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Le probléme des isopérimeétres dans les
plans de Riemann a courbure de signe constant

Par F. Fiara, Neuchétel

Dans un précédent travaill), nous avons poursuivi ’étude des surfaces
ouvertes a courbure totale positive entreprise par Cohn-Vossen?). Alors que
ce dernier s’était surtout intéressé aux conséquences topologiques de
Ihypothése de la courbure positive et & I'allure des lignes géodésiques,
nous nous sommes plus spécialement occupés du probléeme de Paire.
Rappelons trois de nos résultats principaux:

1. L’axre totale d’une de mos surfaces est infinie.

2. Etant donnée une courbe fermée §, sans point multiple, on a,
entre sa longueur L et l'aire A du domaine situé & lintérieur de &,
Pinégalité isopérimétrique

L*=24 - 2z —C(F))

ou O(g) représente 'intégrale de la courbure totale sur le domaine limité
par §¥ .

3. L'aire du domaine situé a Uintérieur d’une courbe § quelconque fer-
mée, sans pornt multiple, de longueur donnée L, est bornée supérieurement ;
L doit éventuellement satisfaire & la condition L < L*, ou L* est une
constante positive qui ne dépend que de la surface considérée.

Comme nous 'avions déja remarqué, ce dernier théoréme est loin de
résoudre completement sur nos surfaces le probléme des isopérimétres
proprement dit; il serait par exemple faux d’en tirer immédiatement la
conclusion suivante:

Parmi toutes les courbes fermées de longueur L, il en existe une qui
limite un domaine d’aire maximum.

Le but du présent travail est précisément de démontrer d’'une part
que cette proposition est vraie sur toute surface ouverte & courbure

1) Le probléme des isopérimétres sur les surfaces ouvertes & courbure
positive, paru dans les Comm. Math. Helv., 13 (1941), p. 293—346, désigné dans la
suite par P. I.

?) Kiirzeste Wege und Totalkrimmung auf Flachen, Comp. Math., 2 (1935),
P. 69—133,et Totalkrimmung und geodéatische Linien auf einfachzusammen-
hiangenden offenen vollstandigen Flachenstiicken. Recueil mathématique de
Moscou, 1 (1936), p. 139—163.
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totale positive (n° 3) et d’autre part, qu’elle est fausse sur toute une classe
de surfaces ouvertes & courbure totale négative (n°4). Le n° 1 est con-
sacré a quelques définitions et propriétés des surfaces considérées, le
n°2 a un lemme essentiel sur la convergence d’une suite de courbes
fermées vers une courbe limite. Au n° 5, nous présentons quelques remar-
ques sur l'application de nos résultats aux surfaces du second degré et
aux surfaces de révolution.

Les démonstrations reposent en grande partie sur la notion de vra:
cercle, cas particulier des vraies paralléles, introduites et utilisées dans
P. L

1. Nous avons appelé dans P. I. les surfaces considérées des plans de
Riemann. Ce sont des plans aux coordonnées cartésiennes rectangulaires
x, y, ou la métrique est définie au moyen d’une forme quadratique définie
positive

ds* = Edx? + 2Fdxdy + Gdy* (1)

satisfaisant aux deux conditions suivantes:

a) K, F, G sont des fonctions analytiques réelles de x et de y dans tout
le plan.
b) La longueur de toute ligne divergente dans le plan est infinie.

On connait les formules qui permettent de calculer, a I’aide des coeffi-
cients de la forme (1), la longueur d’un arc de courbe analytique, sa cour-
bure géodésique, l'aire d’un domaine et la courbure totale en un point.

Nous rappelons d’autre part la définition de Jordan d’une courbe:
C’est la suite ordonnée suivant ¢ des points dont les coordonnées sont
données au moyen de deux fonctions continues

x=z(t) et y=y{), ast<b .

Une courbe est analytique si les fonctions z(t) et y(t) sont analytiques.
Une courbe est fermée si

z(a) = x(b) et y(a)=y(@) .

Q’il existe deux valeurs ¢, et ¢,, différentes de a et b, telles que
x(t,) = z(t;) et y(t) = y(t)

le point correspondant & ces valeurs de ¢ est dit point multiple.
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Pour pouvoir employer certaines propriétés connues de la géométrie
euclidienne, nous allons donner quelques définitions qui permettront
d’établir un lien entre la métrique euclidienne et la métrique rieman-
nienne d’un plan de Riemann.

