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Inégalités remplies par les dérivées
des fonctions holomorphes, univalentes
et bornées dans un demi-plan

Par Jurius WoLrr, Utrecht

1. Mile JACQUELINE FERRAND a démontré le théoréme suivant:

Si f(z) = f(x + t1y) est holomorphe, univalente et bornée dans le dem:-
plan D(x > 0), alors Uaxe imaginaire contient une plénitude (ensemble
dont Uensemble complémentaire est de mesure nulle) de points it tels que,
quelle que soit la maniére dont z tend vers it,
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M. DexJoy avait obtenu la relation (1) en supposant que z tende
vers it sur une courbe ayant avec ’axe imaginaire un contact d’ordre
<1 (C. R. Ac. des Sc. t. 213, p. 115). Ensuite j’ai étendu ce résultat au
cas ou z tend vers ¢¢ sur une courbe convexe quelconque (Proc. Ned. Ak.
v. Wetensch. t. 44, 1941). M!le Ferrand s’affranchit de toute hypothese
sur la maniére dont z tend vers ¢¢. Sa démonstration repose sur un lemme
de H. CARTAN.

Voici une simple démonstration n’utilisant pas ce lemme.

Soit ¢ > 0 et appelons E(¢) I’ensemble des points ¢¢ qui sont limites
de points z, tels que

Viz, —it|
T
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| (za) | > € (2)

De (2) et d’un théoréme de KokBE résulte que sur le disque circulaire
y, de centre z, et de rayon z,/2

Vz, —it]
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ol k est une constante universelle. Par suite dans la représentation con-
forme réalisée par f(z) l'aire w, de I'image de y, satisfait &

z, — it| mad 1 )
wn=ﬂ|f’|2dwdy>k282~ | ”xz | . 4" == -anzezlzn———ztl N
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1) C. R. Ac. des Sc. du 10 novembre 1941 et Thése du 12 janvier 1942.
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Or y, est contenu dans le demi-cercle I',, situé dans D, de centre it et
de rayon p, = 2|z, —¢t|. Donc l'aire 2, de 'image de I, satisfait &

Qn>—1§nk282gn . (3)

Tout point de E(¢) étant ainsi centre d’une suite d’intervalles de
longueurs 2p, — 0, les g, satisfaisant & (3), on peut, en vertu d’un théo-
réme classique de VITALI, recouvrir une plénitude de E(¢) par une suite
de ces intervalles extérieurs deux & deux. Les I', ayant ces intervalles
pour diametres sont de méme extérieurs deux & deux. De (3) résulte
donc que l'aire de 'image de la réunion de ces I', est plus grande que
smk?e? - pH(e), ou ukli(e) est la mesure extérieure de E(e).

Or, quelque petit que soit le nombre positif @, on peut supposer que
les I', soient dans la bande B(a), définie par 0 < z < a. Alors laire de
I'image de B(a) est plus grande que tnk?e* - uli(e). D’autre part, comme
f(z) est bornée cette aire tend vers zéro avec a, donc ukl(e) = 0. Consi-
dérons une suite de nombres positifs ¢, tendant vers zéro. La réunion K
des ensembles E(¢,) est de mesure nulle. Or E est ’ensemble des points
1t ne satisfaisant pas a (1); le théoreme est démontré.

2. On sait que zf/(z) tend vers zéro, quelle que soit la maniére dont
z s’approche de I’axe imaginaire. En revanche nous démontrerons le

Théoréme. A tout nombre positif ¢ correspondent des fonctions f(z)
holomorphes, bornées et univalentes dans D (x> 0) telles que Uaxe tmagi-
naires contient un résiduel (ensemble dont I’ensemble complémentaire est la
réunion d’ensembles mon denses e,,n =1,2...) de ponts it ayant la

propriété que sur toute courbe | y —t | = 2P, 0 < p < oo,
lim sup 2'=¢[f/(2)| = oo . (4)
2>t

Démonstration. Choisissons sur ’axe imaginaire une suite partout dense

de points «,, k = 1, 2,. . . ; fixons un nombre positif 0 entre 1 — ¢ et 1
et considérons la fonction
< k* 1—-6
f(Z) _—‘ké'l 1+|‘xk| (Z O‘k)
o -2
{(2) est holomorphe dans D et sa dérivée f'(z)=(1-0) X ——— (2—0¢;)~®
k=1 1 "I" | 9" ‘

est & partie réelle positive, donc f(z) est univalente dans D.
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A tout nombre positif » correspond un résiduel R, de points s¢ sur
P’axe imaginaire tels que la suite «, contient une suite O, satisfaisant a

kylog, —it| <1, »=1,2,... . (5)
Soit 4t sur R, et soit p un nombre positif. Considérons sur la courbe

| y —t| = 2® la suite des points z, = x, + iy, situés avec les «, sur
des droites paralléles & 1’axe réel, donc

1 1

Zy— o, =&, =|op —it|P=|y,—¢[?,v=1,2,... . (6)
Or

) 2R ()} > (1 — ) — gm0y 1,2,

v = v 1+|0¢kv| y s “y
Donc d’aprés (5) et (6)
_9+E£ 1—"—0 —-9+E1’_

11'(z)] > (1 —0) =, n (1 + lockvl)“1~l+lt!x,, n pour ¥ — oo .

(7)

Parce que 0 > 1— ¢, 'exposant de z, dans (7) est plus petit que

¢ —1, si n est suffisamment élevé, ce qui conduit & (4). L’ensemble
commun aux résiduels B,,n = 1,2,... est un résiduel R et, pour <¢
dans R, la relation (4) est remplie quel que soit le nombre positif p.
Donc, abstraction faite de la condition que f(z) soit bornée dans D,
le théoreme est démontré. Mais, f(z) étant & partie réelle positive dans

D, la fonction

1
N CE

est holomorphe, univalente et bornée dans D et il est clair que sur R elle
satisfait & (4) comme f(z), quel que soit le nombre positif p.

(Regu le 26 novembre 1942.)
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