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Sopra una dimostrazione
di R. Fueter per un teorema di Hartogs

Di Enzo Martinelli, Roma

Introduzione

1. In due recenti note1), Rud. Fueter ha dato un'intéressante
dimostrazione di un classico teorema di Hartogs per le funzioni analitiche di
due o più variabili complesse. Nello spazio 2/i-dimensionale S2n, ove si

rappresentano le n variabili complesse zl9.. ,,zn, sia D2n un dominio
271-dimensionale, univalente e limitato, con il contorno costituito da una
ipersuperfieie chiusa irriducibile F2n_x. Il teorema di Hartogs, cui ci si

riferisce, afferma che : "Ogni funzione f(zx,..., zn), n > 1, analitica rego-
lare ed univocamente definita su F2n_1, puô prolungarsi analiticamente
in modo regolare ed univoco in tutto il dominio D2n,, •

La dimostrazione citata è ottenuta da Fueter applicando l'idea sugge-
stiva, e già manifestantesi féconda, di subordinare la teoria délie funzioni
analitiche di due o più variabili complesse alla teoria délie funzioni
regolari di una variabile quaternione o di una variabile ipercomplessa
più générale.

Mi propongo qui di riottenere il teorema di Hartogs ricalcando nella
sua linea concettuale il ragionamento di Fueter, ma restando nelTambito
délia teoria délie funzioni di ordinarie variabili complesse. A questo scopo
mi appoggio sopra una formula intégrale già da me stabilita per le
funzioni analitiche di n variabili complesse2), e sulTuso sistematico dell'opera-
zione di differenziazione esterna délie forme differenziali, introdotta da
E. Cartan, ciô che mi permette di superare nella maniera più spedita le
difficoltà essenziali, in guisa che la dimostrazione risultante in definitiva
per il teorema di Hartogs mi sembra possa considerarsi corne notevolmente
semplice.

La formula intégrale cui ho ora alluso (e che è ricordata al n. 2)
permette di esprimere una f(z1,..., zn) analitica in un dominio D2n mediante
i valori che la funzione assume sul contorno F2n_1 di D2n, con un inte-

1) E. Fueter, tîber einen Hartogs'schen Satz, Comm. Math. Helvetici, vol. 12

(1939), pag. 75; e tTber einen Hartogs'schen Satz in der Théorie der analy-
tischen Funktionen von n komplexen Variablen, ibidem, vol. 14 (1942), pag.394.

2) Alcuni teoremi integrali per le funzioni analitiche di più variabili
complesse, Mem. délia R. Accad. d'Italia, vol. IX (1938), pag. 269.
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grale (2n— l)-plo sopra F2n_1. Benché taie formula si riduca per n 1,
com'è naturale, alFordinaria formula di Cauchy, essa ha tuttavia una
struttura formale nettamente diversa da quest'ultima, per modo che il
ragionamento che conduce al teorema di Hartogs viene a cadere compléta-

mente per n 1. E si sa bene che questo teorema non sussiste per le

funzioni di una sola variabile.
D'altra parte la formula di Cauchy puô estendersi al caso di n variabili

anche con un'altra formula di struttura formale più prossima al caso

n 1, nella quale appare perô una integrazione sopra una varietà chiusa
di dimensione n anziché 2n — 1, varietà che, quando si presenti la formula
nel suo aspetto più générale, è vincolata soltanto da certe condizioni
topologiche, già da me3) determinate per n — 2, e da B.Segre*) per
n qualunque, e che sono più oltre ricordate (n. 7).

Ebbene, in una seconda parte di questo lavoro, dô un'altra dimostra-
zione del teorema di Hartogs basata appunto sulFapplicazione di questa
seconda formula intégrale. La dimostrazione (che espongo per semplicità
nel caso n 2, ma che è facilmente estensibile al caso générale)
è limitata alFipotesi restrittiva che la ipersuperficie Fs, ove è assegnata
la f{zl9 z2), sia contorno di un dominio convesso. Penso nondimeno che

la dimostrazione possa presentare qualche interesse, perché essa mette in
luce le ragioni topologiche che determinano la validità del teorema
d'Hartogs per n > 1 e la non validità per n 1. Ecco, in brève, di cosa
si tratta.

