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Sur les conditions de validité
d'une classe de relations entre les expressions
différentielles linéaires

Par ALEXANDRE OSTROWSKI, Bile

Table des matiéres: § 1. Introduction. § 2. Réduction du théoréme I au théordme II.
§ 3. Evaluation de quelques intégrales. § 4. Discussion de I'intégrale singuliére f fKﬁ dr.
§ 5. Démonstration du théordme II. E

§ 1. Introduction

1. Il s’agit dans ce mémoire d’une classe de relations auxquelles con-
duit surtout la formation des ,,conditions d’intégrabilité‘‘ dans la théorie
des équations différentielles aux dérivées partielles.

Si 'on pose par exemple

X(z) = élA,, aa; , Yo) = i‘;"'1 B, aaz : (1)
on a
X(¥() — Y(XE) = 26) = 5 (X(B) —Y(A4) 5, @

ou, comme on voit, les dérivées secondes se détruisent. Pour que ceci
soit possible, il parait au premier abord indispensable que ces dérivées
secondes existent. Or, on sait depuis quelques années') que la relation (2)
subsiste, méme si z ne possede que les dérivées continues du premier
ordre, pourvu que les expressions (1) soient douées, elles aussi, des déri-
vées continues du premier ordre.

Les questions analogues se présentent dans beaucoup d’autres cas, et
nous allons traiter, dans ce qui suit, une classe trés étendue de relations
de cette sorte.

1) Cf. E. Schmidt, Bemerkungen zum Fundamentalsatz der Theorie der
Systeme linearer partieller Differentialgleichungen erster Ordnung.
Wiener Monatshefte fiir Mathematik und Physik, Bd. 48 (1940), pp. 426—432, — O. Per-
ron, Das Verschwinden der Klammersymbole in der Theorie der linearen
partiellen Differentialgleichungssysteme. Math. Annalen, Bd. 117 (1940/41),
Pp. 687—693. — P. Qillis, Bull. Soc. R. Sc. Liége (1940), pp. 197—212. — A. Ostrowski,
Sur un théordme fondamental de la théorie des équations linéaires aux
dérivées partielles. Com. Math. Helv., vol. 15 (1943), pp. 217—221.
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2. Nous considérons une relation de la forme

En 9 1 3s k ! AN 9z,
AP _ZA oy ——F .
xé'l vé'lQ’w ox, )\g::l p.é; E axp. K=1 vé'l Zéi y-‘—g ¢ 0xy axp.

(3)
Pour que cette relation soit possible, c’est-a-dire pour que les dérivées
secondes, si elles existent, s’y détruisent, il est nécessaire qu’on ait

k k
KEQK,,Ail,f):———ngWAﬁ;‘); u,v=1,...,n; A=1,...,1.
(4)

De l'autre c6té, on peut former ’expression de gauche en (3) dés que
les expressions
211 ﬁ'AO"‘)jﬂ— v=1 n, k=1 k (5)
2, 24 g yeeey,, k=1,...,k,
sont dérivables par rapport aux variables x, correspondantes.
De méme, on peut former les expressions de droite en (3), dés que les
AGY) sont dérivables.
Toutefois il est clair que ces conditions de dérivabilité ne suffisent

pas, & elles seules, pour assurer la validité de (3). En effet, la relation (3)
comprend comme un cas spécial la relation

d oz d 0z
axz(axl)—axl(axz)_o’ (6)

et I'on sait que l'existence des dérivées qui y figurent n’est pas encore
suffisante pour que (6) soit exacte.

3. Si I'on veut se borner aux conditions pour la validité de (6) dans
lesquelles l’existence des dérivées secondes n’est supposée que dans le
point considéré et pas dans un voisinage de ce point, on connait deux
systémes de conditions, assurant la validité de (6) dans un point P, .

Le premier de ces systémes, da & M. W. H. Young 2), exige que les

dérivées 825— et ;,—:—- existent au voisinage de P, et possedent au point
1 2

P, des différentielles totales.

?) Cf. par exemple: De la Vallée Poussin, Cours d’Analyse infinitésimale, ¢. 1,
3me éd. (1914), pp. 140—146. — E. W. Hobson, The Theory of Functions of a Real
Variable and the Theory of Fourier Series, vol. 1, 3rd ed. (1927), p. 427. —
0. Haupt und @G. Aumann, Differential- und Integralrechnung, Bd. 2 (1938),
PpP- 111—125,
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Rappelons qu’on dit qu’une fonction f(x,,..., x,) posséde une diffé-
rentielle totale au point Pya,,...,a,), si 'on a

f(xl ’ "‘,xn) = f(al y oo ’a'n) -+ vélo‘v(xv_av) +O(T) , (7)

n
r=J3\|zy,—a,| >0,
v=1

ou les constantes o, sont les dérivées partielles fa’;,, de fen P,.

