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Note sur l'interversion
des dérivations et les différentielles totales

Par ALEXANDRE OSTROWSKI, Béle

1. On connait deux systémes de conditions essentiellement différents
assurant l'interversibilité des dérivations:

d ody 0 Oy (1
ox, O0x, Ox, O0x, )

Le premier, dii & Schwarz, suppose que 'une des dérivées mixtes
existe dans tout un voisinage du point P, considéré!). Le second, di
a M. W. H. Young, ne fait d’hypotheses sur les dérivées mixtes qu’au
point P, méme, mais suppose en revanche ’existence des dérivées secondes
Yz, 2, €6 ¥a, ,, qui n’ont rien & faire avec le probléme 2).

Dans ce qui suit nous donnons un troisiéme systéeme de conditions
qui ne porte que sur les dérivées mixtes au point P, .

Nous introduisons a cet effet la notion d’une dérivée uniforme dans un
point, une notion qui permet aussi de pousser ’analyse de la notion d’une

différentielle totale plus loin qu’il n’était possible auparavant.

2. Rappelons d’abord la notion de la différentielle totale®). On dit
que la fonction f(z,,...,x,) posséde une différentielle totale au point
Py(a;,...,a,), si Pon a

f(xls' ) xn) z]((alv © ey a’n) +v§10‘v(xv“—aV) = 0(7') ’ r:véllxv—avl“*(),

(2)

ou les constantes «, sont les dérivées partielles f;v de fen P, .

De l'autre c6té nous dirons que f(z,,..., z,) est dérivable par rapport
a x, uniformément en Py(a,,...,a,), si 'expression

1) Cf. par exemple: De la Vallée Poussin, Cours d’Analyse Infinitésimale, t. 1,
3eme éd. (1914), pp. 146—147. — I. W, Hobson, The Theory of Functions of a Real
Variable and the Theory of Fourier Series, vol. 1, 3rd ed. (1927), pp. 425—426. —
O. Haupt und G. Aumann, Differential- und Integralrechnung, Bd.2 (1938),
pp. 125—126.

%) Cf. par exemple: De la Vallée Poussin, L. c., pp. 145—146. — I. W. Hobson, 1. c.,
pp. 427—428. — Haupt und Aumann, 1. c., pp. 125—126.

3) Cf. par exemple: De la Vallée Poussin, 1. c., pp. 140—141. — I. W. Hobson, 1. c.,
pPp. 419—421. — Haupt und Aumann, 1. c., pp. 111—121,
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.f(xlyxz ,"':xn)"“'ﬂalaxz R xn)

3
prygu—r) (3)

tend vers une limite déterminée f, (a,,...,a,) avec
xl-——-al—->0, va—avl_g_lxl'—all, v:2,...,n. (4)

En permutant les variables, on obtient la définition de la dérivabilité
par rapport & z,, uniforme en P, .

3. Théoréme I. Pour que f(x,,...,x,) posséde une différentielle totale
en Py(a,,...,a,), tl est nécessaire et suffisant que f soit dérivable par
rapport a chaque x,, uniformément en P, .

Démonstration : Supposons que f(z,,..., z,) possede une différentielle
totale en P, , alors on tire de (2) dans les hypothéses (4):

f(xl’ Lgse ooy xn)—_f(a'ls Loyenos xn) = (xl(xl'—_al) —I_ O(xlmal) .

Donc Pexpression (3) tend vers «,; dans les hypothéses (4). Et, en per-
mutant les variables, on obtient, uniformément en P,, la dérivée par
rapport & chacune des variables x, 4).

Supposons inversement que f(z,,..., z,) soit dérivable par rapport &
chacune des variables z,, uniformément en P,. Si les x,— a, tendent
vers 0, il y a »! cas & considérer, suivant les grandeurs relatives des
|z, — a,| . Supposons par exemple que l'on ait

|2, —ay| 2 |2g—a,y| = - 2|2, —a,]| . (5)
Alors on a pour |z; —a,| — 0, en posant, pour fixer les idées, n = 3,
par ’hypothése:
f(xy, 2q, @3) — f(ay, X3, T,) (X, —ay) + & (2, —ay)
f(ay, ®g, T5) — f(@y, Ag, T3) = Xg(Ty — Ay) + &2(X3 — @y)
f(ay, ay, x3) — f(ay, g, @3) = x3(x3 — a3) + &3(x3 —ay) ,

ou les constantes «, sont les dérivées correspondantes de f, en P, et
ol les ¢, tendent vers 0 avec |z, —a,|. Donc, en ajoutant:

f(xl’ Ly x3) —_f(a’l’ g, aa) = Z‘xv(xv—*av) + 2:‘%(xv'_—"a’v) ’ (6)
y=1

v=1

ou le dernier membre est évidemment o(r) avec r — 0.