Assegnata la funzione analitica regolare f(z) sopra una linea chiusa
irriducibile Fx (délimitante un dominio D2 del piano ove si distende la
variabile complessa z), la formula

1 ff(z)dzj (1)

definisce una funzione g(Ç) regolare in tutti i punti interni a D2. D'al-
tronde la /(z), per essere regolare su Flf resta in conseguenza definita,
in modo regolare ed univoco, in tutta una corona E 2 comprendente F1

alTinterno. Ora, se £ è un punto délia corona interno a queUa parte, £!2,
di U2 che appartiene a D2, il secondo membro délia (1) darebbe, in base

alla formula di Cauchy, il valore /(£) e in conseguenza varrebbe il teorema

3) La formula di Cauchy per le funzioni anahtiche di due variabih
complesse, Rend délia R Accad. dei Lincei, vol XXV, s 6a, gennaio 1937, pag. 33.

4) B. Segre, Sull'estensione délia formula intégrale di Cauchy e sui
residui degh integrali w-pli, nella teoria délie funzioni di n variabili
complesse, Atti del 1° Congresso dell'Un Mat Ital aprile 1937, pag. 174.
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d'Hartogs, qualora la linea i^ potesse soddisfare entro Zr2 aile condizioni
topologiche occorrenti per la validità délia formula di Cauchy (cioè di
essere omologa a zéro ed avvolgente il punto Ç), corne vi soddisfa entro D2.
Questo non accade ; mentre la proprietà topologica in eerto senso analoga
a quella che qui occorrerebbe, vale invece per n > 1, e ciô sostanzial-
mente a causa del maggior dislivello che intercède tra la dimensione 2n di
uno strato 27 2n comprendente jT2n-1 alFinterno, e la dimensione n délia
varietà d'integrazione, tracciata su r2n_l9 che appare nella estensione
délia formula di Cauchy nella seconda forma.

Osserverô infine che il ragionamento da me sviluppato in questa seconda
dimostrazione del teorema d'Hartogs ha qualche rassomiglianza con
quello su cui F. Severi5) basô la dimostrazione del suo analogo teorema,
valevole per le funzioni analitiche di una variabile reale e di una com-
plessa, e dal quale egli dedusse il teorema d'Hartogs medesimo.

I.
Bichiamo délia prima formula intégrale

2. Cominciamo col ricordare la prima formula intégrale valida per le
funzioni analitiche di n variabili complesse, cui si è sopra alluso. Sia

/(Zi>. • -, 2«) analitica regolare in un dominio D2w, contorno An-i incluso.
Il valore di / in ogni punto (Ci,..., Çn) interno a D2n, puô esprimersi,

mediante i valori che la / stessa assume sul contorno /f2n_1, colla formula :

(n——1)! rfoi"~> z«] ^
(2ni)n Iri

dove s'indicano con sopralineature i valori complessi coniugati, e con

d (zx,..., zn, z1,.. [a;j.., zn) s'intende il differenziale di grado 2n — 1,

dzx - • • dzndzt • • • dziXr.1dza+1 - • -dzn, nel quale manca l'elemento dza 6).

5) F. Severi, Una proprietà fondamentale dei campi di olomorfismo di una
funzione analitica di una variabile reale e di una variabile complessa,
Rend, délia R. Accad. dei Lincei, Vol. XV, s. 6», aprile 1932, pag. 487.

6) Alla formula (2) puô venir dato un aspetto più semplice (che è non perô qui oppor-
tuno), una volta introdotta sopra Pipersuperfieie JT2n-i una cer^a congruenza [s] di linee,

corne ho dimostrato nellavoro: Studio di aléune questioni délia teoria délie
funzioni biarmoniche e délie funzioni analitiche di due variabili complesse
coll'ausilio del calcolo differenziale assoluto, Mem. délia R. Accad. d'Italia,
vol. XII (1942), pag. 143, n. 17 e Oss.
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La (2) sussiste per una conveniente scelta délia orientazione di F2n__lt
ehe non occorre qui ricordare, e, una volta dimostrata nelTipotesi che
D2n si riduca ad una 2^-cella, vale immutata per un dominio D2n qualun-
que il cui contorno F2n^1 sia anche eventualmente spezzato in più cicli
irriducibili, bastando, per persuadersi di questo, ripetere un ragionamento
ben noto, dopo aver decomposto D2n in 2^-celle.

