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Stetige Lôsungen linearer Gleichungssysteme

Von Beno Eckmann, Lausanne

1. In dem System
n

Eatkxk 0 *= l,...,r<n (1)

von r linearen homogenen Gleichungen mit n Unbekannten xx,..., xn
sollen die Koeffizienten atk atk(u) stetige réelle Funktionen einer
Variablen u sein, welche einen Raum R durchlauft (es wird sich im
speziellen um einfache kompakte metrische Raume handeln). Unter
einer stetigen Lôsung dièses Systems (1) verstehen wir n stetige réelle
Funktionen xk(u) von u, welche fur aile u e B die Relationen

n

^alk(tt)a;jW 0 i l,...,r
k-l

erfullen. Wir werden im folgenden die Beiworter ,,reell" und ,,stetig"
meistens weglassen. Lôsungen des Systems (1) heiBen linear unabhangig,
wenn sie fur aile u e R im ublichen Sinn linear unabhangig sind ; eine

linear unabhangige Losung ist also eine solche, die nie (d. h. fur kein
u € R) die triviale Null-Losung wird.

Unser Problem lautet in der allgemeinsten Form folgendermaBen :

I. Ein Oleichungssystem (1) sei gegeben, dessen Koeffizientenmatrix
(atk(u)) far allé u e R den Rang r hat. Besitzt es linear unabhangige
Lôsungen, bzw. welches ist deren maximale Anzahl?

So allgemein ist die Frage naturlich kaum zu beantworten; dagegen
kann man bei spezieller Wahl des Raumes R mit Hilfe topologischer
Methoden einige Ergebnisse finden, die mit verschiedenen geometrischen
und algebraischen Problemen atjfs Engste verknupft sind. Wir werden
auf dièse Zusammenhânge in folgenden Fallen eingehen :

a) R sei ein Elément in einem Euklidischen Raum (etwa ein Wurfel
oder eineVollkugel), allgemeiner ein in sich zusammenziehbarer Raum.
Dann besitzt jedes System (1), das durchwegs den Rang r hat, n — r
linear unabhangige Lôsungen. (Satz von Wazewski [1], vgl. Nr. 3).

b) R sei eine g-dimensionale Sphâre, d. h. die Koeffizienten aik seien

Funktionen von q + 1 reellen Variabeln, deren Quadratsumme 1 ist. Es
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ist naheliegend, in diesem Fall miser Problem mit den Hurewicz'schen
Homotopiegruppen1) in Zusammenhang zu bringen; man kommt so zu
Aussagen, die in Nr. 5 (Satz 2—4) formuliert sind. — Fur q n — 1

tritt als Spezialfall die Frage nach der Existenz eines Systems von
Richtungsfeldern in der Sphâre S71"1 auf.

c) Wir wâhlen fur R die Mannigfaltigkeit aller Koeffizientenmatrizen
(aik) des Systems (1) vom Rang r, und die Funktionen aik(u), u e R,
sollen einfach die Identitat von R darstellen; d. h. die Koeffizienten des

Systems (1) sollen aile reellen Werte annehmen, fur welche die Matrix
(aik) den Rang r hat, und wir suchen Lôsungen von (1), die stetig von den
Koeffizienten aik abhàngen und durchwegs linear unabhângig sind. Wir
werden zeigen (Satz 5): Es gibt Iceine derartigen Lôsungen, wenn n — r
gerade ist, und wenn n — r 3 oder 7 und r ^ 2 ist. Hingegen sind
solche Lôsungen in folgenden Fàllen bekannt : Fur r n — 1, fur
gerade n und r 1, ferner (vgl. Nr. 8 am SchluB) fur n 7 und r=2.
Daraus folgt naturlich fur dièse Zahlen n und r auch die Existenz
einer nie-trivialen Lôsung von (1) bei beliebigem R.

Der Beweis dieser Aussage (Satz 5), das Hauptziel der vorliegenden
Arbeit, wird im § 2 erbracht; er beruht im Wesentlichen auf der Best

immung von Homotopiegruppen gewisser Mannigfaltigkeiten Vn m (so
bezeichnen wir die Mannigfaltigkeit aller reellen orthogonalen Matrizen
von n Kolonnen und mZeilen2)) und verlâuft im Rahmen der Théorie der
Faserungen [4]. Im § 1 iibertragen wir unser allgemeines Problem I in die
Sprache dieser Théorie, die sich auf Matrizen stetiger Funktionen, um die
es sich hier handelt, besonders gut anwenden làBt; anschlieBend werden
die Fâlle a) und b), wo R ein Elément bzw. eine Sphàre ist, besprochen,
wobei es sich zum Teil um fast triviale Betrachtungen oder nur um andere
Formulierungen schon bekannter Satze und Beweise handelt. — In
einem Anhang kommen wir nochmals auf den Fall c) zurûck und be-
trachten eine stetige Lôsung als Verallgemeinerung des Vektorproduktes
von r Vektoren im w-dimensionalen Euklidischen Raum Rn\ wâhrend
das ubliehe Vektorprodukt (fur diejenigen n und r, fur die es uberhaupt
definiert ist) multilinear ist beziïglich der Komponenten der r Vektoren,
verlangen wir vom verallgemeinerten nur, daB es stetig von ihnen ab-
hàngt, und im ûbrigen soll es dieselben Eigenschaften haben. Die unter
c) genannten Resultate lassen sich auch als Aussagen ùber solche ,,ste-

1) Définition s. [2], S. 114, ferner [3], S. 203. — Die Nummern in eckiger Klammer []
beziehen sich auf das Literaturverzeichnis am SchluÛ der Arbeit.

2) Dièse Mannigfaltigkeiten hat Stiefel ([6], S. 8fî.) betrachtet; vgl. auch [4], S. 152.
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tigen Vektorprodukte" deuten. Das Vektorprodukt von zwei Vektoren
steht aber aueh mit andern topologischen und algebraischen Fragen
im Zusammenhang (Nr. 9).

Es sei noch darauf hingewiesen, daB aile Sâtze, in denen ausgesagt
wird, daB ein spezielles System (1) keine nie-triviale Lôsung besitzt
(also insbesondere Satz 5), auch in der folgenden Form ausgesprochen
werden kônnen:

Wenn n Funktionen fk(u) fur aile u e R die Relationen

S aik{u)fk{u) 0 i l,...,r
erfûllen, so besitzen sie eine gemeinsame Nullstelle uoeR. Sind dabei die
gegebenen Funktionen aik(u) Polynôme reeller Variabeln (etwa, wenn R
eine Sphàre ist, der Koordinaten), und wâhlt man fur die fk(u) beliebige
Polynôme derselben Variabeln, so erhâlt man Sâtze der reellen Algebra,
nàmlich Existenzsâtze fur Nullstellen von Polynomen, die gewissen
Relationen genûgen; dièse sind im Falle von Satz 5 besonders einfach.

