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Sur les conditions de validité
d'une classe de relations entre les expressions
différentielles linéaires

Par Alexandre Ostrowski, Bâle

Table des matières : § 1. Introduction. § 2. Réduction du théorème I au théorème II.
$ 3. Evaluation de quelques intégrales. § 4. Discussion de l'intégrale singulière \fKodr.

jB»

§ 5. Démonstration du théorème II.

§ 1. Introduction
1. Il s'agit dans ce mémoire d'une classe de relations auxquelles

conduit surtout la formation de§ ,conditions d'intégrabilité" dans la théorie
des équations différentielles aux dérivées partielles.

Si Ton pose par exemple

X(z) Z Av-%- Y(z) Z Bv -A- (1)
v=i oxv ys=1 dxv

on a

X( Y(z) - Y(X(z) Z(z) f (X(BV) - Y(AV) -^- (2)

où, comme on voit, les dérivées secondes se détruisent. Pour que ceci
soit possible, il paraît au premier abord indispensable que Ces dérivées
secondes existent. Or, on sait depuis quelques années1) que la relation (2)
subsiste, même si z ne possède que les dérivées continues du premier
ordre, pourvu que les expressions (1) soient douées, elles aussi, des dérivées

continues du premier ordre.
Les questions analogues se présentent dans beaucoup d'autres cas, et

nous allons traiter, dans ce qui suit, une classe très étendue de relations
de cette sorte.

*) Cf. E. Schmidt, Bemerkungen zum Fundamentalsatz der Théorie der
Système linearer partieller Differentialgleichungen erster Ordnung.
Wiener Monatshefte fur Mathematik und Physik, Bd. 48 (1940), pp. 426—432. — O. Perron,

Das Verschwinden der Klammersymbole in der Théorie der linearen
partiellen DifEerentialgleiehungssysteme. Math. Annalen, Bd. 117 (1940/41),
pp. 687—693. — P. Qittis, Bull. Soc. R. Se. Liège (1940), pp. 197—212. — A. Ostrowski,
Sur un théorème fondamental de la théorie des équations linéaires aux
dérivées partielles. Com. Math. Helv., vol. 15 (1943), pp. 217—221.
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2. Nous considérons une relation de la forme

y y o y y a (X*> x — y y y y n vti x

(3)

Pour que cette relation soit possible, c'est-à-dire pour que les dérivées
secondes, si elles existent, s'y détruisent, il est nécessaire qu'on ait

— è QKli A%? ; (t,v= 1,...,»; A= l,...,l
(4)

De l'autre côté, on peut former l'expression de gauche en (3) dès que
les expressions

E ZAM^p-, v=l,...,n, « l,...,fc, (5)

sont dérivables par rapport aux variables xv correspondantes.
De même, on peut former les expressions de droite en (3), dès que les

A^p sont dérivables.
Toutefois il est clair que ces conditions de dérivabilité ne suffisent

pas, à elles seules, pour assurer la validité de (3). En effet, la relation (3)

comprend comme un cas spécial la relation

Bx, [ Bx, dxt \ dx

et l'on sait que l'existence des dérivées qui y figurent n'est pas encore
suffisante pour que (6) soit exacte.

3. Si l'on veut se borner aux conditions pour la validité de (6) dans

lesquelles l'existence des dérivées secondes n'est supposée que dans le

point considéré et pas dans un voisinage de ce point, on connaît deux
systèmes de conditions, assurant la validité de (6) dans un point Po

Le premier de ces systèmes, dû à M. W.H. Young2), exige que les

dérivées ^— et r— existent au voisinage de Po et possèdent au point

Po des différentielles totales.

