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L’itération directe des opérateurs
hermitiens et deux théories qui en dépendent

Par R. WAVRE, Genéve

1. L’espace

Nous voudrions faire une étude directe de I'itération des opérateurs
hermitiens et fonder sur elle la théorie des équations intégrales & noyaux
symétriques et celle des systémes linéaires d’équations & une infinité
d’inconnues, la matrice des coefficients étant hermitienne.

L’espace K dans lequel nous opérons est défini par les cinq axiomes
suivants:

I. 1l est vectoriel linéaire, c’est-a-dire que si « et y sont deux éléments
de K et o, f des nombres complexes quelconques xx + Sy est aussi
un élément de Z.

II. Il est métrique; on peut y définir un produit scalaire (x, y) et une

distance réelle + V' (z, x) .

III. Il est, & une infinité de dimensions, c’est-a-dire contient une infinité
d’éléments orthogonaux 7 tels donc que 'on ait (2%, %) = {? sui-
vant que ¢ % j ou non.

IV. 1l est complet, c’est-a-dire admet le critére de Cauchy pour la con-
vergence forte. Voir § 4.

V. 11 est séparable, tous ses points sont points d’accumulation d’une
infinité dénombrable d’entre eux. Cette propriété ne sera pas in-
voquée au début.

On trouverait dans le beau livre de M. G.Julia: Introduction
mathématique aux théories quantiques, 1938, T. II, chap. III,
toute explication concernant cet espace. L’espace d’Hilbert E,, et 1’espace
fonctionnel E, satisfont & ces cing axiomes.

Le produit scalaire a les propriétés suivantes, les éléments pouvant
étre complexes:

(x,y) = (y, ) donc (x, x) est réel; une barre indique l’imaginaire
conjuguée. _
Dans E,,, « a les coordonnées z; et (z, y) = X z,;y,.
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Dans H,, x et y sont deux fonctions de carré sommable et (z, y) =

_!E(t) y(t) dt.

La norme d'un élément sera || x||2= (x, x), la racine positive
l = || « || sera sa longueur.

Norme et longueur sont bien positives ou nulles dans £, et E,.

On a l'inégalité de Schwarz, I'inégalité triangulaire et la propriété du
facteur
(@x, y) =a(z, y)
@ |<Ilzll-llyll, Hztyll<llzl+Ilyll, (@, ay) = alz, y) .

Le produit scalaire est distributif (z’ + z”, y) = (2/, y) + (z”, y), de
méme en y.
Un opérateur A est linéaire si

A + 2"y =Ax" + A2", A(Ax)= A4z,

/A nombre complexe. Nous poserons y = A .
Il est bien entendu que y est supposé étre un élément de K si x I’est.
Ce ne sera pas toujours le cas dans la suite, car ¥ pourrait ne pas exister.
Les deux interprétations classiques sont, dans K, et E,:

[~ 1
Y= X a,;.%, , Y(8)= j‘N(S,t) x(t) dt .
0

k=1

L’opérateur linéaire A sera dit hermitien si I'on a, quel que soit x et y
de £ :
(Az, y) = (z, Ay) donc (z, Azx) est réel.

Dans les exemples ci-dessus, ’opérateur est hermitien si

en particulier, un noyau ou une matrice symétrique réels engendrent des
opérateurs hermitiens. On dit qu'un opérateur hermitien est identique
au conjugué de son transposé.

2. L’itération

Nous poserons 42 = A4, 43 = AAA, etc.; ces nouveaux opérateurs
sont hermitiens si 4 I’est. On a, en effet:

(A z, y) = (A" 1z, Ay) = --- = (dx, A" y) = (z, A™y) .
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Nous poserons: (1) 4™z, =1, ...l z, avec || z,|| = 1 pourr = 0, 1, 2...
Le second membre de (1) sera 1'itéré de rang r de z, et x, le conséquent
de rang r. Les conséquents sont donc toujours sur la sphére unité. Quant
aux [; ce sont les longueurs des itérés d’ordre un desdifférents conséquents:

L= ||4d=z,_,]| .
On a, les z, étant toujours normalisés, comme on le vérifie facilement:
APz, =1y oo by Ty (2)

Des produits scalaires tels que (x,,, #,,) = (%4, Z,,) sont toujours
réels. On a:
L

—L(xlyxl)='z—2—;

1 1
(xz, Zo) = —l;(Axl’ xo) =“l‘;(x1a Axo) = I,

en vertu de l'inégalité de Schwarz (x,, z,) <1 donc [, <1Il,. De
(Zpye, %) <1 on déduit de méme 1, , <I,,,. On a donc, entre les I,,
les inégalités suivantes, tout a fait fondamentales pour la suite, et déja
établies par Kellogg pour la théorie des équations de Fredholm & noyau
symétrique:

h<b<lh<--. (3)

Les longueurs des itérés de rang un des conséquents d’un élément ne
peuvent pas décroitre.

