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Stetige Lésungen linearer Gleichungssysteme
Von BExo EckmaNN, Lausanne

1. In dem System

n
>20;%, =0, t=1,...,r<m (1)
k=1
von r linearen homogenen Gleichungen mit n Unbekannten z,,..., z,

sollen die Koeffizienten a,, — a,,(u) stetige reelle Funktionen einer
Variablen % sein, welche einen Raum R durchliuft (es wird sich im
speziellen um einfache kompakte metrische Rédume handeln). Unter
einer stetigen Ldsung dieses Systems (1) verstehen wir » stetige reelle
Funktionen z,(u) von u, welche fiir alle v ¢ R die Relationen

n

> a(uw)z,(w) =0, t=1,...,r

k—1
erfilllen. Wir werden im folgenden die Beiworter ,,reell” und ,,stetig*
meistens weglassen. Losungen des Systems (1) heilen linear unabhding:g,
wenn sie fir alle u ¢ B im iiblichen Sinn linear unabhingig sind; eine
linear unabhingige Losung ist also eine solche, die nie (d. h. fiir kein
u € R) die triviale Null-Losung wird.

Unser Problem lautet in der allgemeinsten Form folgendermaflen:

I. Ein Qleichungssystem (1) sei gegeben, dessen Koeffizientenmatrix
(@ (w)) fir alle w e R den Rang r hat. Besitzt es linear unabhdngige
Lésungen, bzw. welches ist deren maximale Anzahl?

So allgemein ist die Frage natiirlich kaum zu beantworten; dagegen
kann man bei spezieller Wahl des Raumes R mit Hilfe topologischer
Methoden einige Ergebnisse finden, die mit verschiedenen geometrischen
und algebraischen Problemen aufs Engste verkniipft sind. Wir werden
auf diese Zusammenhénge in folgenden Fillen eingehen:

a) R sei ein Element in einem Euklidischen Raum (etwa ein Wiirfel
oder eine Vollkugel), allgemeiner ein in sich zusammenziehbarer Raum.
Dann besitzt jedes System (1), das durchwegs den Rang r hat, n — r
linear unabhiingige Losungen. (Satz von Wazewski [1], vgl. Nr. 3).

b) R sei eine g-dimensionale Sphire, d. h. die Koeffizienten a,, seien
Funktionen von ¢ + 1 reellen Variabeln, deren Quadratsumme 1 ist. Es
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ist naheliegend, in diesem Fall unser Problem mit den Hurewicz’schen
Homotopiegruppen') in Zusammenhang zu bringen; man kommt so zu
Aussagen, die in Nr. 5 (Satz 2—4) formuliert sind. — Fir g =n — 1
tritt als Spezialfall die Frage nach der Existenz eines Systems von
Richtungsfeldern in der Sphire S*! auf.

c) Wir wihlen fiir B die Mannigfaltigkeit aller Koeffizientenmatrizen
(a;;) des Systems (1) vom Rang r, und die Funktionen a,,(u), u ¢ R,
sollen einfach die Identitdt von R darstellen; d. h. die Koeffizienten des
Systems (1) sollen alle reellen Werte annehmen, fiir welche die Matrix
(@) den Rang r hat, und wir suchen Losungen von (1), die stetig von den
Koeffizienten a;;, abhingen und durchwegs linear unabhingig sind. Wir
werden zeigen (Satz 5): Es gibt keine derartigen Losungen, wenn n — r
gerade ist, und wenn n — r = 3 oder 7 und r > 2 ist. Hingegen sind
solche Losungen in folgenden Féllen bekannt: Fir r=n—1, fir
gerade n und r =1, ferner (vgl. Nr. 8 am Schlu8}) fir » =7 und » = 2.
Daraus folgt natiirlich fiir diese Zahlen » und r auch die Existenz
einer nie-trivialen Losung von (1) bei beliebigem R.

Der Beweis dieser Aussage (Satz 5), das Hauptziel der vorliegenden
Arbeit, wird im § 2 erbracht; er beruht im Wesentlichen auf der Be-
stimmung von Homotopiegruppen gewisser Mannigfaltigkeiten V,, ,, (so
bezeichnen wir die Mannigfaltigkeit aller reellen orthogonalen Matrizen
von n Kolonnen und m Zeilen?)) und verlduft im Rahmen der Theorie der
Faserungen [4]. Im §1 iibertragen wir unser allgemeines Problem I in die
Sprache dieser Theorie, die sich auf Matrizen stetiger Funktionen, um die
es sich hier handelt, besonders gut anwenden 148t; anschlieBend werden
die Fille a) und b), wo R ein Element bzw. eine Sphére ist, besprochen,
wobei es sich zum Teil um fast triviale Betrachtungen oder nur um andere
Formulierungen schon bekannter Sédtze und Beweise handelt. — In
einem Anhang kommen wir nochmals auf den Fall ¢) zuriick und be-
trachten eine stetige Losung als Verallgemeinerung des Vektorproduktes
von r Vektoren im n-dimensionalen Euklidischen Raum R"*; wihrend
das iibliche Vektorprodukt (fiir diejenigen n und r, fiir die es iiberhaupt
definiert ist) multilinear ist beziiglich der Komponenten der r Vektoren,
verlangen wir vom verallgemeinerten nur, dafl es stetig von ihnen ab-
héngt, und im iibrigen soll es dieselben Eigenschaften haben. Die unter
c) genannten Resultate lassen sich auch als Aussagen iiber solche ,,ste-

1) Definition s. [2], S. 114, ferner [3], S. 203. — Die Nummern in eckiger Klammer []
beziehen sich auf das Literaturverzeichnis am Schlu8 der Arbeit.

2) Diese Mannigfaltigkeiten hat Stiefel ([6], S. 8 ff.) betrachtet; vgl. auch [4], 8. 152.
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tigen Vektorprodukte“ deuten. Das Vektorprodukt von zwe: Vektoren
steht aber auch mit andern topologischen und algebraischen Fragen
im Zusammenhang (Nr. 9).

Es sei noch darauf hingewiesen, dafl alle Sitze, in denen ausgesagt
wird, daB ein spezielles System (1) keine nie-triviale Losung besitzt
(also insbesondere Satz 5), auch in der folgenden Form ausgesprochen
werden konnen:

Wenn n Funktionen f,(u) fiir alle uw € R die Relationen

n
2 a(uwfi(u) =0 t=1,...,7
k=1
erfilllen, so besitzen sie eine gemeinsame Nullstelle uye R. Sind dabei die
gegebenen Funktionen a,,(«) Polynome reeller Variabeln (etwa, wenn R
eine Sphiére ist, der Koordinaten), und wahlt man fiir die f,(u) beliebige
Polynome derselben Variabeln, so erhilt man Sitze der reellen Algebra,
niamlich Ewistenzsdtze fiir Nullstellen von Polynomen, die gewissen Rela-
tionen geniigen ; diese sind im Falle von Satz 5 besonders einfach.
Man kann natiirlich unsere Frage I auch im Komplexen stellen, d. h.
sowohl fiir die Koeffizienten a,,(u) als auch fiir die Unbekannten z,(u)
komplexe statt reelle Funktionen zulassen; die hierbei dem Fall c)

(Satz 5) entsprechende Fragestellung habe ich fiir »r = 1 an anderer
Stelle [7] behandelt.

