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L'itération directe des opérateurs
hermitiens et deux théories qui en dépendent

Par R. Wavre, Genève

1. L'espace

Nous voudrions faire une étude directe de l'itération des opérateurs
hermitiens et fonder sur elle la théorie des équations intégrales à noyaux
symétriques et celle des systèmes linéaires d'équations à une infinité
d'inconnues, la matrice des coefficients étant hermitienne.

L'espace E dans lequel nous opérons est défini par les cinq axiomes
suivants :

I. Il est vectoriel linéaire, c'est-à-dire que si x et y sont deux éléments
de E et oc, /? des nombres complexes quelconques oc x + fi y est aussi
un élément de E.

II. Il est métrique ; on peut y définir un produit scalaire (x, y) et une
distance réelle + v\x> x) •

III. Il est, à une infinité de dimensions, c'est-à-dire contient une infinité
d'éléments orthogonaux xj tels donc que l'on ait {x1, X*) {J
suivant que i ^t j ou non.

IV. Il est complet, c'est-à-dire admet le critère de Cauchy pour la con¬

vergence forte. Voir § 4.

V. Il est séparable, tous ses points sont points d'accumulation d'une
infinité dénombrable d'entre eux. Cette propriété ne sera pas
invoquée au début.

On trouverait dans le beau livre de M. G.Julia: Introduction
mathématique aux théories quantiques, 1938, T. II, chap. III,
toute explication concernant cet espace. L'espace d'Hilbert Em et l'espace
fonctionnel E/ satisfont à ces cinq axiomes.

Le produit scalaire a les propriétés suivantes, les éléments pouvant
être complexes:

(x, y) (y x) donc (x, x) est réel; une barre indique l'imaginaire
conjuguée.

Dans Ew, x a les coordonnées x4 et (x, y) E xiyi.
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Dans Efy x et y sont deux fonctions de carré sommable et (x, y)

jx(t)y{t)dt.
La norme d'un élément sera || x ||2 (x, x), la racine positive

l || x || sera sa longueur.
Norme et longueur sont bien positives ou nulles dans Ew et Ef.
On a l'inégalité de Sehwarz, l'inégalité triangulaire et la propriété du

facteur

Le produit scalaire est distributif {x1 + a/', t/) (xf, y) + (#", y), de
même en ?/

Un opérateur A est linéaire si

4(a?/+ a/;) ^' + .4a;\ ii(As) lAx
A nombre complexe. Nous poserons y A x.

Il est bien entendu que y est supposé être un élément de E si x l'est.
Ce ne sera pas toujours le cas dans la suite, car y pourrait ne pas exister.

Les deux interprétations classiques sont, dans E^ et Ef:
1

îK«) $N(s, t) x(t) dt
o

L'opérateur linéaire A sera dit hermitien si l'on a, quel que soit x et y
de .S:

(Ax, y) (#, ^4î/) donc (x, J.#) est réel.

Dans les exemples ci-dessus, l'opérateur est hermitien si

N(s, t) N{t, s) aik aki ;

en particulier, un noyau ou une matrice symétrique réels engendrent des

opérateurs hermitiens. On dit qu'un opérateur hermitien est identique
au conjugué de son transposé.

2. L'itération
Nous poserons A2 AA, A3 AAA, etc. ; ces nouveaux opérateurs

sont hermitiens si A l'est. On a, en effet:

(Anx, y) {An-Xx, Ay) • • • (Ax, An-Xy) (x, Any).
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Nous poserons: (1) Arx0 l1... lrxra,vec \\xr\\ 1 pour r 0, 1, 2...
Le second membre de (1) sera Yitéré de rang r de x0 et xr le conséquent

de rang r. Les conséquents sont donc toujours sur la sphère unité. Quant
aux l4 ce sont les longueurs des itérés d'ordre un des différents conséquents :

On a, les xr étant toujours normalisés, comme on le vérifie facilement:

APxr lr+1 lr+p xr+p (2)

Des produits scalaires tels que (x2p, x2q) (x^, x2p) sont toujours
réels. On a:

(X2 Xo) y- (A Xt Xo) — (Xx Ax0) y- (X1 Xt) — ]
V2 t-2 H l2

en vertu de l'inégalité de Schwarz (x2, xQ) ^ 1 donc lx ^ l2. De
(^3,+2 9 xp) ^ 1 on déduit de même lp+1 ^ Z^+g. On a donc, entre les li,
les inégalités suivantes, tout à fait fondamentales pour la suite, et déjà
établies par Kellogg pour la théorie des équations de Fredholm à noyau
symétrique :

h < h < *3 < • • * - (3)

Les longueurs des itérés de rang un des conséquents d'un élément ne
peuvent pas décroître.