De (4) I, .. .1, = 1] on déduit (5) || 4,x|] = || 4 =]||".

Posons: (6) I = lim [/;; I existe: | = + oo ou Il = quantité finie sauf
sil, = 0.

Si I, = 0 nous dirons que z, est antécédent de zéro: || 4 z,|| = 0.

Les inégalités (3) ou (5) montrent que si /, n’est pas nul aucun consé-
quent ne sera antécédent de zéro.

Si 'on a quel que soit  de £, M étant un nombre indépendant de z,

|Az|| < M || =],
Popérateur sera dit borné.
On démontre qu’un opérateur borné est défini dans tout 1’espace et
qu’il est uniformément continu, c’est-a-dire que
|dy — Az|| <& pourvu que |[ly—z|[<7n.

Pour les opérateurs bornés on a I << M. En plus l'existence d’une
infinité d’itérés est assurée quelque soit 1’élément initial z,.
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3. Le produit infini @ et I’éloignement des conséquents

Formons sur une suite de conséquents de z, le produit des quotients
des longueurs par leur limite
L oL,
I 1

6 (wo) = ’ (7)
i l;, = 0 nous ne le formons pas ; produit infini que nous avons déja consi-

déré en 1925%), mais que Kellogg n’introduisait pas. Les quantités
l(x,) et @ (x,) sont des fonctionnelles de x, que nous étudierons plus tard.

Puisque I, <, << --- <l on a 0 <@ < 1. Posons encore, en omet-
tant z,:

— l l — 1, 1 —_
“’v.H':_{—”'_”Zﬂ ; wf’:“l&' le“' ; O=w;=wy, 0 . (8)

On a, comme on le vérifie sans peine, la derniére égalité n’étant valable
que si [ est, fini:

1
R r r e
(By s Tgpor) = ] 7 (ATz, , ATx,) =
a+1 - *Ygt2r
bogr « oo logr _ __Pat1, atr (9)
Lotrar o= lorar D gir+1, qtor

Si® # 0,donc lfiniona lim @, ¢ = 1 done
r>-+4 o

lim (%, o) = Dgyq - (10)
r>+4 o0
Si @ = 0, je prétends que I’égalité (10) est encore vraie, w,,, étant
alors nul lui aussi.
En effet, on a quel que soit 7, < r en vertu de (9), le quotient des I, dimi-
nuant lorsque r augmente:

0< (xq 3 xq+2r) < (xa ’ x<1+2"1) :

Sil = + oo (10) est évident car les [, ;— + oo avec r; et si [ est fini,
on a par le rapport des o:

lim (xa’ xq+2r) < Wg iy , @+7y
r>+4

quel que soit r, et alors comme ®,,; ., = 0 on a bien (10).

*) Bulletin de la Société Mathématique de France.
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Considérons, maintenant, la distance (véritable dans E,, en moyenne
dans E,) de deux conséquents de méme parité. Son carré est

”xq - xq+2r”2 = (xq - xq+2r’ xq - xq+2'r) = 2[1 - (xq’ xq+2r)] .

D’ou par (10)

lim qu - xa+2rH2 =2(1 — aq+1) : (11)
r> + o

On peut poser, le produit scalaire étant formé d’éléments normalisés:

Cos de l'angle x,, ., 4 = (%,, %,,2r) = cos de 'angle z,.,,, z,.
Les relations (9) montrent ceci: L’'angle x,, x,,, et la distance de ces
deux conséquents ne diminuent jamais lorsque r augmente. L’angle est
. s e s . T
toujours inférieur a 5

4. La convergence forte des conséquents, cas w # 0
La convergence forte est définie dans ¥ par le critére de Cauchy:

x) ||amt? — an|| < e pourvu que n > N(e) quel quesoit p> 0.
Espace complet signifie qu’il existe alors un élément x de E et un seul
tel que 'on ait:

B) ||a® — x|| <n pourvu que =n> N(n) .

Inversément f) implique «) par I'inégalité triangulaire. Nous écrivons
x = lim 2™

Dans E,, B s’écrit, 'indice 2+ marquant maintenant les coordonnées:
S|z, — «t|2<e dou x; =limz}, en particulier.
B

Dans K,

1
| |z(t) — «*(t)|* dt < &; x(t) = limite en moyenne de z"(t).
0
Ceci dit: si w(x,) # 0, le second membre de (11) tend vers zéro car
Wy —> 1.
Donc les conséquents de x, convergent fortement vers un élément z

de £ .
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L’on a d’ailleurs:

(Zog, &) = (T, o) = Bogy1 (o) = @, (Xy,) (12)
et
@ — z||? = 2(1 — @,y,) .