§ 1. Matrizen, deren Elemente stetige Funktionen sind

2. R sei ein kompakter metrischer Raum, und alle im folgenden vor-
kommenden Funktionen von u ¢ B sollen reell und stetig sein. Mit
A, .(R) bezeichnen wir eine Matrix von » Kolonnen und m Zeilen, deren
Elemente Funktionen von # ¢ R sind.

Mit unserem Problem I ist die folgende Frage nahe verwandt:

II. 4, (R) sei durchwegs, d. h. fir alle w ¢ R, orthogonal; kann man
diese Matrix durch Hinzufiigen von l Zeilen zu einer durchwegs orthogonalen
Matrixz A, ,(R), m =1r 41, erginzen, bzw. welches ist die grofte Zahl
l=101*(0<I*<n—r), fir welche das méglich vst?

Der Zusammenhang mit I ist leicht herzustellen : Aus der Koeffizienten-
matrix des Systems (1) bilde man durch Orthogonalisieren eine
durchwegs orthogonale Matrix 4, ,(R); zu dieser gehort eine gewisse
Zahl 1*, und I* ist offenbar gleich der Anzahl der linear unabhéngigen
Losungen von (1).
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Man kann die Frage Il in verschiedener Weise auffassen: Einerseits
soll man fiir spezielle, besonders wichtige Matrizen 4, ,(R) die Zahl I*
bestimmen; andererseits sucht man etwas allgemeiner bei gegebenem
R, n und r eine Ubersicht iiber alle moglichen Matrizen 4, (R) zu
gewinnen und anzugeben, fiir welche Matrizen etwa I* = 0 und fiir
welche [* > 0 oder sogar I* =n — r ist. Es gibt natiirlich immer
Matrizen A, ,(R), fir welche [* = n — r ist, ndmlich die konstanten
Matrizen. Und es gibt einfache Matrizen 4, ,(R) mit I* = 0, etwa
(n =3, r =1, R = Kugelfliche, gegeben durch Koordinaten u,, u,, u,

3
it 2 =1
™ z’i " ) Aa,l(R) = (U, Uy, Ug) ;

eine zweite, durchwegs orthogonale Zeile hinzuzufiigen wiirde hier be-
deuten: ein stetiges Feld von tangentialen Einheitsvektoren der Kugel
angeben, was bekanntlich unmoéglich ist (vgl. Nr. 5).

3. Die gewiinschte Ubersicht iiber alle Matrizen A, (R) 1aBt sich,
wenigstens in gewissem Sinne, leichter angeben, wenn man sich der
Sprechweise der Abbildungen in gefaserte Riume bedient. Wir haben alles,
was man hierbei aus der allgemeinen Theorie der Faserungen beniitzt,
schon an anderer Stelle®) ausfiihrlich dargelegt und fassen hier nur die
wichtigsten Begriffe und Sétze kurz zusammen.

Wir bezeichnen mit V, ,, die Mannigfaltigkeit aller orthogonalen Ma-
trizen von n Kolonnen und m Zeilen. V, ,, gestattet einfache Zerlegungen
in Teilmengen (Fasern), von denen jede aus solchen Matrizen besteht,
die in den ersten r Zeilen iibereinstimmen (r < m). Diese Zerlegung ist
retrahierbar?), die Fasern sind zu V,_, ,_, homdéomorph und der Zer-
legungsraum?*) (Faserraum) ist zu ¥V, , homdomorph, da jede Faser durch
die r ersten Zeilen der zu ihr gehorigen Matrizen charakterisiert wird. Die
Abbildung P von V, ,, auf V, ,, die jedem Punkt von V, ,, seine Faser
zuordnet, heillt Projektion; sie besteht einfach darin, dal man in den
Matrizen aus V, ,, die letzten m — r Zeilen weglaf3t.

Die eben beschriebene Zerlegung 3 von V,, ,, deuten wir gemifl einer
friihert) gewihlten Bezeichnung durch

3 : 17’n,m/ Vn—-’r,m—-r - Vn,r
symbolisch an.

8) 8. [4], besonders die §§ 3 und 4. Wir werden verschiedene Teile dieser Arbeit im
folgenden bentitzen.

4) Vgl. [4], § 1, besonders S. 152—153. — Der Fall m =n wird zwar dort nicht
behandelt, bietet aber keine Schwierigkeiten.
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Ist f eine Abbildung®) eines Raumes X in V, ,,, so nennen wir die Ab-
bildung ¥ = Pf von X in V, , die Spur von f beziiglich 3. Im allge-
meinen ist nicht jede Abbildung F von X in V, , eine Spur (einer stetigen
Abbildung von X in V, ,); aber ein grundlegendes Lemma besagt®),
daf jede zu einer Spur homotope Abbildung selbst eine Spur ist.

Eine durchwegs orthogonale Funktionenmatrix 4, (R), wie sie in
II genannt wird, bedeutet nun nichts anderes als eine Abbildung von
R in V, ,; und das Problem II lautet mit andern Worten:

III1. Ist die durch die durchwegs orthogonale Funktionenmatriz A, ,(R)
gegebene Abbildung von R in V, , beziglich der Zerlegung 3 von V, ,, eine
Spur, bzw. welches ist die grofte Zahl m = m* = r + I* (< n), fiir welche
dies der Fall ist?

Nach dem oben erwihnten Lemma lautet die Antwort auf diese Frage
fiir zwei homotope Abbildungen gleich. Bezeichnen wir zwei orthogonale
Matrizen 4, ,(R) und A;, [ R) als homotop, wenn die zugehorigen Ab-
bildungen von R in V, , homotop sind, so lautet also die Antwort auf die
Frage II (oder III) fiir zwei homotope Matrizen 4, ,(R) gleich, bzw.
zu homotopen Matrizen A, ,(R) gehort dieselbe Zahl 1*.

Eine Abbildung von R in V, ,, bei welcher das Bild ein Punkt ist (also
eine konstante Matrix 4, ,(R)) ist, wie schon oben bemerkt, immer eine
Spur. Also ist jede auf einen Punkt zusammenziehbare (nullhomotope)
Abbildung von R in V,, beziiglich 3 eine Spur, selbst fir m = n.
Also gilt

Satz 1. Wenn die orthogonale Matrix A, (R) einer konstanten Matrix
homotop ist, so kann man sie zu einer quadratischen orthogonalen Matrix
A, .(R) erginzen (also I* =n — 7).

Ist speziell der Raum R in sich auf einen Punkt zusammenziehbar, so
18t jede Abbildung von R nullhomotop, also 1a8t sich Satz 1 auf jede Matrix
A, ,(R) anwenden; darin ist der Satz von Wazewski [1] enthalten, den
wir in Nr. 1 erwéahnt haben.

4. Die folgenden fast trivialen Bemerkungen machen es verstédndlich,
daB nicht jede Matrix 4, ,(R) zu einer Matrix 4, ,(R) mit m > r er-
ginzt werden kann, dafl vielmehr hiezu besondere Eigenschaften not-
wendig sind.

a) 4, .(R) sei eine orthogonale Matrix, fir welche I* > 0 vst. Vertauscht
man in 4, ,(R) zwei Zeilen (fiir » > 2), oder multipliziert man eine Zeile

5) es sollen ausschlieBlich stetige Abbildungen vorkommen.
¢) 5. [4], S. 155.
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mit — 1 (fir » > 1), so entsteht eine zu A4, ,(R) homotope Matrix

A4, (R).