Man kann naturlich unsere Frage I auch im Komplexen stellen, d. h.
sowohl fur die Koeffizienten aik(u) als auch fur die Unbekannten xk(u)
komplexe statt réelle Funktionen zulassen; die hierbei dem Fall c)

(Satz 5) entsprechende Fragestellung habe ich fur r 1 an anderer
Stella [7] behandelt.

§ 1. Matrizen, deren Elemente stetige Funktionen sind

2. R sei ein kompakter metrischer Raum, und aile im folgenden vor-
kommenden Funktionen von u e R sollen reell und stetig sein. Mit
Anm(R) bezeichnen wir eine Matrix von n Kolonnen und m Zeilen, deren
Elemente Funktionen von u e R sind.

Mit unserem Problem I ist die folgende Frage nahe verwandt:

II. Anr{R) sei durchwegs, cZ. h. fur aile u e R, orthogonal; kann man
dièse Matrix durch Hinzufugen von l Zeilen zu einer durchwegs orthogonalen
Matrix Anm(R), m r + h ergânzen, bzw. welches ist die grôfite Zahl
l Z* (0 < Z* ^ n — r), fur welche das môglich ist?

Der Zusammenhang mit I ist leicht herzustellen : Aus der Koeffizienten-
matrix des Systems (1) bilde man durch Orthogonalisieren eine

durchwegs orthogonale Matrix Anr(R); zu dieser gehôrt eine gewisse
Zahl Z*, und Z* ist offenbar gleich der Anzahl der linear unabhangigen
Lôsungen von (1).
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Man kann die Frage II in verschiedener Weise auffassen: Einerseits
soll man fur spezielle, besonders wichtige Matrizen Anr(R) die Zahl Z*

bestimmen; andererseits sucht man etwas allgemeiner bei gegebenem
R, n und r eine Ûbersicht iiber aile môglichen Matrizen AnT(R) zu
gewinnen und anzugeben, fur welche Matrizen etwa Z* 0 und fur
welche Z* > 0 oder sogar Z* n — r ist. Es gibt natûrlieh immer
Matrizen Anr(R), fur welche Z* n — r ist, nâmlich die konstanten
Matrizen. Und es gibt einfache Matrizen Anr{R) mit Z* 0, etwa

(n=3ir=l,R Kugelflâche, gegeben durch Koordinaten ux, u2, uz
3

mit Z v% 1) _,.
<-i A3A{R) K,t*2,%) ;

eine zweite, durchwegs orthogonale Zeile hinzuzufûgen wiirde hier be-
deuten: ein stetiges Feld von tangentialen Einheitsvektoren der Kugel
angeben, was bekanntlich unmôglich ist (vgl. Nr. 5).

3. Die gewunschte Ûbersicht iiber aile Matrizen An r(R) làBt sich,
wenigstens in gewissem Sinne, leichter angeben, wenn man sich der
Sprechweise der Abbildungen in gefaserte Râume bedient. Wir haben ailes,
was man hierbei aus der allgemeinen Théorie der Faserungen benutzt,
schon an anderer Stelle3) ausfûhrlich dargelegt und fassen hier nur die
wichtigsten Begriffe und Sâtze kurz zusammen.

Wir bezeichnen mit Vn^m die Mannigfaltigkeit aller orthogonalen
Matrizen von n Kolonnen und m Zeilen. Vn m gestattet einfache Zerlegungen
in Teilmengen (Fasern), von denen jede aus solchen Matrizen besteht,
die in den ersten r Zeilen ubereinstimmen (r < m). Dièse Zerlegung ist
retrahierbar4), die Fasern sind zu Fn_r w_r homôomorph und der Zer-
legungsraum4) (Faserraum) ist zu VnT homôomorph, da jede Faser durch
die r ersten Zeilen der zu ihr gehôrigen Matrizen charakterisiert wird. Die
Abbildung P von Vn

>TO
auf Fn r, die jedem Punkt von Fn m seine Faser

zuordnet, heiBt Projektion; sie besteht einfach darin, dafî man in den
Matrizen aus Fnm die letzten m — r Zeilen weglàBt.

Die eben beschriebene Zerlegung 3 von Fn m deuten wir gemàB einer
frûher4) gewâhlten Bezeichnung durch

3. y iv y' r n,m I r n—r^m—r r n,r
symbolisch an.

3) s. [4], besonders die §§ 3 und 4. Wir werden verschiedene Teile dieser Arbeit im
folgenden benûtzen.

4) Vgl. [4], § 1, besonders S. 152—153. — Der Fall m n wird zwar dort nicht
behandelt, bietet aber keine Schwierigkeiten.
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Ist / eine Abbildung5) eines Raumes X in Vnm> so nennen wir die Ab-
bildung F Pf von X in Vnr die Spur von / bezuglieh 3 • Im allge-
meinen ist nicht jede Abbildung F von X in Vn r eine Spur (einer stetigen
Abbildung von X in Fnm); aber ein grundlegendes Lemma besagt6),
dafi jede zu einer Spur homotope Abbildung selbst eine Spur ist.

Eine durchwegs orthogonale Funktionenmatrix Anr(B), wie sie in
II genannt wird, bedeutet nun nichts anderes als eine Abbildung von
R in Vny9 und das Problem II lautet mit andern Worten:

III. Ist die durch die durchwegs orthogonale Funktionenmatrix Anr(R)
gegebene Abbildung von R in Fnr bezuglieh der Zerlegung 3 von Vnm eine

Spur, bzw. welches ist die grô/ite Zahl m m* r -\- l* (^ n), fur welche

dies der Fail ist?

Nach dem oben erwàhnten Lemma lautet die Antwort auf dièse Frage
fur zwei homotope Abbildungen gleich. Bezeichnen wir zwei orthogonale
Matrizen Anr(R) und A'n r(R) als homotop, wenn die zugehôrigen
Abbildungen von R in Fnr homotop sind, so lautet also die Antwort auf die

Frage II (oder III) fur zwei homotope Matrizen Anr(R) gleich, bzw.
zu homotopen Matrizen Anr(R) gehôrt dieselbe Zahl l*.

Eine Abbildung von R in Vn r, bei welcher das Bild ein Punkt ist (also
eine konstante Matrix Anr(R)) ist, wie schon oben bemerkt, immer eine

Spur. Also ist jede auf einen Punkt zusammenziehbare (nullhomotope)
Abbildung von R in Vnr bezuglieh 3 euie Spur, selbst fur m n.
Also gilt

Satz 1. Wenn die orthogonale Matrix An r(R) einer Iconstanten Matrix
homotop ist, so kann man sie zu einer quadratischen orthogonalen Matrix
Ann(R) ergânzen (also l* n — r).

Ist speziell der Raum R in sich auf einen Punkt zusammenziehbar, so

ist jede Abbildung von R nullhomotop, also lâfit sich Satz 1 auf jede Matrix
An r(R) anwenden; darin ist der Satz von Wazewski [1] enthalten, den
wir in Nr. 1 erwâhnt haben.

