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Quelques propriétés globales
des espaces de Riemann

Par ALEXANDRE PREISSMANN, Zurich

Introduction
1. Le probléme général

Des recherches récentes ont eu pour but d’étendre aux variétés de
Riemann des résultats connus sur les surfaces.

Comme les résultats ne sont pas encore tres étendus, il va étre encore
possible de donner dans le présent travail une idée d’un large secteur
de ces recherches?).

Afin de donner au probléme qui sera traité ici un énoncé et une signi-
fication précis, il est nécessaire d’introduire quelques définitions.

On entend par wvariété topologique @ m dimensions un espace topolo-
gique connexe tel que tout point posséde un entourage homéomorphe
a l'intérieur d’une sphere de 'espace euclidien & n dimensions. On peut
alors recouvrir une telle variété par des systéemes de coordonnées carté-
siennes qui soient définis chacun pour une portion de variété et qui
empietent les uns sur les autres 1, 22%,.. ... , ™ . Si en tout point ou deux
systémes se recouvrent la transformation des coordonnées est analy-
tique et de déterminant fonctionnel non-nul on dit que la variété est
analytique.

On passe aux variétés analytiques de Riemann en donnant pour chacun
des systémes de coordonnées des fonctions analytiques g;; telles que la
forme g,,dx*dx’ soit définie positive et invariante quand on passe d’un
systéme de coordonnées & un autre. On définit alors la longueur d’un
arc de courbe P, P, par l'expression:

Py 1
’ (9;; da* daf)*
Py
ou lintégrale est prise sur la courbe.

On métrise les espaces de Riemann en définissant comme distance de
deux points la borne inférieure de la longueur des courbes qui joignent
ces deux points. Il est clair que si les deux points sont différents la distance
est positive.

1) On trouve un exposé sur le problédme qui est traité ici et sur les principaux résultats
obtenus dans: H. Hopf: Differentialgeometrie und topologische Gestalt;
Jahresbericht der D.M.V., 41. Band (1932), 209—229.
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Nous sommes maintenant en mesure de définir, comme pour les sur-
faces, des caractéristiques locales de la géométrie différentielles des
variétés: le transport par parallélisme, la valeur de la courbure, I’équation
des lignes géodésiques, etc. Ces propriétés sont étudiées en détail en parti-
culier dans les ,,Lecons sur la géométrie des espaces de Riemann‘ de
Cartan, dont nous avons gardé les notations. Toutes les propriétés locales,
dont nous pourrons avoir besoin, se trouvent expliquées dans les ,,Le-
cons‘‘ 2) .

Il ne sera question ici que des propriétés internes des espaces de Rie-
mann, c’est-a-dire des propriétés indépendantes du fait que ces espaces
puissent étre plongés ou non dans un espace euclidien de dimension supé-
rieure.

11 est possible que certains des résultats énoncés puissent étre obtenus
sans qu’on fasse d’hypothéses sur la nature analytique des fonctions
g9:; » et qu’il suffise de supposer qu’elles sont dérivables un nombre suf-
fisant de fois, mais cette question ne nous occupera pas ici.

Le probléme général est le suivant:

Quelles sont les relations qui lient les propriétés locales d'une variété
d’une part et ses propriétés globales d’autre part?

Un certain nombre de théorémes connus fournissent déja des réponses
partielles. Ils ont été démontrés par différentes méthodes. Le but de
ce travail est d’abord de démontrer ces théorémes par une méthode unique,
puis d’ajouter quelques nouveaux théoréemes démontrés d’ailleurs par la
méme méthode.

Suivant le point de vue d’ot1 on I’envisage le probléme général présente
deux aspects principaux: le probléme du prolongement et le probléme de
la métrisation.

Le probléeme du prolongement se présente comme un probléme ana-
logue au probléme du prolongement des fonctions analytiques: On donne
une portion suffisamment petite d’une variété, la prolonger de fagon &
obtenir toute une variété ).

Le probléme de la métrisation est, dans une certaine mesure, le pro-
bléeme inverse: On donne une variété topologique, trouver des fonctions
g;; de facon & métriser foute cette variété.

2) K. Cartan : Legons sur la géometrie des espaces de Riemann (Paris, 1928).
(Nous abrégerons ,,Lecons‘‘). Les éléments de topologie, dont nous pourrions avoir
besoin, se trouvent également expliqués dans les ,Lec¢ons“. Les désignations sont les
mémes. (Nous appelons groupe fondamental, ce qui dans les ,,Legons‘‘ est appelé groupe
de connexion.)
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Avant d’esquisser les principaux résultats obtenus, il faut éclaircir
un point essentiel: Que doit-on entendre par lexpression: foufe une
variété ou bien une variété compléte ?

On pourrait dire: une variété compléte est une variété qui ne saurait
étre prolongée, c’est-a-dire une variété qui ne saurait étre considérée
comme portion d’une variété qui la contiendrait. En tout cas, les variétés
prolongeables doivent é&tre exclues. MM. Hopf et Rinow ont atteint ce
but en imposant aux variétés completes 'une ou I'autre de quatre condi-
tions dont ils ont démontré I'équivalence3). Les espaces normaux de
Cartan ont la méme extension que les espaces complets. Les espaces
complets (normaux) forment une sous-classe véritable de la classe des
espaces non-prolongeables. Il y a cependant intérét & ne considérer que
les espaces complets, et c’est ce que nous ferons ici. Dans le chapitre II
nous étudierons quelques propriétés des espaces complets.

2. Le probléme de la métrisation

Nous ne considérerons que tres incidemment le probléme du prolonge-
ment!) et c’est le probléeme de la métrisation qui fera 1’objet du travail.