Beweis: a,,. . ., a, seien die Zeilenvektoren von 4, ,(R), a, der Zeilen-
vektor, der nach Voraussetzung immer hinzugefiigt werden kann
(@2=1,a40;,=0tiir¢=1,...,7). In dem von q,, a,, a, aufgespann-

ten Raum kann man q, mit a, durch eine Drehung vertauschen. Ebenso
kann man in der durch a,, a, aufgespannten Ebene a, durch eine Drehung
in — q, iiberfithren.

b) Aus einer orthogonalen Matrix 4, ,(R) kann man auf (7) Arten
r < m verschiedene Zeilen auslesen und zu einer Matrix 4, ,(R) zusam-
menfiigen. Alle Matrizen 4, ,(R), die man so erhélt, sind homotop.

Beweis: Es sei etwa r <m (fiir » = m ist nichts zu beweisen) und
A, (R) aus den Zeilenvektoren a; ,..., a;,, 4, (R) aus den Vektoren
aj,,---, 0y von 4, .. (R) gebildet. Wegen a) kénnen wir annehmen, da8
ji # 7, ist fiir I # p. Dann wird die Uberfithrung von 4, (R)in A4, (R)
durch eine Matrix B geleistet, die von u ¢ R und einem Deformations-

parameter t(O <t < it~) stetig abhidngt und deren Zeilenvektoren

2
b]_,. ooy br durCh
b, =a; cost 4 a; sint  fiir ¢, #j, ,
be=1,cxs,?
b, = ay fir ¢ =j; ,
gegeben gind; in der Tat ist dann fiir alle ¢{ zwischen 0 und %

?=rcos?t +sin?t =1, bzw. b =a}, =1
und
b,ob,=0 fir I £#p , wegen ¢, %7, ,

d. h. B ist fiir alle ¢ orthogonal.
Zu einer orthogonalen Matrix 4, ,(R) gehort also fiir jedes r < m
eine wohlbestimmte Abbildungsklasse y, von R in V, ,.

b. Wir wihlen jetzt fiir R eine Sphére §9. Die Klassen der Abbildungen
von 8?2 in V,  sind die Elemente der g-ten Homotopiegruppe!) von
Vams 74 ( Vn,m)’ (man kann von der Festhaltung des Bildes eines Punktes
der 8¢ absehen’)). Nach den Ausfiihrungen von Nr. 4 gehort zu einer

7) nach der Terminologie von Eilenberg [9] ist V,,., ,,g-simple‘ fur alle g, da fir
m=<n—2 Vn.,m einfach zusammenhéngend, und V, ,_, ein Gruppenraum ist.
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orthogonalen Matrix 4, ,,(89) fiir jede ganze Zahl r(0 < r < m) ein wohl-
bestimmtes Element y, von x,(V, ,), das wir die r-te Homotopieklasse der
Matrixz A, ,(8% nennen. Unsere Fragestellung (I, II, III) liuft darauf
hinaus, festzustellen, welche Elemente von =,(V,,) als Homotopie-
klassen von Matrizen 4, ,,(S?) auftreten kénnen.

Nun ist es naheliegend, die Beziehungen heranzuziehen, die in der
Faserung

3 : Vn,m/ Vn—r,m—-r = Vn,r

wie in jeder retrahierbaren Zerlegung zwischen den Homotopiegruppen
des Zerlegungsraumes V,, und denen des gefaserten Raumes V, ,
bestehen, ndmlich die ,,Hurewicz’schen Formeln‘‘¢). Um sie zu formu-
lieren, mufl man auch die Homotopiegruppen 7,(V,_, ,,) der Faser,
sowie gewisse mit der Zerlegung 3 verkniipfte Untergruppen y,(3) von
Tg(Veer mr) und @(3) von m=,(V,,) betrachten: die Elemente von
¥o(3) sind die Klassen solcher Abbildungen von 8¢ in V,_, ., ,, die in
V.., nullhomotop sind; die Elemente von ¢,(3) sind die Klassen solcher
Abbildungen von 87 in V, ,, die sich auf eine Faser zusammenziehen
lagsen (d. h. die einer Abbildung von 8¢ in eine Faser homotop sind).
Ferner tritt die Untergruppe Pmx,(V,,) derjenigen Elemente von
7y (V, ) auf, die durch Projektion P (d.h. durch Weglassen der letzten
m — r Zeilen in den Matrizen 4, ,,(58?)) aus Elementen von m,(V, ,)
hervorgehen — das sind gerade die r-ten Homotopieklassen von Matrizen

A4, .(89).

Die Hurewicz’schen Formeln lauten8):

ntl(Vn,T)/Pﬂq(Vn,m) ; 'Pq—1(3) q 2 2 3 (2)
Py (Vo m) = 70(Vam) [ 943) =1, (3)
?43) = 2y (Vermr) [9d3) g =>1. (4)

Wir werden von den Formeln (3) und (4) spiter (Nr.8) Gebrauch
machen; an dieser Stelle wollen wir zunichst nur darauf hinweisen, dal3
Pr,(V, ) eine Untergruppe von z,(V,, ,) ist, also:

Die r-ten Homotopieklassen aller Matrizen A, ,,(89) bilden eine Unter-
gruppe von 7, (V, ,).

8) 8. [4], S. 163, Satz E, und 8. 166, Formeln (11).
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Wenn diese Untergruppe = 7, (V,,) ist, so heit das: alle Matrizen
A4, (8% konnen zu Matrizen 4, ,,(S?) ergéinzt werden; wenn sie = 0 ist:
nur die einer konstanten Matrix homotopen Matrizen koénnen ergéinzt
werden.

Spezialfille :

a) ¢ = n — 1; es handelt sich um Matrizen 4, ,,(S"*), deren Elemente

Funktionen von n» Variabeln w,,..., %, mit 3«2 =1 sind. Die erste
i=1
Homotopieklasse einer solchen Matrix ist ein Element von =z, ,(V,,),
also, da V, ; zur Sphére S*! hom6omorph ist, durch eine ganze Zahl c,
den Abbildungsgrad, charakterisiert, und =, ,(V,;) ist die additive
Gruppe dieser Abbildungsgrade (unendliche zyklische Gruppe); wir
nennen ¢ die Charakteristik der Matrix.
Hat der erste Zeilenvektor der Matrix 4, ,,(S"!) die Form

Ay = (Ugseoes Uy) s

so konnen wir ihn als Ortsvektor der §*-! auffassen und die iibrigen
m — 1 Zeilenvektoren als Tangentialvektoren der S™1, die von q, stetig
abhidngen und immer paarweise orthogonal sind, also ein (m — 1)-Feld
in der S™1 darstellen (vgl. [4], § 14). Die Charakteristik dieser Matrix
ist offenbar = 1, und umgekehrt ist jede Matrix 4, ,,(S"*) mit ¢ =1
einer solchen Matrix homotop, die man als (m — 1)-Feld in S§*1 auf-
fassen kann. Es gibt also dann und nur dann Matrizen 4, ,,(S™*) mit
¢ =1, wenn es in der §*! ein (m — 1)-Feld gibt; das ist bekanntlich
nicht immer der Fall. Aus der Existenz einer derartigen Matrix folgt
natiirlich, daf fiir die betreffenden Zahlen m und n jede ganze Zahl ¢ als
Charakteristik einer Matrix 4, ,(8™1) auftreten kann; anders formuliert:
dal fiir jede Matrix 4, ,(S"!) die Zahl I* >m — 1 ist (ja sogar fiir
jede Matrix A4, ,(E) bei beliebigem R).