2) Cf. par exemple: De la Vallée Poussin, Cours d'Analyse infinitésimale, t. 1,

3meéd. (1914), pp. 140—146. —JS7. W. Hobson,The Theory of Functions of a Keal
Variable and the Theory of Fourier Séries, vol. 1, 3rd éd. (1927), p. 427. —
O, Haupt und G. Aumann, Differential- und Integralrechnung, Bd. 2 (1938),

pp. 111—125.
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Rappelons qu'on dit qu'une fonction f(x1,..., xn) possède une
différentielle totale au point P0{a1> • • • > an)> s^ l°n a

n
f(xx, ...,xn) f(ax, ,an) + E ocv(xv — av) +o(r)

(7)
n

r Z \xv — av\->0

où les constantes <xv sont les dérivées partielles fx de / en Po

4. Dans une communication parue récemment dans ce recueil3), nous
avons introduit un autre système de conditions pour la validité de (6),
utilisant la notion d'une dérivée uniforme dans un point.

Nous disons que / soit dérivable par rapport à xl9 uniformément en
Po(ai » • • • > an) >

gi l'expression

/tel > aa, - • •, sw) — /tel > g8 a;J
(8)

tend vers une limite déterminée fXl{al9..., an) avec

(a?! — ax) -> 0 | #„ — av | ^ | ^ — ax \ v 2,..., n ; (9)

et l'on obtient la définition de la dérivabilité par rapport à xv, uniformément

en Po, en permutant xx et xv
En employant cette notion, nous avons démontré la relation (6) en

Po sous les conditions que —— et -=— existent au voisinage de Po et
vX^ OX^

sont dérivables en Po, la première par rapport à x2 et la seconde par
rapport à xx, toutes les deux uniformément en Po

Ce résultat contient le théorème de M. Young. Ceci résulte du fait,
démontré dans la note citée que la condition nécessaire et suffisante pour
que f possède une différentielle totale en PQ{ax,..., an) est que f soit
dérivable par rapport à chacune des variables xx,..., xn, uniformément en Po

Rappelons enfin que nous avons montré dans la note citée sur un
exemple que la relation (6) n'est plus assurée, si l'on définit la dérivabilité

uniforme en exigeant seulement que l'expression (8) tend vers f'Xi

pour
(x1 — a1)-+Q,\xv — av\£\x1 — a1\(l — e),v 2,...,n, (10)

pour un e fixe et positif.
3) A.Ostrowski, Note sur l'interversion des dérivations et les différentielles

totales. Com.Math. Helv., vol. 15 (1943), pp. 222—226.
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5. En utilisant ces notions, on peut énoncer notre résultat principal
comme il suit:

Théorème I. Soient A^j? ; v, \x 1,..., n ; A 1,..., Z ; *c 1 ,...,&,
Zfcn2 fonctions définies au voisinage d'un point P0(ai> • • • >an)> continues

en Po et douées au point Po des différentielles totales.

Soient QKV ; *= 1 ,...,&; v 1,... ,n, nk fonctions des x±,..., xn,
finies en Po et telles que les relations (4) soient satisfaites en Po

Alors la relation (3) a lieu en Po, si les z\ sont des fonctions des xx,..., xn,
continues et possédant des dérivées partielles du premier ordre au voisinage
de PQ et telles que leurs dérivées partielles du premier ordre soient continues

en Po et, pour chaque v,v=l,...,n,les expressions (5) correspondant à

Vindice v soient dérivables par rapport à xv, uniformément en Po

Un exemple d'une relation du type (3) est la relation suivante:

d * dvv d * dvv " (duv dvv dvv du

qui joue un rôle fondamental dans la théorie des transformations de

contact 4).

6. Dans la démonstration du théorème I on peut évidemment supposer
que les QKV soient des constantes. Dans le cas où les fonctions J-^sont
des constantes, elles aussi, les relations (4) se réduisent aux relations

..(A) /%/(A) ./,,#, 1 /m 1 1 7 /io\^vfj. ~ ^fJLV 9 V fl L n A — i l {14)

en posant &

(13)

tandis que (3) devient
** d In dzi

2^ __ 2, 2* Myii ~~ôZ, 0 • (1^)
v=i vXv x-l ft=l r v%\L

Dans notre démonstration le cas général sera réduit au cas spécial où
les J-^sont des constantes, c'est-à-dire, d'après ce que nous venons
de dire, au

Théorème IL Soient afQ ; v, /* 1,... ,n; 4 1,..., Z, l systèmes
de constantes, d'ordre n, alternés, c'est-à-dire satisfaisant à (12).