De (4) lx.. AT > l{ on déduit (5) \\Arx\\ ^ ||-4«ir.
Posons: (6) l lim l{; l existe: l + oo ou l quantité finie sauf

si lx 0.
Si lx 0 nous dirons que x0 est antécédent de zéro: || Axo\\ 0.
Les inégalités (3) ou (5) montrent que si lx n'est pas nul aucun conséquent

ne sera antécédent de zéro.
Si l'on a quel que soit x de E, M étant un nombre indépendant de x,

\\Ax\\<M\\x\\,
l'opérateur sera dit borné.

On démontre qu'un opérateur borné est défini dans tout l'espace et
qu'il est uniformément continu, c'est-à-dire que

\\Ay — Ax\\ < s pourvu que \\y — x\\ < rj

Pour les opérateurs bornés on a l ^ Jf. En plus l'existence d'une
infinité d'itérés est assurée quelque soit l'élément initial x0.
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3. Le produit infini co et l'éloignement des conséquents

Formons sur une suite de conséquents de x0 le produit des quotients
des longueurs par leur limite

S^-^.i... (7)

ei lx 0 nous ne le formons pas ; produit infini que nous avons déjà considéré

en 1925*), mais que Kellogg n'introduisait pas. Les quantités
l{x0) et (ô (x0) sont des fonctionnelles de x0 que nous étudierons plus tard.
Puisque h ^l2 ^ - ' ' <î on a 0 < ô> < 1. Posons encore, en omettant

x0:

"Wr ~f J~ > <»* -f ' -J1 • * • î co=a>1=co1 oo (8)

On a, comme on le vérifie sans peine, la dernière égalité n'étant valable

que si l est fini:

-j (ArxQ Arxq)

lQ+r

lq+r+l • • • bq+zr
(9)

Si o> ^ 0, donc l fini on a lim ëôa+r+1
^ q+2r 1 donc

f->+ OO

]im{xq,xq+2r) =ô)q+1 (10)
r-> + oo

Si ôJ 0, je prétends que l'égalité (10) est encore vraie, ô>a+1 étant
alors nul lui aussi.

En effet, on a quel que soit rx < r en vertu de (9), le quotient des l{
diminuant lorsque r augmente :

0 < \Xq XqJt2r) ^ (#</ j #3+2^) •

Si / + oo (10) est évident car les ia+r+i~> + oo avec r; et si Z est fini,
on a par le rapport des cô :

lim (#a,
f-> + 00

quel que soit rx et alors comme cëJtf+11+00 0ona bien (10).

*) Bulletin de la Société Mathématique de France.
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Considérons, maintenant, la distance (véritable dans Ew, en moyenne
dans Ef) de deux conséquents de même parité. Son carré est

ll^a •*Vf2r|| \Xq %q+2r> Xq Xq+2x) 2 |_1 {Xq, Xq+2r) J •

D'où par (10)
lim ||*a-s,+ar||» 2(l-côg+1) (11)

On peut poser, le produit scalaire étant formé d'éléments normalisés :

Cos de l'angle xq, xq+2r {xq, xq+2r) cos de l'angle xq+2r, xq.
Les relations (9) montrent ceci: L'angle xq, xq+2r et la distance de ces

deux conséquents ne diminuent jamais lorsque r augmente. L'angle est

toujours inférieur à —

4. La convergence forte des conséquents, cas cô ^ 0

La convergence forte est définie dans E par le critère de Cauchy :

oc) \\xn+p — xn\\ < e pourvu que n> N(e) quel que soit p > 0.
Espace complet signifie qu'il existe alors un élément x de E et un seul
tel que l'on ait:

P) \\xn — x\\ < rj pourvu que n>N(rj)
Inversement /?) implique oc) par l'inégalité triangulaire. Nous écrivons

x — lim xn.

Dans Ew, ft s'écrit, l'indice i marquant maintenant les coordonnées:

J£ | xi — x" |2 < e d'où x{ lim x", en particulier.

Dans Ef

J | x (t) — xn(t) |2 dt < s) x (t) limite en moyenne de xn(t).J
o

Ceci dit: si Tô(x0) ^ O, le second membre de (11) tend vers zéro car

Donc les conséquents de x0 convergent fortement vers un élément x
deE.
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L'on a d'ailleurs :

œ^x^) (12)
et

L'angle et la distance de x2q et de sa limite n'augmentent jamais avec q.

