 statt durch

d

Ty,..., gy, immer durch z,, ..., z; mit Y 23 << 1 und & ¢ K gegeben
j=1

werden.

b) Eine Abbildung f von 84+ in 8¢ soll regulir heilen, wenn sie folgende
Eigenschaften hat:

1.f(Ty= V', {(T")c V”. — Die von { in diesem Fall induzierten Ab-
bildungen von 7" auf V' und von 7'” in V" sollen f’ bzw. f” heillen.

2. Die Abbildung f’ von 7'/ auf V' kann durch Gleichungen
d
yg’=k£ag‘k(£)xk 5 ?':l""sd

beschrieben werden, wobei die a,, stetige Funktionen von ¢ ¢ K sind und
die Matrix (a,,(£)) fir jedes & ¢ K orthogonal ist und die Determinante
-+ 1 hat.

Die Forderung 2. bedeutet mit andern Worten: Bei der Abbildung f’
wird, wenn man 7'/ wie oben als topologisches Produkt V'x K auffaft,
V’x (&) fiir jedes & € K orthogonal auf V' abgebildet. Dabei ist f/(K) = p,
und der Rand P von T wird auf den Rand 2 von V’ abgebildet; diese
Abbildung von P auf X'soll /” heilen.

¢) Durch die eben in der Definition genannte Matrix (a;(£)) ist eine
Abbildung von K in die Gruppe 2, aller d-reihigen orthogonalen Matrizen
mit der Determinante 4+ 1 gegeben, d. h. ein geschlossener Weg in Q,;
da die Abbildung f’ durch diesen Weg vollig definiert ist, wollen wir ihn
auch f’ nennen. Jeder solche Weg reprisentiert ein Element der Funda-
mentalgruppe F(Q,) von 2,, das wir mit «(f) bezeichnen. (Einen An-
fangspunkt fiir diese Wege auszuzeichnen, ist zwar nicht notig, da es sich
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um Wege in einem Gruppenraum handelt, aber fiir die Zusammen-

setzung der Wege angenehm; man kann etwa verlangen, dal fiir den
Punkt £2 ¢ Kmit &2 =1,8 =0

a;1(£°) = O
sei.)
Zu jeder reguldren Abbildung f von S in 8¢ gehdrt also ein Element o (f)
der Fundamentalgruppe von 2.

d) Hilfssatz 1: f und g seien zwei regulire Abbildungen von S9+1 in
S¢; wenn & (f) = «(g) ist, so sind die Abbildungen f und g homotop.

Beweis: «(f) = «(g) bedeutet, daB die zu f und g gehorigen Wege f’
und ¢’, also auch die Abbildungen f’ und ¢’ von 7'/ auf ¥’ homotop sind;
es gibt also eine Deformation von f’ in ¢/, d. h. eine stetige Schar von
Abbildungen ¢, (0 <t << 1) von 7’ auf V’, die alle die Eigenschaft 2.
haben, mit ¢, = f’, @] = g’. Es entsteht dabei auch eine Deformation
der Abbildung f” von P auf 2'in die Abbildung ¢” von P auf 2, wobei
das Bild von P immer =2 ist; diese Deformation 148t sich nach einem
elementaren Erweiterungssatz?3) zu einer Deformation ¢} (0 <t < 1)
von f” erweitern, mit ¢/ (7'”) c V”. Die Deformationen ¢, und ¢; ergeben
zusammen eine Deformation f,(0 <<¢ < 1) der Abbildung f = f, in eine
regulire Abbildung f,, fiir welche

ist; fiir jeden innern Punkt y von V' ist also f;'(y) = ¢~(y), und daraus
folgt?¢), daB f, und g, also auch f und g homotop sind.

e) Hilfssatz 2: Die Abbildung f von S84+ in §¢, gegeben durch die
Funktionen y,(x,,...,%4,), j=1,...,d + 1, habe folgende Eigen-
schaften: f1(p) = K ; in der Umgebung von K seien die y; stetig differen-
zierbar, und wir setzen b, (&) = (g‘f/——’—) fir j,k=1,...,d ;

Ly J2y=c=2d4=0
fiir alle & ¢ K sei die Funktionaldeterminante |b,,(£)|>0. Dann ist f
einer reguliren Abbildung A von 8% in S¢ homotop, bei welcher A’
durch diejenige orthogonale Matrix (a,;(£)) mit der Determinante -1
gegeben ist, die aus (b;;(£)) durch Orthogonalisieren hervorgeht (wobei
man natiirlich fir das Orthogonalisieren ein eindeutiges und stetiges
Verfahren festzulegen hat).