4. Dans une communication parue récemment dans ce recueil®), nous
avons introduit un autre systéme de conditions pour la validité de (6),
utilisant la notion d’'une dérivée uniforme dans un point.

Nous disons que f soit dérivable par rapport & x,, uniformément en
Pya,,...,a,), si expression

f(xla Ly , “':xn)—f(a'ly Ly, °°°’xn)

8
Py (8)

tend vers une limite déterminée falcl(a’l’ ..., a,) avec
(¢, —a,) >0, |2,—a,|=|2,—a,|,v=2,...,n; (9)

et ’on obtient la définition de la dérivabilité par rapport & x,, uniformé-
ment en P,, en permutant z, et z, .

En employant cette notion, nous avons démontré la relation (6) en

s 0 0 . . .
P, sous les conditions que —a—;:— et -55— existent au voisinage de P, et
1 2

sont dérivables en P,, la premiére par rapport & x, et la seconde par
rapport & x,, toutes les deux uniformément en P, .

Ce résultat contient le théoréme de M. Young. Ceci résulte du fait,
démontré dans la note citée que la condition nécessaire et suffisante pour
que | posséde une différentielle totale en Pya,, ..., a,) est que f soit déri-
vable par rapport a chacune des variables x, . .., x,, uniformément en P, .

Rappelons enfin que nous avons montré dans la note citée sur un
exemple que la relation (6) n’est plus assurée, si 'on définit la dériva-
bilité uniforme en exigeant seulement que I’expression (8) tend vers f;l
pour

(¢;—a,) > 0,|z,—a,|=S|2y—a,|(1—¢),v=2,...,n, (10)

pour un ¢ fixe et positif.

3) A. Ostrowski, Note sur l’interversion des dérivations et les différen-
tielles totales. Com. Math. Helv., vol. 15 (1943), pp. 222—226.
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5. En utilisant ces notions, on peut énoncer notre résultat principal
comme il suit:

Théoréme I. SoientA(v’;f’; vou=1,...,n;A=1,...,0;e=1,...,k,
lkn? fonctions définies au voisinage d’un point Pya,,...,a,), continues
en P, et douées au point P, des différentielles totales.

Soient Q,.,; xk=1,...,k; v=1,...,n, nk fonctionsdes z,, ..., x,,
finies en P, et telles que les relations (4) soitent satisfaites en P, .

Alors la relation (3) a liew en Py, si les z), sont des fonctions des z,, . . . , x,,
continues et possédant des dérivées partielles du premier ordre au voisinage
de P, et telles que leurs dérivées partielles du premier ordre sovent continues
en P, et, pour chaque v,v = 1,...,n, les expressions (5) correspondant a
Uindice v sotent dérivables par rapport a x,, uniformément en P, .

Un exemple d’une relation du type (3) est la relation suivante:

0 n ov, 0 7. o,
ox ,,ﬁ"_';u" oy 0y vé’;u" ox =2

(au,, ov, ov, ou,

ox oy  ox ay) (11)

qui joue un réle fondamental dans la théorie des transformations de
contact %).

6. Dans la démonstration du théoréme I on peut évidemment supposer
que les @, soient des constantes. Dans le cas ol les fonctions A¢ sont
des constantes, elles aussi, les relations (4) se réduisent aux relations

ocf,"z,,:z—-—oc&;v,,uzl,...,n;lzl,...,l, (12)
en posant k
=2 Qo ATY (13)
K=
tandis que (3) devient
n 0 i n
> > 3 AW _a.z_’ﬁ_,—_-o ) (14)

Dans notre démonstration le cas général sera réduit au cas spécial ol
les AU sont des constantes, c’est-d-dire, d’aprés ce que nous venons
de dire, au

Théoréme I1. Soient o) ; v, u=1,...,n; A=1,...,1, 1 systémes
de constantes, d’ordre n, alternés, c’est-a-dire satisfaisant a (12).

%) C’est la discussion de la relation (11) qui a été le point de départ de nos recherches,
commencées lors de 1936, encore avant la publication de la note citée de M. Schmadt.
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Sovent z) des fonctions des z,, . . ., x,, continues et possédant des dérivées
du premier ordre au voisinage d’un point P, et telles que leurs dérivées
partielles du premier ordre soient continues en P, et les n expressions

81'521‘ an(x(v?\)ﬁ’ ”:1"":"’, (15)
=1 op=1 F Omy

soient dérvvables, chaque s, par rapport & x,, uniformément en P,. Alors
on a la relation (14) au point P, .

