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Le problème des isopérimètres dans les

plans de Riemann à courbure de signe constant

Par F. Fiala, Neuchâtel

Dans un précédent travail1), nous avons poursuivi l'étude des surfaces
ouvertes à courbure totale positive entreprise par Cohn-Vossen2). Alors que
ce dernier s'était surtout intéressé aux conséquences topologiques de

l'hypothèse de la courbure positive et à l'allure des lignes géodésiques,
nous nous sommes plus spécialement occupés du problème de l'aire.
Rappelons trois de nos résultats principaux:

1. L'aire totale d'une de nos surfaces est infinie.
2. Etant donnée une courbe fermée $•, sans point multiple, on a,

entre sa longueur L et l'aire A du domaine situé à l'intérieur de g,
l'inégalité isopérimétrique

où C((5) représente l'intégrale de la courbure totale sur le domaine limité
par g

3. L'aire du domaine situé à Vintérieur d'une courbe Qf quelconque
fermée, sans point multiple, de longueur donnée L, est bornée supérieurement ;
L doit éventuellement satisfaire à la condition L < L*, où L* est une
constante positive qui ne dépend que de la surface considérée.

Comme nous l'avions déjà remarqué, ce dernier théorème est loin de
résoudre complètement sur nos surfaces le problème des isopérimètres
proprement dit; il serait par exemple faux d'en tirer immédiatement la
conclusion suivante:

Parmi toutes les courbes fermées de longueur L, il en existe une qui
limite un domaine d'aire maximum.

Le but du présent travail est précisément de démontrer d'une part
que cette proposition est vraie sur toute surface ouverte à courbure

*) Le problème des isopérimètres sur les surfaces ouvertes à courbure
positive, paru dans les Comm. Math. Helv., 13 (1941), p. 293—346, désigné dans la
suite par P. I.

2) Kûrzeste Wege und Totalkrûmmung auf Flâchen, Comp. Math., 2 (1935),
p. 69—133,etTotalkrûmmung und geodâtische Linien auf einfachzusammen-
hângenden offenen vollstàndigen Flâchenstùcken. Recueil mathématique de
Moscou, 1 (1936), p. 139—163.
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totale positive (n° 3) et d'autre part, qu'elle est fausse sur toute une classe
de surfaces ouvertes à courbure totale négative (n° 4). Le n° 1 est
consacré à quelques définitions et propriétés des surfaces considérées, le
n° 2 à un lemme essentiel sur la convergence d'une suite de courbes
fermées vers une courbe limite. Au n° 5, nous présentons quelques remarques

sur l'application de nos résultats aux surfaces du second degré et
aux surfaces de révolution.

Les démonstrations reposent en grande partie sur la notion de vrai
cercle, cas particulier des vraies parallèles, introduites et utilisées dans

P.L
1. Nous avons appelé dans P. I. les surfaces considérées des plans de

Biemann. Ce sont des plans aux coordonnées cartésiennes rectangulaires
x, y, où la métrique est définie au moyen d'une forme quadratique définie
positive

ds* Edx2 + 2Fdxdy + Gdy2 (1)

satisfaisant aux deux conditions suivantes:

a) E, F, G sont des fonctions analytiques réelles de x et de y dans tout
le plan.

b) La longueur de toute ligne divergente dans le plan est infinie.

On connaît les formules qui permettent de calculer, à l'aide des coefficients

de la forme (1), la longueur d'un arc de courbe analytique, sa courbure

géodésique, l'aire d'un domaine et la courbure totale en un point.
Nous rappelons d'autre part la définition de Jordan d'une courbe:

C'est la suite ordonnée suivant t des points dont les coordonnées sont
données au moyen de deux fonctions continues

x x(t) et y y(t) a^t^b.
Une courbe est analytique si les fonctions x(t) et y(t) sont analytiques.
Une courbe est fermée si

x(a) x(b) et y {a) y(b)

S'il existe deux valeurs tx et t2, différentes de a et b, telles que

x(tx) x{t2) et y{tx) y(t2)

le point correspondant à ces valeurs de t est dit point multiple.
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Pour pouvoir employer certaines propriétés connues de la géométrie
euclidienne, nous allons donner quelques définitions qui permettront
d'établir un lien entre la métrique euclidienne et la métrique rieman-
nienne d'un plan de Riemann.