*) C'est la discussion de la relation (11) qui a été le point de départ de nos recherches,
commencées lors de 1936, encore avant la publication de la note citée de M. SchmicU.
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Soient Zx des fonctions des xx,..., xn, continues et possédant des dérivées
du premier ordre au voisinage d'un point Po et telles que leurs dérivées
partielles du premier ordre soient continues en Po et les n expressions

sv= Z f 4Xi^ v=l,...,n, (15)
X=i ji=i r OXn

soient dérivables, chaque sv par rapport à xv, uniformément en Po Alors
on a la relation (14) au point Po

7. Notre démonstration du théorème II utilise l'approximation de
fonctions continues par les intégrales singulières

Ap{f)=
E

pour (5 -> oo. On peut former les noyaux Kp de telles intégrales singulières

pour l'espace à n dimensions, en formant les produits de noyaux
des intégrales singulières à une variable. Toutefois la difficulté dans notre
cas consiste surtout en le choix de l'intégrale singulière de sorte qu'une
dérivée partielle de Ap(f) tende vers la dérivée correspondante de /, là
où cette dérivée existe:

Km -^-4. (16)

Dans le cas d'une variable, la plupart des intégrales singulières qu'on
emploie dans l'analyse possède la propriété analogue.

Il en est tout à fait différent dans le cas de plusieurs variables. Tout
d'abord on voit facilement qu'on ne peut s'attendre que (16) soit valable
sans conditions additionnelles puisqu'on en pourrait déduire par la méthode
du § 5 la relation (6). On ne peut même pas déduire la relation (16), si
la dérivée frx est la limite de l'expression (8) dans les conditions (10).

De l'autre côté, il est en effet possible de trouver une intégrale singulière

pour laquelle la relation (16) a lieu dès que ffXv existe, uniformément
au point considéré, au sens de notre définition du numéro 4.

Toutefois, les produits des noyaux d'intégrales singulières à une
variable qu'on a considérées jusqu'aujourd'hui6) paraissent de ne pas
posséder cette propriété.

6) Ce sont, d'après la classification de H. Hahn, Ûber die Darstellung gegebener
Funktionen dureh singulâre Intégrale, Denkschriften der Wiener Akademie,
Mathematisch-Naturwissenschaftliche Klasse, Bd. 93 (1917), pp. 585—692, les noyaux

C0
du type de Stieltjes, Cp[cp(x — £)]P du type de Poisson, — j- et du type
de Weierstrass, Cp cp[P{x — £)] Cf. 1. c, pp. 623—655.
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C'est l'intégrale de la forme

AfAj) Ap J /(*!,...,*«) e
v==1 dx (17)

dont nous nous servons dans la démonstration du théorème II. Les
calculs, conduisant à la démonstration de la relation (16) pour l'intégrale (17)
(théorème III au § 4), sont un peu longs sans être très difficiles. Il est donc
d'intérêt de remarquer que, si l'on remplace dans les théorèmes I et II
la condition de la dérivabilité uniforme des expressions (5) et (15) par la
condition que ces expressions possèdent des différentielles totales au point
considéré, on peut se servir d'une intégrale singulière plus simple, par
exemple de celle de Weierstrass

J f(xl9
E

v,xn) e
v * dx

pour laquelle la relation (16) est valable dès que / possède une différentielle

totale au point considéré6).

8. Nous déduisons au § 2 le théorème I du théorème II. Au § 3 sont
évaluées quelques intégrales dont nous nous servons au § 4 pour étudier
les propriétés de l'intégrale (17). Dans cette étude nous sommes allés un
peu plus loin qu'il n'était nécessaire pour notre but immédiat. Les
lecteurs qui ne s'intéressent qu'aux théorèmes I et II pourraient se borner
dans les démonstrations des lemmes V—VIII aux cas q ^ 1, p fg 1,

qi _j_ _|_ qn <g 15 p± _|_ -f. pn <: i j)e même, il suffit de définir
la propriété Q du numéro 19, en se rapportant aux dérivées partielles
du premier ordre seulement, et on peut se dispenser des lemmes XV et
XVIII.