Si 7ô ^ 0 l'angle en question est inférieur à —

Si !o(z0) 0 alors par (11)

lim ||zï-za+2r||* 2 (12)

quel que soit q car TôQ+1 0, ce qui est contraire au critère oc) de la
convergence forte. Toute suite xq+2r, extraite de xq+2r donnerait lieu à la
même relation (12) lorsque /•'->+ oo. Il est donc impossible d'extraire
de la suite des conséquents de x0 par A 2 une suite fortement convergente.
En appelant avec M. Fréchet, ensemble compact, un ensemble tel que de

toute suite infinie d'élément on puisse extraire une suite convergente, on
peut affirmer, en résumé, ceci :

Théorème. Si œ(x0) ^ 0, les conséquents x2<z convergent fortement vers

un élément x de E' ;

si 7ô(x0) 0, les conséquents x2q forment un ensemble non
compact pour la convergence forte. Le cas
lx 0, étant excepté.

5. Cas o> 0. Convergence faible des conséquents. Opérateurs singuliers

Nous allons montrer que si ct)(x0) 0, les xq deviennent orthogonaux
à tout élément y de E. Bien que de norme unité \\xq\\ 1 ; nous dirons
conformément à l'usage qu'il converge faiblement vers zéro. Dans E^,
lim (xq)i 0, quel que soit la coordonnée de rang i. Nous dirons que
les xn convergent faiblement vers x s'il existe un y élément x tel que

lim {xn, y) (x, y)

quel que soit l'élément y de E. On sait que dans E^, voir Julia, T. II,
et dans Ef, voir Banach: Théorie des opérateurs linéaires, Varsovie 1932,

toute suite d'élément de normes bornées est compacte pour la conver-
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gence faible. Donc de toute suite de conséquents xq on peut extraire une
suite #2ai faiblement convergente. On aurait un x tel que

Km (xm, y) (x, y) quel que soit y.

Mais pour x y on aurait:

lim (x2g., x) (x, x) or (xm,x) lim (x2q., x^.)

x2Qi jouant maintenant le rôle de y. Or cette limite, égale à cô2<?t.+1, est
nulle ; donc (x, x) 0. Les limites faibles ne peuvent être que l'élément
zéro. Je prétends que la suite xQ elle-même converge faiblement vers zéro.
En effet, si les nombres (xq, y) ne tendent pas vers zéro, quel que soit y,
c'est qu'il existe un y et une suite xQi tels que

\{xtt,y)\>k>0.

Mais cela est impossible, car alors il existerait une nouvelle suite
extraite de la précédente pour laquelle les modules tendraient vers zéro.
Ce qui serait contradictoire.

En résumé. Si un opérateur hermitien fournit une infinité de
conséquents normalisés d'un élément xQ alors:

Si 7ô(xQ) ^ 0 les x2q convergent fortement vers un élément x de E.
Si ~cô(x0) — 0 les xq convergent faiblement vers zéro, donc deviennent

orthogonaux à tout élément y de E : lim (xq, y) 0.

6. Autre définition de l et répartition asymptotique

On a, puisque lr->l:

r \\A'zo\\ v h...lr \î(°°i S^<Z7 /uni ou infini;
hm -U— °" hm 2

- co (x0) si A l _l À
o sibi ft) 0ou non-

l est donc la plus petite valeur de X pour laquelle cette limite n'est pas
infinie et cette valeur existe.

On peut aussi écrire:

1 A2r(x
lim jz- A*rx0=œ(x0) x ; B(xo) lim ^f- lim x2r, ||a?îr||==l.
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Si co # 0 ces limites sont des points de E de norme non nulle, si co 0

il y a convergence faible vers zéro.

7. Les opérateurs réguliers et les opérateurs complètement continus

Un opérateur sera dit régulier s'il est borné et si pour tout xQ non
antécédent de zéro Ton a â> ^ 0. Le passage de A à An n'altère pas ô>,

il groupe les facteurs de n en n. Donc si A est régulier An Test aussi et
réciproquement. Le passage de x0 à, x€ change 7ôx en ëôi+1 et n'altère pas
le fait pour 7ô d'être nul ou non.

Un opérateur sera dit complètement continu (un abrégé ce), s'il est
borné et s'il convertit une suite bornée quelconque x1 en une suite
y1 A xi formant un ensemble compact pour la convergence forte.