4. Die folgenden fast trivialen Bemerkungen machen es verstandlich,
daB nicht jede Matrix Anr(R) zu einer Matrix ^4ww(i?) mit m > r er-
gânzt werden kann, daB vielmehr hiezu besondere Eigenschaften not-
wendig sind.

a) An r(R) sei eine orthogonale Matrix, fur welche Z* > 0 ist. Vertauscht
man in Anr(R) zwei Zeilen (fur r ^ 2), oder multipliziert man eine Zeile

6) es sollen ausschlieBlich stetige Abbildungen vorkommen.
•) s. [4], S. 165.
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mit — 1 (fur r ^ 1), so entsteht eine zu An r(R) homotope Matrix

Beweis: alf..., ar seien die Zeilenvektoren von Anr{R), a0 der Zeilen-
vektor, der nach Voraussetzung immer hinzugefugt werden kann
(ûg 1, Ct0- <Xt 0 fur i 1,. r). In dem von al9 d2, a0 aufgespann-
ten Raum kann man cti mit a2 durch eine Drehung vertauschen. Ebenso
kann man in der durch ax, Ct0 aufgespannten Ebene ax durch euie Drehung
in — cti uberfuhren.

b) Aus einer orthogonalen Matrix Anm(R) kann man auf (™) Arten
r ^ m verschiedene Zeilen auslesen und zu einer Matrix An r{R) zusam-
menfugen. Aile Matrizen Anr(R), die man so erhalt, sind homotop.

Beweis : Es sei etwa r < m (fur r m ist nichts zu beweisen) und
Anr(R) aus den Zeilenvektoren atl,..., ûîr, Afnr(R) aus den Vektoren

an?..., aJr von Anm{R) gebildet. Wegen a) konnen wir annehmen, dafi
jt z£ jp ist fur l ^ p. Dann wird die Ûberfuhrung von An r(R) in Arn r(R)
durch eme Matrix B geleistet, die von u e R und einem Déformations-

parameter nO ^ t ^ — I stetig abhangt und deren Zeilenvektoren

bi,..., br durch

bt <xH cos t + an sin t fur il ^ ^
1=1,...,r

bi ûtî fur f, y,

gegeben sind ; in der Tat ist dann fur aile t zwischen 0 und —

b] cos21 + sin21 1 bzw. b2^ a^ 1

und

br b* 0 fur l ^p wegen ix ^ jv

d. h. B ist fur aile t orthogonal.
Zu einer orthogonalen Matrix Anm(R) gehôrt also fur jedes r ^ m

eine wohlbestimmte Abbildungsklasse %T von R in Vn r.

6. Wir wahlen jetzt fur R eine Sphare 8Q. Die Klassen der Abbildungen
von 8q in Vn m sind die Elemente der ^-ten Homotopiegruppe1) von
Vnm,Ttq(Vn m) (man kann von der Festhaltung des Bildes eines Punktes
der SQ absehen7)). Nach den Ausfuhrungen von Nr. 4 gehort zu einer

7) nach der Terminologie von Eïlenberg [9] ist Fn,w ,,g-simple" fur aile qf da fur
m^Sn — 2 Fnttn einfach zusammenhàngend, und Fn,n_1 ein Gruppenraum ist.
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orthogonalen Matrix An m(8q) fur jede ganze Zahl r(0 < r ^ m) ein wohl-
bestimmtesElément %r von nq(Vn r), daswir die r-te Homotopieklasse der
Matrix Anm(8q) nennen. Unsere Fragestellung (I, II, III) lauft darauf
hinaus, festzustellen, welche Elemente von 7iq{Vnr) als Homotopie-
klassen von Matrizen An m(8q) auftreten kônnen.

Nun ist es naheliegend, die Beziehungen heranzuziehen, die in der
Faserung

o y y _ y

wie in jeder retrahierbaren Zerlegung zwischen den Homotopiegruppen
des Zerlegungsraumes Vn r und denen des gefaserten Raumes Vn m

bestehen, nàmlich die ,,Hurewicz'schen Formeln"8). Um sie zu formu-
lieren, muB man auch die Homotopiegruppen nq Vn_r m_r) der Faser,
sowie gewisse mit der Zerlegung 3 verknûpfte Untergruppen ^«(3) von
nq{Vn_rm_r) und <^a(3) von 7tq(Vnm) betrachten: die Elemente von
y>q(3) sind die Klassen solcher Abbildungen von Sq in Vn_r m_r, die in
Vn m nullhomotop sind; die Elemente von (pq(S) sind die Klassen solcher

Abbildungen von SQ in Vnm, die sich auf eine Faser zusammenziehen
lassen (d. h. die einer Abbildung von Sq in eine Faser homotop sind).
Ferner tritt die Untergruppe Pnq(Vnm) derjenigen Elemente von
nq{Vn r) auf, die durch Projektion P (d. h. durch Weglassen der letzten
m — r Zeilen in den Matrizen Anm(8q)) aus Elementen von nq(Vnm)
hervorgehen — das sind gerade die r-ten Homotopieklassen von Matrizen

Die Hurewicz'schen Formeln lauten8):

q(FWfJ ^ wU3) 9>2> (2)

(Vn%m) ~ nq(FB,J/Vq(3) q>U (3)

^ nq {Vn_r,m_r) IVq(3) q > 1 (4)

Wir werden von den Formeln (3) und (4) spâter (Nr. 8) Gebrauch
machen; an dieser Stelle wollen wir zunâchst nur darauf hinweisen, da8

Pnq Vn%m) eine Untergruppe von nq Vn%r) ist, also :

Die, r-ten Homotopieklassen aller Matrizen Anm(8q) bilden eine

Untergruppe von 7iq(Vnr).

8) s. [4], S. 163, Satz E, und S. 166, Formeln (11).
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Wenn dièse Untergruppe nq(Vn r) ist, so heiBt das: aile Matrizen
Anr(8q) kônnen zu Matrizen Anm(Sq) erganzt werden; wenn sie 0 ist:
nur die einer konstanten Matrix homotopen Matrizen kônnen erganzt
werden.

Spezialfaile :

a) q n — 1 ; es handelt sich um Matrizen Anm(S71^1), deren Elemente
n

Funktionen von n Variabeln %,..., un mit Zu\ 1 sind. Die erste

Homotopieklasse einer solchen Matrix ist ein Elément von nn__1 Vn x),
also, da Vnl zur Sphàre S71-1 homôomorph ist, durch eine ganze Zahl c,
den Abbildungsgrad, charakterisiert, und nn_1{Vnl) ist die additive
Gruppe dieser Abbildungsgrade (unendlicbe zyklische Gruppe); wir
nennen c die Charakteristik der Matrix.