Soient A et B deux points d'un plan de Riemann. Désignons par
A (A, B) la distance euclidienne de ces deux points, c'est-à-dire la longueur
euclidienne du segment de droite compris entre A et B, et par D(A, B)
la longueur riemannienne de ce segment.

Nous définissons d'autre part la distance riemannienne d(A, B) de ces
deux points comme la borne inférieure de la longueur riemannienne de
tous les arcs analytiques joignant A et B Nous pouvons appliquer à

nos plans de Riemann un théorème démontré par MM. Hopf et Rinow3),
qui nous permet d'affirmer qu'il existe entre A et B au moins un arc de

longueur d(A, B) ; dans P. I., nous avons appelé un tel arc, nécessairement

géodésique, un arc minimum. S'il n'existe entre A et B qu'un arc
minimum, nous désignons sa longueur euclidienne par ô(A, B) ; c'est
certainement le cas chaque fois que les points A et B sont suffisamment
rapprochés, c'est-à-dire chaque fois que A(A, B) est suffisamment petit.
S'il existe entre A et B plusieurs arcs minimum, on peut démontrer
qu'il n'en existe qu'un nombre fini, et c'est la longueur du plus court
(au sens de la métrique euclidienne) que nous désignons par ô(A, B)

Remarquons que, parmi les quatre grandeurs que nous venons de

définir, seules A(A, B) et d(A, B) jouissent des trois propriétés
caractéristiques d'une distance. La proposition suivante établit une relation
importante entre ces deux quantités.

Etant donné un ensemble borné 93 de points d'un plan de Riemann, le

rapport entre la distance euclidienne et la distance riemannienne de deux
points quelconques de 93 est borné.

Nous démontrerons plus généralement que, si A et B appartiennent
à 93, le rapport entre deux quelconques des quatre quantités A (A, B),
Ô(A, B), D(A, B), d(A, B) est borné.

On a évidemment:
A(A, B)< d(A,B)
d(A, B) ^ D(A, B)

Pour démontrer notre proposition, il suffit alors de trouver un nombre
M tel que

3) Ùber den Begriff der vollstândigen difïerentialgeometrischen Flâche,
Comm. Math. Helv., 3 (1931), p. 209—225.
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^ d(A,B) ^

Il est évident que les segments de droite joignant deux points
quelconques A et B de 23 sont contenus dans un domaine borné 23' du plan
de Riemann. Il en est de même des arcs minimum, grâce à la seconde des

conditions auxquelles nous avons soumis notre métrique. Aussi les
formules à démontrer sont-elles un cas particulier de la proposition suivante :

Etant donné un domaine borné 23; d'un plan de Riemann, il existe un
nombre positif M tel que le rapport de la longueur riemannienne à la
longueur euclidienne de tout arc de courbe analytique entièrement contenu dans

23' est inférieur à M et supérieur à -=r=r-

Soient
^

les deux fonctions analytiques définissant un des arcs en question. Rien
ne nous empêche de considérer le paramètre t comme la longueur d'arc
(au sens euclidien); a représente alors la longueur euclidienne de l'arc
considéré. Soit s sa longueur riemannienne, que l'on calcule au moyen
de l'intégrale

s

En appliquant le théorème de la moyenne, on obtient

où la valeur tf, pour laquelle on doit calculer le second membre, est comprise

entre 0 et a, et où xf x(tr) et y1 y{tf) En posant—~—— =cos cp

et ^ sincp le rapport — devient égal à
at o

f(xf, y', <p) 1/E(xf, y') cofPq> + 2F(x', y')

Or cette fonction est positive dans tout le plan de Riemann et pour
toute valeur de ç? ; la forme (1) est en effet supposée définie positive.
Comme cette fonction est continue, elle possède dans tout domaine borné
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du plan une borne supérieure Mf et une borne inférieure positive M".
En désignant par M la plus grande des deux quantités Mr et-^r, on

démontre la seconde de nos propositions, et avec elle la première.