D'ailleurs ces types ont déjà été considérés plus ou moins explicitement par H. Le-
besgue, dans son mémoire classique: Sur les intégrales singulières, Annales de la
faculté des sciences de PUniversité de Toulouse (3), t. 1 (1909), pp. 25—117.

Il y a lieu de citer ici le mémoire de M. Th. Badakovic,i5her die Interpolation von
Funktionen mehrerer Verànderlicher, Sitzungsberichte der Wiener Akademie,
Mathematisch-Naturwissenschaftliche Klasse, Abt. lia, Bd. 136 (1927), pp. 87—113, dans
lequel la relation (16) est étudiée pour le cas d'une dérivée continue au voisinage du point
considéré.

6) D'ailleurs, l'intégrale singulière de Stieltjes-Landau-De la Vallée Poussin- Tonélli
possède, comme l'a montré M. Aumann, la même propriété. Cf. O. Haupt und G. Aumann
1. c. Bd. 3, p. 164.
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§ 2. Réduction du théorème I au théorème II
9. Nos considérations utilisent essentiellement le lemme7) suivant:

Lemme /. Si f(x1,..., xn) s'annule en P0(0,..., 0) et y possède une
différentielle totale, et si g(x1,..., xn) est une fonction continue en Po,
fg possède une différentielle totale en Po, et Von a

En effet, en posant

g(xl9 ...,xn) g0+ ô(x1, ...,xn)
n

où d(xl9..., xn) -> 0 avec r 2J \ xv\ on obtient, en multipliant (7)
v=-l

par g et en y posant a1 a2 • • • an — 0 :

n

fg= £ gQocvxv +o(r)

Dans ce qui suit, nous désignerons généralement la valeur d'une fonction

D(xl9..., xn) au point Po par le symbol [D(xly .,,,xj]o.
10. Posons

A^ A^ + [A^]0 (19)

où les expressions A*jfK) s'annulent en Po et y possèdent des différentielles

totales. Il résulte donc du lemme I que les expressions

è -|£- (20)
OX

possèdent en Po des différentielles totales et qu'en particulier on a dans
ce point

fl l n agi l n dz-i

Za dérivabilité étant uniforme en Po

Or, on a évidemment par (19)

Jo L dxv Jo

7) Cf. notre communication, citée dans la note x).
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Donc, on peut écrire (21)

En multipliant par QKV et en sommant par rapport à #c et v, on obtient

* n 3 n ek*\ (fe)i n | J n * g^C\*)"j fa
y. y. uKV —~— y y a va ~^— A 2^ X, 2s Qkv ~^—— -^— • (22)

11. De l'autre côté, il résulte de (19)

2 n
V* I j (* f) I v^A y y A ^AK) V^A y y

donc, puisque les deux expressions de droite sont dérivables par rapport
à xv, uniformément en Po — la première par l'hypothèse du théorème,
la seconde d'après la conclusion que nous avons tirée du lemme I — il
en est de même de l'expression de gauche. C'est-à-dire, que si l'on
remplace dans l'expression de gauche en (3) les coefficients A{^} par leurs
valeurs en Po, l'hypothèse de ce théorème, portant sur les expressions (5),
reste valable. On a donc affaire au cas qui se réduit directement au théorème

II. Il en résulte qu'au point Po

Z Z QKV-£- Z Z \a™] ¦£- 0 (23)
OX [ J VX

En ajoutant les équations (22) et (23) terme à terme, on obtient (3),
et le théorème I est démontré.

§ 3. Evaluation de quelques intégrales

12. Dans ce qui suit, /? sera un entier pair et positif tendant vers 00,
et les signes de limite se rapportent toujours à fi -> 00

Lemme II. On a pour m > 0, Je > 0

fe-**mdx J-.J-r(^-) (24)
J « m \m J
0 Vk
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1

En effet, en posant x (-77-) > l'intégrale en (24) devient

m Vk 0

Lemme III. On a

-M-fH- (25)

II suffit de poser t — dans la relation z F(z) F(z + 1)

Alors (25) résulte de JT(1) 1

13. Posons

Jcp(x) e~p x Kp{x1 xn) fcjg(^i).. *kp(xn)
(26)

00

—00

Les fonctions kp et X^ sont évidemment paires, fi ne parcourant que la
suite des entiers pairs.