/V»

Un opérateur ce est régulier. En effet, on a Aj-^- xq+1 éléments qui
lq+1

formeraient un ensemble compact, il en serait de même des x2q et par
suite cô ^ 0 quel que soit x0. Si An est un opérateur ce alors A est régulier.
An serait régulier et cô est le même pour A et An. Les opérateurs ce sont
ceux de la théorie classique de Fredholm et des théories homologues.
Soit, en effet, N(s,t) un noyau réel, symétrique et continu sur l'ensemble
0 <s < 1, 0 <$ < 1.

Il est donc borné et uniformément continu. Posons:

q>(8) J N(s, t) f(t) dt avec J /2(£) dt 1

0 0

On a

ç,(5') _ ç,($") | [#(«', J) — N(s", t)] f(t) dt ;

o
î î

\<p(s') — (p(s")\2 < J []2d£ U2dt
0 0

Or
[] < e pourvu que \sr — s"\ < y et |y(«0 — <p(sn)\ < e

sous la même condition, en vertu de l'inégalité de Schwarz. Les fonctions

(p sont également continues et bornées. Elles forment un ensemble

compact pour la convergence uniforme, donc la convergence forte. Les

opérateurs ce recouvrent le cas classique du noyau symétrique continu
dans la théorie de Fredholm. Exemple d'un opérateur donnant lieu à

œ 0. Af xf(x), (on multiplie par la variable) en normalisant sur
l'intervalle 0,1. Prenons /0 1 alors A 1 x, A%\ x2, An\ xn>
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h...ln= l/N
avec

donc

ln — / 1 0) —— • ——r • ——- • • • =0V2n +1 V3 Vb Vl

Les conséquents sont xn V2n-\- lxn, ils tendent vers zéro sur tout
l'intervalle 0 ^ x < 1, mais pas uniformément ;

V2n+ 1 V2n + 4r + 1

\Xn > #n+2r) — 2^ + 2r + 1

et sa limite pour r -> + oo est bien nulle. On aurait donc aussi

î
lim i/2w -f 1 Jxn99(o;) do; 0

o

(p étant une fonction quelconque de carré sommable.

8. Les solutions de l'équation homogène, ou éléments propres

Nous appelons élément propre tout x de E solution de l'équation:
Ax vx ; v est appelée valeur propre. Ce sont les vecteurs de Em dont
la direction est invariante par A, ou dans Ef les fonctions qui se
reproduisent à un facteur près.

Si A est borné et7ô(x0) ^ 0 ; les x2q convergent fortement vers un élément

propre pour l'opérateur A2. En effet, on peut écrire :

%2a x + 92a avec ||^2g|| ->0 et lq l + rjqi rjq-> 0

alors
A 2y A 2/y« I A 2yy çA" 12ns> A 2/>» Tp •

autant de terme dont les normes tendent vers zéro avec l\q.
En vertu de l'inégalité triangulaire ||w+i;+ti;|K|M| + ||

on montre que ||^2<zll ~>^- On a donc bien

A2x l2x avec x limite forte des x2q.
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Posons

y1 x + -y- Ax d'où Ay' lyf y1 + y;/ 2x 2 lim #2a

y"=x — ±Ax d'où ^"=—Zt/'', y'—y"=|iis |

Donc, à la limite x par J.2 correspond deux éléments propres y! et y"
de valeur propre ï et —l, l'un des deux peut être nul, mais pas les deux à
la fois car \\y' + yff\\ 2.

Nous appellerons à l'avenir l la fréquence. Il peut y avoir deux valeurs
propres v pour une même fréquence v ± l et il y en a au moins une.

9. Quelques lemmes

oc) Pour tout opérateur régulier, une fréquence X est la plus grande valeur

que peut prendre ||w4/0|| lorsque Vêlement f0 normalisé est orthogonal à tout
élément propre de fréquence supérieur à A.

En effet, si ^(/o) > A on aurait X < lx ^ l2 < • • • ^ Z et les /^
tendraient vers un élément propre / de fréquence l > X et non orthogonal à

/0, car (f,fo)=â>(fd) # 0. Et l'on a \\A(<p)\\ A.

Cette propriété est tout à fait fondamentale comme on sait dans la
théorie des formes quadratiques.

Nous appellerons opérateur nul un A pour lequel 11A x 11 0 quel que
soit x de E.