Hat der erste Zeilenvektor der Matrix Anm(8n'-1) die Form

so kônnen wir ihn als Ortsvektor der S71*1 auffassen und die ubrigen
m — 1 Zeilenvektoren als Tangentialvektoren der S71^1, die von ctx stetig
abhângen und immer paarweise orthogonal sind, also ein (m — l)-Feld
in der S71^1 darstellen (vgl. [4], § 14). Die Charakteristik dieser Matrix
ist offenbar 1, und umgekehrt ist jede Matrix Anm{871^1) mit c 1

einer solchen Matrix homotop, die man als (m — 1)-Feld in S71*1

auffassen kann. Es gibt also dann und nur dann Matrizen Anm{S7l'~1) mit
c l, wenn es in der S71^1 ein (m — 1)-Feld gibt; das ist bekanntlich
nicht immer der Fall. Aus der Existenz einer derartigen Matrix folgt
nattirlich, da6 fur die betreffenden Zahlen m und n jede ganze Zahl c als
Charakteristik einer Matrix Anm(S7l'~1) auftreten kann; anders formuliert :

daG fur jede Matrix Anl(S71^1) die Zahl Z* > m — 1 ist (ja sogar fur
jede Matrix Anl(R) bei beliebigem R).

Es sei nun n ungerade, m > 2 und c die Charakteristik von An W(/Sn^1).

Bildet man aus einer Zeile die Matrix Anl(S7l^1)i so ist sie nach Nr. 4 a)

zu — Anl(S7l'~1) homotop; zu A^S71^1) gehôrt der Abbildungsgrad c,
zu — An ^S71^1) der Grad — c, und aus c — c folgt c — 0 Darin
ist der bekannte Satz8a) enthalten, daB es in einer Sphàre gerader
Dimension keine stetigen Vektorfelder gibt.

Bei geradem n dagegen gibt es immer Matrizen An^{S71*1) mit c ^ 0;
man kann sogar zeigen, daB jedenfalls aile geraden Zahlen als Charak-
teristiken von Matrizen Anm{871'-1) auftreten kônnen; hiezu genligt es,
eine Matrix mit c 2 anzugeben:

8a) Satz von Poincaré-Brouwer, vgl. Alexandroff-Hopf, Topologie I (Berlin 1935),
S. 481, Satz III a.
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àik - i 1,..., m
A/ 1 7i

Dièse Matrix ist durchwegs orthogonal ; in der Tat ist
n n

und es ist bekannt und leicht zu sehen, daB etwa fur i 1 die alk eine

Abbildung von S71"1 auf Vnl vom Grade 2 darstellen9). Ob auch ungerade
Zahlen als Charakteristiken auftreten, ist nicht in allen Fâllen bekannt ;

dies ist dann und nur dann môglich, wenn auch c 1 auftritt, also

wenn es in S7^1 ein (m — 1)-Feld gibt. Fur m 2 ist dies der Fall, wie
das bekannte einfache Beispiel

û2 (u2, — %,..., u2ki —

(^ 2 k gesetzt) zeigt. Âhnliche Beispiele gibt es fur n ik und m 4,
und fur n Sk und m 8 ; man erhàlt sie etwa aus der in Nr. 8 (S. 333)
angegebenen 4- bezw. 8-reihigen Matrix mit den Zeilenvektoren
û>tDi(û), •••> indem man k—1 analoge, mit den folgenden Indizes
gebildete Matrizen daneben setzt. Weitere Beispiele dieser Art kann
man leicht aus den von Hurwitz und Radon10) angegebenen ,,lmearen
Scharen orthogonaler Matrizen* ' herleiten, und zwar fur n= 16a-2^i
und m 8a+ 20(j8=0,1,2,3). Aile dièse Beispiele sind iibrigens
nicht nur stetig bezûglich der Koordinaten der S*1'1, sondern sogar
linear. — Dagegen gibt es, wie ich fruher11) gezeigt habe, kein (m — 1)-
Feld fur n 4 k + 2 und m ^ 3.

ZusammengefaBt :

Satz 2. Fur die Charakteristik c einer orthogonalen Matrix Anm{8n"1)
gilt: Wenn n ungerade und m ^ 2 ist, so ist c 0; wenn n 4:k -f- 2

und m ^ 3 ist, so ist c gerade. — Dagegen ist c beliebig fur n 16a-20-&
und m < 8* + 20(0 0, 1,2,3).

Um wieder wie in der Problemstellung I von stetigen Lôsungen linearer
Gleichungen zu sprechen, kônnen wir aile genannten Resultate folgender-
maBen formulieren:

9) Vgl. [4], S. 183—184.
10) Vgl. [11] und [12].
n) [7], Satz I.
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Satz 3. In der Gleichung
«1*1 H Mn*n 0

seien die Koeffizienten at Funktionen von u e S71^1 (d. h. von n Variabeln
n n

u% mit U v%= 1), die nie aile 0 sind, also, wenn man sie zu 2J a\ 1

*=i »=i
normiert, eine Abbildung der S71*1 auf sich vom Grade c bestimmen.
Dann gilt fur die maximale Anzahl Z* linear unabhangiger Losungen
dieser Gleichung:

Wenn n ungerade ist, so ist Z* n — 1 fur c 0, und Z* 0 fur
c ^z 0. Wenn n gerade ist, so ist immer Z* > 0, namlich Z* ^ 8# -f 20— 1

y^r w 16a-2^-fc(/3 0, 1, 2, 3), und sogar l* n — 1 fur gerades c;
dagegen ist Z* 1 fur n ik + 2 und ungerades c.

b) Es gibt Zahlen n, r und q, fur welche jede Matrix An r(Sq) zu einer
Matrix -4nr+1 erganzt werden kann (d. h. wo fur jede Matrix Anr(8q)
die Zahl Z* > 0 ist) : namlich wenn 7tq_1(8n~r~1) 0 ist.

In der Tat ist in der Faserung 3 : ^n,r+i / Vn-r,i Vnir die Faser zur
Sphare S7^^1 homoomorph, und ^<r_1(3) ist eine Untergruppe von
^a_i(/Sn~r~1); nach der Hurewicz'schen Formel (2) ist also Pnq(Vn r+1)

nq(Vn r), d. h. jede Abbildung von Sq in Vn r ist eine Spur.
Die Bedingung 7iq_1{8n~r~1) 0 ist insbesondere in folgenden Fallen

erfullt12):
Satz 4. Fur q < n — r — 1, fur q n — r + 2>5 (also n—r ^ 3),

und fur q > 3 und r n — 2 ist Z* > 0 fur jede orthogonale Matrix

Ferner ist zwar 7rn_i(>Sn~2) ^ 0, aber13) yn_1(3) 0 fur die Faserung
3 : Vn 2 / Ki-i i=Fnl; aZ^o ist Z* > 0 /w jecfe orthogonale Matrix

§ 2. Losungen eines Gleichungssystems, die stetig von den Koeffizienten
abhângen

6. Wir befassen uns in diesem Paragraphen mit einem Spezialfall der

Fragestellung I (bzw. II, III) und beweisen:

Satz 5. Das Oleichungssystem
n

Z aikxk 0? t 1,. .,r
*=i

12) Vgl die Zusammen^tellung uber die Homotopiegruppen der Spharen m [4], Nr. 12,
S. 178—179.