7. Notre démonstration du théoréme II utilise 'approximation de
fonctions continues par les intégrales singuliéres

Aglf) = JIE f Kgdx

pour § — oco. On peut former les noyaux Kg de telles intégrales singu-
licres pour ’espace & » dimensions, en formant les produits de noyaux
des intégrales singulieéres & une variable. Toutefois la difficulté dans notre
cas consiste surtout en le choix de l'intégrale singuliére de sorte qu’une
dérivée partielle de Ag(f) tende vers la dérivée correspondante de f, 13
ou cette dérivée existe:

Dans le cas d’une variable, la plupart des intégrales singuliéres qu’on
emploie dans I’analyse posséde la propriété analogue.

Il en est tout & fait différent dans le cas de plusieurs variables. Tout
d’abord on voit facilement qu’on ne peut s’attendre que (16) soit valable
sans conditions additionnelles puisqu’on en pourrait déduire par la méthode
du § 5 la relation (6). On ne peut méme pas déduire la relation (16), si
la, dérivée f, est la limite de I’expression (8) dans les conditions (10).

De V’autre coté, il est en effet possible de trouver une intégrale singu-
liere pour laquelle la relation (16) a lieu dés que f;v existe, uniformément
au point considéré, au sens de notre définition du numéro 4.

Toutefois, les produits des noyaux d’intégrales singulieres & une
variable qu’on a considérées jusqu’aujourd’hui®) paraissent de ne pas
posséder cette propriété.

5) Ce sont, d’aprés la classification de H. Hahn, Uber die Darstellung gegebener
Funktionen durch singuldre Integrale, Denkschriften der Wiener Akademie,
Mathematisch-Naturwissenschaftliche Klasse, Bd. 93 (1917), pp. 5685—692, les noyaux

Ce
143 gp(z—¢§)

du type de Stieltjes, Cglqp(x—¢))f, du type de Poisson, » ot du type

de Weierstrass, Cg @ [B(z—§)]. Cf. 1. c., pp. 623—655.
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C’est I'intégrale de la forme

-vé‘lw(z,,—f,nﬂ
Ap(fy = Ap | flay,een @) 67" &, (1)

dont nous nous servons dans la démonstration du théoreme II. Les cal-
culs, conduisant & la démonstration de la relation (16) pour I'intégrale (17)
(théoreme III au § 4), sont un peu longs sans étre tres difficiles. Il est donc
d’intérét de remarquer que, si I'on remplace dans les théorémes I et 11
la condition de la dérivabilité uniforme des expressions (5) et (15) par la
condition que ces expressions possedent des différentielles totales au point
considéré, on peut se servir d’une intégrale singuliére plus simple, par
exemple de celle de Weierstrass

n
=83 2 (@ )

A,gj‘f(xl,...,a:n)e v= dt
E

pour laquelle la relation (16) est valable dés que f posséde une différen-
tielle totale au point considérés).

8. Nous déduisons au § 2 le théoreme I du théoréme II. Au § 3 sont
évaluées quelques intégrales dont nous nous servons au § 4 pour étudier
les propriétés de I'intégrale (17). Dans cette étude nous sommes allés un
peu plus loin qu’il n’était nécessaire pour notre but immédiat. Les lec-
teurs qui ne s’intéressent qu’aux théoremes I et IT pourraient se borner
dans les démonstrations des lemmes V—VIII aux cas ¢<1,p=1,
G+ -+ =L,p+ - +p,<1. De méme, il suffit de définir
la propriété 2 du numéro 19, en se rapportant aux dérivées partielles

du premier ordre seulement, et on peut se dispenser des lemmes XV et
XVIII.

D’ailleurs ces types ont déja été considérés plus ou moins explicitement par H. Le-
besgue, dans son mémoire classique: Sur les intégrales singulidres, Annales de la
faculté des sciences de I'Université de Toulouse (3), t. 1 (1909), pp. 25—117.

Il y a lieu de citer ici le mémoire de M. Th. Radakovié, Uber die Interpolation von
Funktionen mehrerer Veradnderlicher, Sitzungsberichte der Wiener Akademie,
Mathematisch- Naturwissenschaftliche Klasse, Abt. I1a, Bd. 136 (1927), pp. 87—113, dans
lequel la relation (16) est étudiée pour le cas d’une dérivée continue au voisinage du point
considéré.