Es sei nun » ungerade, m > 2 und ¢ die Charakteristik von 4,, ,,(S"?).
Bildet man aus einer Zeile die Matrix 4, ,(8"), so ist sie nach Nr. 4a)
zu — A, ,(8"1) homotop; zu 4, ,(8"') gehort der Abbildungsgrad c,
Zu — Anyl(S"”l) der Grad — ¢, und aus ¢ = — ¢ folgt ¢ = 0. Darin
ist der l;ekannte Satz®®) enthalten, dafl es in einer Sphire gerader
Dimension keine stetigen Vektorfelder gibt.

Bei geradem n dagegen gibt es immer Matrizen 4, ,,(8™!) mit ¢ 5 0;
man kann sogar zeigen, daBl jedenfalls alle geraden Zahlen als Charak-
teristiken von Matrizen 4, ,(S™') auftreten konnen; hiezu geniigt es,
eine Matrix mit ¢ = 2 anzugeben:

8a) Satz von Poincaré-Brouwer, vgl. Alezandroff-Hopf, Topologie I (Berlin 1935),
S. 481, Satz IIla.
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1=1,...,m

Gy = O — 2%y, =1 n
_— ’.l., .

Diese Matrix ist durchwegs orthogonal; in der Tat ist
n . n
kZ i =k2 (O — 2u;uy) (055, — 2u;0y)
=1 =1

n
= 0y — 4u,u; + 4 2 Ul wyu; = 6y,
k=1
und es ist bekannt und leicht zu sehen, daBl etwa fiir + = 1 die a,, eine
Abbildung von 8~ auf V, , vom Grade 2 darstellen®). Ob auch ungerade
Zahlen als Charakteristiken auftreten, ist nicht in allen Féllen bekannt;
dies ist dann und nur dann moglich, wenn auch ¢ = 1 auftritt, also
wenn es in 8! ein (m — 1)-Feld gibt. Fiir m = 2 ist dies der Fall, wie
das bekannte einfache Beispiel

ap = (U,  Ug,. ooy Ugpy, Usg)

Ay = (U, — Uy, .o, Ugg, — Ugp)
(n = 2k gesetzt) zeigt. Ahnliche Beispiele gibt es fiir n = 4k und m = 4,
und fiir n = 8% und m = 8 ; man erhilt sie etwa aus der in Nr. 8 (S. 333)
angegebenen 4- bezw. 8-reihigen Matrix mit den Zeilenvektoren
a,w,;(a), ..., indem man £—1 analoge, mit den folgenden Indizes
gebildete Matrizen daneben setzt. Weitere Beispiele dieser Art kann
man leicht aus den von Hurwitz und Radon !°) angegebenen ,,linearen
Scharen orthogonaler Matrizen* herleiten, und zwar fiir » = 16*.28.%
und m =8« -+ 28(=0,1,2,3). Alle diese Beispiele sind iibrigens
nicht nur stetig beziiglich der Koordinaten der S»—!, sondern sogar
linear. — Dagegen gibt es, wie ich frither!!) gezeigt habe, kein (m — 1)-
Feld fir n = 4k 4+ 2 und m > 3.

Zusammengefalit :

Satz 2. Far die Charakteristik ¢ einer orthogonalen Mairixz A, ,(8™?)
qult: Wenn n ungerade und m > 2 ist, so ist ¢ = 0; wenn n = 4k + 2
und m > 3 ist, so ist ¢ gerade. — Dagegen ist ¢ beliebig fiir n = 16*.28.k
und m < 8 + 28(B=0,1,2, 3).

Um wieder wie in der Problemstellung I von stetigen Losungen linearer
Gleichungen zu sprechen, konnen wir alle genannten Resultate folgender-
maflen formulieren:

%) Vgl. [4], S. 183—184.

10) Vgl. [11] und [12].
1) 7], Satz I.
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Satz 3. In der Gleichung
a1x1+"'+a’nxn=()

seien die Koeffizienten a, Funktionen von » ¢ 871 (d. h. von » Variabeln
n n

u; mit X' u} = 1), die nie alle = 0 sind, also, wenn man sie zu Y a? =1
i=1 i=1

normiert, eine Abbildung der S8"-! auf sich vom Grade ¢ bestimmen.

Dann gilt fiir die maximale Anzahl I* linear unabhingiger Losungen
dieser Gleichung:

Wenn n ungerade ist, so ist I* =n — 1 filr ¢ = 0, und * = 0 fir
¢ # 0. Wenn n gerade ist, so ist immer I* > 0, ndmlich I* >8x + 28 —1
fir n = 16%:28.k(8 = 0, 1, 2, 3), und sogar I* =n — 1 fir gerades c;
dagegen ist 1* =1 fir n = 4k + 2 wund ungerades c.

b) Es gibt Zahlen n, r und ¢, fiir welche jede Matrix 4, ,(S%) zu einer
Matrix 4, ,,, ergénzt werden kann (d. h. wo fiir jede Matrix 4, ,(59)
die Zahl I* > 0 ist): ndmlich wenn 7z_,(S™ ") = 0 ist.

In der Tat ist in der Faserung 3 : V, ,\; [V, =V, , die Faser zur
Sphire S*» 7! homoéomorph, und y,,(3) ist eine Untergruppe von
7—1(8"1); nach der Hurewicz’schen Formel (2) ist also P (V, ,,1) =
7y(V,+), d. h. jede Abbildung von S§?in V, , ist eine Spur.

Die Bedingung =z,_,(8" ') = 0 ist insbesondere in folgenden Fillen
erfiillt 12):

Satz 4. Fir q <n—r—1, firq=mn—r + 2 > 5 (also n—r >=3),
und fir ¢ =3 und r =mn—2 st 1* > 0 fir jede orthogonale Matrix
A, ,(89).

Ferner ist zwar x, ,(S"2%) £ 0, aber!?) v, ,(3) = 0 fiir die Faserung
3: Vaa|/ Va1 =V.1; also ist 1*>0 fir jede orthogonale Matrix
A, (S™) (n = 3).

n,1

§ 2. Liosungen eines Gleichungssystems, die stetig von den Koeffizienten
abhingen

6. Wir befassen uns in diesem Paragraphen mit einem Spezialfall der
Fragestellung I (bzw. II, 1II) und beweisen:

Satz 6. Das Gleichungssystem

n
2 %, =0, t=1,...,r
k=1
12) Vgl. die Zusammenstellung iiber die Homotopiegruppen der Sphéren in [4], Nr. 12,
S. 178—179.
18) 5. [4], S. 186 (Satz 24 und 24’).
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soll durch Funktionen z, = f.(ay,...,a,,) gelost werden, die fir alle
Matrizen (a,;) vom Rang r stetig sind und nicht gleichzeitig verschwinden.
Solche Losungen gibt es nicht, wenn n — r gerade ist, und wenn n —r = 3
oder 7T und r > 2 ust.