Nous en ferons ici abstraction.

a) Un opérateur régulier admet au moins une fréquence et un élément

propre.
En effet, il existe un x0 donnant lx > 0 donc lx ^ l2 ^ • • • puis l et

cû z/z 0 d'où x puis y1 ou yff qui sont éléments propres. On voit combien
cette méthode permet facilement de démontrer l'existence d'une solution
au moins de l'équation homogène A x v x.

Il suffit d'ailleurs que A(xQ) ne soit pas identiquement nul pour qu'il
existe un élément propre.

b) Les fréquences sont toutes réelles. Les éléments propres sont supposés
dans E naturellement.

En effet, (x, Ax) (x, vz) v (Ax, x) (vx, x) =v. L'on a
évidemment sur un élément propre: ô> 1 car lx l2 lz l.

308



c) Deux éléments propres de fréquences différentes sont orthogonaux.

On aurait: Ax vx, A y fiy avec v ^ /u, d'où

(x,Ay) /u(x, y) (Ax, y) v(x, y), (/u — v) (x, y) 0

et (x, y) 0.
Ces lemmes b) et c) sont classiques.

d) Si un élément x0 est orthogonal à un élément propre y tous ses

conséquents le sont aussi, ainsi que les limites (forte ou faible) des x2Q et a^+i*

On a en effet, si A y p y :

(*« >y) -jfli>x<>> Aqy) -^ (Aqxo ' y)
h

'pàh (*«• y) •

Cette relation montre que si dans la suite x0, xl9... xq... l'un des
éléments est orthogonal à y ils le sont tous. Si ô> ^ 0, lim x2q x%

lim x2q+1 — Ax et lim (x2q,y) lim (x, y). Si cô 0, la proposition
t

sur x est évidente. Mais la réciproque ne sera pas vraie, on peut avoir
(x, y) 0 sans avoir (x2q, y) 0.

e) Toi^ antécédent de zéro est orthogonal à tout élément propre. En effet,
on a 0 li(zx, y) p(x0, y).

f) Si An est un opérateur ce, A n9a qu'un nombre fini ou une infinitédénom-
brable de fréquences dont le seul point d'accumulation est 0. En plus, à chaque
valeur propre n'est attaché qu'un nombre fini d'éléments orthogonaux.

En effet, soient \pr et \prf deux éléments propres orthogonaux. On a

\\Ayf~Anff/\\2==\\vfyfn--v/y/fn\\2==vf2n + vf/2n car (yf', \p") 0.

Il est alors impossible d'avoir pour une suite S de y)

v'2n +vff2n>k>0

car l'opérateur An transforme toute suite S en une suite compacte. Donc S
contiendrait une suite S', pour laquelle le premier terme des égalités ci-
dessus tendrait vers zéro et par conséquent l'inégalité en k serait impossible.

Les fréquences l n'ont que zéro comme point d'accumulation. Elles
forment une suite finie ou dénombrable. A chaque valeur propre v ne
correspond qu'un nombre fini d'éléments propres orthogonaux; donc un
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nombre m d'éléments linéairement indépendants, s'il y en avait davantage,

on formerait plus de m éléments orthogonaux par un procédé
d'orthogonalisation bien connu.

Dans la théorie des équations de Fredholm à noyau symétrique, si un
des noyaux itérés Nn(s, t) est continu, l'opérateur An est ce et la théorie
précédente s'applique. En particulier, en introduisant les valeurs
fondamentales At l/vt on a lim | A<| -f- oo.

g) On sait que, en posant g lim forte g2ry on a (go,g) cô(gr0).

Posons / g0 — 7ô{go)g d'où (/, g) 0 car (g, g) 1,

puis go â>(go)g + f.
On décompose ainsi un élément g0 tel que ~cô(g0) ^= 0 en deux éléments

orthogonaux, l'un suivant un élément propre g et l'autre est un élément
orthogonal à g.

h) Si trois éléments xQ, xfQ, Xq appartiennent à une même variété linéaire

ocxo + ocr x'q -f <*>" Xq 0 oc, ocf, oc" nombres complexes ;

alors leurs fréquences l,V, V! sont telles qu'aucune n'est supérieure aux deux
autres. Si l'on itère r fois par A on aurait :

OCv-% • • hif Xy —j— OC L-t • vmXy, —I— OC V-t • • v~ X— —— \) •

Si l > A et V < A, V < A en divisant par Ar le coefficient de xr tendrait
vers l'infini et les deux autres vers zéro. Cela est impossible, les éléments

xr, x'r, x" étant normalisés.

i) Lemme classique sur la convergence forte des séries.