Lemme IV. On a

En effet, on a pour l'intégrale en (26) par les lemmes II et III

Y-*'1* s l -xl> J 2 1 r./ l \ 2

Je dz—ji-Je ^—-j-r^—f-.
— 00 —00

Nous désignerons l'espace des xl9... 9xn par E et le produit des
différentielles dxt • • • dxn par dr, de sorte qu'une intégrale n-ple, étendue
sur un domaine Er dans l'espace E, sera désignée par f • • • dx

Et
On a par exemple en vertu des définitions (26)

18 Commenter!! Mathematlci Helvetici



14. Lemme V. Pour un entier fixe g 2ï 1 on a

d«
J x)I dx ^ C(q) (28)

En effet, en introduisant f}x comme nouvelle variable d'intégration,
(28) devient

dx (29)

Ici la dérivée sous le signe d'intégration est la somme d'un nombre fini
de termes de la forme

(30)
X

où c est une constante, a un entier positif ^ q <xx,..., ocq des entiers
non négatifs.

Donc l'expression (29) est majorée par

*-1 f ya (31)

avec des constantes positives yx qui ne dépendent que de q. Or, ici
l'intégrale correspondant à une valeur quelconque de a est

e dt

Elle est donc ~2r(a)/3«-x, et (31) est majorée par C(q)^~2. Le lemme V
est démontré.

15. Lemme VI. Soient e un nombre fixe et positif, p, q deux entiers fixes
non négatifs. Alors on a, à partir d'un fS :

oo

dx* (32)

En effet, pour q 2> 1, en introduisant /5* comme nouvelle variable
d'intégration, l'intégrale de (32) devient
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q-p-l I xp o-x? dx

et ceci est majoré par une somme de la forme

oo

q C

a=l J
p-q e-x

où les ya sont les mêmes constantes que dans la majorante (31) de (29).

Or, pour p > — j8 > p ceci est majoré par

^1 e-J dx

où Cx ne dépend que de g. Cette dernière expression devient, en
introduisant x& comme nouvelle variable d'intégration:

Cx p*Q-p~* ïx* e~x dx < Ci p** e
* fxq e

2
dx O(g) /S2« c

Et quant au cas q 0, on a, en introduisant t (@x)P comme
2

nouvelle variable d'intégration, pour p > — /? > p + 1 :

fzve-(^ dx __L_f tP^ 1e-*r*^<

p+2 e
2 df < 2 e

et le lemme VI est démontré.

16. Lemme VIL Soient e un nombre positif fixe, pl9..., pn ;q1,...
des entiers non négatifs. Alors on a

oo oo

/ip i i xx xn
J J

(33)
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En effet, l'expression de gauche en (33) est

00

n 1 Cn -y- h
v=l *p J dx9

kp(x) dx

et, par le lemme VI, chacun des facteurs de ce produit tend vers 0 avec

oo.
Lemme VIII. Soit ô > 0, ql9..., qn des entiers fixes non négatifs. Alors

Vexpression
00 OO

dxn (34)

— 00 —OO

converge vers 0 uniformément pour \Ç\ ^ à

En effet, l'expression (34) peut être écrite dans la forme

il—fl
v=2 A/3 J I

d9vkp{x)
dxqv

dx (35)

et ceci est par les lemmes IV et V

< Q m+2?2+..-+2«?n

Or, ici la dérivée consiste en un nombre fini de termes de la forme (30),
il est donc clair que (35) converge vers 0 avec /S -> oo, uniformément

pour | || ^ ô

Remarque. Il est évident que le lemme VIII reste en vigueur, si l'on
permute en (34) xx avec xv, c'est-à-dire si les variables d'intégration sont

17. Lemme IX. On a

(36)

En effet, l'expression de gauche en (36) devient, en introduisant
ga;)^ t comme nouvelle variable d'intégration, par le lemme IV.