18) s. [4], S. 186 (Satz 24 und 24').
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soll durch Funktionen xk fk(ally..., anr) gelôst werden, die fur aile
Matrizen (alk) vont Rang r stetig sind und nicht gleichzeitig verschwinden.
Solche Lôsungen gibt es nicht, wenn n — r gerade ist, und wenn n — r 3

oder 7 und r ^ 2 ist.

Damit ist der folgende, an die Form II unseres Problems anknupfende
Satz gleichbedeutend : Es sei R Fwr, und die durch die Matrix
^¦n,r(Vntr) gegebene Abbildung von Fn r in sieh sei die Identitàt von
Vn r ; dann ist fur dièse Matrix und fur die genannten n und r die Zahl
Z* 0. Und wenn wir sehlieBlich die Sprache der Faserungen (III) ver-
wenden, so erhalten wir den mit Satz 5 aquivalenten

Satz 5'. In der Zerlegung 3 : Fnw/Fn_r>m_r Fnr ist die Identitàt von
Vn r keine Spur, a) wenn n — r gerade, b) wenn n — r 3 oder 7 und

r > 2 ist.

Wir nennen allgemein eine Abbildung j in einen gefaserten Raum,
deren Spur Pj die Identitàt des Zerlegungsraumes ist, eine Schnitt-
flàche (die Bildmenge trifft jede Faser in genau einem Punkt). Es handelt
sieh also darum, in den genannten Fâllen zu zeigen, daB die Zerlegung 3
keine Schnittflâche besitzt; und zwar genùgt es offenbar, dies fur
m r -f- 1 zu beweisen. Wir beschrànken uns also jetzt auf die Zerlegung

Zunâchst sieht man leicht :

Hïlfssatz. Wenn ^n^r eine Schnittflâche besitzt, dann auch 3n-i,r-i«

Beweis : Eine Schnittflâche von $nJ sei durch die orthogonale Matrix
An r+1(Vn r) gegeben; die ersten r Zeilen stellen die Identitàt von Vnr dar,
wâhrend die Komponenten des (r+l)ten Zeilenvektors ar+1 der Matrix
Funktionen der r ersten Zeilenvektoren sind:

ar+1 /(<*!,..., ar).

Setzen wir speziell ctr e (0, 0,..., 1), so hat sowohl

b /(alî...,ar_1, e)

als auch jeder mit c^ e vertrâgliche Vektor cti,..., ar_! die letzte Kom-
ponente 0 ; lassen wir sie weg, so erhalten wir Vekfjoren û{ û^_x, b ',
die wir als Zeilenvektoren einer orthogonalen Matrix von n — 1
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Kolonnen und r Zeilen auffassen kônnen, deren Elemente stetige Funk-
tionen der a[,..., a'^ sind, d. h. stetige Funktionen in Vn_lr_1\ und
zwar stellen a[,..., a£_i die Identitàt von Vn__x r_x dar, wàhrend hr stetig
von ihnen abhàngt. Dièse Matrix Atn_1 r{Vn_1 r_x) bedeutet also eine
Schnittflàche von 3n-i,r-i-

Oder umgekehrt : Wenn $n^ keine Schnittflàche besitzt, dann gilt das-
selbe fur 3n+PJ+p(p ^ 0), d. h. fur aile 3w',f m*t derselben Differenz
n! — r ' n — r und mit rf ^ r.

Um den Satz 5f zu beweisen, genûgt es also zu zeigen, daB a) die
Zerlegung 3n,i m^ ungeradem n, b) die Zerlegung 3w,2 m^ n 5 oder 9

keine Schnittflàche besitzt.

7. DaB die Zerlegung

bei ungeradem ?i keine Schnittflàche besitzt, ist ein wohlbekannter Satz.
Denn Vnl ist zur Sphâre S71-1 homôomorph, und eine Schnittflàche wàre
durch eine Matrix An^{Sn~x) gegeben, deren erste Zeile die Identitàt
von Sn~1 darstellt, und deren zweite Zeile man als stetiges tangentiales
Vektorfeld der S71-1 auffassen kônnte — und das gibt es bei ungeradem
n bekanntlich 8a) nicht. (Oder, um an Satz 2 anzuknùpfen: ^^(aS^-1)
miïBte die Charakteristik c 1 haben, was bei ungeradem n nicht
môglich ist.)

Weniger einfach dagegen scheint der Beweis der Behauptung b) zu
sein, daB es in den Zerlegungen 3s,2 un(i 3s,2 keine Schnittflàche gibt.
Wir erbringen ihn mit Hilfe spezieller Homotopiegruppen der auf-
tretenden Mannigfaltigkeiten. Ausfuhrlich geschrieben handelt es sich

um die Zerlegungen

3n,2 : FWt8/ Fn_M Vnj2 furn 5 und 9

Vn_21 ist zur Sphàre Sn~* homôomorph, Vn^ zur Mannigfaltigkeit Ln__x

aller orientierten Linienelemente der Sphàre $n-1.
Nach einem allgemeinen Satze14) ist jede Homotopiegruppe eines ge-

faserten Raumes, in dem es eine Schnittflàche gibt, zur direkten Summe
der entsprechenden Homotopiegruppen des Zerlegungsraumes und der
Faser isomorph. Hàtte also 3^,2 in ungerade) eine Schnittflàche, so

mûBte fiir die Homotopiegruppen von FWf3 gelten:

nq(7n%%) ^ nq(Vn%%) + nq{S^) (5)

") s. [4], S. 170, Satz G, II.
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Nun sind aber fur q n — 2 die beiden rechts stehenden Gruppen
bekannt; es ist allgemein12) (wir bezeichnen mit © die additive Grappe
der ganzen Zahlen und mit ©m die Restklassengruppe von © mod m) :

7rn_2(£n-3) ^ ©2 fur n > 6

^ © fur n 5

und ^-2(^,2) ®2 fur ungerades n 13) ;

in der Isomorphie

^2(^,3) ^ ^-2(^,2) + ^-2(^3) (6)

sind also fur n ^ 5 beide Summanden rechts ^ 0. Andererseits werden
wir in der nàchsten Nummer zeigen, da8 fur n 5 und 9 die Gruppe
links unzerlegbar ist, namlieh daB n3(V6 3) ~ © und n1(V9 3) ^ ©4 ist.
Fur n 5 und 9 kann also keine Relation (6) bestehen ; infolgedessen
besitzt die Zerlegung 35,2 bzw. 39 2 keine Schnittflâehe.

Man beachte, daB die Nichtexistenz einer Schnittflâehe nicht etwa
schon aus der Anzahl der Elemente in der betreffenden Homotopie-
gruppe folgt, sondern erst aus ihrer algebraischen Struktur. Gâbe es eine
Schnittflâehe, so miiBte ns(V5 3) ^ © + ©2 statt © und ^7(F93)^
©2 + ©2 statt ©4 sein.

8. Bestimmung von zwei Homotopiegruppen :

Mit diesen beiden Formeln wird auch die Behauptung b) von Satz 5'
vollstàndig bewiesen sein.