Considérons maintenant un arc de courbe quelconque %, représenté
par les fonctions continues

x x(t) et y y(t) a^t^b

et demandons-nous à quelles conditions doivent satisfaire ces fonctions

pour que l'arc 21 soit rectifiable. Au sens euclidien de ce mot, on sait que
la condition nécessaire et suffisante est que les fonctions x(t) et y(t) soient
à variation bornée. Nous allons montrer qu'il en est de même au sens de

la métrique de Riemann.

Prenons par exemple pour définition de la longueur de l'arc 21 celle
d'Archimède, reprise par Peano:

On prend dans l'intervalle a^t^b un certain nombre de valeurs
intermédiaires a t0 < tx < t2 < tn_x <tn b Soient
Po, P1? P2J..., Pn_l5 Pn les points correspondants, et soit A la
longueur euclidienne de la ligne polygonale de sommets Po, Px,... ,Pw_x, Pn ;

n

avec nos notations cette longueur est égale à Z A(PV_X, Pv) On définit
v=l

la longueur euclidienne A de l'arc 21 comme la borne supérieure des nombres
X lorsque l'on considère toutes les divisions possibles de l'intervalle
a^t^b

On pourra de même désigner par l la longueur riemannienne d'une
ligne polygonale de sommets Po, Pt,... Pn-1, Pn formée d'arcs mini-

n

mum; cette longueur est égale à £ d{Pv_x, Pv) Nous définirons la

longueur riemannienne L de l'arc % comme la borne supérieure des

nombres l lorsque l'on considère toutes les divisions possibles de l'intervalle

a^t^b
Or la première des propositions démontrées plus haut, nous permet

d'affirmer l'existence d'un nombre M, indépendant des points Pv considérés,

tel que

-jf A (P,,-!, Pv) < d(P,_i, Pv) ^ MA (Pv^ Pv)
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On en déduit, en faisant la somme,

M
d'où Ton tire

4

<l < MX

-4- <L<MA
De cette formule, nous pouvons tirer deux conclusions: La première

est que L existe en même temps que A, c'est-à-dire qu'une courbe recti-
fiable au sens euclidien, Vest aussi au sens de la métrique de Riemann,
et réciproquement ; la seconde est que, si les longueurs euclidiennes d'un
ensemble de courbes situées dans un domaine borné du plan de Riemann
possèdent une borne supérieure, il en est de même pour les longueurs rieman-
niennes de ces courbes, et réciproquement. Notre constante M ne dépend
en effet que du domaine où sont situées ces courbes.

On sait d'autre part qu'une courbe fermée ^, sans point multiple,
divise le plan en deux parties, l'intérieur et l'extérieur. On sait également
que si la courbe est rectifiable, le domaine situé à l'intérieur est quarrable.
Ceci signifie que si l'on divise le plan en carrés, l'aire de l'ensemble des
carrés ne contenant que des points intérieurs et l'aire de l'ensemble des

carrés contenant au moins un point intérieur tendent vers une même
limite, lorsque le côté des carrés tend vers 0 C'est cette limite commune
que l'on définit comme l'aire de la courbe. La condition nécessaire et
suffisante pour que cette aire existe est que l'aire de l'ensemble des carrés

qui contiennent au moins un point de la courbe tende vers 0, lorsque le
côté des carrés tend vers 0. C'est précisément ce qui a lieu si la courbe est
rectifiable. La démonstration s'étend d'ailleurs à un cas un peu plus
général. On peut en effet affirmer qu'une courbe g >

fermée et rectifiable,
est quarrable, même si elle possède des points multiples, pourvu que l'on
puisse en définir l'intérieur de la façon suivante :

Nous supposons connue la notion d'ordre par rapport à une courbe
fermée g, d'un point non situé sur g 4). Si pour une courbe donnée, l'ordre
d'un point quelconque non situé sur cette courbe est égal soit à 1, soit
à 0, on peut définir l'intérieur de cette courbe comme l'ensemble des

points d'ordre 1, et l'extérieur comme l'ensemble des points d'ordre 0.
Une courbe quarrable au sens euclidien est aussi quarrable au sens de la

métrique de Riemann; son aire est égale à l'intégrale de la fonction
VEG — F2, étendue au domaine î), intérieur de la courbe g. Cette
intégrale existe, puisque le domaine d'intégration est quarrable et que
la fonction à intégrer est continue.