) D’ailleurs, l'intégrale singuliére de Stieltjes- Landau-De la Vallée Poussin-Tonells

posséde, comme 1’a montré M. 4Aumann, la méme propriété. Cf. 0. Haupt und Q. Aumann
L e. Bd. 3, p. 164,
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§ 2. Réduction du théoréme I au théoréme II

9. Nos considérations utilisent essentiellement le lemme?) suivant:

Lemme I. Si f(xy,...,x,) sannule en Py0,...,0) et y posséde une
différentielle totale, et s g(x,,..., x,) est une fonction continue en P,,
fg posséde une différentielle totale en P,, et U'on a

ofg) \ _ of _
( oz, )Po_ 90 oz, )Po » o =9(0,...,0) . (18)

En effet, en posant

gy, ..., %,) =go+ 6(xy,..., 2,) ,

n

ou 6(%y,...,2,) >0 avec r=2"|xz,|, on obtient, en multipliant (7)
v=1
pargeten y posant ¢, =a,= -+ =a,=0:

n
fg= -)-—:lgo“vxv +o(r) .
p=
Dans ce qui suit, nous désignerons généralement la valeur d’une fonc-
tion D(x,, ..., x,) au point P, par le symbol [D(x,,...,,)],.
10. Posons

AT = AJ0 + [4A00], (19)

ol les expressions 4 s’annulent en P, et y possédent des différen-
tielles totales. Il résulte donc du lemme I que les expressions

(20)
possédent en P, des différentielles totales et qu’en particulier on a dans

ce point :
az;\ aA:"(Z\K)

O 5 Faron % _ 5 % (1)
0%, =1 p=1 'F O0mu T usy Oxp 0w,

la dérivabilité étant uniforme en P .

Or, on a évidemment par (19)

24, M 940
[ oz, ]0"“[ oz, ]o‘

7) Cf. notre communication, citée dans la note 1),
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Donc, on peut écrire (21)

- 0z % . dACS] 02
iz Bawio3 (5 5 fe.d]m
Kg'l VZQ g ox, 7\‘——-‘:1 yévl K axy. ;LZ=:1 )%—:1 vél x‘z‘lQ axv ax}t ( )
11. De Pautre coté, il résulte de (19)
02 0z 0z
(A k) A Ag"‘) A 42 *(AK) A
7\‘§1 FZ [Av“] ax}‘ )\é’l pz='1 # axp, A=1 p,§ ax,,, ’

done, puisque les deux expressions de droite sont dérivables par rapport
a z,, uniformément en P, — la premiére par I’hypothése du théoréme,
la seconde d’apres la conclusion que nous avons tirée du lemme I — il
en est de méme de 1’expression de gauche. C’est-a-dire, que si I’on rem-
place dans I’expression de gauche en (3) les coefficients A(’“" par leurs
valeurs en P,, ’hypothese de ce théoréme, portant sur les expressions (5),
reste valable. On a donc affaire au cas qui se réduit directement au théo-
réme II. Il en résulte qu’au point P,

3 3 Qe 3 Z[Aiﬁf’] 0. (23)

0 0%y

En ajoutant les équations (22) et (23) terme & terme, on obtient (3),
et le théoreme I est démontré.

§ 3. Evaluation de quelques intégrales

12. Dans ce qui suit, 8 sera un entier pair et positif tendant vers oo,
et les signes de limite se rapportent toujours & f — oo.

Lemme II. On a pour m > 0,k >0

o0

a[ e ¥ "dy = ?/175 7; r( :n) . (24)
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1

En effet, en posant =z = ( d )m , l'intégrale en (24) devient

&
o L,
——%———fe t™  dt .
mVEk 0
Lemme III. On a
1 1
r( ) 1. 25
; 5) (25)

Il suffit de poser ¢ = dans la relation zI'(z)=1I(z+1) .

1

B

Alors (25) résulte de I'(1) =1 .
13. Posons

kp(x) = ¢~ B o , Kp(zy ..., 2,) = kp(xy). . . kp(z,) ,
(26)

lpszp(x) de , Ag=12" .

Les fonctions kg et Kg sont évidemment paires, § ne parcourant que la
suite des entiers pairs.

Lemme IV. Ona
I AR N EX O] o

En effet, on a pour I'intégrale en (26) par les lemmes IT et 111

+ o0 ©
— g8 28 lf—zﬂ 2 1 (1) 2
e de =——1] e dx= r ~ ——
_[ 8 B8 " \F)"8
Nous désignerons 1’espace des z,, ..., z, par £ et le produit des diffé-
rentielles dx, - - - dx, par dz, de sorte qu’une intégrale n-ple, étendue

sur un domaine E’ dans l’espace E, sera désignée par j' - dt
B

On a par exemple en vertu des définitions (26)

Apber dr=1.
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14. Lemme V. Pour un entier fixze =1 on a

f ‘*d;{kﬂ(x)

En effet, en introduisant Sz comme nouvelle variable d’intégration,

(28) devient -
_ dr_ _f
b [ | 2

Ici la dérivée sous le signe d’intégration est la somme d’un nombre fini
de termes de la forme

dx < C(g) p*e* . (28)

dx . (29)

¢ 2B B—xn B e—xp (30)

ou ¢ est une constante, a un entier positif < gq, «y,...,x, des entiers
non négatifs.