Soient A et B deux points d’un plan de Riemann. Désignons par
A(A, B) la distance euclidienne de ces deux points, ¢’est-a-dire la longueur
euclidienne du segment de droite compris entre 4 et B, et par D(4, B)
la longueur riemannienne de ce segment.

Nous définissons d’autre part la distance riemannienne d(A, B) de ces
deux points comme la borne inférieure de la longueur riemannienne de
tous les arcs analytiques joignant A et B . Nous pouvons appliquer &
nos plans de Riemann un théoreme démontré par MM. Hopf et Rinow3),
qui nous permet d’affirmer qu’il existe entre 4 et B au moins un arc de
longueur d(4, B); dans P. 1., nous avons appelé un tel arc, nécessaire-
ment géodésique, un arc mimimum. S’il n’existe entre 4 et B qu’un arc
minimum, nous désignons sa longueur euclidienne par 6(4, B); c’est
certainement le cas chaque {ois que les points 4 ¢t B sont suffisamment
rapprochés, c¢’est-a-dire chaque fois que A(4, B) est suffisamment petit.
S’il existe entre 4 et B plusieurs arcs minimum, on peut démontrer
qu’il n’en existe qu’un nombre fini, et c’est la longueur du plus court
(au sens de la métrique euclidienne) que nous désignons par d(4, B) .

Remarquons que, parmi les quatre grandeurs que nous venons de
définir, seules A(A, B) et d(4, B) jouissent des trois propriétés carac-
téristiques d’une distance. La proposition suivante établit une relation
importante entre ces deux quantités.

Etant donné un ensemble borné B de points d’un plan de Riemann, le
rapport entre la distance euclidienne et la distance riemannienne de deux
points quelconques de B est borné.

Nous démontrerons plus généralement que, si 4 et B appartiennent
a B, le rapport entre deux quelconques des quatre quantités A4(4, B),
é(A4, B), D(A, B), d(A, B) est borné.

On a évidemment:

A4, B) =< (4, B)
d4, B)y< DA, B)

Pour démontrer notre proposition, il suffit alors de trouver un nombre
M tel que

3) Uber den Begriff der vollstiandigen differentialgeometrischen Fliche,
Comm. Math. Helv., 3 (1931), p. 209—225.
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—M—é(A By d(4,B)<Mé§(4,B)
7}[4(14,3) <D(4,B)< MA(A,B) .

Il est évident que les segments de droite joignant deux points quel-
conques A et B de B sont contenus dans un domaine borné B’ du plan
de Riemann. Il en est de méme des arcs minimum, grace & la seconde des

conditions auxquelles nous avons soumis notre métrique. Aussi les for-
mules & démontrer sont-elles un cas particulier de la proposition suivante :

Etant donné un domaine borné B’ d’un plan de Riemann, il existe un
nombre positif M tel que le rapport de la longueur riemannienne a la lon-
gueur euclidienne de tout arc de courbe analytique entiérement contenu dans

s o ox A
B’ est inférieur a M et supérieur a 3

Soient r=2a() ‘et y=ylt), O0=<t<o

les deux fonctions analytiques définissant un des arcs en question. Rien
ne nous empéche de considérer le parameétre ¢ comme la longueur d’arc
(au sens euclidien); o représente alors la longueur euclidienne de 'arc
considéré. Soit s sa longueur riemannienne, que ’on calcule au moyen
de l'intégrale

.s_f‘/ﬁ:(x(t s DN 1 2 P(att) , yiy) L2 .dy( + 60 .50) (29 .
dt dt
En appliquant le théoréme de la moyenne, on obtient
/ / !/ /
S“GVE (dwt)) + 2F (2, y) d(t’) d?/(t) LG,y (dy(t))2
dt dt
ou la valeur ¢/, pour laquelle on doit calculer le second membre, est com-
/
prise entre 0 et o, et ou ' = z(t') et y’ = y(¢') . En posant dail(: ) =COos @

dy(t')
b =g

= sing , le rapport % devient égal &

f(x',y', ¢) = VE@&,y") cos2p+2F(a',y’) cospsinp -+ G(z/, y')sin2 ¢ .

Or cette fonction est positive dans tout le plan de Riemann et pour
toute valeur de ¢ ; la forme (1) est en effet supposée définie positive.
Comme cette fonction est continue, elle posséde dans tout domaine borné
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du plan une borne supérieure M’ et une borne inférieure positive M” .
En désignant par M la plus grande des deux quantités M’ et—ﬂ—}—; , on

démontre la seconde de nos propositions, et avec elle la premiere.