Dans le probleme de la métrisation, il s’agit de tirer de la connexion
topologique d’un espace de Riemann des conclusions sur les possibilités
de choisir les fonctions g,; qui déterminent la métrique. Tous les travaux
qui seront discutés ici sont consacrés au probleme suivant:

De la connexion topologique d’un espace déduire des conséquences au
sujet du comportement de la courbure, ou, de fagon plus restrictive:

Quelles sont les variétés topologiques qu’on peut métriser par une métrique
dont la courbure garde un signe constant ?

Ce probléme est évidemment une généralisation du probléme spatial
de Clifford-Klein. On peut en effet considérer les formes spatiales comme
des variétés qu’on peut métriser par des métriques de courbure constante.
C’est ce cas particulier qui a été traité dans les premiers travaux sur le
sujet de la métrisation?).

Un autre cas particulier important qui a été abondamment traité est
celui des variétés riemanniennes & deux dimensions, c¢’est-a-dire des sur-
faces. Le cas des surfaces est passablement plus facile & traiter que le
cas général parce qu’on peut se servir avec avantage de la formule de

38) H. Hopf und W. Rinow: Uber den Begriff der vollstindigen differential-
geometrischen Flache, Commentarii mathematici Helvetici 3 (1931), 209—225.

La généralisation, immédiate, aux espaces & plus de deux dimensions est formulée dans:
S. B. Myers: Riemannian manifolds in the large. Duke mathematical Journal 1
(1935), 39—49.
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Gauss-Bonnet. Il n’existe pas pour les espaces & plus de deux dimensions
d’équivalent de la formule de Gauss-Bonnet, sauf dans des cas tout-a-fait
spéciaux!). Dans ces conditions, il est compréhensible que la plupart des
résultats obtenus pour les surfaces n’aient pas pu étre généralisés pour
les espaces & plus de deux dimensions. La méthode qui a été employée
presque exclusivement consiste dans I’étude du voisinage des géodésiques
et en particulier des géodésiques minimales. C’est d’ailleurs cette méme
méthode qu’on applique dans le cas des surfaces pour démontrer un théo-
réme de Bonnet %).

3. Le lemme de Synge

Le théoréme de Bonnet se démontre a l'aide de 1’équation de Jacobi
et des théorémes de comparaison de Sturm. Dans le cas de » dimensions
on peut donner du théoreme de Bonnet la généralisation suivante:

Un espace complet dont la courbure est partout supérieure a un nombre

positif k est un espace fermé de diamétre inférieur a

7
Vi

Myers?) et Schoenberg®) ont démontré ce théoréme a l’aide de géné-
ralisations des théorémes de Sturm?®). Il est possible aussi de ramener le
cas de n dimensions au cas de deux dimensions & ’aide d’un lemme qui
sera employé dans toutes nos démonstrations et que nous démontrerons
dans le premier chapitre: le lemme de Synge 7).

Lemme de Synge: La courbure intrinséque d’une portion de surface V,
qui passe par une géodésique g d’un espace de Riemann V,, ne dépend
le long de g que du ruban des plans tangents le long de g . Cette courbure est
inférieure ou égale a la courbure de V,, pour les éléments plans tangentsa V, .
Il n’y a égalité que lorsque le ruban des plans tangents peut étre obtenu par
le déplacement paralléle d’un vecteur le long de g .

4) W. Blaschke: Vorlesung tuber Differentialgeometrie I. (Berlin, 1930),
§ 100. Dans les démonstrations du théoréme de Bonnet antérieures a celles données par
H. Hopf et W. Rinow 32), le fait que 1’espace est fermé fait partie des hypothéses. On le
remplace par I’hypothése que la surface est compléte.

8) J. M. Schoenberg: Some applications of the calculus of variation to
Riemannian geometry. Annals of mathematics. (2), 33, 485—495. Ici aussi on
suppose que l’espace est fermé.

%) M. Morse: A generalization of the Sturm separation and comparison
theorems. Math. Annalen 103, 59—62.

) J. L. Synge: The first and second variations of the length in Rieman-
nian space. Proceedings of the London math. Society 25 (1926). Nous reproduisons cet
article & quelques différences prés dans l'introduction des coordonnées.

178



Lorsque la courbure d’un espace est partout négative, l'application
du lemme de Synge montre que toute surface de cet espace qui contient
une famille de géodésiques est de courbure négative. Dans le cas des
espaces de courbure partout positive, la derniére partie du lemme permet
de construire dans le voisinage d’'un arc de géodésique une portion de
surface de courbure positive.

4. Les espaces de courbure partout positive

La généralisation du théoréeme de Bonnet qui a été formulé dans le
paragraphe précédent peut aussi étre démontrée a 1’aide du lemme de

Synge, c’est cette démonstration que nous reproduirons dans le cha-
pitre 1V 8).

Comme corollaire indiqué par Cohn-Vossen?®) on peut déduire le théo-
reme:

Le groupe fondamental d’une variété fermée de courbure partout positive
est fini.

Mais Synge a démontré passablement plus dans un cas particulier:

Un espace fermé orientable de dimension paire et de courbure partout
positive est simplement connexe 19).

Un corollaire immédiat est le suivant:

Un espace fermé non orientable de dimension paire et de courbure par-
tout positive posséde un groupe fondamental d’ordre 2.

Nous démontrerons par la méme méthode:

Un espace fermé de dimension impaire et de courbure partout positive
est ortentable.