4) Voir p. ex. v. Kerekjarto, Vorlesungen ùber Topologie I, Berlin 1923, p. 83 et
suivantes.
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2. Nous pouvons démontrer maintenant un lemme essentiel pour la
suite de ce travail.

Lemme 1. Etant donné dans un plan de Riemann un ensemble infini
de courbes fermées, sans point multiple, de longueur riemannienne bornée
et situées dans un domaine borné du plan, on peut en extraire une suite
Si> S2 >•••> Sn >••• > convergeant uniformément vers une courbe limite S
jouissant des propriétés suivantes :

1. S es^ une courbe fermée;
2. g est rectifiable et sa longueur £(S) satisfait à la relation

jfc->oo

3. 3 possède un domaine intérieur quarrable dont l'aire satisfait à
la relation AÇft) Km .4(5*)

jfc-x»

Nos courbes étant toutes situées dans un domaine borné du plan de
Riemann et leur longueur riemannienne étant bornée, nous avons vu au
n° 1 que leur longueur euclidienne est aussi bornée. En vertu d'un théorème

démontré par M. Fréehet5), l'ensemble de ces courbes est compact,
c'est-à-dire que Ton peut en extraire une suite de courbes Si > S2 > • • • > S& > • • •

convergeant vers une courbe limite S de la façon suivante: On peut
exprimer toutes ces courbes au moyen du même paramètre a ^t ^ b

de manière que la suite des points correspondant à une même valeur du
paramètre P^t), P2(t),..., Pk(t),... converge vers un point limite P(t)
La convergence est uniforme, c'est-à-dire qu'elle ne dépend pas de t
La succession des points P(t), ordonnée selon t, constitue la courbe limite
S Les fonctions qui la définissent sont

x(t) lim xk{t) et y(t) lim yk{t)

L'existence de ces deux limites est précisément démontrée par le théorème
de Fréehet.

Il est clair que S es^ une courbe fermée.
Pour démontrer la deuxième propriété, prenons une suite de valeurs

du paramètre a t0 < tx < • • • < tn_x <tn~b et soient Pk{Q,
Pk(h) > • • • » Pk(K-i) >

-Pfc(^n) les points correspondants sur la courbe S&

et P(t0), P(^),..., P(£n__i), P(tn), les points correspondants sur la courbe S-

Considérons l'expression

Jtv-x) P(tv))

6) Les espaces abstraits, Paris 1928, p. 121.
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En vertu de l'inégalité triangulaire dont jouit la distance riemannienne
d(P,Q), on peut écrire

^) P(tv)) ^ d(P(tv^) Pk(tv.1)) +
+ d{Pk{tv-i) Pk(tv))+d(Pk(tv), P(tv))

Puisque les courbes gj. convergent uniformément vers $, et en tenant
compte des résultats du n° 1, on peut rendre le premier et le troisième
terme arbitrairement petits, en prenant k suffisamment grand. On a donc

,-i), Pk(tv)) + 2e

et en faisant la somme,

^) P(tv)) ^ ZdiP^t^) Pk(tv)) + 2ns
l

Le premier terme du second membre est inférieur à L(^k) et e peut
être rendu arbitrairement petit en prenant k suffisamment grand; on
en déduit n

Le membre de gauche est donc borné et la borne trouvée est indépendante

de la division choisie pour l'intervalle a^t^b. En considérant
toutes les divisions possibles, on peut écrire

£(g) Borne sup. jtd(P(tv^) P(tv) ^ lim L{%k)
v — l k->oo

ce qui démontre la propriété 2.

tjuant à la propriété 3, on peut affirmer que la courbe g est quarrable
au sens indiqué à la fin du n° 1. Il suffit de démontrer pour cela qu'elle
possède un ,intérieur", c'est-à-dire que l'ordre d'un point quelconque du
plan, par rapport à $, est égal soit à 1, soit à 0. Or étant donné un point P,
non situé sur g> Tordre de P par rapport à g est le même que l'ordre de

P par rapport à 2ffc, dès que k est suffisamment grand, en vertu du
théorème de Rouché et de la convergence uniforme des courbes gfc

vers g î il est donc bien égal soit à 1, soit à 0. Le théorème de Rouché nous
permet également d'affirmer que tout carré entièrement situé à l'intérieur
de g est aussi entièrement à l'intérieur de gfc, dès que k est suffisamment
grand, et que tout carré contenant des points intérieurs de g contient
aussi des points intérieurs de g&, dès que k est suffisamment grand.