Considérons maintenant un arc de courbe quelconque U, représenté
par les fonctions continues

x=uz(t) et y=ylt), a=t<b

et demandons-nous & quelles conditions doivent satisfaire ces fonctions
pour que 'arc U soit rectifiable. Au sens euclidien de ce mot, on sait que
la condition mécessaire et suffisante est que les fonctions x(t) et y(t) sorent
a variation bornée. Nous allons montrer qu’il en est de méme au sens de
la métrique de Riemann.

Prenons par exemple pour définition de la longueur de I’arc U celle
d’Archimeéde, reprise par Peano:

On prend dans l'intervalle @ < ¢ < b un certain nombre de valeurs

intermédiaires a4 =1tg<<ty<<tlyg-+" oo <t,_,<t,=0b. Soient
pP,, P,,P,,..., P, ,, P,, les points correspondants, et soit i la lon-
gueur euclidienne de la ligne polygonale de sommets P,, P,,...,P,_,, P,;

n
avec nos notations cette longueur est égale a 3 A(P,_,, P,) . On définit
v=1

la longueur euclidienne A de ’arc W comme la borne supérieure des nombres
A lorsque 'on considére toutes les divisions possibles de lintervalle
a<t<bh.

On pourra de méme désigner par ! la longueur riemannienne d’une
ligne polygonale de sommets Py, Py,... P,_;, P, , formée d’arcs mini-

n
mum; cette longueur est égale & 3 d(P,_,, P,). Nous définirons la
v=1

longueur riemannienne L de l'arc U comme la borne supérieure des
nombres [ lorsque I'on considére toutes les divisions possibles de l'inter-
valle a<t< b .

Or la premiére des propositions démontrées plus haut, nous permet
d’affirmer I’existence d’un nombre M, indépendant des points P, consi-
dérés, tel que

= A(Pyy, P) S d(Pyos, P) S MA(P,y, Py) .
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On en déduit, en faisant la somme,

— <l <M
d’ou l'on tire
— <L<MA .

De cette formule, nous pouvons tirer deux conclusions: La premiére
est que L existe en méme temps que A4, c¢’est-a-dire qu’une courbe recti-
frable au sens euclidien, Uest aussi au sens de la métrique de Riemann,
et réciproguement ; la seconde est que, st les longueurs euclidiennes d’un
ensemble de courbes situées dans un domaine borné du plan de Riemann
possédent une borne supérieure, il en est de méme pour les longueurs rieman-
niennes de ces courbes, et réciproquement. Notre constante M ne dépend
en effet que du domaine ou sont situées ces courbes.

On sait d’autre part qu'une courbe fermée §, sans point multiple,
divise le plan en deux parties, 'intérieur et '’extérieur. On sait également
que si la courbe est rectifiable, le domaine situé & I'intérieur est quarrable.
Ceci signifie que si ’on divise le plan en carrés, l'aire de ’ensemble des
carrés ne contenant que des points intérieurs et 1’aire de I'ensemble des
carrés contenant au moins un point intérieur tendent vers une méme
limite, lorsque le c6té des carrés tend vers 0 . Cest cette limite commune
que l'on définit comme l’aire de la courbe. La condition nécessaire et
suffisante pour que cette aire existe est que I’aire de 'ensemble des carrés
qui contiennent au moins un point de la courbe tende vers 0, lorsque le
coté des carrés tend vers 0. C’est précisément ce qui a lieu si la courbe est
rectifiable. La démonstration s’étend d’ailleurs & un cas un peu plus
général. On peut en effet affirmer qu'une courbe §, fermée et rectifiable,
est quarrable, méme si elle possede des points multiples, pourvu que ’'on
puisse en définir 'intérieur de la fagon suivante:

Nous supposons connue la notion d’ordre par rapport & une courbe
fermée ¥ ,d’un pointnon situé sur §*). Sipour une courbe donnée, 'ordre
d’un point quelconque non situé sur cette courbe est égal soit & 1, soit
a 0, on peut définir 'intérieur de cette courbe comme 1’ensemble des
points d’ordre 1, et I'extérieur comme l’ensemble des points d’ordre 0.