Due proposizioni fondamentali

3. Suppongasi ora che la funzione /(zl5. zn) sia definita, analitica
e regolare, soltanto sul contorno irriducibile F2n_1 del dominio D2n, nelle
ipotesi del teorema d'Hartogs (n. 1). Si puô nondimeno considerare ancora
l'intégrale a secondo membro délia (2), essendo (Ci,..., Cn) un punto
interno,oweio anche un punto esterno, a F2n_1. Il risultato delFintegrazione
sarà, a priori, in ogni caso una funzione analitica g(d,..., Cn > Ci> • • • > Cn)

délie variabili Ci • • • Cn > Ci • • • ~tn
> considerate corne indipendenti, poi-

ché è una funzione analitica di quelle variabili la funzione integranda.
Indicata brevemente la forma dififerenziale di grado 2n — la secondo
membro délia (2) con a)(Ci,..., Cn> Ci,..., Cn) (ove si son niesse in evi-
denza soltanto le variabili che non sono variabili d'integrazione), si ha
cioè:

^1i!y'(C1,...?Cn?Cl?.-.?Cn) • (3)
¦p1 271-1

Ebbene, proveremo (nn. 5, 6) i due fatti fondamentali seguenti:

a) Se (Ci»- • •> CJ ^ interno a r2n-1, la funzione g è indipendente dalle
variabili Ci » • • • » Cn »

e ^isulta quindi funzione analitica regolare di
Ci,•.-,£.;

b) Se (Ci>« • •> Cn) ^ esterno a F2n__lf la funzione g è identicamente nulla.

Dimostrazione del teorema d'Hartogs

4. Una volta stabiliti a) e b), la dimostrazione del teorema di Hartogs
si ottiene immediatamente seguendo R. Fueter. Invero, poiché per ipotesi
f(zl9...,zn) è analitica regolare su F2n_l9 in ogni punto M di F2n_x

f(z1,..., zn) è sviluppabile in una série w-pla di potenze, ed esiste un'iper-
sfera di centro M e raggio massimo, nel cui interno la série converge. Al
variare di M su F^^ i raggi délie ipersfere hanno un minimo non nullo,
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corne si prova con un ragionamento consueto ; perciô la f(z1,..., zn)

esiste ed è regolare in tutto uno strato 2w-dimensionale, Z2n, compren-
dente all'interno Aw-i- Sia r2n_x un'ipersuperficie chiusa appartenente
a Z2n, interna e prossima a F2n_x. Se (£x,..., £n) è un punto interno allô
strato Z f2n, contenuto in U2n e delimitato da r2n_t e i^n-i >

la formula (2),
applicata nel dominio Ẑ 2n > ^

(71—1)
CO

con convenienti orientazioni di F2n_1 e

Ora, in virtù di b) il secondo intégrale è nullo, onde risulta,per (Ci,..., Çn)
i
2« >interno a Z

e poiché il secondo membro délia précédente rappresenta, in virtù di a),
una funzione analitica regolare in ogni punto (fl5..., £w) interno a F2n_1}

questa funzione coincide con /(Ci>-.., £n) per (d,..., Cw) interno a 27^»
e si conclude col teorema d'Hartogs.

Dimostrazione del teorema a)

5. Per stabilire l'affermazione a), ricordiamo ehe la forma difïerenziale
co a secondo membro délia (3) è integrabile, vale a dire che si annulla iden-
ticamente il differenziale di Cartan dco. Questo fatto, che è di verifica
immediata e che trovasi nel lavoro citato in 2), trae seco, in base ad un
teorema fondamentale, che esiste una forma difïerenziale di grado 2n — 2,

D, délia quale co è differenziale esatto : dû co7). La dimostrazione
stessa del teorema citato offre il mezzo di costruire una forma Q (che, si

sa, risulta definita soltanto a meno délia più générale forma differenziale
dello stesso grado, la quale sia a sua volta differenziale esatto di una forma
di grado 2n — 3). Si ottiene cosi, per esempio,

zlt..., zn,

7) Cfr. p. es. E. Goursat, Leçons sur le problème de Pfaff, Paris, J. Hermann
(1922), pag. 106.
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n

ove si è indicato, per semplicità di serittura, con r2 ^ a(za — £a) (za— C«)
1

il quadrato délia distanza del punto (£i>- • •> Cn) dal punto (zx,..., zn)
ehe scorre su JT2n--i • La verifica délia relazione dQ co è anch'essa imme-
diata.