Donc l’expression (29) est majorée par

4 ~ B
ﬂq‘laé'l Ya f B2 x0B-12 ¢==F dx (31)

avec des constantes positives y, qui ne dépendent que de ¢. Or, ici
Pintégrale correspondant & une valeur quelconque de a est

p- a—-—g—-{--l--l -t
=ﬁ‘1—1ft BoF e dt .

— o0

Elle est donec ~2I'(a)p21, et (31) est majorée par C(q)p?¢—2 . Le lemme V
est démontré.

15. Lemme VI. Soient ¢ un nombre fixe et positif, p, q deux entiers fixes
non négatifs. Alors on a, @ partir d’un g :

0

[

&

de

- 18P
daxt )

dz < C(p,q) p* e

kg(x) (32)

En effet, pour ¢ =1, en introduisant fx comme nouvelle variable
d’intégration, I'intégrale de (32) devient
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o0

s [

eg

&

ppe dx ,

et ceci est majoré par une somme de la forme

- -}

ﬁQ"’p'—l Zq' Va fﬂq zaB+p—a e'““’p dx
a=1
ef

ou les vy, sont les mémes constantes que dans la majorante (31) de (29).

Or, pour § >—i— , p>p, ceci est majoré par
pra—r-1 C’lfxqﬁ 2B-1 e~ dg |
&

ou C, ne dépend que de q. Cette derniére expression devient, en intro-
duisant 2 comme nouvelle variable d’intégration :

0 - <] T 1 ﬁ
- - ;(&B)
C, ﬁzq—p"zfxq erdx<C,p%e fxq e ' dz=0(q) prae = .

(Be)? 0

- -lz-(ﬁevﬁ

Et quant au cas ¢ =0, on a, en introduisant ¢ = (fx)? comme

nouvelle variable d’intégration, pour f > -%— , B>p+1:

o0

Pl
Jwewfa— o [07 etas

ﬂ +2
£ (=8)F
oo
1 —}esP tﬁlﬁi‘ﬂ -+ I ~}e8f
< -35:_-2— e e < 4Ze€ 5

et le lemme VI est démontré.

16. Lemme VII. Sotent ¢ un nombre positif fixe, Py,...; Pnigrs-- 145
des entiers mon négatifs. Alors on a
. o 0%+ +an
Apf... ..l 223 ... dain Kg(xy,...,x,)| dv—0 .  (33)
£ &
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En effet, I’'expression de gauche en (33) est

a?

dx?v @z

n ] 2,
’Z“z;

kg ()

et, par le lemme VI, chacun des facteurs de ce produit tend vers 0 avee
f— oo.

Lemme VIII. Soit 6> 0,4q,,...,q, des entiers fixes non négatifs. Alors
Dexpression

y ~ - 01+ +an
ﬁff‘ 52t oain Kp(&, 23, -.,%,)

converge vers 0 umiformément pour |&| = 6

dz, ...dzx, (34)

En effet, 'expression (34) peut étre écrite dans la forme

1| dokglg) | 2 d% k()
2 l |7 f ‘ =gz, (35)
et ceci est par les lemmes IV et V
du e ceoyog, |80 e
< 0‘31+2qz+ +2¢n T e— (BE) l;——_Oﬁl+q1+2Q2+ +24n p o z=5,§

Or, ici la dérivée consiste en un nombre fini de termes de la forme (30),
il est donc clair que (35) converge vers 0 avec § — oo, uniformément
pour | §|=4.

Remarque. 1l est évident que le lemme VIII reste en vigueur, si 'on
permute en (34) x, avec x,, ¢’est-a-dire si les variables d’intégration sont
Zyyeoer @y 15 Tprgsener &y, €6 2, =§,|18|=6.

17. Lemme IX. On a
1 (] dkp(x)

En effet, ’expression de gauche en (36) devient, en introduisant
(Bx)B = t comme nouvelle variable d’intégration, par le lemme IV.

2
B BB+1 p—(B2)f 0 — 8 p—t
Z,g xP fPle dx = 7 ft e~tdt = ﬂ}.p

-1 .
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Lemme X. On a

o0

1 : dkg (x)
Aﬂ kply )Jf ‘ T

0

dx dy——>—?1[lg2 ‘ (37)

En effet, l’expression de gauche en (37) devient, en introduisant
(Bz)P = t comme nouvelle variable d’intégration,

By

12_[8 Beﬂﬂfﬁﬁﬂ ah-1 ¢~ =P d:cdy—-——— "35 f“dtdy .

Ceci devient, en évaluant la seconde intégrale et en introduisant fy
comme nouvelle variable d’intégration, d’apres les lemmes IT et IV

-]

Sy - =l [ )= G-

1
6]
¢r(3)
et ceci converge par le lemme III vers —i— Ig 2.