Une courbe quarrable au sens euclidien est aussi quarrable au sens de la
métrique de Riemann; son aire est égale a l'intégrale de la fonction
VEG — F?, étendue au domaine D, intérieur de la courbe §. Cette
intégrale existe, puisque le domaine d’intégration est quarrable et que
la fonction & intégrer est continue.

4) Voir p. ex. v. Kerekjarto, Vorlesungen iiber Topologie I, Berlin 1923, p. 83 et
suivantes.
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2. Nous pouvons démontrer maintenant un lemme essentiel pour la
suite de ce travail.

Lemme 1. Etant donné dans un plan de Riemann un ensemble infini
de courbes fermées, sans point multiple, de longueur riemannienne bornée
et situées dans un domaine borné du plan, on peut en extraire une suite
B1> B2rcvvr Gns .- » convergeant uniformément vers une courbe limite §
jourssant des propriétés suivantes :

1. ¥ est une courbe fermée;

2. § est rectifiable et sa longueur L({) satisfait & la relation

L(F) = lim L(F;) ;

k->c0

3. § posseéde un domaine intérieur quarrable dont l'aire satisfait &
la relation A({) = lim A(F,) .

k>

Nos courbes étant toutes situées dans un domaine borné du plan de
Riemann et leur longueur riemannienne étant bornée, nous avons vu au
n° 1 que leur longueur euclidienne est aussi bornée. En vertu d’un théo-
reme démontré par M. Fréchet?), ’ensemble de ces courbes est compact,
c’est-a-dire que I'on peut en extraire une suite de courbes &, Fos---, Frs---
convergeant vers une courbe limite § de la fagon suivante: On peut
exprimer toutes ces courbes au moyen du méme parametre a <t =<5,
de maniére que la suite des points correspondant & une méme valeur du
parametre P(t), Py(t), ..., Pit),... converge vers un point limite P(¢) .
La convergence est uniforme, c’est-a-dire qu’elle ne dépend pas de ¢.
La succession des points P(t), ordonnée selon ¢, constitue la courbe limite
& . Les fonctions qui la définissent sont

z(t) = lim x,(f) et y(t) = lim y,(¢) .

k>0 k>0

L’existence de ces deux limites est précisément démontrée par le théoréme
de Fréchet.

11 est clair que § est une courbe fermée.

Pour démontrer la deuxiéme propriété, prenons une suite de valeurs
du paramétre a =t <t, <--- <t,_;<t,=0b, et soient P,(t,),
P.t,),..., Pyt,_1), Pilt,), les points correspondants sur la courbe
et P(t,), P(t,), ..., Pt,,), P(t,), les points correspondants sur la courbe .

Considérons l’expression

vé‘ld(P(tv-l) , P(t)) -

5) Les espaces abstraits, Paris 1928, p. 121.
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En vertu de 'inégalité triangulaire dont jouit la distance riemannienne
d(P,Q@), on peut écrire

d(P(t,—1), P(ty)) < d(P(tv—1), Prlt,—1)) +
+ d(Pk(tv—l) ’ Pk(tl’)) + d(Pk(tV) ’ P(t.,)) *

Puisque les courbes §, convergent uniformément vers {§, et en tenant
compte des résultats du n° 1, on peut rendre le premier et le troisiéme
terme arbitrairement petits, en prenant k suffisamment grand. On a donc

d(P(tv—-l (tv)) é d(Pk(tv—-l)a Pk(tv)) + 2¢

et en faisant la somme,

2 A(Plas), P(t) S d(Pultemr), Palth) + 2me .

Le premier terme du second membre est inférieur & L({,) et ¢ peut
étre rendu arbitrairement petit en prenant k suffisamment grand; on
en déduit n

2 d(P(ty-1), P(ty)) < lim L(Fy)
r=1

k—>o0

Le membre de gauche est donc borné et la borne trouvée est indépen-
dante de la division choisie pour l'intervalle a < ¢ < b . En considérant
toutes les divisions possibles, on peut écrire

n
L(g) = Borne sup. Y d(P(t,-1) , P(t,)) < lim L(Fy)
y=1 k> oo
ce qui démontre la propriété 2.