4) Comme on voit, dans le cas d’une différentielle totale ’expression (3) tend vers
f ;l(al, ... Gy) AVee T, —> a,, méme si les x,, . .., ¥, sont restreintes au domaine

|xp——a#|§0|x1—a1| y p=2,..,n

pour un C arbitraire, mais fixe.

223



Dans les n! — 1 autres cas on obtient, en permutant les variables,
la méme relation (6), et le théoréme est démontré.

4. Théoréme II. St f(x,, x,) posséde dans le voisinage de Pgy(a,,a,)

r s 7 . . s o . a ! a !
les dérivées partielles f, , f,. , et si les deux dérivées partielles f, , df G
Zy Ty
existent uniformément en P, , on a en P,
!/
afs,vl — afmg 7
0x, ox, (7)

Démonstration. Considérons ’expression
A4 =fa,+hk,a, +k)—fla, + h,a)) —f(a,, a, + k) + f(a;, as) .

Appliquons & la fonction de z,: f(x,, a;,+ k) — f(x,, @), le théoréme
des accroissements finis, on obtient

(f(aq+h,a2+k)‘“‘f(a1+h,a2))‘“(f(a1:“2+k)_f(a1aaz)):
= h[f;:l(a1+ h,a + k) — f;,(al +dh,a))], 09, =1.

Donc, en posant b = k:

4 _ f;l(%""‘?lh, az‘f‘h)“‘“f;l(al‘f"%hs as)

h2 h * (8)
Mais, puisque —a%— (f,) existe, uniformément en P,, il résulte de (8):
2
.4 a0
’}]ﬂ —};2_' - —a—x_z- (fxl) . (9)

Or, 'expression 4 est formée symétriquement par rapport a =, et x,,
on a donc aussi au point P,

4 9,
II:I—:-IO h2 - axl (fﬂﬂg) ’

et le théoréme II est démontré.

5. On pourrait se demander, si le théoréme II reste en vigueur, quand
on définit la dérivabilité uniforme en P,, en exigeant seulement que
Pexpression (3) tend vers une limite déterminée pour

—a; >0, |z,—a,| =(1—¢) |z, —ay|, v=2,...,n , (10)
avec un ¢ fixe et positif.
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Or, 'exemple suivant montre, que le théoréme II cesse alors d’étre
valable:

Soit h= (@4 y2)-1, b, = —2zh?,
fla,y) = oy L= e o0y, 10,00 =0 11
’ ylxlh'{"‘ylh, r y>)a (’ - . ( )

On a, en dérivant®) par rapport a x :

' o — |yl |z * [y x
, / ‘ h 2 ,
2.9 =1 j[* + [y *he (e + 1yl*)® (1 2 hlgi y ’) W)

autant que 22 4 2 > 0. Pour x = y = 0, on a évidemment f,(0,0)=0 .

L’expression (12) est continue. Pour |z| > 0,|y| > 0 c’est évident.
Sixz —0,|y|> 0, le premier membre tend vers —y et les deux derniers
termes tendent vers 0. Si y —0,|z| > 0, tous les termes tendent
vers 0. Enfin, pour x — 0, y — 0 ’expression (12) tend vers 0.

N e, 0 Of L, L

Or, je dis que la derlvee—a?/— ﬁemste a Dorigine et est = —1, et

qu’en plus, ’expression

fo(@, y) — fol2, 0)

13
” (13)

tend vers —1, si pour un ¢ fixe positif
y =0, |z[<(d—e)ly| - (14)

En effet, f.(x, 0) s’annule. On a donc & considérer la limite, sous les

Yy

_%f__i_{_h_.L 2__4___zj__1 2 (15)
2+ 1 (" + 1)? ZF1 °°) -

Or, h tendant vers oo, le premier membre de (15) tend vers —1 sous
Ihypothése (14). Le facteur devant la parenthése du second membre
de (15) est majoré par

conditions (14), de I'expression suivante, ot 'on a posé z =

h(l1 — gk

et tend par conséquent vers 0 pour (14).

a
8) On dérive une puissance | « | @, en I’écrivant dans la forme {2%)2

156 Commentarii Mathematici Helvetici 225



Enfin, ’expression entre parenthése du second membre de (15) est,
pour 0 <z <1, positive et bornée, <2 + 2e¢~!. Donc, on a en effet

a )
— fi(, =—1.
(ay fz (2, y) o
. . .., 0 Of .
Mais alors, puisque f(y, ) = — f(x, y) , la dérivée FriFm existe,

elle aussi, & l'origine, dans les conditions analogues, et est égal & + 1,
de sorte que 'interversion des dérivations n’est plus permise.

(Recu le 28 juillet 1942.)
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