On connait fort peu de théorémes sur les espaces ouverts de courbure
partout positive. Cohn-Vossen!!) a donné dans le cas des surfaces des
propriétés globales pour les géodésiques, mais il fait un usage constant

8) J. L. Synge: On the neighborhood of a geodesic in Riemannian space.
Duke mathematical Journal I (1935), 527—537.

9) S. Cohn-Vossen : Compte-rendu de Myers (3) dans: Zentralblatt fiir Mathematik 11
(1935), 225-—226.

10) J, L. Synge: On the connectivity of spaces of positive curvature.
Quarterly journal of math. (Oxford series), 7 (1936), 316—320.

1) S, Cohn-Vossen: Kiirzeste Wege und Totalkrimmung auf Flachen.
Compositio mathematica. 2, 69—133. S. Cohn-Vossen: Totalkrimmung und geo-
datischen Linien auf einfachzusammenhéngenden vollstdndigen Flachen-
stiicken. Recueil mathématique de Moscou, I (43), 1936, 139—163.
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de la formule de Gauss-Bonnet pour laquelle nous n’avons pas d’équi-
valent. Il a aussi indiqué'?) pour le cas de n dimensions le théoréme
suivant:

Un espace ouvert de courbure partout positive n’a qu’une ,extrémité‘
(pour la définition de I’,,extrémité‘‘ voir le chapitre II).

Un cas particulier plus facile est celui des espaces qui possédent un
pole, c’est-a-dire un point tel que tout arc géodésique ayant ce point
comme origine soit un arc géodésique minimal. Von Mangoldt13) a étudié
les surfaces & péles de courbure partout positive, mais en faisant un usage
constant de la formule de Gauss-Bonnet. Nous retrouverons les mémes
propriétés pour les variétés en appliquant le lemme de Synge:

Les pdles d’une variété de courbure partout positive forment un ensemble
borné.

Dans une variété de courbure partout positive qui posséde un pile P,
toute géodésique posséde un point a distance minimale de P. A partir de
ce point les deux branches de la géodésique s’élotgnent de P de fagon mono-
tone vers Uinfini.

b. Les espaces de courbure partout négative

Les espaces simplement connexes de courbure partout négative ont
déja été étudiés passablement en détail. Il est aisé de démontrer que:

Un espace simplement connexe de courbure partout négative est un espace
a pole et on peut choisir comme pole un point quelconque de 'espace. On
en déduit que tout espace sitmplement connexe de courbure partout négative
est homéomorphe a Uespace euclidien 1%).

On en déduit également que la variété simplement connexe de recouvre-
ment de tout espace de Riemann de courbure partout négative est homéo-
morphe a Uespace euclidien.

Pour démontrer d’autres propriétés, nous établirons le théoréme sui-
vant:

La somme des angles d’un triangle géodésique dans un espace stmple-
ment comnexe de courbure partout négative est inférieure a deux droits.

12) §. Cohn-Vossen: Vollsténdige Riemann’sche Raume positiver Krim-
mung. C. R. Acad. des Sciences de I'U.R.S. 8. 1935, III, 387—389.

13) H,v. Mangoldt: Uber diejenigen Punkte auf positiv gekriimmten
Flachen, welche die Eigenschaft haben, dafl die von ihnen ausgehenden
goeodéatischen Linien nie aufhoren, kiirzeste Linien zu sein, Crelles Journal
91 (1881), 23—52.

4) Leg¢ons*“, Note III.
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En considérant le groupe fondamental comme groupe d’isométrie de
Pespace simplement connexe de recouvrement et en appliquant le théo-
reme énoncé ci-dessus on trouve les théorémes:

St le groupe fondamental d’une variété de courbure partout négative est
cyclique, cette variété posséde au plus une géodésique fermée.

Toute variété de courbure partout négative posséde au plus une géodé-
sique fermée de chaque type d’homotopie.

Dans le cas particulier des espaces fermés nous sommes siirs de 1’exis-
tence d’une géodésique fermée de chaque type d’homotopie (excepté le
type nul) et nous pourrons démontrer le théoréme:

Tout sous-groupe abélien du groupe fondamental d’une variété fermée
de courbure partout négative est un groupe cyclique.

D’autre part nous montrerons que le groupe fondamental d’une variété
fermée de courbure partout négative me saurait étre un groupe cyclique.

Ces théoremes permettent d’exclure un grand nombre de variétés
topologiques fermées de la classe des variétés topologiques métrisables
par une métrique de courbure partout négative; en particulier le produit
topologique de deux variétés fermées ne peut pas étre métrisé par une métrique
de courbure partout négative.

D’autre part ces théorémes s’appliquent aux formes spatiales hyper-
boliques pour lesquelles on avait démontré le théoréme:

Le groupe fondamental d’une forme spatiale hyperbolique fermée ne
saurait étre abélien.

Chapitre premier

Le voisinage d'une géodésique

C’est la connaissance du comportement d’'un espace de Riemann dans
le voisinage d’une géodésique qui permettra de déduire du signe de la
courbure les propriétés topologiques de ces espaces. L’étude du voisinage
d’une géodésique nécessite des coordonnées appropriées.

1. Les coordonnées normales de Riemann %)

Soit A un point d’un espace de Riemann & n dimensions V, et U un
voisinage suffisamment petit de A pour qu’il n’existe dans U qu’une
seule géodésique joignant A & un point quelconque de U .

15) ., Legons‘‘, chapitre IX.
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Menons par 4 n géodésiques orthogonales: ¢,, ¢g,,..... g, que nous
appellerons les axes du systéme de coordonnées. Pour fixer une géodé-
sique quelconque g passant par A4 il suffit de donner les » grandeurs:
ot qu’on appelle cosinus directeurs:

ol = cos(g, g,) ;

les quantités «f ne sont pas indépendantes, mais liées par la relation:

Pour fixer un point quelconque P de U il suffit de donner les cosinus
directeurs de la géodésiques AP et la distance AP = s.