256



Il s'ensuit évidemment que l'aire (au sens euclidien) des domaines limités
par les courbes Çfc tend vers l'aire du domaine limité par $, lorsque k
tend vers l'infini. Il en est de même pour Faire riemannienne, qui n'est
autre que l'intégrale, étendue à ces domaines, de la fonction continue
VEO — F2 C'est précisément la propriété 3.

3. Considérons maintenant un plan de Riemann à courbure totale positive

ou nulle, mais cependant pas identiquement nulle (notre démonstration

ne s'appliquerait en effet pas sans quelques modifications au plan
euclidien). Nous avons montré dans P. I. qu'il existe un nombre L* tel
que l'aire du domaine limité par une courbe fermée, sans point multiple,
de longueur L < L*, possède une borne supérieure, qui ne dépend que
de L et du plan de Riemann considéré; soit A(L) cette borne.

Etant donné un nombre L < L*, nous démontrerons le

Théorème A. Dans un plan de Riemann à courbure totale non négative,
parmi toutes les courbes fermées de longueur L, il en existe au moins une
qui limite un domaine d'aire maximum A(L)

La démonstration du théorème A repose sur le lemme 1 et sur deux
autres lemmes que nous allons tout d'abord démontrer.

Lemme 2. Dans un plan de Riemann à courbure totale non négative,
on a j2

II suffit de trouver une courbe fermée g, de longueur L, limitant un
L2

domaine d'aire ACR) > —— C'est ce que nous allons faire au moyen4:7t

des vrais cercles, dont nous rappelons quelques propriétés.
Dans P. I.6), nous avons défini le vrai cercle de centre 0 et de rayon r

comme le lieu des points situés à distance r du point 0 Nous avons
démontré qu'il se compose d'un nombre fini d'arcs analytiques appartenant

au cercle géodésique (défini par Gauss) de centre 0 et de rayon r
Ces arcs forment un nombre fini de courbes fermées, et l'une de celles-ci
contient toutes les autres ; nous l'avons appelée la composante extérieure.
Nous désignons par L(r) la longueur riemannienne du vrai cercle de

centre 0 et de rayon variable r, et par A(r) son aire, c'est-à-dire Faire de
l'ensemble des points dont la distance à 0 est inférieure ou égale à r

6) P. I., p. 324—332. Voir aussi un travail de Blanc etFiala, Le type d'une surface
et sa courbure totale, Comm. Math. Helv., 14 (1942), p. 230—233, où les vrais cercles
jouent un rôle essentiel.
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Soit enfin C(r) l'intégrale de la courbure totale sur l'intérieur du vrai
cercle. Remarquons que les vrais cercles coïncident avec les cercles géo-
désiques pour des valeurs de r suffisamment petites.

La fonction L(r) jouit des propriétés suivantes:

a) L(Q) 0 ;

b) -w- 2n

c) L(r) est une fonction continue pour toute valeur de r ;

d) L(r) est une fonction analytique, sauf éventuellement pour un
nombre fini de valeurs de r ou pour une suite dénombrable de

valeurs de r tendant vers l'infini ;

e)

g) A{r) \L(e)de

Une démonstration analogue à celle que nous avons faite dans P. L,
p. 341, pour les vraies parallèles, nous permet d'affirmer que la fonction

—— est décroissante:
r

_MoL>J^L si 0<r—————— ^> ————— jjjj_ MJ «^ I #

q r
On tire aisément de cette relation

' rM „;„_ L(r).r

Les propriétés e) et f) nous livrent d'autre part la formule

L(r) g 2nr —

Or, l'hypothèse de la courbure totale non négative et non identiquement
nulle nous apprend que pour tout q > 0, C(q) est positif et que
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En combinant les deux formules que nous venons d'obtenir, nous
pouvons écrire 7~2/ \