L’angle et la distance de x,, et de sa limite n’augmentent jamais avec q.
Si @ # 0 Pangle en question est inférieur a —721 .

Si @(x,) = 0 alors par (11)

lim qu—- xq+2er: 2 (12)
r->-4 o0

quel que soit q car @, , = 0, ce qui est contraire au critére «) de la con-
vergence forte. Toute suite xz, ,., extraite de x, ,. donnerait lieu & la
méme relation (12) lorsque 7’ — - oco. Il est donc impossible d’extraire
de la suite des conséquents de x, par 42 une suite fortement convergente.
En appelant avec M. Fréchet, ensemble compact, un ensemble tel que de
toute suite infinie d’élément on puisse extraire une suite convergente, on
peut affirmer, en résumé, ceci:

Théoréme. Si @(xy) # 0, les conséquents x,, convergent fortement vers
un élément x de E ;

si w(xzy) = 0, les conséquents x,, forment un ensemble mon
compact pour la convergence forte. Le cas
I, =0, étant excepté.

b. Cas @ = 0. Convergence faible des conséquents. Opérateurs singuliers

Nous allons montrer que si w(z,) = 0, les x, deviennent orthogonaux
a tout élément y de £ . Bien que de norme unité || z,|| = 1; nous dirons
conformément a 'usage qu’il converge faiblement vers zéro. Dans E,,,
lim (x,); = 0, quel que soit la coordonnée de rang 7. Nous dirons que
les z* convergent faiblement vers x §’il existe un y élément = tel que

quel que soit 1’élément y de E. On sait que dans E,, voir Julia, T. II,
et dans E,, voir Banach: Théorie des opérateurs linéaires, Varsovie 1932,
toute suite d’élément de normes bornées est compacte pour la conver-
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gence faible. Donc de toute suite de conséquents x, on peut extraire une
suite x,,; faiblement convergente. On aurait un x tel que

lim (z,,,y) = (x, y) quel que soit y.
Mais pour # = y on aurait:
Hm (25, ) = (2, ) O (Zy,,x) = im (x,,, Ta;)

Zoq; jouant maintenant le réle de y. Or cette limite, égale a w,,,,,, est
nulle ; done (x, ) = 0. Les limites faibles ne peuvent étre que 1’élément
zéro. Je prétends que la suite x, elle-méme converge faiblement vers zéro.
En effet, si les nombres (z,, y) ne tendent pas vers zéro, quel que soit y,
c’est qu’il existe un y et une suite x,, tels que

z, )| > k> 0.

Mais cela est impossible, car alors il existerait une nouvelle suite
extraite de la précédente pour laquelle les modules tendraient vers zéro.
Ce qui serait contradictoire.

En résumé. Si un opérateur hermitien fournit une infinité de consé-
quents normalisés d’un élément xz, alors:

St w(x,) # 0 les x,, convergent fortement vers un élément x de E .
8t w(x,) = 0 les x, convergent faiblement vers zéro, donc deviennent
orthogonaux & tout élément y de E : lim (x,, y) = 0.

6. Autre définition de I et répartition asymptotique

On a, puisque [,—1:

N drell o bl VTS A<Uopgni ou infin;
Iim ——— 2 = lim ———— ={ w(x,) si A=1
1>+ AT A ) 0 si A>1 w = 0 ou non.

! est donc la plus petite valeur de A4 pour laquelle cette limite n’est pas
infinie et cette valeur existe.

On peut aussi écrire:

A2 (z)

= lim z,, , ||=,.||=1.
ll’.‘lzr

lim 121_; A?rxy=w(x,) « ; B(x,) = lim
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Si ®w % 0 ces limites sont des points de £ de norme non nulle, siw = 0
il y a convergence faible vers zéro.

7. Les opérateurs réguliers et les opérateurs complétement continus

Un opérateur sera dit régulier s’il est borné et si pour tout x, non
antécédent de zéro 'on a @ # 0. Le passage de 4 4 A" n’altére pas o,
il groupe les facteurs de » en ». Donc si A est régulier A™ ’est aussi et
réciproquement. Le passage de x, & x; change @, en w, , et n’altére pas
le fait pour @ d’étre nul ou non.

Un opérateur sera dit complétement continu (un abrégé cc), s’il est
borné et §’il convertit une suite bornée quelconque 2° en une suite
y* = A« formant un ensemble compact pour la convergence forte.