Les coordonnées normales de Riemann sont les quantités:
xt = sat .

Si I’espace considéré est 1’espace euclidien, alors les coordonnées nor-
males de Riemann sont les coordonnées cartésiennes rectangulaires.

Avec ces coordonnées les coefficients g,, jouissent au point 4 de pro-
priétés particuliéres, en effet au point 4 le carré de 1’élément linéaire:

ds? = g,; dx'da’

devient
ds? = (da)' + (da?)’ + - -+ + (da)’
d’ou
. _)Osie £y
9:;(A4) = &, 0y = 18i4 =

On vérifie de méme que les premiéres dérivées partielles des coefficients
g,; sont nulles au point A4 et par conséquent aussi les symboles de Chri-
stoffel I'f;, et I'y,:

99,
aili (A) =0 , Ff,(A) =0, thk(A) =0 .
2. Les coordonnées de Fermi 16)

11 est possible d’introduire dans le voisinage d’un arc fini, simple, de
géodésique des coordonnées qui jouissent des mémes propriétés que les
coordonnées de Riemann dans le voisinage d’un point.

16) ,Lecgons‘‘, p. 262. T'. Levi-Civita : Sur 1’écart géodésique. Math. Annalen 97
(1926).
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Soit un arc simple de géodésique g, = A B, entouré d'un voisinage
suffissamment petit pour que par chaque point de ce voisinage qui ne

soit pas sur g, , il n’existe qu'une seule géodésique ne sortant pas de U
et coupant g, & angle droit.

Au point 4 choisissons n — 1 directions:
(1 (2 -1
ZA) , A ) , Ag’ )

perpendiculaires entre elles et perpendiculaires & g, et déplacons paral-
lélement ces directions le long de g, , elles resteront perpendiculaires entre
elles et perpendiculaires & g,. L’ensemble des géodésiques passant par
un point quelconque P, de g, et coupant g, & angle droit est une variété
géodésique & n — 1 dimensions V,_, (P,) dans laquelle nous introduisons
des coordonnées de Riemann en choisissant comme axes les géodésiques
dans les directions:
AR AR, LA

Soit P un point de U (mais pas sur g,), menons la géodésique g qui
coupe g, & angle droit en P, . P est alors dans la variété V,_,(P,) et aura
dans cet espace les coordonnées normales 1, 22,..., 2»1; pour fixer
définitivement P, il faut encore donner la distance A P, = a™ . Les nou-
velles coordonnées: x!, 22,. .., " sont appelées les coordonnées de Fermi
dans le voisinage de g,. Elles jouissent pour tout point P, de g, des
propriétés suivantes:

9.5 (Po) = 9y (1)

oq. ;
ag‘;"lz (Py) = 0, I’fj(Po) =0, I (Py)=01). (2)

Comme ces égalités ont lieu quel que soit P,, c’est-a-dire quel que soit
Z™, nous aurons encore:

0 ( 09:; arfj 0L

e o) Pa=0, GERPY =0, FE(E)=0. @

.

3. La deuxi®me variation de la longueur d’une géodésique 8)

Soit g, un arc de géodésique AB ; dans le voisinage U de g, nous intro-
duirons un systéme de coordonnées de Fermi:

2, 22,..., 2" .

1) T'. Levi-Civita 18) p, 227.
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Soit V, une surface analytique passant par g, que nous recouvrons
d’'un réseau de coordonnées u,v qui jouisse des propriétés suivantes:
xt = x*(u, v) est I’équation de la surface.

1. zi(u,v) est une fonction analytique en u et v .

2. z'(u,0) =0sit¢#mnet 2"(u,0) =wu. Cest-a-dire que la courbe
v = 0 est la géodésique g, et que le parametre u sur cette courbe est
Parc AP, .

3. ——3%—(:1:“(11,, 0)) = 0, c’est-a-dire que les lignes u = wu, coupent g,

a angle droit.

Nous appellerons ,,courbes aux variations‘‘ les courbes: zt* = x*(u, v,)
ou v, a une valeur constante. Nous comparerons, entre deux valeurs
de u:u, et u,, la longueur d’'une de ces courbes & la longueur de g, .
Cette longueur dépend du parameétre v de la famille des courbes aux
variations, nous l'appellerons L(v) .

L(v) =T ( 0w | o )%du :

& 9ii "5y, ou

Avant de calculer L’(0) et L”(0) qui sont la premiére et la deuxiéme
variation de la longueur, nous introduirons quelques notations.

Soit X une fonction quelconque sur V, : nous désignerons par le signe*
la dérivée par rapport & u et par le signe ’ la dérivation par rapport & v.

0X : X
i e
En particulier:
£ — zt , n = zi!
d’ou:
51‘:’ — 7'71

Les coordonnées de Fermi choisies montrent que:

Ei(u,0) =0 pour ¢#n & (u,0) =1
n(u,0)=0 .
La quantité:

(9.5 €* fi)%
est désignée par:
Fu,v); F(u,0)=1.
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Or: , _ (FyH 1 0Fii 1 i g i gir |

ou bien :

I___}__‘agu hoEL Ei Q
Pl =g | agn 1" &8 T 2808417

F'(u, 0) est nul quel que soit «; en effet sur g, , en vertu des coordonnées
choisies:
99
=0 . (2)

L’expression g,; & 5/ se réduit lorsque v = 0 & 5™, or %" est nul quel
que soit % lorsque v est nul, par conséquent aussi 7" .