Pour qu'une série procédant suivant des éléments orthogonaux normalisés

converge fortement, il faut et il suffit que la série des carrés des

modules des coefficients soit convergente.
Posons

^
<Pn T 0 i #;

on a

i=n+l n+1

Le critère de Cauchy pour la convergence forte des <pn vers un élément <p

est le même que pour la convergence ordinaire de la série. On peut donc

poser
(p j? a{ tpi si J£ | a{ \2 converge
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10. Lemme sur la répartition des fréquences

Soient A un opérateur hermitien et vt une succession de valeurs propres
distinctes, %pt des éléments propres correspondants Aipt =zvt\pt. Nous
supposons \vt\ <N. Considérons la série où tous les at sont différents
de zéro. v _,

cp 2jaltpl avec Z|aJ2 convergente.

Puis posons v — borne \vt\ (borne supérieure des fréquences
introduites).

On a Ar(p Z at v[xpl série fortement convergente.
%

Puis + oo si A < v
J2

lim „„_ — — ^.i-iiioi — ^ siA=v>
0 si A > v

lim 2 l«. la (-X-)*'

Donc 1) Z(ç>) ^ borne des fréquences introduites.
2) 75(<p) \a,\ si la borne \vt\ est atteinte pour ^
3) cô(ç?) 0 si la borne \vt\ n'est pas atteinte.

Théorème, En conséquence, si Vopérateur est régulier, cô (9?) ^0 quel
que soit cp de E, il est impossible qu'une suite de fréquences bornées

n'atteignent pas sa borne supérieure.

Une suite de fréquences bornées distinctes contient toujours une
fréquence supérieure à toutes les autres si l'opérateur est régulier. Les points
d'accumulation des fréquences ne peuvent être approchés que par des
valeurs plus fortes. Tout sous ensemble de fréquences contient un plus
grand élément.

Les fréquences des opérateurs réguliers peuvent donc être numérotées au
moyen des nombres ordinaux transfinis de classe II que nous appellerons
les oc :

1,2,3,...<u, û> + l, co + 2... 2o>, 2o) + 1,...
En prenant les fréquences la par ordre décroissant quelconque, chaque

fréquence a une suivante, sans avoir nécessairement de précédente:

Posons Za — Za+1 ia, ces intervalles sont différents de zéro. Il y en a

un nombre fini entre M > 1 et 1, un nombre fini aussi entre 1 et M~x,
entre M~x et M~2,.... L'ensemble des fréquences inférieures à M est
donc dénombrable quel que soit M.

L'ensemble des fréquences d'un opérateur régulier est dénombrable.
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11. La décomposition spectrale.

Opérateur ce. Soit / /° un élément quelconque de E. Formons
l (/) puis œ (/) et posons :

/2 «(/S)/° + /J avec /° lim/°r p nfo)

/S »(/;)/" +/S » /2 iim/L i* i(il) hn
etc.

La réduction serait arrêtée au rang w si Ç 0, donc la première fois

que Ton rencontrerait un reste /£ antécédent de zéro. Je prétends que
Ton a toujours Zw+1 < lm l'égalité se présentant la première fois si m n.

En effet, on a toujours en vertu de l(f™) l(fm) et du lemme h) sur
trois fréquences :

Si l'égalité était réalisée on aurait en itérant l'équation de rang m :

*r • • • k tz »(/?) *m2r /m + c+1 • • • iz+1 fi+1

d'où, en divisant par lm à la puissance 2r et passant à la limite :

ce qui entraîne Z™+1 0 car a> (/JJ*+1) serait sans cela différent de zéro
ainsi que /™+1. L'on aurait Z™ lm.

On a bien lm+1 < lm jusqu'à m n (n fini ou inexistant). En ajoutant
les équations membre à membre, on trouve :

n

/ JT ôJ(/j) fi + h n fini ou infini et || A (h) \\ 0

D'où l'équivalent du théorème d'Hilbert-Schmidt (avec la convergence
forte):

f= Si "(fi) (yH + yH) + h 2p y" + y"*

n
~ vîVi) 9 n ^n^ ou infini.

conséquent par A d'un point de E est développable en une série
d'éléments propres.