18. Dans ce qui, suit nous désignons pour un «, choisi parmi les nom-
bres 2,3,...,n, par E% Densemble des points de £ dans lesquels
|z, | =< | z,|. De lautre c6té, nous désignons par W* DP’ensemble des
points de E dans lesquels on a

lz, =2z, v=2,...,n.

Alors, en désignant par

E*=F —W*
I’ensemble de tout les points de E, extérieurs & W*, il est clair que chaque
point de E* est contenu dans un, au moins, des ensembles £, ..., F*) :
n
B* <3 B . (38)
K=2

Lemme XI. On a

AU"

dr <

dv—>1 . (39)
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En effet, on a par le lemme IX et par (26)

f dkp x)
— 72
Lemme XII. On a

0Kpg
Aﬂf I ox,
E(x)

En effet, en désignant z, par x et =, par y, 1’expression de gauche
en (40) est par le lemme X

AL f"’ )fl akﬁ ’d dy ———fkp x)dx]n_zalg2

Lemme XIII. On a

dx[fl;;fkﬂ (x) dx]n_l—-> 1.

dr—>lg2, xk=2,...,n . (40)

0Kp

dr<(n—1) Ig2 . (41)

Ceci résulte immédiatement de (38) et du lemme XII.

§ 4. Discussion de Pintégrale singulidre | fKpgd~
E

19. Soit f(x,,..., z,) une fonction mesurable et uniformément bor-

néed) en ¥ :
|f1=B. (42)

Formons ’expression

Ap(f) = A,gf ffxl, o @) KBty — &1 e v, @y —£,) dT . (43)
Cette expression est une fonction des &,,..., &,, définie dans tout l'es-
pace L .

Dans ce qui suit, nous dirons qu’une suite de fonctions Qg(z,, .. ., z,)

jouit de la propriété 2 dans un domaine ouvert A4, si les fonctions Qg
possedent des dérivées partielles de tout ordre en 4 et si chacune des
suites

8) Les résultat-s de cette section restent d’ailleurs en vigueur, si I’on suppose que 'inté-

- 2 z, IN
grale I|f|e v=1 dz converge pour un N suffisamment grand.
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001+ +an

q q
oxfr...oxin

QB, Q1’°"3qn20 ’

tend vers 0, uniformément dans un voisinage de chaque point de 4.

Pour un £> 0, nous désignons par W, le domaine |z,|<e, v=1,...,n,
et par K, la partie de K , extérieure au domaine W, .

20. Lemme XIV. L’expression
Aiff(xl,...,xn) Kg(ay— &y, tn— &) do (44)

joust de la propriété 2 dans le domaine W,
. gt tan : . .
En effet, la dérivée T 3 £ de (44) est évidemment majorée,
... 08

pour une constante B, par

091t +an
BApfl Kp(@y—Ey,e.n, tn—E)| edr . (45)

ox{r ... dxlr

D’apres les hypothéses du lemme, les modules des différences |z, —§&, |

restent = —- . Done (45) est majoré par

3
01t +an
BApfl Kp(#y .., 2,) dv ,

q q
or{r ... oxl»

et ceci tend, d’apres le lemme VII, vers 0 avec f — oo . Le lemme XIV
est démontré.
Il résulte évidemment du lemme XIV que le comportement infini-

taire de Ag(f) et de ses dérivées en W, n’est point influencé, si I'on change
2
d’une maniére arbitraire les valeurs de f dans E,, tant que ces valeurs

restent bornées en E .

21. Lemme XV. 8¢ f(%y, ..., x,) est continue au point Pya,,...,a,),
on a

AB(]‘) ">f(a1’ L "a’n) ]

st le point Py(&,,..., &,) tend vers P,
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On peut supposer ¢, =a,= --- =a,=0. Si f(0,...,0)=a, on
a évidemment
f=a+ e(zy,...,2,) ,

ou ¢(z,, ..., z,) tend vers 0, si le point (z,, ..., z,) tend vers P,. Alors
on a d’aprés (26)
Ag(f) = Apla) + Ag(e) = a + Ag(e) ,

et nous n’avons qu’a démontrer que Ag(e) = 0.

Or, pour un % > 0, soit é choisi de la sorte qu’en Wj

‘8(x1,---»xn)|§"7-

D’apres le lemme XIV on a

Ag (¢) =/1ﬁf8Kﬂ dr+ Qg =30 n+ s ,

s
ou les ¥y satisfont a la relation | Jdg| < 1, et la suite des fonctions ¢
jouit de la propriété 2 en W5 . Donc, pour tous les points &,,..., &,,
2
& lintérieur de W3 , on a, & partir d’un §:
2

| Ag(e) |= 27 .

Done, 7 étant arbitraire, le lemme XV est démontré.