Si osserverà che nella (4) la variabile zx ha un ufficio privilegiato di
fronte aile altre variabili z2,..., zn. Ma è évidente, a causa délia simme-
tria délia forma co rispetto a tutte le variabili zx,..., zn, che una forma
Q\ analoga alla (4), nella quale Fufficio privilegiato sia tenuto anziché
dalla variabile zx, da un'altra qualunque délie variabili z2,. zn, sod-
disfa ancora alla dQ1 co.

Se nelle forme Q ed co si pensa ora Ci corne un parametro indipendente,
[dQ\ dto

e si dériva rispetto ad esso, si ottiene : d I -z=-1 ~z=r • D'altronde
\c/Ci/ 9fi

dalla (4) si ha:

dQ n

2^( l^1/^) C) ^rf)(5)

donde appare che, quando il punto (d,..., fn) si mantiene interno a

r2n_t, la forma —^- è regolare ed uniforme su i^w-i (il c^eî si badi, non

accade per la forma Q).

Ciô posto, si ha dalla (3) derivando rispetto a £j_ :

dg
__ fa—1)1 /¦ 3û>_

^ (6)

Ma la forma —=r- è differenziale esatto di una forma regolare ed uni-
9 Ci

forme su i^n-i* e quindi l'intégrale a secondo membro délia (6) è nullo,
corne segue dalla formula di Green-Stokes générale8).

8) La formula générale di Oreen Stohes (che esprime Puguaglianza fra l'intégrale sopra
una varietà a p -j- 1 dimensiom del differenziale esterno dco di una forma co di grado p
e l'intégrale di oj sul contorno délia varietà stessa, cfr p es F Seven, Lezioni di ana-
hsi, Zaniehelh,Bologna (1942),II1, pag 381)puo facilmente estendersi al campo eomplesso.
D'altronde, per Fapphcazione che qui ne occorre, basta pensare di aver preventivamente
separato la parte reale e l'immagmaria nella (6), e passare aile variabili reali xl9..., xn>
2/i> • • •> Vn mediante la trasformazione z0 x} + iy3, z} x3 — %y3 tenendo eonto dell'in»
varianza dell'operazione di differenziazione esterna di fronte ai cambiamenti di variabili.
Cfr. il mio lavoro cit in 2), particolarmente al n. 2.

23 CommentarU MathematicI Helvetici



La funzione g(Çx,..., C«, Ci,..., Cn) non dipende dunque da Ci ; simil-
mente si dbnostra ch'essa non dipende da C2,..., Cn. Cioè g è funzione
analitica di d,..., fw, per (Ci,..., Cw) interno a Aw-i9)* e il teorema a)
è cosi stabilito.

Dimostrazione del teorema b)

6. Passiamo a dimostrare il teorema b). Si suppone qui il punto
(Ci,--, Cn) estemo a r2n^.

Le argomentazioni sviluppate nel n. 5 sussistono inalterate in questo
easo ; onde intanto risulta ancora g funzione analitica di Ci, • • •, Cn •

D'altra parte, essendo jT2«-i limitata, è finito il max | z1 | sopra -F2n-i >

che indicheremo con ju. E allora, per tutti i punti (d,. • • Cn) esterni a
Jn2n_1, soddisfacenti alla condizione | Ci | > p, altresi la forma Q data

dalla (4) risulta regolare ed uniforme su F2n_1, corne già —^—. Inqueste
9 Ci

condizioni si conclude, analogamente a sopra, che è nullo l'intégrale a
secondo membro délia (3).