Quant . a la propriété 3, on peut affirmer que la courbe § est quarrable
au sens indiqué a la fin du n° 1. Il suffit de démontrer pour cela qu’elle
possede un ,,intérieur*, c’est-a-dire que 'ordre dun point quelconque du
plan, par rapport a &, est égal soit a 1, soit & 0. Or étant donné un point P,
non situé sur §, 'ordre de P par rapport & § est le méme que ’ordre de
P par rapport & §,, dés que k est suffisamment grand, en vertu du
théoréeme de Rouché et de la convergence uniforme des courbes
vers § ; il est donc bien égal soit & 1, soit & 0. Le théoréme de Rouché nous
permet également d’affirmer que tout carré entierement situé a l'intérieur
de § est aussi entiérement & l'intérieur de §,, dés que k est suffisamment
grand, et que tout carré contenant des points intérieurs de § contient
aussi des points intérieurs de @,, dés que k est suffisamment grand.
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Il s’ensuit évidemment que 1’aire (au sens euclidien) des domaines limités
par les courbes &, tend vers l'aire du domaine limité par §, lorsque &
tend vers l'infini. Il en est de méme pour l'aire riemannienne, qui n’est
autre que l'intégrale, étendue & ces domaines, de la fonction continue
VEQ@— F?. (Cest précisément la propriété 3.

3. Considérons maintenant un plan de Riemann a courbure totale posi-
ttve ou nulle, mais cependant pas identiquement nulle (notre démonstra-
tion ne s’appliquerait en effet pas sans quelques modifications au plan
euclidien). Nous avons montré dans P. I. qu’il existe un nombre L* tel
que l'aire du domaine limité par une courbe fermée, sans point multiple,
de longueur L < L*, posséde une borne supérieure, qui ne dépend que
de L et du plan de Riemann considéré; soit A(L) cette borne.

Etant donné un nombre L < L*, nous démontrerons le

Théoréme A. Dans un plan de Riemann a courbure totale non négative,
parmi toutes les courbes fermées de longueur L, il en existe au moins une
qui limite un domaine d’arvre maximum A(L) .

La démonstration du théoréme A repose sur le lemme 1 et sur deux
autres lemmes que nous allons tout d’abord démontrer.

Lemme 2. Dans un plan de Riemann a courbure totale non négative,
on a . I

A(L) > i

11 suffit de trouver une courbe fermée &, de longueur L, limitant un

2
domaine d’aire A(F) > —4}% . C’est ce que nous allons faire au moyen

des vrais cercles, dont nous rappelons quelques propriétés.

Dans P. 1.%), nous avons défini le vrai cercle de centre O et de rayon r
comme le lieu des points situés a distance r du point O. Nous avons
démontré qu’il se compose d’un nombre fini d’arcs analytiques apparte-
nant au cercle géodésique (défini par Gauss) de centre O et de rayon r .
Ces arcs forment un nombre fini de courbes fermées, et 1’'une de celles-ci
contient toutes les autres; nous ’avons appelée la composante extérieure.
Nous désignons par L(r) la longueur riemannienne du vrai cercle de
centre O et de rayon variable r, et par A(r) son aire, c’est-a-dire l’aire de
Pensemble des points dont la distance & O est inférieure ou égale & r .

) P. 1., p. 324—332. Voir aussi un travail de Blanc et Fiala, Le type d’une surface
et sa courbure totale, Comm. Math. Helv., 14 (1942), p. 230—233, ou les vrais cercles
jouent un réle essentiel.

17 Commentarii Mathematic iHelvetici 25 7



Soit enfin C(r) I'intégrale de la courbure totale sur l'intérieur du vrai
cercle. Remarquons que les vrais cercles coincident avec les cercles géo-
désiques pour des valeurs de r suffisamment petites.

La fonction L(r) jouit des propriétés suivantes:

a) L(0) =0
dL(0)
dr
c) L(r) est une fonction continue pour toute valeur de r ;
d) L(r) est une fonction analytique, sauf éventuellement pour un
nombre fini de valeurs de r ou pour une suite dénombrable de
valeurs de r tendant vers l’infini ;

dL(r)

b) 2x ;

e) dT g 2”'—0(7) >
- dL(p)

f L) = | ———— :

) () Of a0 do ;

g) A(r) = 6fll(e) do .