22. Lemme XVI. Supposons qu’une des dérivées partielles fx,v est bornée
en W, et sur la frontiére de W, . Alors on a en W
2

d

Ap(f)=Ap(fs, ) +@p (46)

0&y,

ot la suite Qg jourt de la propriéié Q en W, , si les valeurs de f;v dans
‘E 1

E, sont remplacées par des valeurs quelquongues, mazis telles que la fonction
modifiée reste dans B mesurable et uniformément bornée.

Démonstration. On peut supposer que z, = x,. Alors on a

0 0
-551.45(.,) =—Aﬂ!f‘87c‘;Kﬁ(ml_§1 a"'axn——gn)dr .
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D’aprés le lemme XIV on peut remplacer ici le domaine d’intégration
par W,, & condition d’ajouter une suite de fonctions jouissant de la pro-

priété 2 dans W, . De l'autre c6té on a
2

d
4p [ 50 Kplos— & oy 20— &) di =
W

:Apfa’“ﬂ(’;;"fl) dxlf...ff(xl,...,x,,) I kg(e, — &) day. . .dz,
1 v=2

et ceci devient, en intégrant par partie ?) :

mAle;l(xl,...,x,,)Kp(a:l—&l,...,x,,——{‘,,)dr—Tp—{—Rp, (47)
Tg = Ag kp(—-—s———él)f...ff(-——e, 2y es @) 1 kpla,—£,) day. . .da,,

Rg = Agkg(+e— gl)f. ..ff(+ e 7y o @) I bylwy—E,) day. .z,

Or, le premier terme en (47), d’aprés le lemme XIV, ne différe de
—4pg (fa,a) que par une suite des fonctions, jouissant de la propriété Q
dans W, . Quant aux expressions Tg et Rg, leurs dérivées

2

092t "+tan T'g 092+ *+an Rp
0E8e ... 9&In 7 QEgr ... EIn

sont évidemment majorées par

- - 092t tdn
Bag [ [ | i Kel e om—tasee o 2| dea i, =
P YA,
:BABf...f PR Kg(+e, zp,...,2,)|de, ... dx, ,

%) Cf. quant & l'intégration par partie pour les intégrales de Lebesgue: De la Vallée
Poussin, 1. c. t. 1, pp. 279—280, quant & la dérivation sous le signe d’intégrale: De la
Vallée Poussin, L. c., t. 2, 2de éd. (1912), pp. 123—124, pour les intégrales simples, et Haupt
und Aumann, 1. c., Bd. 3, pp. 118—119, pour les intégrales n-ples.
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et ceci tend par le lemme VIII vers 0 . Donc, les suites T'g et Eg jouissent

de la propriété 2 dans W, , et le lemme XVI est démontré.
2

Une conséquence immédiate du lemme XVI est le

n
Lemme XVII. Si f est en W, égale ¢ a+ X x, 2, , on a au
v=1
pO'l:nt 512000257‘:0

agvAp(f)—Nx,, ,v=1,...,n . (48)

En effet, par le lemme XVI, la suite en (48) peut étre remplacée, &
Porigine, par la suite

o, Ap (Kpdt:"—_ &y -
E

23. Lemme XVIII. 8¢ f posséde une différentielle totale en Py(O0,. .., 0),
on a en P, P

3L, Ag(f)%f;,,((),...,O),v=1,,,,,n . (49)

On peut supposer » = 1. Soit
a=f0,...,0), «,=/f,(0,...,0).
D’aprés ’hypothése on a

n n
=a + Z'locva:,,—{—s(xl,...,xn) Ellx,,l
V= V=

ou &(x,,..., x,) est sommable, s’annule en P, et y est continu. D’aprés
le lemme X VII il suffit de démontrer (49) pourle casa = o;=- - - =, =0.

Nous avons donc & montrer que
Apf Z,'lx,,] K,g(a:1 seeey Xy —E)dTr—>0
pour & = --. = £, = 0. Et pour cela, il suffit de montrer que

Aﬁf lxv

Kp(xl, ey Zy) |dt—>0,v=1,...,n . (50)
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Or, pour un 7> 0 soit 6 > 0 choisi de la sorte qu'en Wy on ait
| e(2y,...,2,)| < n. Dapres le lemme XIV, on a

dr <

e v E e a
hmIPfg)l::hmABflﬂ | z, | |5§::Kﬁ(x1""’x")
w3

d
Tz, KP

glimn/lﬁf]x,,] drglimn/lﬂflm,,ll—a%Kp dvr -1 ,
1
Ws E

par le lemme XI. Il en résulte que lim | PY’| <, done, n étant
arbitraire, P{”— 0, et le lemme XVIII est démontré.

Ce lemme est d’ailleurs un corollaire du théoréme suivant:

24. Théoréme I11. Soient Kg et Ag définis par (26). Soit f(x,, ..., z,)
mesurable et bornée dans Uespace E des x,, ..., x, . Supposons que f est
continue au point Pya,,...,a,) et que la dérivée de f par rapport @ z,
existe uniformément en P, .