La funzione g, analitica in Ci, • • •, Cn, deve dunque essere nulla per
I Cil >lLt, onde è nulla identicamente. Cosi è provato anche il teorema b).

IL
Richiamo délia seconda formula intégrale

7. Corne si è detto al n. 1 daremo ora una nuova dimostrazione del
teorema di Hartogs, esponendola per semplicità nel caso di n 2 varia-
bili, e limitandoci all'ipotesi délia convessità del dominio D4 contornato
dalla ipersuperficie /"3, ove è assegnata la funzione f(zl9 z2). La dimostrazione

è basata sulla estensione délia formula di Cauchy nella seconda

forma, che cominciamo col ricordare.
Se (Ci, C2) e un punto interno a r3, ho dimostrato, nellavoro citato

in3), che i piani caratteristici z2 C%, %i Ci segano F3 rispett. secondo
due linee chiuse C^, G^, che sono tra loro allacciate sopra F3 corne due
anelli di una catena. Se il punto (£x, C2) si muove entro D4, C^ e C^%

si conservano allacciate e non s'incontrano mai, fin tanto che il punto
non cada su jT8.

Sia Oçt una superficie, del tipo topologico del toro, descritta sopra JT3

da un piccolo circuito allacciato con C^, che scorra lungo G^ stessa

senza mai incontrare ne C^, ne G^2. Sia a^2 una superficie analogamente
9) Cfr. il lavoro ora riehiamato, al n. 1.
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ottenuta facendo scorrere lungo C^ un piccolo circuito allacciato con
Cç2. Tenendo conto che l'ambiente JP3 è uno spazio sferico, si vede facil-
mente che, con una deformazione continua, si puô passare da una superficie

del tipo di o^ ad una del tipo di o^, senza incontrare C* C* e
restando entro F310). Ciascuna délie due superficie a^, a^% è dunque
allacciata simultaneamente, ed in maniera simmetrica, con Cç C^t, per
deformazioni sopra F3.

Ebbene, sia f(zl9z2) analitica regolare nel dominio convesso D4, con-
torno F3 incluso. Se a è una superficie qualunque sopra jr8, del tipo
topologico del toro, allacciata con C^, C^ nel modo descritto (e quindi
riducibile per deformazione, senza incontrare C^ C^%, tanto a oy che
a a^)9 il valore délia f(zl9 z2) nel punto (Ç19 f2), si esprime colla formula:

__ l C /(gi^2) d(z!9- - 4^2 J (Zi_Ci)(z2_
r x __ l C /(gi^2) d(z!9z%)

i, C) - - 4^2 J (Z_C)(zC) • (7)

Seconda dimostrazione del teorema d'Hartogs

8. Ciô ricordato, suppongasi sia nota la f(zl9z2) soltanto sopra F39 e

ivi sia analitica e regolare, nelle condizioni del teorema di Hartogs. Allora,
in ogni punto (Ci, C2) interno a jT3, puô considerarsi la funzione g(Ci, £2)9

definita dalla

1 p f(? '

I ngl>'
4^t2 J (*1 — < C.)

(8)

essendo a(d, f2) una superficie tracciata sopra F39 dipendente dalla posi-
zione del punto (Çl9 £2) e simultaneamente allacciata con le linee C^, Cç
nel modo sopra espresso. È chiaro che g(Cl7 C2) resta univocamente
definita dalla (8) nonostante Farbitrarietà délia scelta délia superficie
^(Cij C2) (subordinatamente aile condizioni topologiche indicate): infatti,
in base al classico teorema di Cauchy-Poincaré, il secondo membro délia
(8) non varia comunque si deformi o(Çl9 £2) sopra Fz senza incontrare
C+

9
C*

9 perché, cosi facendo, non si viene ad attraversare alcuna singo-
larità délia funzione integranda.