2-4- 2 r 1 i +
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Lemme X. On a
OC

1 dkp(x)
dx~ dx dy-> — lg 2 (37)

En effet, l'expression de gauche en (37) devient, en introduisant
((Jx)P t comme nouvelle variable d'intégration,

L f*p J
=zJ_f ç-ffi y? fe- tdtdy

%p J J

Ceci devient, en évaluant la seconde intégrale et en introduisant fiy
comme nouvelle variable d'intégration, d'après les lemmes II et IV

et ceci converge par le lemme III vers — lg 2.

18. Dans ce qui, suit nous désignons pour un #c, choisi parmi les nombres

2, 3,..., n, par E{K) l'ensemble des points de E dans lesquels
| %i | ^ | xK | De l'autre côté, nous désignons par FF* l'ensemble des

points de E dans lesquels on a

Alors, en désignant par

il. v 2,...,-

E— W*

l'ensemble de tout les points de E, extérieurs à TF*, il est clair que chaque

point de E* est contenu dans un, au moins, des ensembles E{2),..., E{K) :

n

K 2

Lemme XI, On a

W

Xi dx -> 1

(38)

(39)
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En effet, on a par le lemme IX et par (26)

dx\ y- / kp (x) dxdx

Lemme XII. On a

A,f dKp

1

(40)

En effet, en désignant xx par x et xK par y l'expression de gauche
en (40) est par le lemme X

Ig2
r o o

Lemme XIII. On a

Km / dKp
dxx

dr ^ (n— 1) lg 2 (41)

Ceci résulte immédiatement de (38) et du lemme XII.

§ 4. Discussion de l'intégrale singulière J /Ify dr
E

19. Soit /(#!,..., xn) une fonction mesurable et uniformément
bornée8) en E :

I / I < B (42)
Formons l'expression

oo oo

Ap(f)=--Apj--'jf(zl,...,xn) (43)
— 00 —00

Cette expression est une fonction des fx,..., £n, définie dans tout
l'espace E

Dans ce qui suit, nous dirons qu'une suite de fonctions Qp{xx,..., xn)

jouit de la propriété Q dans un domaine ouvert A, si les fonctions Qp

possèdent des dérivées partielles de tout ordre en A et si chacune des

suites

8) Les résultats de cette section restent d'ailleurs en vigueur, si Ton suppose que Tinté-

- I | •„ |*
grale J|/|e v~1 dr converge pour un N suffisamment grand.

E
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îi,...,?n ^ 0

tend vers 0, uniformément dans un voisinage de chaque point de A

Pour un £>0, nous désignons par Ws le domaine xv\ <e, v 1,...,n,
et par Ee la partie de E extérieure au domaine We

20. Lemme XIV. L'expression

(xx —%!,..., xn — Çn) dx (44)

jouit de la 'propriété Q dans le domaine W B

QQi-
En effet, la dérivée

pour une constante B, par

QQi-i \-Qn
En effet, la dérivée de (44) est évidemment majorée,

BAfJ — 11 ,..-,#n— In) edx (45)

D'après les hypothèses du lemme, les modules des différences \xv —

restent ^ -^- Donc (45) est majoré par2

BAfiJ l^r^^F ^'•'•'a:n) '

et ceci tend, d'après le lemme VII, vers 0 avec j8 -> oo Le lemme XIV
est démontré.

Il résulte évidemment du lemme XIV que le comportement infini-
taire de AM) et de ses dérivées en W s n'est point influencé, si Ton change

d'une manière arbitraire les valeurs de / dans Ee, tant que ces valeurs
restent bornées en E

21. Lemme XV. Si f(x1}..., xn) est continue au point P0(a1}..., an)

on a

si le point Pt(Si9 ...Jn) tend vers Po
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On peut supposer ax a2 • • • an 0 Si /(0,..., 0) a on
a évidemment

f a + s(xl9...,xn)

où e(#!,..., xn) tend vers 0, si le point (xl9..., xn) tend vers Po. Alors
on a d'après (26)

Ap(f) Af(a)

et nous n'avons qu'à démontrer que Ap(e) -> 0

Or, pour un rj > 0 soit (5 choisi de la sorte qu'en

\e(xl9...,zn) \£t].
D'après le lemme XIV on a

où les &p satisfont à la relation | #p | ^ 1, et la suite des fonctions Qp

jouit de la propriété Q en TFg Donc, pour tous les points glf..., fn

à l'intérieur de TT§ on a, à partir d'un /? :
2~

Donc, rj étant arbitraire, le lemme XV est démontré.