AW > -T^ •

La fonction L(r) est continue ; elle est nulle lorsque r vaut 0 et surpasse
toute valeur inférieure à £* lorsque r tend vers l'infini, en vertu même
de la définition de L* (P. I., p. 333). Il existe donc une valeur r0 pour
laquelle on a

L(rQ) L
et

A(r0) > ¥-

Il suffit maintenant de considérer la composante extérieure du vrai
cercle de rayon r0 C'est une courbe simplement fermée que nous
désignons par $f e^ pour laquelle on a évidemment

L(W) ^ L(r0) L
et

Si i(50 L la courbe g' est la courbe cherchée, pour laquelle on a
L2

> i— î s* £(2?0 <L il est facile de construire une courbe fermée
4

/; de longueur L>L{%f) et dont l'aire satisfasse à la relation
L2

") > ^4(50 > ~A— • Dans les deux cas, le lemme 2 est démontré.
4:71

Lemme 3. Dans un plan de Riemann à courbure non négative, on a,
pour toute suite divergente de courbes fermées Qfi >

3?2
> • • • 5n • • • ^e ^on"

gueur L <L* : _g
IÎÏ5

Ce lemme est démontré dans P. L, p. 345.

Démonstration du théorème A. En vertu de la définition de A(L), on
peut affirmer ou qu'il existe une courbe fermée g, de longueur L limitant
un domaine d'aire A(L), ou qu'il existe une suite de courbes fermées
Si» 82* • •• > 3fn>--- de longueur L, limitant des domaines d'aire

i) > A(%2),..., A(%n),... telles que lim A(%n) Â(L) Dans le

premier cas le théorème est démontré ; dans le second, il est maintenant
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facile de démontrer l'existence d'une courbe limite 3f> fermée, de

longueur L, limitant un domaine d'aire A(L)
Le lemme 2 et le lemme 3 nous montrent que la suite des courbes

Si, 3f2> • • • > 5n> • • • ne saurait être divergente. Toutes ces courbes sont
donc situées dans un domaine borné du plan de Riemann. On peut leur
appliquer le lemme 1 et affirmer qu'il existe une courbe limite g, fermée,
de longueur inférieure ou égale à L($) lim LÇ$n) L et limitant un

domaine d'aire Afâ) lim A(^n) A(L) Or il est impossible que la

longueur de $ soit inférieure à L, sinon il serait possible de construire
une courbe fermée de longueur L, limitant un domaine d'aire supérieure
à A(L), contrairement à la définition de A(L). La courbe Ç est donc
de longueur L et elle limite un domaine d'aire A (L) ; le théorème A est
démontré.

4. Considérons maintenant un plan de Riemann à courbure totale négative

ou nulle, mais cependant pas identiquement nulle (le théorème que
nous nous proposons de démontrer serait en effet faux dans le plan
euclidien). Ajoutons l'hypothèse que Vintégrale de la courbure totale sur un
domaine quelconque du plan de Riemann considéré est bornée inférieure-
ment. Nous désignons par CT l'intégrale de la courbure totale sur tout le

plan de Riemann; c'est, par hypothèse, une constante négative, non
infinie.

L'inégalité isopérimétrique sur les plans de Riemann à courbure non
positive et non identiquement nulle, démontrée d'ailleurs pour des
surfaces plus générales que celles que nous considérons ici par Radô et
Beckenbach7),

nous permet d'affirmer que Faire d'un domaine limité par une courbe
fermée de longueur donnée L possède une borne supérieure qui dépend
évidemment de L et du plan de Riemann considéré ; soit A (L) cette borne.

Etant donné un nombre L, nous démontrerons le

Théorème B. Dans un plan de Riemann à courbure totale non positive,
et pour lequel Vintégrale de la courbure totale est bornée inférieurement,
parmi toutes les courbes fermées de longueur L, il n'en existe aucune
qui limite un domaine d'aire maximum A(L)

7) Rodé et Beckenbach, Trans. Amer. Math. Soc, 35 (1933).
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La démonstration du théorème B repose sur un lemme que nous
allons tout d'abord démontrer.