Si n + oo h est le résidu après le passage à la limite sur m.
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Remarque. Le reste h étant antécédent de zéro est orthogonal à tous
les éléments propres yf{, y'i d'où deux conséquences: les Tô(fi) sont les

coefficients de Fourier de / et l'on a

ll/ll2 2 c52(fl0) + \\h\\\ n fini ou infini.

Que h soit orthogonal à toutes fl se voit aussi sur les équations de la
réduction progressive des restes successifs: /J est orthogonal à /° (lemme g),
f1 aussi, donc fl est orthogonal à f° et f1, et ainsi de suite, /g1 est orthogonal
à f171-1 et à tous les /m~1 car fm l'est, ainsi que /J*"1.

Cette réduction ne fait intervenir que les éléments propres yi en lesquels
Vêlement donné se développe effectivement. Il n'est pas nécessaire de
connaître tous les éléments propres. En plus les termes apparaissent dans Vordre
des fréquences décroissantes.

12. La décomposition spectrale par réduction transfinie.

Opérateurs réguliers non c c.

Pour les opérateurs non ce mais encore ,,réguliers'', les m sont empruntés
à une suite d'ordinaux transfinis oc. Il faut ici étudier ce qui se passe

lorsque l'on épuisse une suite infinie de a pour repartir ensuite. On a

fô Miï) fa + /oa+1 i*+1<i<*

Le procédé serait arrêté si Z1(/q+1) 0, ce qu'il faut envisager c'est
donc lim la A ; /? désignant l'ordinal qui marque l'épuisement de cette
suite de a.

On posera donc: /= ^ .^ fa + f%

Je prétends que si f0 n'est pas antécédent de zéro :

lP ^ A ; si non lP X -+- k avec k > 0 ;

mais on aurait lP>l?> P+1 > • • • pour un y de la suite au moins. Et alors

ce qui est contradictoire avec le lemme h) des trois fréquences, car l de

/£ serait supérieur à celui de fl et à celui de <p. Si /£ est antécédent de
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zéro, on suspend la réduction, sans cela on la poursuit. On aura donc
encore ici

Et l'on peut écrire :

f=Zû(f%)f« + h avec ||i4ft||=0 et (/«, h) 0
a

Af £%âj(f%) (vay'a— vayZ) théorème d'Hilbert-Schmidt étendu,
a

et

S'il y avait doute au sujet du sens de la série étendue aux ordinaux
transfinis de classe II, rappelons que leur ensemble est ici dénombrable et
que l'on peut toujours écrire, en intervertissant s'il le faut les

fréquences
00

/ <S <^(/o) fn + ^ (d© même pour les autres séries).
n=0

13. Quelques remarques sur les opérateurs réguliers.
A. Soit e le spectre, c'est-à-dire l'ensemble de toutes les fréquences de A

et er son dérivé, c'est-à-dire l'ensemble des points d'accumulation des e.
L'ensemble e -\- ef est encore numérotable dans l'ordre décroissant par
des ordinaux transfinis de classe II.

En effet, un point d'accumulation de e -{- ef ne peut être approché que
par valeurs plus grandes. Sans cela, il y aurait dans la suite approchante
une infinité de points de e', mais les points de ef entraînent avec eux des

points de c.

B. Prenons un élément x0 non antécédent de zéro. On a

(#<_! » *Vfi) -r" ' Donc' si ^ Z*+i

I I ^t-1 *^t+l II ^ 5 Xl—\ — ^4+1 Xl+Z ' ' *

Inversement, si lt lt+1 alors l2 l3. En effet, on a en développant xQ

suivant le § 13:

d'où par soustraction, puisque xx_x xt+1

V c 7*'1 I 1 — \ r« — 0
a \ li l%+\ I
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Mais les xa du développement de x0 sont tous orthogonaux, et les Za

tous différents, donc il n'y aurait qu'un ca différent de zéro et alors
x0 ex0" + h d'où l2 lz • • • la Corollaire si l2 < lz alors
k < k < h < ' * * •

14. L'équation avec second membre

Nous avons vu au § 13 que l'on peut poser pour tout / de E et tout
A régulier

/ ZVolV* + h avec Aya v^xf* (1)
2 convergente.

Soit alors à résoudre en ç> et v l'équation où le second membre / est
donné

A f. (2)

On décompose / comme ci-dessus et l'on pose

* /+2^T*« (3)
a a

série qui converge fortement si | v — ra | > h > 0, car les ya sont
orthogonaux et les |î>a| bornés supérieurement, y satisfait à (2); en effet, en
substituant, il resterait :

ce qui est bien vrai.
Si v est point d'accumulation des va sans être une de ces valeurs-là, la

solution (3) est encore valable pourvu que

converge.