22. Lemme XVI. Supposons qu'une des dérivées partielles frx est bornée

en We et sur la frontière de We. Alors on a en We
Y

)+Qp > (*6)

où la suite Qp jouit de la propriété Q en W e si les valeurs de frx dans

EB sont remplacées par des valeurs quelquonques, mais telles que la fonction

modifiée reste dans E mesurable et uniformément bornée.

Démonstration. On peut supposer que xVl — xx Alors on a

ri r ri

¦j^Apif) — ApJ f-^-Kp{x1 — Sl9...,zn — èn)dx
E
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D'après le lemme XIV on peut remplacer ici le domaine d'intégration
par We, à condition d'ajouter une suite de fonctions jouissant de la
propriété Q dans W e De l'autre côté on a_

/PI

av_ |v) daJi.. .dXn
—e — e

et ceci devient, en intégrant par partie 9) :

/^O»!,...,*») ^(a?! —fi,..., ^n — in) dr — Tp + ^ (47)

e e

— U f... f/(—

ce
e — W f...

—C — £

xn)

xn) II k^(x%
V=2

dx2.. .dzn,

dx2

Or, le premier terme en (47), d'après le lemme XIV, ne diffère de

—ApdxJ que par une suite des fonctions, jouissant de la propriété Q
dans W e Quant aux expressions Tp et R$, leurs dérivées

3lï«... 9i«» '

sont évidemment majorées par
00 OO

— 00 —OO

00 OO

BAaf... dx2 dxn

— 00 —00

•) Cf. quant à l'intégration par partie pour les intégrales de Lebesgue; De la Vallée
Poussin, 1. c. t. 1, pp. 279—280, quant à la dérivation sous le signe d'intégrale; De la
Vallée Poussin, 1. c, t. 2, 2de éd. (1912), pp. 123—124, pour les intégrales simples, et Haupt
und Aumann, 1. c, Bd. 3, pp. 118—119, pour les intégrales n-ples.
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et ceci tend par le lemme VIII vers 0 Donc, les suites Tp et Rp jouissent
de la propriété Q dans Ws et le lemme XVI est démontré.

Y
Une conséquence immédiate du lemme XVI est le

n
Lemme XVII. Si f est en WB égale à a + £ ocv xv on a au

point £1= in 0

JLAp(f)-+*v v=l,...,n (48)

En effet, par le lemme XVI, la suite en (48) peut être remplacée, à

l'origine, par la suite

<xv Ap I Kp dx <xv

23. Lemme XVIII. Si f possède une différentielle totale en P0(0,..., 0),
on a en Pq ^

On peut supposer v 1 Soit

D'après l'hypothèse on a

n
27 \xv

où e(xx,..., #w) est sommable, s'annule en Po et y est continu. D'après
le lemme XVII il suffît de démontrer (49) pour le cas a oc1= • • • =<%n=0.

Nous avons donc à montrer que

/n g
£ 27 I xv | -sj-Zpfo — a?w — !n)dr->0

pour £ • • • |n 0 Et pour cela, il suffit de montrer que

^=Apfe\xv\ dr->0 v 1 ,...9n (50)
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Or, pour un r\ > 0 soit ô > 0 choisi de la sorte qu'en TF8 on ait
e(xlt..., xn) | ^ r). D'après le lemme XIV, on a

lim Ifif I *v ¦k*

xv\

dx 5^ lim r)Ap I \ xv
E

dx

dr-^rj

par le lemme XI. Il en résulte que lim | P^p) \ ^ rj donc, 7; étant
arbitraire, P^v)->0, et le lemme XVIII est démontré.