L’(0) est donc aussi nulle, ce qui provient évidemment du fait que
go est une géodésique.

Passons & la deuxiéme variation:

” — .// _ t 1 2\// ____‘Flz
L'w) = | F"(u,v)du = 5F (F2)" du 7 du .

Calculons la premiére intégrale:

Uz

0% g,y : ag,f il
sz% sahage M MEE el 295 M + 87 ]Sdu

Uy

Pour v = 0, la deuxiéme intégrale est nulle et il reste de la premiére:

0% g.;
j)2 S E 8 T G i | du

Examinons la somme:

1 oy, o
2 ax"ga;:k k&Y

et remarquons que:
E(u,0)=0, sit#n, &wu,0)=1, nu,0)=0.

La somme devient

1 d%g,,
3 b .o TN
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Si nous comparons avec ’expression du tenseur de Riemann:

_ 1§ g 02 g 0% Jnn ®9xn | 18
le,kn__z—( dxh oxk + ox" ox™ 0z ox®  oxt oz } )

ol nous avons supprimé les termes ou interviennent les premiéres dérivées
des g;; qui sont nulles; nous voyons que les égalités (3) nous donnent:

1 92gna
Binin= 5 55 gk °
Autrement dit:
1 0%2¢,; . . .
—5 _5_@%;?_ qhE EE = — Ry P E ks

Comme les vecteurs & et 7’ sont perpendiculaires, le deuxiéme membre
de I’égalité nous donne la courbure de 1’élément plan déterminé par les
vecteurs &° et #* multipliée par le produit des carrés des longueurs 1 et
des vecteurs &* et #®; nous désignerons la courbure pour 1’élément plan
tangent & V, par K .

Ug

n—1
L'0) = § (— K + Z (') ") du =

Uy

u; n-—1 Uy
J (2 (% — Kn?) du+7"" |
%y t=1 uy

Nous pouvons introduire le vecteur unitaire de variation u*, c’est
le vecteur unitaire tangent a V, le long de la géodésique g, et perpendicu-
laire & g, .

- - n‘—l . n—l 3 . .
nt = nut 2 ()P =1 2 ptpt=0
t=1 i=1

= nut + np

n—1 n—1 n—1 n—1 n—1
2=t ) ot X () 2 Xt =t A 2 ()
1=1 i=1 t=1 t=1

1=1

En remplagant dans ’expression de la deuxiéme variation

up n—-1 , U2
2/(0) = § G + o [ Z (4 — K]) du+ 7" | - ()
Uy =1 Uy
Quant p* est nul, c’est-d-dire si u’ est transporté parallélement &
lui-méme, alors I’expression de la deuxiéme variation devient:

Ug

L(0) = | (2 — Knt) du + " | - (2)

Uy

18) ,,Legons‘‘, p. 186.
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Que se passe-t-il si I'on considére comme courbes aux variations les
courbes passant par les deux points fixes P, et P, ?
Quelle est la deuxieme variation de la longueur?
u . n—1 s
1/(0) = f (i — (K — X (i") v} du. . (3)
Uy =1
En effet, %™ est nul pour %, et u, quel que soit v, donec:

%

™ (U, 0) = 7 (uy, 0) = 0 .

Les formules (1), (2), (3) joueront un grand réle par la suite, nous
les appellerons les formules de la deuxiéme variation.

4. Le lemme de Synge

Nous pouvons introduire sur la surface V, donnée par les équations:
xt = x*(u, v)

dans laquelle ’élément linéaire est donné par 1’élément linéaire corres-
pondant dans V,, un systéme de coordonnées de Fermi.

Nous pouvons aussi calculer la deuxiéme variation en nous plagant
dans le cas ou les extrémités sont fixes et nous trouvons:

Uy
L"(0) = | (* — Ky n?) du
Uy
ou K, désigne la courbure intrinséque de la surface V, .

En effet, sur une surface, tout vecteur déplacé de fagon a rester per-
pendiculaire & une géodésique est déplacé parallélement & lui-méme,
par conséquent u* est nul.

En comparant ce résultat avec celui de la formule (3), on trouve

n—1

KE—2X (ip=K, . (4)
i=1
C’est cette égalité qui exprime le lemme de Synge; on en tire:
K, <K . (5)
C’est-a-dire que la courbure gaussienne intrinséque de la variété V, le

long de la géodésique g, est inférieure ou égale a la courbure riemannienne
de V, pour le méme élément plan.
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Légalité w’a liew que si p' est nul, c’est-d-dire si le plan tangent d V,
le long de g, est obtenu par le déplacement paralléle d’un vecteur le long
de la géodésique g, 1°).

Nous voyons donc en particulier que la courbure d’une surface qui
passe par une géodésique g, d’'un espace de Riemann V, ne dépend le
long de g, que du ruban des plans tangents. Il est donc légitime de parler
de la courbure d’un tel ruban.

Dans I'espace euclidien a trois dimensions, les remarques précédentes
impliquent le théoréeme:

Deux surfaces qur se touchent le long d’une droite ont la méme courbure
le long de cette droite.

En particulier les surfaces qui, comme les surfaces développables,
touchent un plan tout le long d’'une droite ont aux points de contract
une courbure gaussienne nulle.