"Dm VnZ(n 5 und 9) zu untersuchen, verwenden wir die Zerlegungen

Da der Zerlegungsraum eine Sphâre ist, gibt es in 3w ein Schnitt-
élément15); darunter verstehen wir folgendes: F sei eine (n— l)-dimen-
sionale Vollkugel, Zn~2 ihre Randsphâre, JV ein beliebiger, fester Punkt
der Sphâre S1**1; ein Schnittelement ist eine Abbildung t von F in VnS,
deren Spur Pt das Innere von F topologisch auf S71"1 — N und 2Jn~2 auf
N abbildet; t bilde also Un~2 in die zu iV^ gehôrige Faser ab (dièse
Abbildung tr von 2Jn~2 in eine Faser Vn_1 2 nennen wir den ,,Rand" des

15) s. [4], S. 172. — Wir geben im folgenden ein Schnittelement explizite an, benùtzen
also den allgemeinen Existenzsatz nicht.
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Schnittelementes t). Um ein spezielles Schnittelement t von 3n zu
struieren, wàhlen wir fur F die obère Halbsphàre Hn~x einer Sphàre:

2Ju2i=l, %^0 (einschlieBlich des Âquators £n~2:u1 0). t sei ge-

geben durch die Matrix An ^(H71^1) mit den Elementen16)

*=1,2,3
^tk= àtk — 2utuk9

k l,...,n

Die Spur P£ dieser Abbildung ist die durch

gegebene Abbildung17) von iï^1 auf S71-1; sie bildet das Innere (u± > 0)
topologisch auf Sn~x — N ab, wo iV^ der Punkt alfc ôlk der /S71"1 ist,
und den Rand 27n-2(% 0) auf JV\ Bei dieser Abbildung t wird also der
Rand U71^2 vermôge der Abbildung tr

2 3

auf die zu iVXalfc <$lfc) gehôrige Faser F^_x 2 abgebildet. Dièse
Abbildung tf von 2Jn-2 in Vrn_12 wollen wir nàher untersuchen; als Rand
eines Schnittelementes ist sie nâmlich fur die Struktur der Zerlegung 3n
und fur die Homotopiegruppen von groBer Bedeutung18). Dièse Dis-
kussion wâre zwar fur unsere Zwecke fur aile ungeraden n von Interesse ;

wir kônnen sie aber nur fur n 5 und n 9 ausfuhren (das ist der
Grund, warum in Satz 5', b) nur fur dièse ungeraden n Aussagen gemacht
werden), weil in diesen Fàllen die Struktur der Faser Vn__12 besonders
ubersichtlich ist.

V'n-i,* ist die Mannigfaltigkeit derjenigen Matrizen (atk) aus Fn 3, fur
welche alk ôlk, und a21 an 0 ist. Sie ist homôomorph zur
Mannigfaltigkeit aller an die 8n~2 tangentialen Einheitsvektoren orientierten
Linienelemente), Ln_2, deren Punkte a man durch 2 Vektoren des

16) vgl. die analoge Bildung in Nr. 15 der Arbeit [5].
17) Bezùglich der Eigenschaften dieser Abbildung vgl. [4], S. 183—185; ferner [5],

S. 250, Anmerkung22).
18) vgl. [4], Nr. 10 (S. 171—177), besonders Satz 12.
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<X=

mit <x2 b2=l, ab 0 geben kann; statt der Abbildung tf von
n

2J n~2(u1 0, Z u\ 1) in F^_12 kônnen wir die Abbildung s der Sphâre

$nr-2 (deren laufender Punkt v die Koordinaten vl9..., vn_x hat, £v\ 1)

in I/w_2 betrachten, die durch

gegeben ist.
Das Besondere an den Fâllen n 5 und 9 ist nun, daB die Sphâren

Sz und S7 parallelisierbar19) sind, was zur Folge hat, daB die Linien-
elementrâume Lz und i7 in die topologischen Produkte aus S9 (S7) und
einer Richtungssphâre S2(Se) zerfallen19). Denn mankann jedem Punkt a
von Lp(p 3, 7), d. h. jedem Tangentialvektor von Sp nicht nur den
Punkt Pa der 8P zuordnen, in dem er angreift, sondern auch vermôge
eines Fernparallelismus auf 8P einen Punkt lia einer Richtungssphâre
Sp~1, und zwar derart, daB jedes in einem Punkt angebrachte Richtungs-
buschel topologisch auf S**1 abgebildet wird, d. h. daB a durch Pa und
lia charakterisiert ist. Dièse beiden Zuordnungen Pa und lia kônnen wir
folgendermaBen geben: Es sei a= (a,b), a als Punkt der Sp, b als

Tangentialvektor in a aufgefaBt;

Pa a e 8p, lia ce S^1

wo c (Cx,. cp) mit Hilfe eines ^-Feldes in 8P, d. h. eines Systems
von p Vektorfeldern tX)i(a),. VO^a), die in jedem Punkt a der Sp paar-
weise orthogonal sind, erklârt wird, nâmlich

p p+i
wobei £ c2 £ b2 — 1 ist ; die ct sind also die Komponenten von b be-

zuglich des in a angebrachten, lokalen Koordinatensystems tDx,..., V0P.

Dabei benutzen wir die folgenden bekannten p-Felder :

19) vgl. [6], besonders S. 6, 28 und 45.
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auf 8Z a «!, a2, a3, a4)

tt)i(Cl) :r::::: ^2? ^1 j ^4 9 ^3/

auf aS7 a «!, a2, a3, a4, a5, a6, a7, a8)

tx)2(a) (—»3J — a4? ai> a2? «7» a8?—ab9—a6)

tt)4((l) &5, ^6? tt7, ttg, (Zj tt2, d3, tt4)

tf>7(a) (—a8,—a7, a6J a5,—a4,—a3, a2, aj.

In diesem Sinne kann auch jede Abbildung / eines Raumes in
Lp(p 3,7) durch die Abbildungen Pf in Sp und IIf in aS^"1 charak-
terisiert werden ; insbesondere gehort zu jeder Abbildung / von Sp in Lp
eine Abbildung Pf von Sp auf sich, deren Klasse durch den Abbildungs-
grad c gegeben ist, und eine Abbildung 77/ von Sp auf 8P~1) deren
Klasse wir 7 nennen : c und y bestimmen die Klasse von /, und nP(Lp)
zerfallt in die direkte Summe np(Sp) + n^S*-1).

p 3 : die Klassen der Abbildungen / von 3* in £3 sind durch 2 ganze
Zahlen c, 7 bestimmt, den Grad c von P/ und die Hopf'sche Invariante20)
y der Abbildung 77/ von /S3 auf S2.

p 7: die Klassen / €jr7(i7) sind durch die ganze Zahl c Grad
von Pf) und die Restklasse y mod 2 (7 1, wenn 77/ wesentlich, y 0

wenn 77/ unwesentlich ; n7(8*) besteht aus 2 Elementen12)) bestimmt.
Also ist

^(£3)^© + © und jr7(L7) ~ © + ©2.