Damit ist der folgende, an die Form II unseres Problems ankniipfende
Satz gleichbedeutend: Es sei R=V,,, und die durch die Matrix
A4, ,(V, ) gegebene Abbildung von V, , in sich sei die Identitdt von
V., r; dann ist fiir diese Matrix und fiir die genannten » und r die Zahl
I* = 0. Und wenn wir schlieBlich die Sprache der Faserungen (III) ver-
wenden, so erhalten wir den mit Satz 5 dquivalenten

Satz 8'. In der Zerlegung 3 :V, o/V, v mr = Vo, ist die Identitit von
V, . keine Spur, a) wenn n—r gerade, b) wenn n—r =3 oder T und
r > 2 wst.

Wir nennen allgemein eine Abbildung 5 in einen gefaserten Raum,
deren Spur Pj die Identitdt des Zerlegungsraumes ist, eine Schnitt-
fliche (die Bildmenge trifft jede Faser in genau einem Punkt). Es handelt
sich also darum, in den genannten Fillen zu zeigen, dal3 die Zerlegung 3
keine Schnittfliche besitzt; und zwar geniigt es offenbar, dies fiir
m = r 4+ 1 zu beweisen. Wir beschrinken uns also jetzt auf die Zerlegung

371,1‘: Vn,f—f-l/ Vn—r,l = Vn,r ¥

Zunichst sieht man leicht:
Hilfssatz. Wenn 3, , eine Schnittfliche besitzt, dann auch 3, ,,.

Beweis: Eine Schnittfliche von 3, , sei durch die orthogonale Matrix
A, +1:(V, ,) gegeben; die ersten r Zeilen stellen die Identitédt von V, , dar,
wihrend die Komponenten des (r -+ 1)ten Zeilenvektors a,,, der Matrix
Funktionen der r ersten Zeilenvektoren sind:

A = f(Or5. .05 0p) .
Setzen wir speziell a, = ¢ = (0, 0,..., 1), so hat sowohl
b = .f(al" .oy (1,-._1, e)

als auch jeder mit a, = e vertrigliche Vektor q,. .., a,_; die letzte Kom-
ponente 0; lassen wir sie weg, so erhalten wir Vekforen al,.. ., a,’._l, b/,
die wir als Zeilenvektoren einer orthogonalen Matrix von =» —1
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Kolonnen und » Zeilen auffassen kénnen, deren Elemente stetige Funk-
tionen der aj,...,al.,; sind, d.h. stetige Funktionen in Vit r; und
zwar stellen aj,. . ., a;_; die Identitdt von V,_, , , dar, wihrend b’ stetig
von ihnen abhingt. Diese Matrix A, , (V,_,,,) bedeutet also eine
Schnittfliche von 3, , ;.

Oder umgekehrt: Wenn 3, , keine Schnittfliche besitzt, dann gilt das-
selbe fur 3,., ,.,(p = 0), d. h. fiir alle 3,.,, mit derselben Differenz
n' —r’' =n—r und mit »’ >r.

Um den Satz 5" zu beweisen, geniigt es also zu zeigen, daB a) die
Zerlegung 3, , mit ungeradem n, b) die Zerlegung Jn2 mit m=2>5 oder 9
keine Schnittfliche besitzt.

7. Daf} die Zerlegung
Sn,l : Vn,2/Vn—1,1 = Vn,l

bei ungeradem 7 keine Schnittfliche besitzt, ist ein wohlbekannter Satz.
Denn V, ; ist zur Sphére S"-! hom6éomorph, und eine Schnittfliche wire
durch eine Matrix 4, ,(S"') gegeben, deren erste Zeile die Identitit
von S"—1 darstellt, und deren zweite Zeile man als stetiges tangentiales
Vektorfeld der S»-! auffassen konnte — und das gibt es bei ungeradem
n bekanntlich **) nicht. (Oder, um an Satz 2 anzukniipfen: A, ,(S*1)
miiBte die Charakteristik ¢ = 1 haben, was bei ungeradem n nicht
moglich ist.)

Weniger einfach dagegen scheint der Beweis der Behauptung b) zu
sein, dal es in den Zerlegungen J; , und 3, , keine Schnittfliche gibt.
Wir erbringen ihn mit Hilfe spezieller Homotopiegruppen der auf-
tretenden Mannigfaltigkeiten. Ausfiihrlich geschrieben handelt es sich
um die Zerlegungen

Bz Vsl Via1=V,, fiir n=25und 9.

V.2, ist zur Sphéire $"~3 homéomorph, V, , zur Mannigfaltigkeit L,_,
aller orientierten Linienelemente der Sphire S™—1.

Nach einem allgemeinen Satze!?) ist jede Homotopiegruppe eines ge-
faserten Raumes, in dem es eine Schnittfliche gibt, zur direkten Summe
der entsprechenden Homotopiegruppen des Zerlegungsraumes und der
Faser isomorph. Hitte also 3, , (» ungerade) eine Schnittfliche, so
miiite fir die Homotopiegruppen von V, , gelten:

nq(Vn,:}) ; 7z"q(Vn,2) + nq(S'n—S) * (5)

1) g, [4], S. 170, Satz G, II.

22 Commentarii Mathematici Helvetici 329



Nun sind aber fiir ¢ = n — 2 die beiden rechts stehenden Gruppen
bekannt; es ist allgemein!?) (wir bezeichnen mit & die additive Gruppe
der ganzen Zahlen und mit ®,, die Restklassengruppe von & mod m):

T a(S7%) = G, fiir n > 6,
~ 6 fir n =5,
und 7, oV, ;) = 6, fir ungerades n 13) ;
in der Isomorphie
”n—z(Vn,a) e “n—z(Vn,z) + 7,5 (8"2) (6)

sind also fiir » > 5 beide Summanden rechts % 0. Andererseits werden
wir in der ndchsten Nummer zeigen, dafl fiir » = 5 und 9 die Gruppe
links unzerlegbar ist, nimlich daB 7,(V; ;) =~ ® und #,(V, ;) =~ G, ist.
Fiir n =5 und 9 kann also keine Relation (6) bestehen ; infolgedessen
besitzt die Zerlegung 3; , bzw. 3, , keine Schnittfliche.

Man beachte, daB3 die Nichtexistenz einer Schnittfliche nicht etwa
schon aus der Anzahl der Elemente in der betreffenden Homotopie-
gruppe folgt, sondern erst aus ihrer algebraischen Struktur. Gibe es eine
Schnittfliche, so miiite my(V; ;) = ® + G, statt G und 7, (V, 5) =
®, + ®, statt G, sein.