Un opérateur cc est régulier. En effet, on a A% Z,,, éléments qui

l
a+1
formeraient un ensemble compact, il en serait de méme des x,, et par

suite w % 0 quel que soit x,. St A™ est un opéerateur cc alors A est régulier.
A™ serait régulier et @ est le méme pour 4 et A™. Les opérateurs cc sont
ceux de la théorie classique de Fredholm et des théories homologues.
Soit, en effet, N (s, ) un noyau réel, symétrique et continu sur I’ensemble
0<<se <1, 0L,

11 est donc borné et uniformément continu. Posons:

p(8) = j}N(s, t) f(¢)dt avec j'lfz(t) dt=1.
0 0

On a
p(8") — (") = Of [N(s',t) — N(s", t)] f(t) dt ;
1 1
lp(s”) — @(s”)]2 < Oj' [12d¢ gfzdt.
Or

[1<e pourvuque [s'—s"|<y et |p(s)) —p(s") <e

gsous la méme condition, en vertu de l'inégalité de Schwarz. Les fonc-
tions ¢ sont également continues et bornées. Elles forment un ensemble
compact pour la convergence uniforme, donc la convergence forte. Les
opérateurs cc recouvrent le cas classique du noyau symétrique continu
dans la théorie de Fredholm. Exemple d’un opérateur donnant lieu a
w = 0. Af = zf(x), (on multiplie par la variable) en normalisant sur
Pintervalle 0, 1. Prenons f, = l alors A1 = z, 421 = «?% ... A"]1 = 2™
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ly...l,=1/N

avec
2___1 an — 1
N—dfx T = 2n + 1
donc _ _
l,,:—l/—_z_—’;___':-l—,lzl,as= 1L Y3 Vs | _p
V2n + 1 V3 V5 V7

Les conséquents sont z, = V2n + 1, ils tendent vers zéro sur tout
Pintervalle 0 << z < 1, mais pas uniformément;

V2n+1 V2n 4+ 4r +1
2n 4 2r 4+ 1

(x,, ’ xn+2r) =

et sa limite pour r - 4 oo est bien nulle. On aurait donc aussi

1

lim y2n 4+ 1fx”<p(x) de = 0 ,

0

@ étant une fonction quelconque de carré sommable.

8. Les solutions de I’ équation homogéne, ou éléments propres

Nous appelons élément propre tout x de K solution de l'équation:
Az =vx; v est appelée valeur propre. Ce sont les vecteurs de £, dont
la direction est invariante par 4, ou dans K, les fonctions qui se repro-
duisent & un facteur pres.

Si A est borné et w(xy) # 0; les x,, convergent fortement vers un élément
propre pour Uopérateur A%. En effet, on peut écrire:

Tog =T + o, aVeC |||l >0 et I, =1+ 7, 7,>0
alors

logi1 logros Togpe = A%y, = A%x 4 A%, et [2x — A%x=0F,, ;

Fop = A% g + 920 () — (N9 + -+ )

autant de terme dont les normes tendent vers zéro avec 1|q.
En vertu de l'inégalité triangulaire ||u+tv4w||<||u||4+]||v]|+]|wl|,
on montre que ||F,|| 0. On a donc bien

A2x = %z avec « = limite forte des x,,.
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Posons

y = x+—ll—Aa: dou Ay’ = ly , y+y"= 2z-=21lim z,,

2 ..
Ax = 5 limx,,,, .

y” == x————!—Ax d’Oh Ay”=——ly”, '!//““?/” = l

2
! 1
Donc, a la limite « par 42 correspond deux éléments propres y’ et y”
de valeur propre I et —I, I'un des deux peut étre nul, mais pas les deux a
la fois car ||y’ + y”|| = 2.
Nous appellerons & ’avenir [ la fréguence. Il peut y avoir deux valeurs
propres » pour une méme fréquence v = -+ l et il y en a au moins une.

9. Quelques lemmes

o) Pour tout opérateur régulier, une fréquence A est la plus grande valeur
que peut prendre || Af,|| lorsque Uélément f, normalisé est orthogonal & tout
élément propre de fréquence supérieur a A.

En effet, si [,(fo) > 4 on aurait A <l, <1, < --- <1 et les f,, ten-
draient vers un élément propre f de fréquence [ > A et non orthogonal &
fos car (f, fo) = @(fo) 0. Bt Lon a || A (p)]| = 4.

Cette propriété est tout a fait fondamentale comme on sait dans la
théorie des formes quadratiques.

Nous appellerons opérateur nul un A4 pour lequel || 4 z|| = 0 quel que
soit x de K.

Nous en ferons ici abstraction.

a) Un opérateur régulier admet au moins une fréquence et un élément
propre.