Une démonstration analogue & celle que nous avons faite dans P. I.,

p- 341, pour les vraies paralléles, nous permet d’affirmer que la fonction
L(r)

— est décroissante:

Lo) e Lir) si o<7r .
0 r

On tire aisément de cette relation

. L(r) L(r)-r
A(r) > odo=—"—1— .
/

r 2

Les propriétés e) et f) nous livrent d’autre part la formule
Lir) < 2m-—f0(9) do .
0

Or, ’hypothese de la courbure totale non négative et non identiquement
nulle nous apprend que pour tout ¢ > 0, C(p) est positif et que

L(r)
r

<27
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En combinant les deux formules que nous venons d’obtenir, nous
ouvons écrire
p L2 (r)

Atr) > 4n

La fonction L(r) est continue; elle est nulle lorsque » vaut 0 et surpasse
toute valeur inférieure & L* lorsque r tend vers l'infini, en vertu méme

de la définition de L* (P. 1., p. 333). Il existe donc une valeur r, pour
laquelle on a

L(ry) = L
et
1.2
A(?’o) > z;

Il suffit maintenant de considérer la composante extérieure du vrai
cercle de rayon r,. C’est une courbe simplement fermée que nous dési-
gnons par &’ et pour laquelle on a évidemment

L(¥') £ L(ry) = L
et

2

AF) 2 Alr) > 1

Si L(Z’) = L la courbe ¥’ est la courbe cherchée, pour laquelle on a
2

A(E) > —f; ; si L(E') < L il est facile de construire une courbe fermée
&” de longueur L > L(F') et dont l'aire satisfasse & la relation
2

A" > AT > 7;?{{ . Dans les deux cas, le lemme 2 est démontré.

Lemme 3. Dans un plan de Riemann a courbure non négative, on a,

pour toute suite divergente de courbes fermées &1, Fase oo Ens--. de lon-
gueur L < L*: = . Iz
n->o0 47

Ce lemme est démontré dans P. 1., p. 345.

Démonstration du théoréme A. En vertu de la définition de A (L), on
peut affirmer ou qu’il existe une courbe fermée &, de longueur L limitant
un domaine d’aire A(L), ou qu’il existe une suite de courbes fermées

T, Fosrevvs> Zns--- de longueur L, limitant des domaines d’aire
AF), AFo)y s AF,)y ..., telles que lim A(F,) = A(L). Dans le
n->0

premier cas le théoréme est démontré; dans le second, il est maintenant
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facile de démontrer 'existence d’une courbe limite §, fermée, de lon-
gueur L, limitant un domaine d’aire A(L) .

Le lemme 2 et le lemme 3 nous montrent que la suite des courbes
T Faseves &n» ... ne saurait étre divergente. Toutes ces courbes sont
done situées dans un domaine borné du plan de Riemann. On peut leur
appliquer le lemme 1 et affirmer qu’il existe une courbe limite &, fermée,
de longueur inférieure ou égale & L(¥) = lim L({,) = L et limitant un

n-»oo

domaine d’aire A(§) = lim A(F,) = A(L). Or il est impossible que la

n->co
longueur de § soit inférieure & L, sinon il serait possible de construire
une courbe fermée de longueur L, limitant un domaine d’aire supérieure
a A(L), contrairement & la définition de A(L). La courbe § est donc
de longueur L et elle limite un domaine d’aire A(L); le théoréme A est
démontré.

4. Considérons maintenant un plan de Riemann a courbure totale néga-
tive ou nulle, mais cependant pas identiquement nulle (le théoréme que
nous nous proposons de démontrer serait en effet faux dans le plan eucli-
dien). Ajoutons I’hypothése que l'intégrale de la courbure totale sur un
domaine quelconque du plan de Riemann considéré est bornée inférieure-
ment. Nous désignons par O 'intégrale de la courbure totale sur tout le
plan de Riemann; c’est, par hypothése, une constante négative, non
infinie.

L’inégalité isopérimétrique sur les plans de Riemann & courbure non
positive et non identiquement nulle, démontrée d’ailleurs pour des sur-
faces plus générales que celles que nous considérons ici par Radé et
Beckenbach 7),

L2 > 4nA

nous permet d’affirmer que l'aire d’'un domaine limité par une courbe
fermée de longueur donnée L posséde une borne supérieure qui dépend
évidemment de L et du plan de Riemann considéré ; soit 4 (L) cette borne.

Etant donné un nombre L, nous démontrerons le

Théoréme B. Dans un plan de Riemann a courbure totale non positive,
et pour lequel Uintégrale de la courbure totale est bornée inférieurement,
parmi toutes les courbes fermées de longueur L, il m’en existe aucune
qui limite un domaine d’aire maximum A(L) .

") Radé et Beckenbach, Trans. Amer. Math. Soc., 35 (1933).
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La démonstration du théoréme B repose sur un lemme que nous
allons tout d’abord démontrer.