8. Bestimmung von zwei Homotopiegruppen :
”3(V5,3);® ) W7(V9,3)Z—®4 .

Mit diesen beiden Formeln wird auch die Behauptung b) von Satz 5’
vollstindig bewiesen sein.
Um V, ;(n = 5 und 9) zu untersuchen, verwenden wir die Zerlegungen

3n: Vn,a/Vn—l,2 = Vn,l(: S’n-—l) $

Da der Zerlegungsraum eine Sphire ist, gibt es in 3, ein Schnitt-
element'®); darunter verstehen wir folgendes: V sei eine (n — 1)-dimen-
sionale Vollkugel, 22 ihre Randsphiire, N ein beliebiger, fester Punkt
der Sphére §71; ein Schnittelement ist eine Abbildung ¢ von V in V,, ,,
deren Spur Pt das Innere von V topologisch auf 87! — N und X"2 auf
N abbildet; ¢ bilde also 22 in die zu N gehorige Faser ab (diese Ab-
bildung ¢’ von X'"~2 in eine Faser V,_, , nennen wir den ,,Rand* des

15) g, [4], S. 172. — Wir geben im folgenden ein Schnittelement explizite an, beniitzen
also den allgemeinen Existenzsatz nicht.
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Schnittelementes ¢). Um ein spezielles Schnittelement ¢ von 3, zu kon-
struieren, wihlen wir fiir V die obere Halbsphire H"! einer Sphire:

2 ui=1, u; >0 (einschlieBlich des Aquators 2 "% u,=0). t sei ge-

=1

geben durch die Matrix 4, ;(H"!) mit den Elementen!¢)

1=1,2,3
@i = Og — 25Uy, E— 1 "

Die Spur Pt dieser Abbildung ist die durch
Ay = Oy — 2%y Uy k=1,...,n

gegebene Abbildung!?) von H™ 1 auf 8", sie bildet das Innere (u, > 0)
topologisch auf S»!'— N ab, wo N der Punkt a,, = d,, der S™! ist,
und den Rand 2"2(u, = 0) auf N. Bei dieser Abbildung ¢ wird also der
Rand 22 vermége der Abbildung ¢’

a,;=0, @y = Ogp, — 2% Uy,

auf die zu N(a,, = 6,;,) gehorige Faser V,'H,2 abgebildet. Diese Ab-
bildung ¢’ von 2*~2in ¥V, , wollen wir niher untersuchen; als Rand
eines Schnittelementes ist sie ndmlich fiir die Struktur der Zerlegung 3,
und fiir die Homotopiegruppen von grofler Bedeutung!®). Diese Dis-
kussion wire zwar fiir unsere Zwecke fiir alle ungeraden n von Interesse;
wir konnen sie aber nur fir » = 5 und n = 9 ausfithren (das ist der
Grund, warum in Satz 5’, b) nur fiir diese ungeraden n Aussagen gemacht
werden), weil in diesen Féllen die Struktur der Faser V,’l_l’2 besonders
iibersichtlich ist.

a1,z ist die Mannigfaltigkeit derjenigen Matrizen (a,;) aus V, ,, fiir
welche a,, = d,;, und @y, = a4 = 0 ist. Sie ist homéomorph zur Mannig-
faltigkeit aller an die 8”2 tangentialen Einheitsvektoren (= orientierten

Linienelemente), L, ,, deren Punkte a man durch 2 Vektoren des R"!

16) vgl. die analoge Bildung in Nr. 15 der Arbeit [5].

17) Beziiglich der Eigenschaften dieser Abbildung vgl. [4], S. 183—185; ferner [5],
S. 250, Anmerkung?2),

18) vgl. [4], Nr. 10 (S. 171—177), besonders Satz 12.
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a=(a;,...,a,4)
b= (by,...,0,)

mit a2=0b2=1, a-b = 0 geben kann; statt der Abbildung ¢ von

22y, =0, Yui=1) in Vf;—1,2 kénnen wir die Abbildung s der Sphéire

k=2 n—1
872 (deren laufender Punkt » die Koordinaten v, ,. .., v,_; hat, 3'v; = 1)
k=1

in L, , betrachten, die durch
ak(’l)):(slk—2’l)17jk, k=1,...,n———l

b,(v) = 0op — 20,0y, k=1,...,n—1
gegeben ist.

Das Besondere an den Fillen n = 5 und 9 ist nun, daf3 die Sphéren
S3 und 87 parallelisierbar!®) sind, was zur Folge hat, dall die Linien-
elementrdume L, und L, in die topologischen Produkte aus S3(S7) und
einer Richtungssphire §2(S¢) zerfallen'?). Denn man kann jedem Punkt a
von L,(p = 3,7), d. h. jedem Tangentialvektor von S nicht nur den
Punkt Pa der S zuordnen, in dem er angreift, sondern auch vermoge
eines Fernparallelismus auf S? einen Punkt I7a einer Richtungssphire
S8?-1 und zwar derart, daf} jedes in einem Punkt angebrachte Richtungs-
biischel topologisch auf S7-1 abgebildet wird, d. h. daBl @ durch Pa und
ITa charakterisiert ist. Diese beiden Zuordnungen Pa und /7a kénnen wir
folgendermaflen geben: Es sei a = (a,b), a als Punkt der S?, b als
Tangentialvektor in a aufgefafit;

Pa=aqeS?, Ila= ¢eSP1,

wo ¢ = (¢,..., ¢,) mit Hilfe eines p-Feldes in 87, d. h. eines Systems
von p Vektorfeldern w,(a),. .., w,(a), die in jedem Punkt a der S? paar-
weise orthogonal sind, erklédrt wird, ndmlich

Ci—'—-—b'mi(a), izl,...,p,
» p+1
wobei X ¢2= X b2=1 ist; die ¢, sind also die Komponenten von b be-
=1 t=1
ziiglich des in a angebrachten, lokalen Koordinatensystems w,,..., w,.

Dabei beniitzen wir die folgenden bekannten p-Felder:

19) vgl. [6], besonders S. 6, 28 und 45.
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a;Uf S3 Qa == ( aly a’2, a3’ a’4)

w(a) = (—a,, a, a,—a,)
wy(a) == (—ay, —a,, a, @s)
wy(a) = (—ay, a3, —a,, a,),

auf §7 a = ay;, Ay, Ay, Gy, A5, Qg, Gy, Q)
wy(a) = (—ay, @, G4, —0a3, G, — 05, —0qg, G
wy(a) = (—ag, —a,, @, G, a;, a3, —ag, — qg)
wy(a) = (—ay, a3, —ay, @, G, —a,;, A, —ag)
Wy(a) = (— a5, —ag, — a7, —ag,  a, Ay, A3, @)
wy(a) = (—a, @5, — g, Gy, — 8y, A, — Gy, )
we(a) = (—a,, g, A5, — 0, —a3, Ay, G, —a)
wq(a) = (—ag, —a,;, Qg A5, — 0, — a3, ay, ay).

In diesem Sinne kann auch jede Abbildung f eines Raumes in
L,(p = 3,7) durch die Abbildungen P{ in S? und IIf in §P-! charak-
terisiert werden; insbesondere gehoért zu jeder Abbildung f von 87 in L,
eine Abbildung Pf von S? auf sich, deren Klasse durch den Abbildungs-
grad c gegeben ist, und eine Abbildung IIf von S? auf 871, deren
Klasse wir y nennen: ¢ und y bestimmen die Klasse von f, und x,(L,)
zerfillt in die direkte Summe x,(S?) 4 #,(871).

p = 3: die Klassen der Abbildungen f von S§% in L, sind durch 2 ganze
Zahlen c, y bestimmt, den Grad ¢ von Pf und die Hopf’sche Invariante20)
y der Abbildung IIf von 8% auf S2.

p = T7: die Klassen f e w,(L,) sind durch die ganze Zahl ¢ (= Grad
von Pf) und die Restklasse y mod 2 (y =1, wenn I/{ wesentlich, y =0
wenn IIf unwesentlich; 7,(S¢) besteht aus 2 Elementen'?)) bestimmt.

Also ist
(L) =26 + 6 und 7 (L) =6 + 6,.