Lemme 4. Dans un plan de Riemann à courbure totale non positive, et

pour lequel Vintégrale de la courbure totale est bornée inférieurement, on a

4jt

L'inégalité isopérimétrique de Radô et Beckenbach nous apprend que

A(L) ^ ——. Il suffit de montrer qu'étant donné un e arbitrairement

petit il existe une courbe fermée g, de longueur L, limitant un domaine
L2

d'aire supérieure à — e C'est ce que nous allons faire au moyen

des cercles géodésiques.

Considérons un domaine borné 58 et désignons par C(23) l'intégrale
de la courbure totale sur ce domaine. L'existence d'une borne inférieure
pour cette intégrale permet de choisir 23 de façon que - ô < CT- (7(58) < 0,
où ô est une quantité positive arbitrairement petite. Prenons à l'extérieur

de 58 un point O tel que les cercles géodésiques de centre O et de

rayon r < ~— soient entièrement situés à l'extérieur de 58. Ceci est

possible en vertu de l'hypothèse de normalité à laquelle doit satisfaire notre
plan de Riemann; il suffit de prendre le point O suffisamment éloigné
du domaine 23.

Prenons O comme origine d'un système de coordonnées polaires
géodésiques. Dans un plan de Riemann à courbure totale non positive, les

cercles géodésiques coïncident avec les vrais cercles, dont les propriétés
énoncées au n° 3 se trouvent un peu simplifiées. Si les propriétés a), b),
f) et g) ne subissent aucun changement, les propriétés c) et d) peuvent
se ramener à

c') La fonction L(r) est analytique pour toute valeur de r.
La propriété e) est à remplacer par

e')

De f) et de e') on tire la formule

L(r)
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Or à l'extérieur du domaine 33, c'est-à-dire en tout cas pour
0 < q < -jr— on a C(p) > — ô D'où l'on déduit que

L(r) < (2jt + ô)r

On a d'autre part à cause de la courbure totale non positive

L(r)
et

A(r)>7tr2

Cette inégalité jointe à celle que nous avons obtenue plus haut nous
livre

nL\r)

On vérifie facilement qu'il existe une valeur rQ comprise entre 0 et
T I" 2

-— telle que L(ro) L Pour cette valeur, on a A(r0) > ——r-T-r-Z 71 \2i7l -f- O)

Puisque ô est arbitrairement petit, cette formule démontre bien
l'existence d'une courbe fermée — le vrai cercle de rayon r0 — de

L2
longueur L, limitant un domaine d'aire supérieure à e On a

donc A(L) —— et le lemme 4 est démontré.
4:71

Démonstration du théorème B. L'inégalité isopérimétrique de Radô et
Beckenbach nous apprend que dans un plan de Riemann à courbure non
positive et non identiquement nulle, il n'existe pas de courbe fermée

L2
de longueur L, limitant un domaine d'aire ——. Il n'existe donc pas

de courbe limitant un domaine d'aire maximum, A(L), puisque d'après
— L2

le lemme 4, A(L) ——
4?r

Remarquons toutefois qu'il existe, d'après la définition même de A(L),
une suite de courbes fermées Qfi, 3a> • • • Sn> • • • de longueur L, limitant
des domaines dont l'aire A($n) tend vers A(L). Le lemme 1 et le lemme 4

nous permettent d'affirmer que cette suite de courbes diverge dans le

plan de Riemann et s'éloigne indéfiniment de tout domaine borné.
Dans le théorème B, l'hypothèse accessoire concernant l'intégrale de

la courbure totale est essentielle, comme le montre le cas du plan hyper-
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bolique, où Ton sait que ce théorème n'est pas valable. On peut cependant
la remplacer par une hypothèse analogue, mais non équivalente. Le théorème

s'énonce alors

Théorème B'. Dans un plan de Riemann à courbure totale non positive
et pour lequel la courbure totale tend vers zéro à Vextérieur d'un domaine
suffisamment grand, parmi toutes les courbes fermées de longueur L, il
n'en existe aucune qui limite un domaine d'aire maximum (L).