Wir bestimmen nun die Invarianten c und y unserer Abbildung s von
S* auf L9(p 3,7):

a(t;) (l — 2^,-2^^,...,— 2VlvpH)

20) Définition: [8], S 645 ff ; Beweis, dafi die Klassen / € ;r3 (S2) durch die Invariante
y(f) bestimmt sind: [4], Nr. 12b, îm Beweis des Hilfssatzes.
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Ps ist durch a(v) gegeben; dièse Abbildung hat bekanntlich17) den Grad
c 2. Ils miissen wir in der oben beschriebenen Weise bestimmen:

cAv) b(v)-V0i(a(v)) i l,...,p

Cl (- 2vtvx) (+ 2vxv%) + (1 — 2«J) (1 - 2v\) +
+ (— 2v2v3)(— 2vxvé) + (—

c2 (— 2v2vt) (+ 2Vlf;,) + (1

+ (— 2v2î;3) (1 — 2vJ) + (— 2v2và) (— 2Vlv2)

c3 (— 2^^) (+ 2v1v4t) + (1 — 2t;22) (— 2^1;.) +
+ (— 2v2v3) (+ 2vxv2) + (— 2vat;4) (1 — 2v\)

also
Cl i_2(t,; + t£)

c2 — 2(v2v3 — VjV4)

c3 — 2(v2î;4 + ^Va)

Cl (_ 2v2v1) (+ 2^^2) + (1 — 2v22) (1 — 2VJ) + (— 2^3) (— 2v1v/k)

+ (—2v2vé) (+2Vlv3) + (—2v2v5) (—2Vlve) +
+ (—2v2v«) (+2Vlv5)+ (— 2v2v7) (+ 2vxv8) + (— 2v2v8) (—2v1v7)

c2 • • • usw. ;

die Rechnung ergibt

c2 —
c3 —
c4 — 2(v2v5 — vxv%

c5 — 2(v2î;6 + vxv5

c6 —2(v2v7 + ^Vg
c7

Fa6t man die Koordinaten von v c Sp gemâB

^1 % — ^2
tt?2 v3 — 1V4 auBerdem fur p 7
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zu komplexen Zahlen zusammen, so kann die Abbildung Ils von Sp auf
durch

cx =1 — 2w1w1

C3 + *C2 — — 2w1w2, auBerdem fur p 1

c5 + ict= — 2w1ws

c6 + ic7 — 2w1w4k

beschrieben werden. Das ist aber bei geeigneter Orientierung von
gerade die Abbildung von Sp auf /S**-1, die ich an anderer Stelle21) mit
#{2) (fur p 3) bzw. #(4) (fur p 7) bezeichnet habe, und die man
folgendermaBen beschreiben kann : Man bildet Sp vermôge der bekannten

qy 1
Kreisfaserung auf den komplexen projektiven Raum Kp-i von ±—r—

komplexen, also p — 1 reellen Dimensionen ab, indem man dem Punkt
v (vl9.. vv+1) der Sp den Punkt w1 : w2 :... : Wp+i von Kp-i zuord-

2 ~2~

net, und dann Kp-i mit dem Grad 1 auf S^1. Fur p 3 ist Ils #(2)
2

die von Hopf22) angegebene Faserabbildung von S3 auf S2, deren
Invariante y den Wert 1 hat. Fur p 7 ist IIs '&{4:) eine wesentliche
Abbildung von S1 auf Se (also ist nach unserer Festsetzung auch hier

y= 1); denn ich habe bewiesen21), daB ê{n) bei geradem n wesentlich ist,
Damit sind also die Invarianten c und y unserer Abbildung s von Sp auf

Lv{p =3,7) bestimmt : es ist c 2 und y 1. Wir kennen also jetzt die
Abbildungsklasse des Randes t1 des Schnittelementes t, das wir in der

Zerlegung
n • Kn,3 / Kw-1,2 — °

fiir n 5 und n 9 konstruiert haben. Das gestattet uns aber, die

Gruppe ^V-2(3J (die in Nr. 5 erklàrt ist) zu bestimmen; sie ist nàmlich
naeh einem allgemeinen Satz23) die von der Klasse von tr erzeugte
Untergruppe von ^^2(^-1,2) ^-2(^-2)-

Wenden wir nun die in Nr. 5 angegebenen Hurewicz'schen Formeln
auf die Zerlegungen 3n (n 5 un(i 9) an, so finden wir: wegen
7rn_2(/Sn"-1) 012) ist nach der ersten Formel

also nach der zweiten und dritten
21) s. [7], Nr. 10, S. 17.

2a) s. [8], S. 654.

as) s. [4], S. 174, Satz 12.
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also nn_2 (Vn 13) ~ nn_2 (Ln_2) / xpn_2 (3J

Wir haben aber eben gefunden, daB fur n 5 und 9 die Gruppe
7in_2(Ln_2) die direkte Summe zweier zyklischer Gruppen ist, deren
Erzeugende die Abbildungsklassen a e nn_2{Ln_2) mit c 1 und y 0
bzw. 6 mit c 0 und 7=1 sind, dabei sind fur n 5 a und b von
der Ordnung 0, fur n 9 ist a von der Ordnung 0 und b von der
Ordnung 2. Ein beliebiges Elément / c 7rrt_2(-^n-2) is^ also von der Form

/ Ca + yb

woc,y ganze Zahlen (y mod 2 fur n 9) sind. Ferner haben wir gesehen,
daB ^n_2(3J die von /* 2a + b erzeugte Untergruppe von 7tn_2(Ln_2)

ist. Also wird
1. fur n 5: ^3(^5,3) S©

da man als Basis von nn_2(Ln_2) /* 2 a + b und etwa g* a
wahlen kann.

2. fur n 9: ^7(^9,3) ^©4 ;

denn die Restklassen von ^7(i7) nach den Vielfachen von /* 2a + b

konnen durch 0, a, b, a -f- b reprasentiert werden, wobei die Klasse a
(oder die Klasse a + b) die Ordnung 4 hat und somit die Restklassen-

gruppe erzeugt. — Damit ist die am Anfang dieser Nummer aufgestellte
Behauptung bewiesen, also auch Satz 5'.

Ânhang: Stetige Vektorprodukte.

9. Unter einem stetigen Vektorprodukt von r Vektoren im Rn
(n > r ^ 2) verstehen wir eine Vektorfunktion x(al9..., Cir), die fur aile
Système von r Vektoren at des Bn definiert ist und folgende Eigen-
sehaften besitzt:

a) x hangt von at ar stetig ab.

b) x ist orthogonal zu cti,..., ar '- X • at 0, i 1,..., r.
c) x2 |ot • ûj|r (Gram'sche Déterminante).