En effet, il existe un z, donnant !, > 0 done [, <1, < --- puis [ et
@ # 0 d’olt z puis ¥’ ou y” qui sont éléments propres. On voit combien
cette méthode permet facilement de démontrer 'existence d’une solution
au moins de 1’équation homogéne Ax = vx.

Il suffit d’ailleurs que A (x,) ne soit pas identiqguement nul pour qu’il
existe un €lément propre.

b) Les fréguences sont toutes réelles. Les éléments propres sont supposés
dans £ naturellement.

En effet, (z,42) = (x,v2) = v = (Ax,x) = (vz,x) =». L'on a
évidemment sur un élément propre: @ = lcar l, =1, = [; = [.
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¢) Deux éléments propres de fréquences différentes sont orthogonauzx.

On aurait: Ax =vx, Ay = py avec v = u d’ou

(z, Ay) = vz, y) = Az, y)=r(z,y), (& —») (z,9)=0

et (z,y)=0.
Ces lemmes b) et c¢) sont classiques.

d) 87 un élément x, est orthogonal a un élément propre y tous ses consé-
quents le sont aussi, arnst que les limites (forte ou faible) des x,, et o, ;.

On a en effet, si Ay = py:

Iy...1
= —1‘7)‘;—(1 (g, ) -
Cette relation montre que si dans la suite x,, x;,...%,... l'un des

éléments est orthogonal & y ils le sont tous. Si @ # 0, lim z,, = z,

lim z,,,, = —1i—- Az et lim (x,,,y) =1lim (x, y). Si =0, la proposition

sur x est évidente. Mais la réciproque ne sera pas vraie, on peut avoir
(x,y) = 0 sans avolr (x,,, y) = 0.

e) Tout antécédent de zéro est orthogonal a tout élément propre. En effet,
on a0 =1(2,y) = P ¥)-

f) 87 A™ est un opérateur cc, A n’a qu’un nombre fini ou une infinité dénom-
brable de fréquences dont le seul point d’accumulation est 0. En plus, a chaque
valeur propre n’est attaché qu’un nombre fini d’éléments orthogonauz.

En effet, soient v’ et yp” deux éléments propres orthogonaux. On a
|| Ay’ — Amp”[|2= [|»/ """ — | |2 = "2 4 p"2 car (v, p”)=0.
Il est alors impossible d’avoir pour une suite S de y
pan Lyl > k>

car opérateur A" transforme toute suite S en une suite compacte. Donc 8
contiendrait une suite 8’, pour laquelle le premier terme des égalités ci-
dessus tendrait vers zéro et par conséquent 1'inégalité en k serait impos-
sible. Les fréquences [ n’ont que zéro comme point d’accumulation. Elles
forment une suite finie ou dénombrable. A chaque valeur propre » ne cor-
respond qu’un nombre fini d’éléments propres orthogonaux; donc un
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nombre m d’éléments linéairement indépendants, s’il y en avait davan-
tage, on formerait plus de m éléments orthogonaux par un procédé
d’orthogonalisation bien connu.

Dans la théorie des équations de Fredholm & noyau symétrique, si un
des noyaux itérés N™(s, t) est continu, 'opérateur 4™ est cc et la théorie
précédente s’applique. En particulier, en introduisant les valeurs fonda-
mentales 4, = 1/»; on a lim |4,| = + oo.

g) On sait que, en posant g = lim forte g,., on a (g,,9) = @ (g,).

Posons f =g, —@(go)g d'ou (f,9) =0 car (g,9) =1,

puis  go=@(go)g + f-

On décompose ainsi un élément g, tel que @ (g,) # 0 en deux éléments

orthogonaux, 'un suivant un élément propre g et 'autre est un élément
orthogonal a g.

h) 8¢ trois éléments x,, x,, x; appartiennent & une méme variété linéaire

n .z O

xxy+ o' 2y + o ) = «,«’,a” nombres complexes;

alors leurs fréquences 1, 1’, 1" sont telles qu’aucune n’est supérieure aux deux
autres. Si I’on itére r fois par A on aurait:

27 r " "o
wly oo, + 'l oL, ", =0 .

Sil> Aetl’ < 4,1” < Aen divisant par A" le coefficient de z, tendrait
vers l'infini et les deux autres vers zéro. Cela est impossible, les éléments
x,, x,, x! étant normalisés.

i) Lemme classique sur la convergence forte des séries.

Pour qu’une série procédant suivant des éléments orthogonaux norma-
lisés converge fortement, il faut et il suffit que la série des carrés des
modules des coefficients soit convergente.