10) Ciô risulta a priori nel lavoro citato, poiché ivi si dimostra che una particolare
superficie (toro circolare dello ^4), che è definita in modo simmetrico rispetto a z1 e za,
puô ridursi per deformazione a 0V A causa délia simmetria indicata, del pari accade che

la superficie puô ridursi a C^ ; e quindi O^ puô ridursi a <T^, e viceversa.
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Inoltre la g(Çx, C2) definita risulta analitica regolare nelle variabili Ci, C2 •

Ci si convince immediatamente di ciô, riflettendo che una superficie
o(Q, C?) che sia adatta a definire g(Ç1} Ç2), mediante la (8), in un punto
qualunque fissato (Cj, Cl) interno a F3, è altresi adatta a definire la fun-
zione stessa per tutti i punti (d, C2) di un intorno abbastanza ristretto
di (Cj, C§), in quanto, se cr(C?5 C2) è allacciata con le linee C^o, C^o, è allac-

eiata altresi con le linee C^, 0^, che son molto prossime a C>o, C>o,

quando (Ci, C2) sia molto prossimo a (Q, Q). Pertanto, nell'intorno di
(Ci, Q) si puô supporre fissa la superficie d'integrazione nella (8), e

quindi g(d, C2) risulta funzione analitica regolare di Ci, C2> in quel-

Fintorno, corne la è la funzione integranda ^ * ' 2'—— per qua-
(z1 — Ci) (^2 — C2)

lunque posizione di (z1,z2) sopra <y(CÎ, C^)-

9. Abbiamo già osservato (n. 4) che, essendo f(z19 z2) analitica regolare
sopra jn3, essa risulta senz'altro definita e regolare in tutto uno strato
4-dimensionale UA comprendente Fz alTinterno, ed in particolare in
uno strato Z[ compreso tra Fz e una ipersuperficie r£ interna af3e
prossima ad essa.

Si consideri nello Sà {xx, x2, yx, y2), essendo z± x1 + iy±, z2 x2 + iy2,
il fascio di iperpiani paralleli rappresentati dall'equazione

y2 + K 0, (9)

al variare del paramétra reale A 1X).

Sia %' |—| X" {X1< X") Fintervallo (finito) di variabilità del parametro A,

entro il quale, estremi inclusi, Fiperpiano (9) incontra Fz, e fuori del

quale non ha alcun punto comune con Fs. I due iperpiani y2 -\- Xr 0,
y2 -\- Xr -{- s 0 staccano dal dominio i>4 circondato da Fz una por-
zione che, per e positivo abbastanza piccolo, è contenuta nello strato Z^
delimitato da Fse Fz. Questa porzione, che indicheremo con Z'±, risulta
convessa e delimitata da un pezzo Fz delFipersuperficie Fz e da un pezzo
773 dell'iperpiano y2 + X1 + e 0

Ebbene facciamo vedere che, in ogni punto (Ci, C2) interno al dominio
convesso Zi > il valore délia funzione /(Ci, C2) e quello délia funzione
9(Ç 1 > C2) si possono esprimere colla identica formula intégrale : onde le due
funzioni coincidono in Z* e quindi in tutto Z[; ciô che prova il teorema
d'Hartogs.

11 Tutte le considerazioni successive potrebbero ripetersi più in générale assumendo
in luogo di (9) il fascio di iperpiani paralleli ax2 -\- by2 + X 0, owero axx -f- by1 + X =« 0,
essendo a, b costanti reali arbitrariamente fissate.
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Basta all'uopo niostrare che tra le superficie a(d, C2) tracciate su F3
e simultaneamente allacciate con C^, C^2, che possono assumersi corne
superficie d'integrazione nella (8), ne esistono di quelle che sono al tempo
stesso tracciate sul contorno F3 + nz di 2J[ ed allacciate simultaneamente
con le linee C^, 0^ intersezioni di JT3 + i73 rispett. con i piani caratte-
ristici z2 C2, zt Ci • Ora il piano caratteristico z2 C2 appartiene
all'iperpiano del fascio (9) y2 — r\% 0 (essendo £2 f 2 + ^2)? ^ quale
non ha punti comuni con iJ3, onde la linea C^ è tracciata per intero su
JT3 e quindi coincide con C^. In conseguenza, una superficie del tipo a^
considerato al n. 7, che sia abbastanza prossima alla linea CÇi O^,
soddisfa senz'altro al requisito espresso.

(Reçu le 5 janvier 1943.)
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	Sopra una dimostrazione di R. Fueter per un teorema di Hartogs.