Alors, en définissant Ag(f) par (43), on a, Uentier pair f croissant d
Pinfind,

[2420) , Ao
v P, v

Nous pouvons supposer, sans restreindre la généralité, » =1 et
a = --- =a,= 0. Posons

f0,...,0)=a et [, (a,...,a,) =0 .

11 suffit, d’aprés le lemme XVII, de démontrer notre théoréme pour la
fonction égale & f — x,z, —aen W, et & fen E,, c’est-a-dire qu’on peut
supposer que

f(0,...,0)=f! (0,...,0)=0.

Z
D’apreés la définition de la dérivée uniforme en Py, on a

f(@gs e s @) = [0, 20,00, @) + €(®15 0.5 @) 2 (51)

ou ¢ est borné dans le domaine W* du N° 18, s’annule en P, et y est
continu relativement a W*.

Nous avons maintenant & démontrer que

0 oK
_—'Aﬂff [_a‘gl‘Kﬁ(xl_él" d 'sx'n—fn)]glz.“:fn:odr:Aﬂff axlﬂ dr—0.
E E
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Or, la derniére expression peut étre décomposée comme il suit
0Kpg 0Kg , '
E* We
et il suffit de démontrer que chacun de ces termes tend vers 0.

25. Considérons d’abord le premier. Soit 7 > 0 et § > 0 choisi de la
sorte qu’on ait en Wy

[fl=n, (53)

ce qui est possible, f s’annulant & l'origine et y étant continue. D’apres

le lemme XIV
Et

(54)

ne change pas, si 'on restreint I'intégration sur la partie de £*, inté-
rieure & Wy . Mais alors il résulte de (53) que (54) est

dr .

< n Tm Aﬂfl °Ke
1
E.

Done, d’apres le lemme XTII, (54) est <(n — 1)nlg 2, et, n étant arbi-
traire, (54) est = 0.

Le seconde terme de (52) peut étre écrit d’apres (51) dans la forme
0 d
Ag | fO,2y,...,2,) 5=— Kpdr + Apfs(wl se ooy ) T, s—Kpdr. (55)
0x, 0%,
we W

Or, ici le premier membre s’annule, puisque, Kg étant une fonction paire
de z,, la fonction sous le signe d’intégration est impaire par rapport
a z,, tandis que le domaine d’intégration W* reste le méme, si 'on
change z, en — z, .

Considérons le second membre en (55). Pour un # > 0 soit § choisi de
la sorte que dans la partie W5 de W*, appartenant & Wy, on ait

18(x1’°"’xn)|§7)'
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Alors il résulte du lemme XIV:

hmAﬂ‘fexl————Kpdr

We

thmABlfxla—-Kpdr

7

énl—ﬁr—l/lﬁflxll
WQ

Mais ici, par le lemme XI, 'expression de droite est égale & . Done, %
étant arbitraire, le seconde membre de (55) tend vers 0, lui aussi, et le
théoréme III est démontré.

§ 6. Démonstration du théoréme II

26. On peut supposer, sans restreindre la généralité, le point P, situé
a D'origine. Soit ¢ > 0 choisi de la sorte que les fonctions z)(x,,..., z,)
et leurs dérivées partielles du premier ordre soient bornées & l'intérieur
de W, 19). En définissant les z) comme = 0 dans ¥, , formons les intégrales

Zxg(&y 5000, &p) = Apfz)‘(xl ooy Xp) Kp(2y — &0 oo, 2, — &) dT
E

Alors on a, d’aprés le lemme XVI, dans W, :
2

oZ 0
a;ﬁwll f——~——zA Kg(x, — & ,...,xn—f,,)dt—{—Qp,yz1,...,n,
"

ou la suite Qg jouit de la propriété 2 en W.. En multipliant par
2
o)) et en sommant, on a par (15)

8p=2 X ocﬂ)_a_Z;‘ﬁ:Aﬁ s, Kglay—& ,...,x,—&)dv +QF .
1

" (56)

ol les suites @f” jouissent de la propriété 2 en W,
2

10) Ceci est possible, les z; et leurs dérivées étant supposées continues en P, .
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27. En dérivant les expressions §,g par rapport & &, et en sommant,
on obtient évidemment

en raison des relations (12). Il en résulte que

0
o0&,

‘i [AB 8y Kp(®1—Eyyene, Zn—En) dr] (57)

E

jouit de la propriété 2 a l'origine. Donec, (57) tend vers O .

Mais maintenant, par le théoréeme III, les termes de (57) d’indice v

%[ 9, ]0 —0, C.Q.F.D.

v=1 axv

et ’'on obtient

(Regu le 28 octobre 1942.)
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