Posons n ; .
(Pn et 20 ) T ) O % #?
on a
n+p n+p
| Pnip—@ullP= 1l 2 ayp;|IP= X ]a;|* .
t=n+1 n+1

Le critére de Cauchy pour la convergence forte des ¢, vers un élément ¢
est le méme que pour la convergence ordinaire de la série. On peut donc
poser

o0

p=Xa,y;,, s Xl|a;* -converge.
1=1 i
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10. Lemme sur la répartition des fréquences

Soient A un opérateur hermitien et », une succession de valeurs propres
distinctes, v, des éléments propres correspondants Ay, = v, y,. Nous

supposons |v,| < N. Considérons la série ou tous les a; sont différents

de zéro.
“ere p=2a,p; avec 2|a,? convergente.

Puis posons » = borne |»,] (borne supérieure des fréquences intro-
duites).

Ona A7 = 3 a,v]y,; série fortement convergente.
i

Puis + o0 81 A<y
: | AT ||? . (v,- 2r la;|? si A =»=|w]|
— T =] L i — ¢ ¢
Jim m 3 a7 0 si A=7»>|wl
0 si A>wv .
Donc 1) l(p) = v = borne des fréquences introduites.
2) w(p) = |ay| sila borne |, est atteinte pour »,.
3) w(p) =0 sila borne |v,] n’est pas atteinte.

Théoréme. En conséquence, si l'opérateur est régulier, @ (p) # 0 quel
que soit ¢ de E, 7l est impossible qu’une suite de fréquences bornées n’at-
teignent pas sa borne supérieure.

Une suite de fréquences bornées distinctes contient toujours une fré-
quence supérieure & toutes les autres si 'opérateur est régulier. Les points
d’accumulation des fréquences ne peuvent étre approchés que par des
valeurs plus fortes. Tout sous ensemble de fréquences contient un plus
grand élément.

Les fréquences des opérateurs réguliers pewvent donc étre numérotées au
moyen des nombres ordinaux transfinis de classe 11 que nous appellerons

les :
1,2,3,...0, o+1, o+ 2... 20w, 20+ 1,....

En prenant les fréquences I* par ordre décroissant quelconque, chaque
fréquence a une suivante, sans avoir nécessairement de précédente:
[* > [*+1,

Posons [* — [*+1 = 4, ces intervalles sont différents de zéro. Il y en a
un nombre fini entre M > 1 et 1, un nombre fini aussi entre 1 et M1,
entre M-1 et M-2,.... L’ensemble des fréquences inférieures & M est
donc dénombrable quel que soit M .

L’ensemble des fréquences d’un opérateur régulier est dénombrable.
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11. La décomposition spectrale.

Opérateur cc. Soit f = f) un élément quelconque de E. Formons
l(f) puis @ (f) et posons:

fo=o({)f°+f5 avee f°=lim f3 10 = U(fg) = 1(f°)

fo=a(fe) f* + 13 s ft = lim f3, = 1U(fo) = U(fY
fo=a(f5) 12+ 13 »s {2 = lim f3, 12 =1(fg) = L(f?)
etc.

La réduction serait arrétée au rang = si If = 0, donc la premiére fois
que I'on rencontrerait un reste f; antécédent de zéro. Je prétends que
Pon a toujours I™+1 < ™ I’égalité se présentant la premiére fois si m = n.

En effet, on a toujours en vertu de I(fy’) = [(f") et du lemme h) sur

trois fréquences:
L) < UM = Uf™) -

Si I’égalité était réalisée on aurait en itérant ’équation de rang m:

m m — To(fm 2 m+1 m-+1 gm+1
ll "‘lz'r ;"r_w(fo)lmffm_‘_ll "’er g;'

d’ol1, en divisant par I™ & la puissance 27 et passant a la limite:

@ (fp) f™ = o (fg) f~ + @ (fg*) fm+

ce qui entraine If'*' = 0 car w(fy'*?) serait sans cela différent de zéro
ainsi que fo'tt. L’on aurait II* = I™.

On a bien I™+1 < [™ jusqu’a m = n (n fini ou inexistant). En ajoutant
les équations membre 4 membre, on trouve:

f= Znﬁ(ﬂ;)ﬁ—}-h n fini ou infini et || 4 (h)|| = 0.
i=0

D’ou1 ’'équivalent du théoréme d’Hilbert-Schmidt (avec la convergence
forte):
f=X %_a_’(ﬂ)) (y/i -} y”“) + h, zfi — y/i T y//,- ’
et

Af =3 ¥ @(f}) (»;y;—»y?) , = fini ou infini.
i=0
Tout conséquent par A d’un point de E est développable en une série
d’éléments propres.

Si n = 4 oo, h estle résidu aprés le passage a la limite sur m.
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Remarque. Le reste h étant antécédent de zéro est orthogonal a tous
les éléments propres ¥, y7 d’ou deux conséquences: les @(f;) sont les
coefficients de Fourier de f et ’'on a

Hsz:.%'a")z(fg)-}—HhH% n fini ou infini.