33) g. Alexandroff-Hopf?), S. 501, Hilfssatz I.
34) 8. Alexandroff-Hopjf?®), S. 502, Hilfssatz III.
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Beweis (wir fithren nicht alle Einzelheiten ausfiihrlich durch): Fiir

einen Punkt x ¢ 8%! mit den Koordinaten z,,...,z,, sei r(z) =
d d

|/ 2 «; , analog fiir y e 8% mit den Koordinaten y,,..., ., ®y)=V2v;.
j=1 j=1

Ferner sei V,(r <1) die »-Umgebung von p(r(y) <7, ¥4, > 0) in S,, U,
die r-Umgebung von K, r(z) <r, in 8% (also ein offener Volltorus,
homéomorph dem topologischen Produkt V,x K), P, der Rand von U,,
r(x) = r. Wir kénnen ¥V, normal in die Ebene y, , = 0 projizieren und
dort als offene Vollkugel im d-dimensionalen Euklidischen Raum auf-
fassen.

g sei die Abbildung
d
yi‘:kglbjk(é)xk j=1,...,4d

von U, in die Umgebung von p. Es gibt eine Zahl § > 0, so daB bei be-
liebigem r > 0, r(g(x)) > or ist fiir alle x mit r(x) = . Mit Hilfe des
Mittelwertsatzes der Differentialrechnung stellt man leicht fest, da man
r > 0 so wahlen kann, daf}

0
o (f@) , gla)) <57
ist fiir alle « € P,. Wir wiahlen nun eine Zahl r'(< ——2- r), so da@
f8H —U,)c 8¢ -V, .

Deformieren wir nun innerhalb U, die Abbildung f in g, indem wir f(x)
geradlinig nach g (x) wandern lassen, so liegt bei dieser ganzen Deforma-
tion das Bild von P, in 8¢ —V_, ; man kann also diese Deformation zu
einer Deformation der ganzen Abbildung f von 8% in 8¢ erweitern,
derart, daB das Bild von §%!'— U, immer in §¢—V_, liegt. Man erhalt
dadurch eine zu f homotope Abbildung f, von S%! in S¢, bei welcher
XV, c U, ist, und die in U, durch g gegeben ist.

Aus (b;,(£)) bilden wir nun durch Orthogonalisieren der Zeilenvektoren
in bestimmter Reihenfolge eine orthogonale Matrix (a;.(&)) (wobei die
Determinante |a,,(&)] = + 1 ist). Dann gibt es eine stetige Schar von
nichtsinguliren Matrizen b,,(&, t) (0 <t < 1), derart, da3

bir(§,0) = b (&) und b€, 1) = a;(€)

ist 25) ; diese Schar liefert uns eine Schar g, von Abbildungen, durch

28) das ist etwa den Ausfithrungen von § 2.2 der Arbeit [1] von Stiefel zu entnehmen.
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welche die Abbildung g, =¢ von U, in die Umgebung von p in die
Abbildung g,

d
yizkéa’ik(g)xk j=1:"‘sd

deformiert wird. Dabei gibt es eine Umgebung V., von p (r” < r’), derart,
daB g,(P,) c 8¢ — V,, ist, und infolgedessen laBt sich diese Deformation
von ¢ in g, zu einer Deformation der Abbildung f, in eine Abbildung f, von
Sé+1 in S4 fortsetzen, fiir welche gilt:

fz-—l(V»r") = U'r” ;
dabei ist die zugehoérige Abbildung von U, auf V,, durch
d
?/k'-‘—‘kf_‘:;ajk(é:)xk j=1,...,d

mit der orthogonalen Matrix (a;,(£)) gegeben.
Diese Abbildung f, aber 1aBt sich leicht in eine regulire Abbildung
deformieren, die alle im Hilfssatz 2 genannten Eigenschaften besitzt.