Lemme 4. Dans un plan de Riemann a courbure totale non positive, et
pour lequel Uintégrale de la courbure totale est bornée inférieurement, on a

LZ
47 °

A(L) =

L’inégalité isopérimétrique de Rado6 et Beckenbach nous apprend que

. 2
AL < —L——— Il suffit de montrer qu’étant donné un e arbitrairement
47 E

petit il existe une courbe fermée §, de longueur L, limitant un domaine
2

dai - . L , .
aire supérieure & —— —¢. C’est ce que nous allons faire au moyen
7

des cercles géodésiques.

Considérons un domaine borné B et désignons par C(B) l'intégrale
de la courbure totale sur ce domaine. L’existence d’une borne inférieure
pour cette intégrale permet de choisir B de fagon que -8 < Cp- C(B)< 0,
ou ¢ est une quantité positive arbitrairement petite. Prenons a l'exté-
rieur de B un point O tel que les cercles géodésiques de centre O et de

rayon r < o— soient entiérement situés a I'extérieur de B. Ceci est pos-
7

sible en vertu de I’hypothése de normalité & laquelle doit satisfaire notre
plan de Riemann; il suffit de prendre le point O suffisamment éloigné
du domaine B.

Prenons O comme origine d’un systéme de coordonnées polaires géo-
désiques. Dans un plan de Riemann & courbure totale non positive, les
cercles géodésiques coincident avec les vrais cercles, dont les propriétés
énoncées au n° 3 se trouvent un peu simplifiées. Si les propriétés a), b),
f) et g) ne subissent aucun changement, les propriétés c) et d) peuvent
se ramener a

¢’) La fonction L(r) est analytique pour toute valeur de 7.
La propriété e) est a remplacer par
dL(r)
/
¢) dr

De f) et de e’) on tire la formule

= 2x —C(r).

L(r) = 2nr———!0(g) do .
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Or & lextérieur du domaine B, c’est-d-dire en tout cas pour

0<op <—21—;;z- , ona C(g) >—4. Dou 'on déduit que

L(r) < (2n + d)r .
On a d’autre part & cause de la courbure totale non positive
L(r) > 2nr
et

A(r) > ar? .

Cette inégalité jointe & celle que nous avons obtenue plus haut nous
livre

e L3(r)
A(r) > e
On vérifie facilement qu’il existe une valeur r, comprise entre 0 et
L n L?
o telle que L(r,) = L . Pour cette valeur, on a A(r,) > BaLoF

Puisque d est arbitrairement petit, cette formule démontre bien

Pexistence d’une courbe fermée — le vrai cercle de rayon 7, — de
2
longueur L, limitant un domaine d’aire supérieure & —f—; —¢. On a
. 2
done 4(L) = —4[—/;; , et le lemme 4 est démontré.

Démonstration du théoréme B. L’inégalité isopérimétrique de Radd et
Beckenbach nous apprend que dans un plan de Riemann & courbure non
positive et non identiquement nulle, il n’existe pas de courbe fermée

2
de longueur L, limitant un domaine d’aire 4£:n_ . Il n’existe donc pas

de courbe limitant un domaine d’aire maximum, A(L), puisque d’aprés

— L2
le lemme 4, A(L) = —.

4n
Remarquons toutefois qu’il existe, d’apreés la définition méme de A(L),
une suite de courbes fermées &, F2» ... Fns - .. de longueur L, limitant

des domaines dont l’aire A(§,) tend vers A(L). Le lemme 1 et le lemme 4
nous permettent d’affirmer que cette suite de courbes diverge dans le
plan de Riemann et s’éloigne indéfiniment de tout domaine borné.
Dans le théoréeme B, I’hypothése accessoire concernant I'intégrale de
la courbure totale est essentielle, comme le montre le cas du plan hyper-
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bolique, ol I'on sait que ce théoréme n’est pas valable. On peut cependant
la remplacer par une hypothése analogue, mais non équivalente. Le théo-
réme s’énonce alors

Théoréme B’. Dans un plan de Riemann d courbure totale non positive
el pour lequel la courbure totale tend wvers zéro & Vextérieur d’un domaine
suffisamment grand, parmi toutes les courbes fermées de longueur L, il
n’en existe aucune qui limite un domaine d’aire maximum (L).