Que h soit orthogonal & toutes f* se voit aussi sur les équations de la ré-
duction progressive des restes successifs: f§ est orthogonal & f° (lemme g),
f* aussi, donc f2 est orthogonal & f° et f1, et ainsi de suite, fi* est orthogonal
a fm-1 et & tous les fm~1 car f™ l'est, ainsi que f~'.

Cette réduction ne fait intervenir que les éléments propres y* en lesquels
Uélément donné se développe effectivement. Il n’est pas nécessaire de con-
naitre tous les éléments propres. En plus les termes apparaissent dans Uordre
des fréquences décroissantes.

12. La décomposition speectrale par réduction transfinie.
Opérateurs réguliers non c c.

Pour les opérateurs non cc mais encore ,,réguliers*, les m sont emprun-
tés & une suite d’ordinaux transfinis «. Il faut ici étudier ce qui se passe
lorsque 'on épuisse une suite infinie de « pour repartir ensuite. On a

fo=o) f*+ 5™, lr<ix,

Le procédé serait arrété si I, (fi*') = 0, ce qu’il faut envisager c’est
donc lim {* = A; B désignant 1'ordinal qui marque ’épuisement de cette
suite de «.

On posera done:

f= X a(f)f*+1; -

<<

Je prétends que si f§ n’est pas antécédent de zéro:
B <A sinon B=4+%k avec k>0 ;
mais on aurait I8 > [? > [¥*1 > ... pour un y de la suite au moins. Et alors
a<<f s
fi= o) f+h=9+1f,
a>>y

ce qui est contradictoire avec le lemme h) des trois fréquences, car [ de
f& serait supérieur & celui de f}et & celui de ¢. Si f§ est antécédent de
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zéro, on suspend la réduction, sans cela on la poursuit. On aura donc
encore ici

HI2= X @*(fg) + 112

o< g

Et ’'on peut écrire:

f=Xo(f)f*+h avec ||AR|| =0 et (f*h) =0

Af = X3 B(f}) (v Ye— vo Ya) théoréme d’Hilbert-Schmidt étendu,
et |[fI|2= X ®*(f5) + ||A][* .

S’il y avait doute au sujet du sens de la série étendue aux ordinaux
transfinis de classe I, rappelons que leur ensemble est ici dénombrable et
que l'on peut toujours écrire, en intervertissant s’il le faut les
fréquences

f=3Xo(f)f+h (de méme pour les autres séries).
=0

13. Quelques remarques sur les opérateurs réguliers.

A. Soit e le spectre, c’est-a-dire I’ensemble de toutes les fréquences de 4
et e’ son dérivé, c’est-a-dire 'ensemble des points d’accumulation des e.
L’ensemble e + e’ est encore numérotable dans I'ordre décroissant par
des ordinaux transfinis de classe II.

En effet, un point d’accumulation de e + e’ ne peut étre approché que
par valeurs plus grandes. Sans cela, il y aurait dans la suite approchante
une infinité de points de e’, mais les points de e’ entrainent avec eux des
points de e.

B. Prenons un élément x, non antécédent de zéro. On a
i

li+1

(X415 Ziyq) = Done, sil, =1,

||xi—1 - xi+]ll2 e O, xi_l — xi+1 — xi+3 — ..

Inversément, si I, = [, alors I, = l;. En effet, on a en développarit Z,
suivant le § 13:

xozzcaxa+k, Aixo:ll...lixizzcal&xa

d’out par soustraction, puisque =z, ; = x,,,

. I’
Ecalgl(l——— )x“r_O .

li lita
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Mais les * du développement de z, sont tous orthogonaux, et les I*
tous différents, donc il n’y aurait qu’un ¢, différent de zéro et alors
xo=cx*+h dou l,=1l,=..-=1,. Corollaire si I, <I; alors
L <lg<ly<--- .

14. L’équation avee second membre
Nous avons vu au § 13 que 'on peut poser pour tout f de E et tout
A régulier
f=2y,y*+h avec Ay*=w y*. (1)
2'|y.|? convergente.

Soit alors & résoudre en ¢ et » I’équation ol le second membre f est
donné

1
p——-do=1. (2)

On décompose f comme ci-dessus et ’on pose

p=f+ 3 L 4 (3)

o v"—""l’a

série qui converge fortement si |v — v, | > k > 0, car les y* sont ortho-
gonaux et les |v,| bornés supérieurement. ¢ satisfait & (2); en effet, en
substituant, il resterait:

« 1 Vo 11
2 Yo Vo Y [v-——va (1— v) 7]‘—0

ce qui est bien vrai.
Si » est point d’accumulation des », sans étre une de ces valeurs-la, la
solution (3) est encore valable pourvu que

> ——I—y—@—E— converge
(v —vq)? ge-

La solution ¢(v) admet les singularités », et leurs points d’accumu-
lation qui forment au total un ensemble dénombrable. Il peut y avoir
des poéles, des limites de poles, limite de limite de pdles, ete., tous réels.