La formule: n—1

K— 3 (p')? = K, (4)
§=il
devient ici:

Ky = —(u)* —(u?)? .

ut désigne le vecteur unitaire tangent a la surface et perpendiculaire &
la droite de contact d, les composantes u! et u? sont les projections du
vecteur uf sur deux droites quelconques perpendiculaires a d et perpendi-
culaires entre elles. Désignons par « ’angle de u* avec une direction fixe
perpendiculaire & d, nous aurons:

K, = —sin?a - 62 — cos2x- 2 = —x2

qui est une expression de la courbure gaussienne d’une surface passant
par une droite, cette courbure est négative ou nulle.

Revenons au cas général : Dans bien des cas le lemme de Synge permet
de ramener le probléme du minimum de la distance dans un ¥V, au pro-
bléme du minimum de la distance dans une surface V, .

Or, dans le cas des surfaces, nous connaissons les propriétés minimales
des géodésiques:

L’arc de géodésique joignant deux points 4 et B tels que toute solution
de I’équation de Jacobi:

y+ Ky =0

19) Ces propriétés pourraient aussi étre tirées de théorémes exposés dans les ,,Legons‘,
p. 196.
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(K, représente la courbure de la surface, la dérivée indiquée par le signe -
est prise par rapport & I'arc compté sur la géodésique) ne posséde qu’au
plus une racine dans l'intervalle 4B est un arc géodésique qui réalise
le minimum relatif de la distance, c’est-a-dire que cet arc est plus court
que toute autre courbe joignant A4 et B et située dans un certain voisinage
de la géodésique.

S’il existe une solution de I’équation de Jacobi qui posséde deux racines
a lintérieur de l'intervalle 4 B, alors I'arc de géodésique 4 B n’est cer-
tainement pas le plus court chemin entre 4 et B 4).

Chapitre deuxiéme

Les espaces complets

Quand nous cherchons & déduire des propriétés globales de toute une
variété des conséquences sur le comportement de la courbure, il est clair
que nous pensons & une variété non prolongeable, c’est-a-dire & une variété
qui ne puisse pas étre considérée comme une portion d’une variété plus
grande. Toutes les variétés dont les propriétés globales interviendront
ici seront des variétés non-prolongeables. Mais cette classe est encore
trop grande pour le but que nous nous proposons.

1. Définitions

Les espaces qui interviendront ici sont des espaces complets au sens de
MM. Hopf et Rinow que Cartan appelle des espaces normaux 3).

Les espaces complets sont astreints & 'une quelconques des quatre
conditions suivantes qui sont équivalentes entre elles:

1. Le postulat du report. On peut reporter sur chaque rayon géodésique
toute longueur & partir de son origine.

2. Le postulat d’infinité. Toute ligne divergente est infiniment longue
(on entend par ligne divergente I'image univoque et continue d’un rayon
dans le cas ou & toute suite divergente du rayon il correspond une suite
de points divergente dans la variété).

Les postulats suivants se rapportent a la variété considérée comme
espace métrique. On peut en effet toujours considérer un espace de
Riemann comme un espace métrique en définissant la distance de deux
points comme la borne inférieure de la longueur des courbes qui joignent
ces deux points.
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3. Le postulat de Cauchy: Toute suite fondamentale de Cauchy con-
verge.

4. Le postulat de compacité : Tout ensemble borné est un ensemble
compact.

2. L’espace simplement connexe de recouvrement
p

Dans le cas oui la variété n’est pas simplement connexe, il arrivera que
nous ayons besoin de nous servir de la variété simplement connexe de
recouvrement, c’est pourquoi nous rappellerons certaines propriétés de
la variété simplement connexe de recouvrement. A chaque point de la
variété simplement connexe de recouvrement V, correspond un seul
point de V,, mais & chaque point de V, correspondent en général plu-
sieurs points de ¥, . A une courbe fermée de ¥V, du type d’homotopie a
et passant par le point x correspondent des arcs de courbe joignant en
particulier deux points correspondant & x: =’ et 2”. Si 'on choisit z’
fixe, alors ” ne dépendra pas de la forme particuliére de la courbe fermée
de type a dans V,. Ainsi la classe d’homotopie a fait correspondre a
un point z’ de V'espace simplement connexe de recouvrement un point
x” qui est I'image du méme point de ¥, . Comme z” ne dépend que de
a et de 2’ , nous écrirons: z” = a(z’) .

A chaque élément du groupe fondamental correspond donc une trans-
formation de l'espace simplement connexe de recouvrement sur lui-
méme. Cette transformation est une transformation sans points doubles
et les points qui se correspondent dans cette transformation sont des
images du méme point de V,. Si nous douons la variété simplement
connexe de recouvrement dans 'entourage quelconque d’un point de la
méme métrique que celle de I'entourage correspondant de V,, nous
avons métrisé V, , et il s’ensuit que la transformation qui correspond a
I’élément a est une isométrie. Nous appellerons également a l'isométrie
qui correspond & I'élément a du groupe d’homotopie.

Encore une remarque: Considérons dans V, une ligne fermée de type a
indéfiniment parcourue dans les deux sens et passant par un point z,
il lui correspondra dans V, en particulier une ligne passant par un
point x et aussi par les points a*(x) , la ligne est fermée si I'élément a
est d’ordre fini dans le groupe d’homotopie, elle est ouverte (et diver-
gente) si a est d’ordre infini.

Si ¥V, est un espace normal, il satisfait au postulat 3 (par exemple),
et il est aisé de voir qu’alors V, satisfait aussi au postulat 3. Donc:

La variété stmplement connexe de recouvrement d'un espace complet est
ausst un espace complet.
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3. Un théoréme fondamental

MM. Hopf et Rinow?®) ont démontré pour les espaces de Riemann un
théoréme qui n’est pas vrai pour tous les espaces non prolongeables et
qui sera tres souvent appliqué dans la suite:

Théoréme fondamental des variétés complétes: On peut joindre deux
points quelconques d’une variété compléte par un arc géodésique minimal.