La démonstration de ce théorème est analogue à celle du théorème B ;

elle est basée sur un lemme analogue au lemme 4, et que nous nous
bornons à citer:

Lemme 4/. Dans un plan de Riemann à courbure totale non positive et

pour lequel la courbure totale tend vers zéro à l'extérieur d'un domaine
suffisamment grand, on a

5. Nos résultats s'appliquent naturellement à toute surface ordinaire
de l'espace euclidien, satisfaisant aux hypothèses de nos plans de
Riemann. C'est en particulier le cas de plusieurs surfaces du second degré,
et de nombreuses surfaces de révolution, auxquelles nous voulons
consacrer encore quelques lignes.

Le théorème A nous apprend par exemple que sur tout paraboloïde
elliptique ou sur chacune des nappes d'un hyperboloïde à deux nappes,
parmi toutes les courbes fermées de longueur donnée, il en existe au
moins une qui limite un domaine d'aire maximum. Le théorème B nous
permet d'affirmer par contre que sur le paraboloïde hyperbolique, pour
lequel on sait que GT — 2n, parmi toutes les courbes fermées de

longueur donnée, il n'en existe aucune qui limite un domaine d'aire maximum.
Nous nous permettrons encore de faire remarquer que, sur une surface

donnée, le théorème A ne nous fournit aucune indication sur les courbes
particulières qui limitent un domaine d'aire maximum, sinon qu'il en
existe au moins une ; il peut par exemple très bien en exister plusieurs,
et même une infinité. La recherche de ces courbes pourra donc encore
offrir de grandes difficultés. Même pour des surfaces aussi simples que les
surfaces de révolution, la solution n'est pas immédiate ; il n'est en effet
pas du tout certain que les parallèles (au sens habituel du mot) livrent
ce maximum. Pour le paraboloïde de révolution, il semble bien que ce
soit le cas, mais il n'en est sûrement pas de même pour la surface dont
l'équation en coordonnées cylindriques est z r*. Un examen plus approfondi

de la démonstration du théorème A permet de prévoir que les
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courbes limitant un domaine d'aire maximum doivent contenir, du moins

pour des valeurs suffisamment petites de L, au moins un des points où
la courbure totale est maximum, si de tels points existent sur la surface ;

pour la surface z r4, ces points sont situés sur le cercle r

z
16

Rappelons d'autre part que la condition nécessaire pour qu'une courbe
fermée $ limite un domaine d'aire maximum est que sa courbure
géodésique soit constante. Un corollaire du théorème A est l'existence dans
tout plan de Riemann à courbure non négative de courbes fermées à
courbure géodésique constante. Examinons pour terminer le cas des plans
de Riemann à courbure totale négative. L'inégalité isopérimétrique de

Radô et Beckenbach nous montre que l'aire d'un domaine limité par une
courbe fermée de longueur donnée L possède une borne supérieure A(L)
Si d'autre part le plan de Riemann considéré satisfait à l'hypothèse
accessoire du théorème B ou du théorème B7, nous savons qu'il n'existe
pas de courbe de longueur donnée L, limitant un domaine d'aire maximum
A(L) Ceci ne signifie pas du tout que dans ce plan de Riemann il n'existe
pas de courbe fermée à courbure géodésique constante. Au contraire,
on peut facilement donner des plans de Riemann satisfaisant à ces
hypothèses, et sur lesquels on connaît toute une famille de ces lignes; nous

pensons aux plans de Riemann, que l'on pourrait appeler ,,de révolution",
et dont nous nous bornerons à donner un exemple simple.

Soit le plan de Riemann donné en coordonnées polaires géodésiques

par la forme quadratique
ds2 dr2 + (r + r*)2d(p2

Les lignes r constante sont évidemment à courbure géodésique
constante, mais comme ce plan de Riemann satisfait aux hypothèses du théorème

B7, ces courbes ne sauraient limiter un domaine d'aire maximum,
par comparaison avec toutes les courbes fermées de même longueur.
Ceci montre clairement que la condition de la courbure géodésique
constante pour une courbe fermée de longueur donnée limitant un domaine
d'aire maximum, n'est pas suffisante. Il nous a paru intéressant de citer
cet exemple, tiré du champ même des problèmes isopérimétriques, parce
qu'il illustre une fois de plus l'importance d'une démonstration d'existence

dans ces questions.

(Reçu le 27 octobre 1942.)
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