Si » n’est pas une valeur propre de 1’opérateur, cette solution (3) est
unique, car §’il y en avait deux ¢’ et ¢” leur différence ¢’ — @’ serait
dans E et serait solution de I’équation homogéne pour la valeur v qui

315



n’est pas valeur propre. Donc ¢’ = ¢”. Si » est valeur propre ne figurant
pas dans (1), la solution générale de (2) s’obtient en ajoutant a la solution
particuliére (2), la solution générale y de 1’équation homogéne pour cette
valeur v. Puisque cette solution y n’apparait pas dans le développement
de f c’est que 'on a alors (f, ¢) = 0, condition nécessaire et suffisante
pour qu’il en soit ainsi.

La théorie précédente s’applique aux équations intégrales et aux équa-
tions linéaires & matrice hermitienne

1 2 -
®; —— Y a,, %, =c; avec a; = @ ,
k=1

chaque fois que l'opérateur correspondant est régulier.

15. Systéme complet, égalité de Bessel, série de Fourier
Soit %* un systéme orthonormal et a, les coefficients de Fourier relatifs
aux y* d’un élément quelconque y de E.

, : 1 2= )
(yt)y,)zgo :{;ﬁ;’ (yt’ y):a’i'

a) Le systéme est complet s’il n’existe aucun élément normalisé ortho-
gonal & tous les yt.
b) L’égalité de Bessel a lieu si || y||2 = 2'|a,|2 quel que soit ¥.
¢) La série de Fourier est 1égitime, dans le sens de la convergence forte,
pour tout y, sil’on a:
y = 2a;y’.

Ces trois faits s’entrainent mutuellement. Démonstration classique.
En effet, on peut écrire

y=2ay +h, (gh)=0, |yl*=2al*+ |lA]*.

Alors, si a) ||A]| = 0 alors b) et ¢). Si b), il existe un a, % 0 pour
tout ||y|| =1, donc a); si ¢) alors ||2|| = 0 pour tout y donc b) donc a).

Nous dirons qu’un opérateur est complet si aucun élément de E autre
que zéro n’est antécédent de zéro: ||Ax|| = 0 entraine ||z|| = 0.

Le systeme y* des éléments propres d’un opérateur complet est complet.
En effet, on a toujours, quel que soit y de E, puisqu’il n’existe pas d’anté-

cédent k de zéro: y=Za,yt,
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ce qui est le point b) d’ou a). Réciproquement, si le systéme des solutions
propres est complet Uopérateur est complet. Car les développements dun
y quelconque est unique

y=2ay", Ay=2apwy
avec ||Ay||2 = 2'|a;v,|? et I'un au moins des a, est différent de zéro, car
Pégalité de Bessel a lieu, donce || 4 y|| > 0.

16. L’équation de premiére espéce. Théoréme de Picard

Soit 4 un opérateur régulier complet; y* ses éléments propres. On a

y =2 a,y" avec Y |a,|? convergente, et 4 y* = v,y*. Formons z = 2—:?—" Y
1

a.; |2
en supposant 3’ | —

convergente. Alors Az = y, z est un antécédent

de y. C'est le seul, tout autre 2’ donnerait A(z — 2’) = 0 d’ou z = 2’.
La condition est donc suffisante. (X' en 7 peutétre un 2 en «, ordinaux
tranfinis.) D’autre part, s’il existe un z, il est développable suivant

les y*:2=2zy"; 2 |2]® converge mais a, =z,»; donc 2
converge.

Nous avons pour le moment montré, en particulier, combien cette
méthode, fondée sur les inégalités I, << l, <<--- et sur w, permet de re-
trouver rapidement les résultats classiques de I’équation de Fredholm a
noyau symétrique. Car sur nos seize paragraphes, on peut, pour recons-
truire cette théorie, faire abstraction des § 5, 6, 10, 12 et 13, et dans ceux
qui restent du cas w = 0 qui est toujours le plus délicat.

Les opérateurs complétement continus de la théorie classique sont un
cas particulier des opérateurs réguliers w == 0, mais le symbolisme est
presque le méme dans les deux cas.

Nous poursuivrons dans un prochain article I’étude des opérateurs
irréguliers, par exemple de ceux qui répondent a un spectre continu.

a; |2
Ve

1 2

(Regu le 14 décembre 1942.)
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