4. Une application aux espaces non simplement connexes

Nous allons démontrer le théoreme suivant que nous appellerons le
lemme 1.

Lemme 1: A chaque élément a(s e) du groupe fondamental d’un
espace fermé non simplement connexe correspond une ligne géodésique

fermée du type a, qui réalise le minimum de la longueur des courbes
fermées du type a .

Démonstration : Soit V, ’espace simplement connexe de recouvrement
de V, et soit ¥V, un domaine fondamental de V, dans V, . Tout élément
a (s~ e) fait correspondre & tout point z’ de ¥/ un point z” = a(z’).
Toute ligne joignant x’ & z” correspond dans I’espace ¥, & une courbe
de type a et passant par x et réciproquement. Or dans V, la distance
[(z', ") est une fonction continue des variables z’ et z”, comme z” est
une fonction continue de z’, I(x’, ") sera aussi une fonction continue '
de z’. Comme V! est un domaine compact, la fonction I(z’, z”) atteint
son minimum au moins pour un point £ . Construisons un arc géodésique
(¢, a(E)) qui réalise la distance I(£, a(£)). (Cet arc minimum existe en
vertu du théoréme fondamental sur les espaces complets.) Dans V, cet
arc correspond & un arc géodésique fermé qui fait éventuellement un
angle en £. Nous allons montrer que cette éventualité ne se présente pas,
c’est-a-dire que nous avons construit une géodésique fermée.

Supposons en effet que ’arc géodésique considéré ait un angle en &,
nous pouvons choisir sur les deux cétés de 'angle deux points z; et z,
suffisamment rapprochés de & pour que le petit triangle x, & z, soit homo-
tope 0. Dans ces conditions le cycle géodésique x, M x,x, est du méme
type a que I'arc géodésique &x, Mx,& . Or I'inégalité du triangle montre
que le second cycle est plus long que le premier; 'arc géodésique &M ¢
ne représenterait pas alors le minimum de la longueur des courbes de
son type.

Il existe donc pour chaque type a une courbe de longueur minimale
qui est une géodésique fermée.
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5. Les rayons géodésiques minimaux et les extrémités des espaces ouverts

Nous appellerons rayon géodésique minimal un rayon géodésique qui
représente la plus courte distance entre son origine et chacun de ses points.
Contrairement & ce qui se passe pour les espaces fermés, Rinow??) et
Myers?) ont montré que dans un espace ouvert, il existe par chaque point
au moins un rayon géodésique minimal. Nous allons donner une esquisse
de cette démonstration.

Soit 4 un point quelconque de la variété ouverte V, et

P,,P,,... P

m,.“

une suite divergente de points; nous construisons les géodésiques:
91=AP1’92=AP2""’gm=APm, s s

qui donnent les plus courtes distances entre leurs extrémités.

L’ensemble des directions des géodésiques ¢,, ¢,,-,¢,, €n A posséde
au moins une direction d’accumulation, il est facile de voir que la géo-
désique ayant cette direction au point 4 est une géodésique minimale.
Nous avons ainsi construit un rayon géodésique minimal par le point
quelconque 4. Il est possible qu’il n’en existe qu’un. On voit facilement
que I’ensemble des directions des rayons géodésiques minimaux par un
point est un ensemble fermé.

Une question en rapport avec celle des rayons géodésiques minimaux
est celle des extrémités des espaces ouverts 21).

Explication : Nous dirons qu’une suite de points:
P,P,,...,.P,,... (1)
diverge vers une extrémité, si, quelles que soient les suites partielles:

Q1,Qsse s @yt (2)
8,8, .., 8,,... (3)

extraites de la suite (1) et quel que soit le domaine compact D, il est
possible de trouver des courbes joignant:

Q a8, Q, 88, ...,Q,48,,...

20) W, Rinow : Uber Zusammenhiange der Differentialgeometrie im GroBen
und im Kleinen. Mathematische Zeitschrift 35 (1932). Rinow a démontré le théoréme
pour les surfaces, Myers I’a généralisé pour les variétés.

1) H, Freudenthal: Uber die Enden topologischer Raume und Gruppen.
Math. Zeitschrift 33 (1931), 692—713.
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qui n’aient, & un nombre fini d’exceptions pres, aucun point commun
avec le domaine D .

Dans tout espace riemannien ouvert il existe une suite de points qui
diverge vers une extrémité. L’exemple est fourni par une suite diver-
gente de points sur un rayon géodésique minimal g d’origine 4 . Soient
en effet deux suites partielles de cette suite:

Q13Q2"~ -;Qm,...

S, 8se ey Spse s
nous joignons:

Q 28, Q 458, ..,Q,48,,...

par les arcs de géodésiques minimaux qui sont des arcs de g. A cause
de la propriété minimale de g, les points de V’arc @, S,, sont & une distance
de A comprise entre les distances A et 4S,, qui toutes deux tendent
vers 'infini avec m . A partir d’'un certain rang ces arcs n’ont aucun
point commun avec un domaine compact donné quelconque. Dans ces
conditions nous dirons que le rayon géodésique g diverge vers une extré-
mité.
Ezxplication : Nous dirons que deux suites de points:

P,P,....,P,,...
Q1 @zre v s Qs - -

divergent vers la méme extrémité, si la suite:

Plan}P2’Q23~--:Pm’Qm""

diverge vers une extrémité.
Si les deux suites:
P, Py,....,P,,...