La démonstration de ce théoréme est analogue & celle du théoréme B;
elle est basée sur un lemme analogue au lemme 4, et que nous nous
bornons & citer:

Lemme 4’. Dans un plan de Riemann & courbure totale non positive et
pour lequel la courbure totale tend vers zéro a Uextériewr d’un domaine
suffisamment grand, on a
L2
4x

A(L) = .

5. Nos résultats s’appliquent naturellement & toute surface ordinaire
de P'espace euclidien, satisfaisant aux hypothéses de nos plans de Rie-
mann. Cest en particulier le cas de plusieurs surfaces du second degré,
et de nombreuses surfaces de révolution, auxquelles nous voulons con-
sacrer encore quelques lignes. ‘

Le théoréme A nous apprend par exemple que sur tout paraboloide
elliptique ou sur chacune des nappes d’un hyperboloide a deux nappes,
parmi toutes les courbes fermées de longueur donnée, il en existe au
moins une qui limite un domaine d’aire maximum. Le théoréme B nous
permet d’affirmer par contre que sur le paraboloide hyperbolique, pour
lequel on sait que Oy, = — 27, parmi toutes les courbes fermées de lon-
gueur donnée, il n’en existe aucune qui limite un domaine d’aire maximum.

Nous nous permettrons encore de faire remarquer que, sur une surface
donnée, le théoréme A ne nous fournit aucune indication sur les courbes
particulieres qui limitent un domaine d’aire maximum, sinon qu’il en
existe au moins une; il peut par exemple trés bien en exister plusieurs,
et méme une infinité. La recherche de ces courbes pourra donc encore
offrir de grandes difficultés. Méme pour des surfaces aussi simples que les
surfaces de révolution, la solution n’est pas immédiate; il n’est en effet
pas du tout certain que les paralléles (au sens habituel du mot) livrent
ce maximum. Pour le paraboloide de révolution, il semble bien que ce
soit le cas, mais il n’en est sirement pas de méme pour la surface dont
I’équation en coordonnées cylindriques est z = 4. Un examen plus appro-
fondi de la démonstration du théoréeme A permet de prévoir que les
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courbes limitant un domaine d’aire maximum doivent contenir, du moing
pour des valeurs suffisamment petites de L, au moins un des points ou
la courbure totale est maximum, si de tels points existent sur la surface;

[ J—
pour la surface z = 74, ces points sont situés sur le cercle r = Ve ,
3, —
. V4
16

Rappelons d’autre part que la condition nécessaire pour qu’une courbe
fermée § limite un domaine d’aire maximum est que sa courbure géo-
désique soit constante. Un corollaire du théoréme A est I’existence dans
tout plan de Riemann & courbure non négative de courbes fermées a
courbure géodésique constante. Examinons pour terminer le cas des plans
de Riemann & courbure totale négative. L’inégalité isopérimétrique de
Radé et Beckenbach nous montre que I’aire d’un domaine limité par une
courbe fermée de longueur donnée L posséde une borne supérieure A(L) .
Si d’autre part le plan de Riemann considéré satisfait & I’hypothése
accessoire du théoréme B ou du théoréme B’, nous savons qu’il n’existe
pas de courbe de longueur donnée L, limitant un domaine d’aire maximum
A(L) . Cecine signifie pas du tout que dans ce plan de Riemann il n’existe
pas de courbe fermée & courbure géodésique constante. Au contraire,
on peut facilemént donner des plans de Riemann satisfaisant & ces hypo-
théses, et sur lesquels on connait toute une famille de ces lignes; nous
pensons aux plans de Riemann, que ’on pourrait appeler ,,de révolution®,
et dont nous nous bornerons & donner un exemple simple.

Soit le plan de Riemann donné en coordonnées polaires géodésiques
par la forme quadratique

ds? = dr? + (r + r3)%dg? .

Les lignes r = constante sont évidemment & courbure géodésique cons-
tante, mais comme ce plan de Riemann satisfait aux hypotheses du théo-
réme B/, ces courbes ne sauraient limiter un domaine d’aire maximum,
par comparaison avec toutes les courbes fermées de méme longueur.
Ceci montre clairement que la condition de la courbure géodésique cons-
tante pour une courbe fermée de longueur donnée limitant un domaine
d’aire maximum, n’est pas suffisante. Il nous a paru intéressant de citer
cet exemple, tiré du champ méme des problemes isopérimétriques, parce
qu’il illustre une fois de plus 'importance d’une démonstration d’exis-
tence dans ces questions.

(Recu le 27 octobre 1942.)
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