Wir bestimmen nun die Invarianten ¢ und y unserer Abbildung s von
S? auf L, (p=3,7):

a(@) = (1 — 208, —20,0,,..., —2v,v,,,)

V= (V1,...,70 GSI’_
b(v) = (—2v,0;, 1 — 203,..., —20,0,,,) (v, pi1)

20) Definition: [8], S. 645 ff.; Beweis, daB die Klassen f € 7, (S?) durch die Invariante
y (f) bestimmt sind: [4], Nr. 12b, im Beweis des Hilfssatzes.

333



Ps ist durch a(v) gegeben; diese Abbildung hat bekanntlich'?) den Grad
¢ = 2. Ils miissen wir in der oben beschriebenen Weise bestimmen :

¢;(v) = b(v) - w,(a(v)), i=1,...,p.
p=3:
¢; = (— 2v,0) (+ 2v,v,) + (1 — 20%) (1 — 29%) +
+ (— 20,0;)(— 2v,0y) + (— 2v,9,) (+ 29,7,)

€y = (— 20,0)) (+ 2v,%,) + (1 — 2""2) (4 2v,v4) +

+ (— 2v,v;5) (1 — 2”3) 4+ (— 2v,v4) (— 2v,0,)
¢y = (— 20,0;) (+ 29,9y) + (1 — 29}) (— 2v,v;) +-

4 (— 20,0;5) (4 29,9,) + (— 2v,9,) (1 — 2”3) )

also
¢, = 1—2(v} + v))
Ca = — 2(V05 — ;)
¢3 = — 2(vy0, + v,05) .
p="17:

¢ = (— 29,0 (4 29,05) + (1 — 20}) (1 — 29%) 4 (— 20,0,) (— 20,0,)
+ (—2v,04) (+20,0;) + (—2v,05) (— 2v,7)
+ (—2v,06) (+2v,05)+ (— 20,9;) (4 20,7,)

Cy = -+ USW.;

o}
+ (— 2v,v) (—2v,v,)

die Rechnung ergibt

¢, = 1 — 2(% 4 v))

Cy = — 2(V303 — V1 0,)
Cy = — 2(Vyv4 + v,0,)
Cy = — 2(vyv5 — v V)
Cs = — 2(vy05 + v,05)
Cg = — 2(Va¥; + v175)
C, = — 2(vyvg — v,0,) .

Fafit man die Koordinaten von v ¢ S? gemif

|

Wy = U — 1,

8
I

Vg — 10, , aullerdem fir p =17
W3 = '05 e 7;’06

W, = Vg — 1V,
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zu komplexen Zahlen zusammen, so kann die Abbildung I7s von 8?7 auf
SP-1 durch

¢y = 1—2w, w,
c; +1¢; = —2w,w,, aullerdem fir p=7
Cs + e, = — 2w, w,
Ce +1c,= — 2W,w,

beschrieben werden. Das ist aber bei geeigneter Orientierung von S?-!
gerade die Abbildung von S? auf 87-1, die ich an anderer Stelle2!) mit
2 (fiir p = 3) bzw. 9 (fir p = 7) bezeichnet habe, und die man
folgendermaBen beschreiben kann: Man bildet S? vermoge der bekannten

Kreisfaserung auf den komplexen projektiven Raum Kp-1 von p—1

2
2
komplexen, also p — 1 reellen Dimensionen ab, indem man dem Punkt
v=(v,...,0,,,) der 87 den Punkt w,:w,:...: wp+1 von Kp—1 zuord-
2 2

net, und dann Kp-1 mit dem Grad 1 auf S, Fiir p = 3 ist IIs = 9
2

die von Hopf??) angegebene Faserabbildung von §% auf §2, deren In-
variante y den Wert 1 hat. Fir p = 7 ist /s = 39® eine wesentliche Ab-
bildung von 87 auf 8¢ (also ist nach unserer Festsetzung auch hier
y = 1); denn ich habe bewiesen?!), dafl ¥ bei geradem » wesentlich ist.

Damit sind also die Invarianten ¢ und y unserer Abbildung s von S? auf
L,(p = 3,7) bestimmt : es st ¢ = 2 und y = 1. Wir kennen also jetzt die
Abbildungsklasse des Randes ¢’ des Schnittelementes ¢, das wir in der
Zerlegung

Fa Vn,3 / Vn—-l,z = St

fir n = 5 und n = 9 konstruiert haben. Das gestattet uns aber, die
Gruppe v,_»(3,) (die in Nr. 5 erkldrt ist) zu bestimmen; sie ist ndmlich
nach einem allgemeinen Satz23) die von der Klasse von ¢’ erzeugte
Untergruppe von m,_ Vn—l,z) = 7, _a(Liy_s)-

Wenden wir nun die in Nr. 5 angegebenen Hurewicz’schen Formeln
auf die Zerlegungen 3,(» =5 und 9) an, so finden wir: wegen
7,_o(S™1) = 0'2) ist nach der ersten Formel

Pnn—2(Vn,3) =0,

also nach der zweiten und dritten

21) g, [7], Nr. 10, S. 17,
22) g [8], S. 654.
28) g, [4], S. 174, Satz 12.
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ﬂn-—Z(Vn,{%) = Pn—2 (Bn) ; 7I1z——2(Vn—-1,2) /%4 (3n) ’
also nn—z(Vn,{i) :f—:J—_ TTp—2 (Ln—2) /v)n—-2 (Bn) .

Wir haben aber eben gefunden, dafl fiir » =5 und 9 die Gruppe
7p_o(L,_s) die direkte Summe zweier zyklischer Gruppen ist, deren
Erzeugende die Abbildungsklassen a ez, _,(L,_ ;) mit ¢ =1 und y =0
bzw. b mit ¢ = 0 und y = 1 sind; dabei sind fir n = 5 @ und b von
der Ordnung 0, fiir n = 9 ist @ von der Ordnung 0 und b von der
Ordnung 2. Ein beliebiges Element f € z,_,(L,_,) ist also von der Form

f=ca -+ yb,

wo ¢, y ganze Zahlen (y mod 2 fiir n = 9) sind. Ferner haben wir gesehen,
daB v, ,(3,) die von f* = 2a 4 b erzeugte Untergruppe von =, ,(L,_,)
ist. Also wird

1. fiir n =>5: w3 (Vs 3) =6,

da man als Basis von =, 4(L,,) f*=2a+ b und etwa g¢g*=a

wihlen kann.
2. firn=29: 70, (V,3) = G, ;

denn die Restklassen von x,(L,) nach den Vielfachen von f* = 2a 4 b
konnen durch 0, a, b,a + b repriasentiert werden, wobei die Klasse a
(oder die Klasse a + b) die Ordnung 4 hat und somit die Restklassen-
gruppe erzeugt. — Damit ist die am Anfang dieser Nummer aufgestellte
Behauptung bewiesen, also auch Satz 5.

Anhang: Stetige Vektorprodukte.

9. Unter einem stetigen Vektorprodukt von r Vektoren im R»
(n > r > 2) verstehen wir eine Vektorfunktion x(q,,..., a,), die fiir alle
Systeme von r Vektoren a; des R"™ definiert ist und folgende Eigen-
schaften besitzt:

a) ¥ hdngt von a,,...,a, stetig ab.
b) x ist orthogonal zu q;,...,a,: ¥-a;,=0, ¢t =1,...,r.
c) x?=|q;-q;|, (Gram’sche Determinante).