Hilfssatz 3: Wenn f eine regulire Abbildung von 8%+ in §9 ist, so ist
die Abbildung €f von S%+2in §%+1, die aus f durch Einhdngung'®) hervor-
geht, auch regular; ist der Weg f’ in 2, durch die Matrix a (&) gegeben,

so ist der Weg (€f)’ in 2,,, durch die Matrix 4(§) = ((1) a?f)

Beweis: Man kann die Einhingung?®) folgendermaflen beschreiben:
Wir fiigen zum R%2 bzw. R noch eine Koordinate x, bzw. y, hinzu
und erhalten die Raume R¥® bzw. RI+?; S3+2 bzw. S{+! seien ihre
Einheitssphiren. Eine Abbildung g von S84+ in S¢ sei gegeben durch
Gleichungen

) gegeben.

yizgf(xl?""xd+2) jﬁl,...,d-}-l .
Dann kann die eingehiangte Abbildung g von 8¢ in S7+! durch die

2
Gleichungen (r ist als Abkiirzung fiir V 2 o} gesetzt)
j=1

Yo = %o

yjzr.g,.(%l-,...,—@%z—) , 1=1,...,d4+1, firr>0

y; =0, j=1,...,d41, fir r=20
d.-h zy=y,= £ 1)
beschrieben werden.



f sei eine regulidre Abbildung von Sé+! in S9, wie sie oben in der Defini-
tion beschrieben ist. Dann folgt aus der eben genannten Darstellung der
Einhangung fiir die Abbildung €f :

1. (€H2(V])) = T, (V], Ti, ... seien analog wie V', T, ... definiert).

2. Die Abbildung (€f) von 7', auf V] wird beschrieben durch

Yo = Xy ,
d
?/a‘zkzglajk(f)xk j=1,...,d ;

damit ist der Hilfssatz 3 bewiesen.

Hilfssatz 4: Wenn fiir eine regulidre Abbildung f von 8¢+1in 8¢ «(f) =0
ist (d. h. der Weg f in ©,; nullhomotop), so ist f unwesentlich (also null-
homotop).

Beweis: Nach Hilfssatz 1 geniigt es, eine unwesentliche regulire Ab-
bildung g von S4+1 in 8¢ anzugeben, bei welcher « (¢) = 0 ist. Eine solche
ist die folgende:

yj ::-xj ’ ?.=].,...,d H

2 2 )
Yay1 = T de—{-l + Zgys

diese Abbildung ist unwesentlich, da das Bild ¢(8%+!) ganz in der Halb-
sphére y,,, = 0 liegt. Ferner ist g’ definiert durch

?/5=x1: j’——l,...,d;

die zugehorige Matrix ist fiir alle & ¢ K die Einheitsmatrix, also ist
der zugehorige Weg in 2, ein Punkt.

Von diesem Hilfssatz gilt auch die Umkehrung: Wenn fir die requlire
Abbildung f von 8% in 8¢ x(f) 7% 0 ist, so ist f wesentlich. Sie wird im
folgenden bei der Diskussion der Abbildungen 3® bewiesen (nur fiir d > 3).

12. a) Die Abbildungen 9™ werden am einfachsten durch komplexe
Gleichungen beschrieben (siehe Nr. 10); um die Hilfssitze der vorigen
Nummer anwenden zu koénnen, haben wir die unitiren Raume U], und U,
als Euklidische Rdume R?**, bzw. den zu reellem u, gehorigen Teilraum von
U, als R*1, gufzufassen; dabei sollen die reellen Koordinaten mit dem
Real- und Imaginarteil der komplexen Koordinaten identifiziert und so
nummeriert werden, daBB K der GroBkreis

wy,=..=w,=0 , ww=1
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der 8?1 und p der Punkt u; = 6,,(j = 1, ..., n) der 8§22 ist. Dann ist
o (p) = K ;

da #™ in der Umgebung von K stetig differenzierbar ist, berechnen wir
die im Hilfssatz 2 auftretende Funktionalmatrix, und zwar gerade in der
komplexen Schreibweise: 9™ ist gegeben durch