La solution q?(v) admet les singularités v^ et leurs points d'accumulation

qui forment au total un ensemble dénombrable. Il peut y avoir
des pôles, des limites de pôles, limite de limite de pôles, etc., tous réels.

Si v n'est pas une valeur propre de l'opérateur, cette solution (3) est
unique, car s'il y en avait deux q>f et <pn leur différence 9/ — <pff serait
dans E et serait solution de l'équation homogène pour la valeur v qui
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n'est pas valeur propre. Donc q>f <pff. Si v est valeur propre ne figurant
pas dans (1), la solution générale de (2) s'obtient en ajoutant à la solution
particulière (2), la solution générale y) de l'équation homogène pour cette
valeur v. Puisque cette solution y> n'apparaît pas dans le développement
de / c'est que l'on a alors (/, q>) 0, condition nécessaire et suffisante

pour qu'il en soit ainsi.
La théorie précédente s'applique aux équations intégrales et aux équations

linéaires à matrice hermitienne

1

x. ^ aik xk ct avec aik aki
v *=i

chaque fois que l'opérateur correspondant est régulier.

16. Système complet, égalité de Bessel, série de Fourier

Soit yi un système orthonormal et at les coefficients de Fourier relatifs
aux yi d'un élément quelconque y de E.

a) Le système est complet s'il n'existe aucun élément normalisé ortho¬
gonal à tous les y*.

b) L'égalité de Bessel a lieu si ||y\\* 27|a4.|2 quel que soit y.
c) La série de Fourier est légitime, dans le sens de la convergence forte,

pour tout y, si l'on a :

y

Ces trois faits s'entraînent mutuellement. Démonstration classique.
En effet, on peut écrire

y Zaiyi + h, (y\h)^O, || y||» Z\at\* + \\h\\*

Alors, si a) \\h\\ 0 alors b) et c). Si b), il existe un a{ ^ 0 pour
tout || 2/|| 1, donc a) ; si c) alors ||h\\ 0 pour tout y donc b) donc a).

Nous dirons qu'un opérateur est complet si aucun élément de E autre
que zéro n'est antécédent de zéro : 11A x \\ 0 entraîne \\x\\ 0.

Le système yi des éléments propres d'un opérateur complet est complet.
En effet, on a toujours, quel que soit y de E, puisqu'il n'existe pas d'antécédent

h de zéro: ^y Za^
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ce qui est le point b) d'où a). Réciproquement, si le système des solutions

propres est complet Vopérateur est complet. Car les développements d'un
y quelconque est unique

y Zaxyl, Ay Zaxv%yl

avec ||^4î/1|2 Z\atvt\2 et l'un au moins des at est différent de zéro, car
l'égalité de Bessel a lieu, donc \\A y\\ > 0.

16. L'équation de première espèce. Théorème de Picard

Soit A un opérateur régulier complet ; y1 ses éléments propres. On a

y Zaxy% avec Z \at\2 convergente, et A y1 vtyi. Formons z Z— yi

en supposant Z
2

convergente. Alors A z y, z est un antécédent

de y. C'est le seul, tout autre z1 donnerait A(z — z!) 0 d'où z zf.

La condition est donc suffisante. (Z en i peutêtre un Z en oc, ordinaux
tranfinis.) D'autre part, s'il existe un z, il est développable suivant

les yi : z Z ztyl ; Z |zj2 converge mais at=ztvt donc Z —
converge.

*

Nous avons pour le moment montré, en particulier, combien cette
méthode, fondée sur les inégalités lx ^ l2 ^ • • • et sur 7ô, permet de
retrouver rapidement les résultats classiques de l'équation de Fredholm à

noyau symétrique. Car sur nos seize paragraphes, on peut, pour reconstruire

cette théorie, faire abstraction des § 5, 6, 10, 12 et 13, et dans ceux
qui restent du cas cô 0 qui est toujours le plus délicat.

Les opérateurs complètement continus de la théorie classique sont un
cas particulier des opérateurs réguliers cô ^ 0, mais le symbolisme est

presque le même dans les deux cas.
Nous poursuivrons dans un prochain article l'étude des opérateurs

irréguliers, par exemple de ceux qui répondent à un spectre continu.

(Reçu le 14 décembre 1942.)

317


	L'itération directe des opérateurs hermitiens et deux théories qui en dépendent.