Das tibliche Vektorprodukt hat bekanntlich diese Eigenschaften und ist
aullerdem linear beziiglich der Komponenten jedes Vektors q,; es ist
aber nur fiir wenige Zahlen 7 und » definierbar (vgl. die Bemerkung am
Schluf3 dieser Nr.).
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Es ist leicht zu sehen, daf} ein stetiges Vektorprodukt von r Vektoren
im R eine stetige nie-triviale Losung des Systems
n
2 a,x, =0, t=1,...r>2
k=1
im Sinne von Satz 5 liefert, und dall man umgekehrt aus jeder stetigen
nie-trivialen Losung dieses Systems ein stetiges Vektorprodukt herleiten
kann (durch Normierung der Funktionen xz, = f(ay,.. ., a,,) und Er-
weiterung ihrer Definition auch fiir Matrizen (a,,) vom Rang < r, ndm-
lich 2y = ... =2, =0).
Der Satz 5 besagt nun, daf} es jedenfalls kein stetiges Vektorprodukt
von r Vektoren im R™ gibt, wenn n — r gerade, oder = 3 oder 7 1st.

Wir wollen in diesem Anhang noch kurz im Zusammenhang mit ver-
wandten Fragen darauf hinweisen, dal man diese Aussage verschérfen
kann, wenn man vom Vektorprodukt nicht nur fordert, dal es stetig,
sondern auch dafl es ungerade sei (oder wenn man sich sogar auf lineare
Vektorprodukte beschrinkt); dies gelingt auf Grund bekannter Sdtze. —
Ein Vektorprodukt soll ungerade heillen, wenn x(ay,..., — a;,..., a,) =
— %(Qg,. 05 Ay .., @) Ist fir e =1,...,7.

Zunichst sei bemerkt, dafl man den Hzilfssatz in Nr. 6 so aussprechen
kann: Wenn es im R" ein Vektorprodukt von r Vektoren gibt, dann gibt
es auch im R"! ein Vektorprodukt von r — 1 Vektoren; und zwar ist
dieses stetig, ungerade oder linear, je nachdem das urspriingliche es ist.
Wenn man also zeigen kann, daf} es kein Vektorprodukt von 2 Vektoren
im RY gibt, so gibt es auch keines fiir alle r und » mit n —r = » — 2.
Wir befassen uns deshalb insbesondere mit dem Fall r = 2.

Unter einer Multvplikation vm R™*+! (mit Einselement) verstehen wir
folgendes: Jedem Paar von Vektoren 2, B des R»+! sei ein Vektor
€ = A o B als Produkt zugeordnet, wobei es einen Vektor e gibt, so dall
Noe=-¢e¢o A=Y ist fir alle A. Es ist klar, was mit einer stetigen
(ungeraden, linearen) Multiplikation im RE"+! gemeint ist.

Satz A. Wenn es im R™ ein stetiges Vektorprodukt von 2 Vektoren gibt, so
gibt es im R+ eine stetige Multiplikation € = A o B, welche die ,,Normen-
produktregel« ©2 = W2 B2 erfullt®); sie ist ungerade oder sogar linear,
wenn das Vektorprodukt es ist.

24) Mit der Existenz einer solchen Multiplikation im Rn+1 ist die Existenz einer Ab-
bildung des topologischen Produkts §7 x S7 in S vom ,,Typus (1,1)* dquivalent (d. h.,
daB jede Faktorsphire Sn mit dem Grad 1 abgebildet wird); vgl. Hopf, Uber die Abbil-
dungen von Sphéren auf Sphéren niedrigerer Dimension, Fund. math. XXV (1935),
427—440. Fir n = 1, 3, 7 gibt es solche Abbildungen; ob es noch fiir andere n solche gibt,
ist (wenn man nicht die Bedingung ,linear* oder ,,ungerade‘‘ hinzunimmt) eine véllig"
ungeloste Frage, die in verschiedener Hinsicht von Interesse ist.
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Der Beweis beruht auf einer bekannten, elementaren Konstruktion:
Der Vektor A des R"+! habe die Komponenten (a,, a,,...,a,), ¢ sei der
Vektor (1,0,...,0); wir konnen % in der Form

N =aee +a

schreiben, wo a ein Vektor des zu e orthogonalen R” im R"+! ist, analog

B = bye + b. Bedeutet a X b das Vektorprodukt von a und b im R,
so setzen wir

C=UoB = (asbp—a-b)e+ ayb + bsa + (a xb).

Dannist e o A=W o e=A, und

C2= (agby—a-b)2 + (aeb 4+ bya + (a x b))?2
= ag by — 2a4boa-b + (a-b)? + al b2 + b a% + a2b2 — (a - b)?
+ 2a4boa-b
— (a® + a?) (B + b2) — A2 B2

Aus diesem Satz folgt nun fiir ungerade Vektorprodukte :

Satz B. Es gibt tm R"™ hochstens dann ein wungerades stetiges Vektor-
produkt von r Vektoren, wenn n —r = 220 —3 48t (A= 2, 3,...).

Beweis. Eine ungerade Multiplikation mit Normenproduktregel im
R+ bedeutet ein System von n + 1 ,,definiten ungeraden Funktionen
in 2 Reihen von n 4+ 1 Variabeln‘‘; so etwas gibt es aber nach einem
Satze von Hopf?5) hochstens dann, wenn n 4 1 eine Potenz von 2 ist.
Es kann also hochstens dann ein ungerades Vektorprodukt von 2 Vek-
toren im R" geben, wenn n von der Form 22 — 1 ist (1 > 2); nach dem
oben erwihnten Hilfssatz muBl also auch fiir r > 2 stets n — r = 22 — 3
sein.

Beschrinkt man sich sogar auf lineare Vektorprodukte, so folgt aus
Satz A in bekannter Weise: Es gibt ¢m R"™ hiochstens dann ein lineares
Vektorprodukt von r Vektoren, wenn m —r = 1 oder 5 ust.

Denn nach dem Satz von Hurwitz 2¢) iber die Komposition
quadratischer Formen gibt es genau fir n 4+ 1=1,2,4,8 eine
lineare Multiplikation mit Normenproduktregel im R"+!; also gibt es

25) s. [10], S. 225, Satz Te.

28) A. Hurwitz, Nachr. Ges. d. Wiss. Géttingen 1898, 309—316 (Math. Werke, Bd. II,
565—671).
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(n > 3) hochstens fiir n = 3, 7 ein lineares Vektorprodukt von 2 Vek-
toren im R, folglich muBl immer n — r = 1 oder 5 sein. — Fiir r = 2
und n = 3 oder 7 existieren auch wirklich lineare Vektorprodukte: fiir
n = 3 das iibliche Produkt im R3?, das mit der Multiplikation im R*
(Quaternionen) so zusammenhéiingt, wie es im Beweis von Satz A formu-
liert ist; und analog gehort zur Multiplikation im R8 (Cayley’sche Zahlen)
ein lineares Vektorprodukt im R?. In diesen Fillen hat man also einfache
Beispiele stetiger Losungen eines Gleichungssystems im Sinne der Frage-
stellung von Satz 5.

(Eingegangen den 26. Dezember 1942.)
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