uj——:z?,_l};w,—alj, j:].,..-,n;
also ist (in allen Ableitungen ist w, = ... = w, = 0 zu setzen) fiir
1=2,...,nund k=2,...,7n
ou,; —
= 2w, 0,
awk 1 ik

oder, wenn man w; = w; + tw; , u; = w; + iu; (W}, w;, u;,u, reell)
und auf K— w, = cos¢p + ¢ sing setzt,

ou ou
> l = > I — 26,,(cos @ + i sin @)
W W =2, .. %
k=2 se ey My
au" . auj . .
ol = = 20,3 (— sin ¢ 4 7 cos ¢)
k k
also
ou’ ou’ )
* k ] = 2, (]
k= 2,. n
ou) ou’ AT EEnEE
ow; ow;,

dadurch ist die Funktionalmatrix in jedem Punkt von K (0 < ¢ < 2n)
bestimmt. Durch Orthogonalisieren (das hier nur in einem Normieren
besteht) erhialt man daraus die 2(n — 1)-reihige orthogonale Matrix

Alg) 0 ... 0
4, 4(p) = 0 4@ . € Qo(n-1) »
0 vrnns Alg)
wobei A(p) = 4,(p) ein 2-reihiges ,,Kéastchen* (__ (s)iorf: zi(::ls g) bedeutet.
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Aus dem Hilfssatz 2 folgt also: Die Abbildung 9™ von S**-1 auf S2*—2 ist
einer requldren Abbildung 9™ homotop, bei welcher der zugehorige Weg in
Qo) durch die Matriz A,_,(p) gegeben ist.

b) Insbesondere gehort zu der Abbildung 4 von S3 auf 82 (der Hopf-
schen Faserabbildung, vgl. Nr.9), genauer zu %> der Weg A,(p) =
( cos @ sin g

—sin ¢ cosg
*? eine Abbildung € ... € 9 von 81 auf S?(d > 3), die nach einem
Satze von Freudenthal!”) wesentlich ist ; der zugehorige Weg in 2,
ist durch die d-reihige Matrix

) in 2, . Durch wiederholte Einhdngung erhalt man aus

10.... 0
01 0
By (p) = - . .
. 1 :
00 ... A(p)

gegeben. Die Fundamentalgruppe F(2,) hat fiir d >> 3 die Ordnung 2;
wir bezeichnen ihre Elemente?$) mit 0 und «. Es ist bekannt und
leicht zu sehen, dafl die Matrix B ,(p) das Element « 5= 0 reprasentiert 27)
(ebenso jede Matrix der Form

aus Q,).
Man findet also fiir die wesentliche Abbildung € ... €9 von S quf S¢

x(€...CoP) =« .

Damit ist auch (fir d = 3) die Umkehrung von Hilfssatz 4 bewiesen ;
wenn namlich fiir eine reguldre Abbildung f von S+ auf 8¢ gilt: & (f) # 0,
so ist «(f) = «, also ist f nach Hilfssatz 1 der wesentlichen Abbildung
€ ... €9{» homotop, also selbst wesentlich.

¢) Der Weg in Q,,;,, der zu der Abbildung 9#{" gehort, ist durch die
Matrix 4,_,(¢) gegeben, die man auch als Produkt

26) Die Fundamentalgruppe von {2; ist abelsch, wir schreiben sie additiv.
27) man vgl. etwa H. Weyl, The classical groups (Princeton N. J., 1939), S. 269.
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A(@) ... 0 (1)(1’ rerees 0 1.....0
1 : -4 : : :
Apil@=y : . = }-{ : (‘pl)' S RS '.1 :

| I |

schreiben kann; nach einem bekannten Satz??) ist dieser Weg homotop
der Summe?®) der durch die Faktoren gegebenen Wege, die alle das
Element « reprasentieren. Also gilt

x(@ " =a4+a+...+a=n—1)«,
somit
«(9{M) = 0 , wenn n ungerade,

= «, wenn n gerade ist.

Nach Hilfssatz 4 und seiner Umkehrung ist also fir n > 3 die Abbildung
?" unwesentlich, wenn n ungerade, und wesentlich, wenn n gerade ist.
Da 4™ zu & homotop ist, ist damit Satz IV” bewiesen.

(Eingegangen den 12. November 1941.)
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