Das ubliche Vektorprodukt hat bekanntlich dièse Eigenschaften und ist
auBerdem linear bezuglich der Komponenten jedes Vektors a%\ es ist
aber nur fur wenige Zahlen r und n definierbar (vgl. die Bemerkung am
SehluB dieser Nr.).
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Es ist leicht zu sehen, da8 ein stetiges Vektorprodukt von r Vektoren
im Rn eine stetige nie-triviale Losung des Systems

n
2J alkxk 0 i 1,... r ^ 2

im Sinne von Satz 5 liefert, und daB man umgekehrt aus jeder stetigen
nie-trivialen Losung dièses Systems ein stetiges Vektorprodukt herleiten
kann (durch Normierung der Funktionen xk fk(an,.. anr) und Er-
weiterung ihrer Définition auch fur Matrizen (atk) vom Rang < r, nam-
lich x±= - - - xn 0).

Der Satz 5 besagt nun, daji es jedenfalls kein stetiges Vektorprodukt
von r Vektoren im Rn gibt, wenn n — r gerade, oder 3 oder 7 ist.

Wir wollen in diesem Anhang noeh kurz im Zusammenhang mit ver-
wandten Fragen darauf hinweisen, daB man dièse Aussage verscharfen
kann, wenn man vom Vektorprodukt nicht nur fordert, daB es stetig,
sondern aueh daB es ungerade sei (oder wenn man sich sogar auf lineare
Vektorprodukte beschrankt) ; dies gelingt auf Grund bekannter Satze. —
Ein Vektorprodukt soll ungerade heiBen, wenn. x (ûi,..., — at,..., Or)

— s(ûi,..., a,,..., Or) ist fur i 1,..., r.
Zunachst sei bemerkt, daB man den Hilfssatz in Nr. 6 so ausspreehen

kann : Wenn es im Rn ein Vektorprodukt von r Vektoren gibt, dann gibt
es auch im Rn~1 ein Vektorprodukt von r — 1 Vektoren ; und zwar ist
dièses stetig, ungerade oder linear, je naehdem das ursprungliche es ist.
Wenn man also zeigen kann, daB es kein Vektorprodukt von 2 Vektoren
im Rv gibt, so gibt es auch keines fur aile r und n mit n — r v — 2.
Wir befassen uns deshalb insbesondere mit dem Fall r — 2.

Unter einer Multiplikation im Rn+1 (mit Einselement) verstehen wir
folgendes : Jedem Paar von Vektoren 31, S des Rn+1 sei ein Vektor
£ % o © als Produkt zugeordnet, wobei es einen Vektor e gibt, so daB

${oe=eo2I 9I ist fur aile 31. Es ist klar, was mit einer stetigen
(ungeraden, linearen) Multiplikation im Rn+1 gemeint ist.

Satz A. Wenn es im Rn ein stetiges Vektorprodukt von 2 Vektoren gibt, so

gibt es im Rn+1 eine stetige Multiplikation £ 31 o ©, welche die ,,Normen-
produktregeV G2 3I2 332 erfulltM); sie ist ungerade oder sogar linear,
wenn das Vektorprodukt es ist.

24) Mit der Existenz einer solchen Multiplikation im Rn+1 ist die Existenz einer Ab-
bildung des topologischen Produkts Sn x Sn m Sn vom ,,Typus (1,1)" aquivalent (d h
daô jede Faktorsphare Sn mit dem Grad 1 abgebildet wird), vgl Hopf, Ûber die Abbil-
dungen von Spharen auf Spharen medrigerer Dimension, Fund math XXV (1935),
427—440. Fur n 1, 3, 7 gibt es solche Abbildungen, ob es noch fur andere n solche gibt,
ist (wenn man nicht die Bedmgung ,,linear" oder ,,ungerade" hmzunimmt) eine volhg
ungeloste Frage, die m verschiedener Hmsicht von Interesse ist.
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Der Beweis beruht auf einer bekannten, elementaren Konstruktion :

Der Vektor 31 des Rn+1 habe die Komponenten (ao,al9..., an), e sei der
Vektor (1, 0,..., 0) ; wir kônnen % in der Form

schreiben, wo a ein Vektor des zu e orthogonalen Rn im Rn+1 ist, analog
23 60e + b. Bedeutet a X b das Vektorprodukt von a und b im Rn,
so setzen wir

<£ SU o 93 (aQb0 — a - b) e + aob + boa + (a x b)

Dann ist e o 91 $1 o t %, und

£2= (aobo — a• b)2 + (aob + 60a + (a x b))2
a2Q bl — 2aoboa • b + (a • b)2 + a* b2 + 62 a2 + a2b2 — (a • b)2

+ 2ao6oa-b
(al + a2) (b20 + b2) 312932

Aus diesem Satz folgt nun fiir ungerade Vektorprodukte :

Satz B. Es gibt im Rn hôchstens dann ein ungerades stetiges
Vektorprodukt von r Vektoren, wenn n — r — 2A — 3 ist (X= 2, 3,...).

Beweis. Eine ungerade Multiplikation mit Normenproduktregel im
Rn+1 bedeutet ein System von n -\- \ ,,definiten ungeraden Funktionen
in 2 Reihen von n -f- 1 Variabeln"; so etwas gibt es aber nach einem
Satze von Hopf25) hôchstens dann, wenn n + 1 eine Potenz von 2 ist.
Es kann also hôchstens dann ein ungerades Vektorprodukt von 2

Vektoren im Rn geben, wenn n von der Form 2* — 1 ist (A ^ 2); nach dem
oben erwahnten Hilfssatz mu6 also auch fur r ^ 2 stets n — r 2^ — 3

sein.

Beschrànkt man sich sogar auf lineare Vektorprodukte, so folgt aus
Satz A in bekannter Weise : Es gibt im Rn hôchstens dann ein lineares

Vektorprodukt von r Vektoren, wenn n — r 1 oder 5 ist.
Denn nach dem Satz von Hurwitz 26) liber die Komposition

quadratischer Formen gibt es genau fur n -{- 1 1,2, &, 8 eine
lineare Multiplikation mit Normenproduktregel im Rn+1; also gibt es

») s. [10], S. 225, Satz le.
M) A. Hurwitz, Nachr. Ges. d. Wiss. Gôttingen 1898, 309—316 (Math. Werke, Bd. II,

666—571).
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(n ^ 3) hochstens fur n 3, 7 em lineares Vektorprodukt von 2 Vek-
toren im Rn, folglich muB immer n — r — 1 oder 5 sein. — Fur r 2

und w 3 oder 7 existieren auch wirkhch lineare Vektorprodukte fur
n 3 das ubliche Produkt im i23, das mit der Multiplikation im R*
Quaternionen) so zusammenhangt, wie es im Beweis von Satz A formu-

bert ist, und analog gehort zur Multiplikation im R8 (Cayley 'sche Zahlen)
ein lmeares Vektorprodukt im R7. In diesenFallen hat man also einfache
Beispiele stetiger Losungen eines Gleichungssystems im Sinne der Frage-
stellung von Satz 5.

(Emgegangen den 26. Dezember 1942
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