Ce lemme est d'ailleurs un corollaire du théorème suivant:

24. Théorème III. Soient Kp et Ap définis par (26). Soit f(xl9..., xn)
mesurable et bornée dans l'espace E des xx,..., xn Supposons que f est

continue au point P0(a1,..., an) et que la dérivée de f par rapport à xv
existe uniformément en Po

Alors, en définissant Ap(f) par (43), on a, Ventier pair /? croissant à
Vinfini y

L 9fv JPo dav

Nous pouvons supposer, sans restreindre la généralité, v 1 et

a1= • • • &n 0 Posons

/(O,..., 0) a et fXi(al9..., an) ^
Il suffit, d'après le lemme XVII, de démontrer notre théorème pour la
fonction égale à / — (xxxx — a en Wx et à / en Ex, c'est-à-dire qu'on peut
supposer que

D'après la définition de la dérivée uniforme en Po, on a

f(xl9..., xn) f(0,x2,..., xn) + e(xl9..., xn)x± (51)

où e est borné dans le domaine TF* du N° 18, s'annule en Po et y est
continu relativement à IF*.

Nous avons maintenant à démontrer que

J L^Sl J£l=...= |n 0
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Or, la dernière expression peut être décomposée comme il suit

*'' (52)
JE* W

et il suffit de démontrer que chacun de ces termes tend vers 0

25. Considérons d'abord le premier. Soit rj > 0 et ô > 0 choisi de la
sorte qu'on ait en W§

I /1 ^ n > (53)

ce qui est possible, / s'annulant à l'origine et y étant continue. D'après
le lemme XIV

i /• 2ir ~

(54)

ne change pas, si l'on restreint l'intégration sur la partie de E*,
intérieure à TF§ Mais alors il résulte de (53) que (54) est

dx

Donc, d'après le lemme XIII, (54) est ^(n — 1)?; lg 2 et, rj étant
arbitraire, (54) est 0

Le seconde terme de (52) peut être écrit d'après (51) dans la forme

/(O x2,..., xn) -g^- Kp dx + Api s(x1,..., xn) xx -^-Kpdx. (55)

Or, ici le premier membre s'annule, puisque, Kp étant une fonction paire
de Xj, la fonction sous le signe d'intégration est impaire par rapport
à xl9 tandis que le domaine d'intégration TF* reste le même, si l'on
change xx en — xx.

Considérons le second membre en (55). Pour un r\ > 0 soit ô choisi de

la sorte que dans la partie W* de W*, appartenant à W$, on ait
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Alors il résulte du lemme XIV :

lim Ap\ j e xx -=— Kp dx lim Ap

w*

rinmn^Jx^Kp dx

^ tj lim Api | xx

w*

pi
w*

dr

Mais ici, par le lemme XI, l'expression de droite est égale à rj. Donc, rj
étant arbitraire, le seconde membre de (55) tend vers 0, lui aussi, et le
théorème III est démontré.

§ 5. Démonstration du théorème II
26. On peut supposer, sans restreindre la généralité, le point Po situé

à l'origine. Soit e > 0 choisi de la sorte que les fonctions z\{xli..., xn)
et leurs dérivées partielles du premier ordre soient bornées à l'intérieur
de We10). En définissant les z^ comme 0 dans Ee, formons les intégrales

.,xn) Kp{x1 — fi,...,a;tt — fn) dx

Alors on a, d'après le lemme XVI, dans W\ :

2

où la suite Qp jouit de la propriété Q en WE En multipliant par

oc^l et en sommant, on a par (15)

vp= z f *
(56)

où les suites Qfi* jouissent de la propriété Q en Wi

l0) Ceci est possible, les z\ et leurs dérivées étant supposées continues en Po
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27. En dérivant les expressions 8vp par rapport à Çv et en sommant,
on obtient évidemment

o

en raison des relations 12). Il en résulte que

Â "AT [ApfSv ^P (*i — fi .•••,*. — f») dr] (57)

jouit de la propriété Q à l'origine. Donc, (57) tend vers 0

Mais maintenant, par le théorème III, les termes de (57) d'indice v

tendent vers

_ dx,

et l'on obtient

Jo '

v=-l L v*v JO
=0 C.Q.F.D.

(Reçu le 28 octobre 1942.)
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