Ql) sz-',Qm,.. .

divergent 'une et I’autre vers une extrémité, mais ne divergent pas vers
la méme extrémité (nous dirons alors que les deux suites divergent vers
des extrémités différentes), alors il existe un domaine compact D tel que
parmi les arcs quelconques joignant:

P 3aQ, P,3Qy..., Pra@Qpn,...

il en existe une infinité qui aient des points communs avec le domaine D .
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On montre que dans ces conditions il existe un domaine D tel que,
a un nombre fini d’exceptions prés, tous les chemins joignant

P,aQ, P,aQ,..., P, 80Q,,...

ont un point commun avec le domaine D .

Un espace n’a qu’une extrémité si toute suite divergente diverge vers
une extrémité.

Exemple : 'espace euclidien.

Un espace a deux extrémités s’il existe deux suites P; et ); qui divergent
vers deux extrémités différentes et si toute suite divergeant vers une
extrémité diverge, soit vers I'extrémité de la suite P,, soit vers l'extré-
mité de la suite @,.

Ezxemple : un cylindre circulaire.

On définit de méme les espaces a 3, 4,. .., n extrémités. Il peut exister
des espaces & une infinité d’extrémités.

On démontre qu’il existe au moins un rayon géodésique minimal issu
d’un point quelconque 4 qui tend vers une extrémité choisie a ’avance.
On le construit en choisissant une suite divergeant vers l'extrémité
donnée :

P, P,,...,P

mo* *

et en menant les arcs géodésiques minimaux:
AP,, AP,,...,AP,,,...

Les directions de ces arcs géodésiques ont en 4 au moins une direction
d’accumulation. Le rayon géodésique g ayant une direction d’accumula-
tion comme tangente en 4 est un rayon géodésique minimal qui tend
vers la méme extrémité que la suite P, .

En effet, nous savons que ce rayon est un rayon géodésique minimal.
Soit D un domaine compact quelconque, nous pouvons construire une
Sphere § qui contienne D .

Pour » suffisamment grand les rayons géodésiques 4P, coupent S
en des points ¢, dont le point d’intersection  de g avec S est un point
d’accumulation. (Les points @, dépendent de facon continue de la direc-
tion des géodésiques AQ, en A .) Si @, est suffisamment prés de @ on
peut joindre ces deux points par une courbe sur la frontiere de la sphére §S.

Soit P, ,..., P; ,... une suite partielle de la suite P, telle que les
Q;, correspondants tendent vers ¢ . A partir d’'un certain j, on peut
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joindre P; & un point quelconque P de g en dehors de S de la fagon
suivante: de P; & @, sur 'arc géodésique minimal AP, , de @; & Q
sur la frontiére de S, de @ & P sur I'arc g . Nous avons ainsi évité le do-
maine D . Une suite divergente sur g tend donc vers la méme extrémité
que la suite P; , donc que la suite P, .

6. Les points econjugués sur une géodésique et les espaces a poles

La méthode que nous employerons habituellement pour répondre &
la question:

»L’arc géodésique z = 4B représente-t-il le plus court chemin entre
A et B pour des variations suffisamment petites de 1’arc géodésique?
(minimum relatif de la distance).*
consiste a ramener ce probléme, grice au lemme de Synge, au probléme
équivalent pour les surfaces.

Il est possible cependant de traiter ce probléme directement selon une
méthode que nous allons esquisser et que Myers?) a spécialement emplo-
yée 22).

Le but des considérations qui vont suivre est de montrer qu’on peut
définir les points conjugués sur une géodésique de la méme facon que
pour les surfaces et qu’il est possible de démontrer le théoréme suivant:

Si B n’est pas un point conjugué de A sur une géodésique ¢, il est
possible d’introduire dans le voisinage de B des coordonnées normales
de Riemann de centre 4 .

La deuxiéme variation de la longueur d’une géodésique est:

u(B) ) .. ’u(B)
L'(0) = (fA )(Rm,,-n nig + X (n9)2) du + " (IA) (1)

ou les différentes lettres ont la méme signification que dans le chapitre I
et ou en particulier les coordonnées choisies sont des coordonnées de
Fermi. Les équations différentielles qui correspondent & I’équation de
Jacobi dans le cas des surfaces sont alors:
;}i — Ry i n=0. (2)

On dit que 4 et A’ sont des points conjugués si une solution des équa-
tions (2) s’annulle pour 4 et 4.

On montre que les équations (2) jouissent de propriétés analogues &
celles des équations de Jacobi, c’est-a-dire:

22) Voir, & part Myers 3), Levi-Civitd 1¢) ou I'on trouve des compléments sur le sujet
traité ici.
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S’il n’existe pas sur Uarc AB de point conjugué de A , alors Uarc AB est
un minimum relatif de la distance entre A et B; sil existe sur Uarc AB
un pornt A’ conjugué de A , alors Uarc A B ne représente pas un minimum
relatif de la distance entre A et B .

Les équations (2) ont encore une autre signification. Considérons une
famille de géodésiques de paramétre « :

xt = z*(u, x) 1<t <n—1

" =u

dans le voisinage de g = A B {u(4) = 0, u(B) = u,} telle que z*(u, 0)=0
t #£ n, c’est-a-dire que la géodésique de la famille qui correspond & la
valeur & = 0 s0it ¢ . On montre que les dérivées x! satisfont aux équa-
tions différentielles linéaires (2) quelle que soit la famille choisie. On
appelle les équations (2) aussi les équations différentielles des géodésiques
voisines de g .

Quelle est dans cette nouvelle interprétation la signification des points
conjugués ?

Considérons encore ’arc géodésique g et les géodésiques voisines de g
passant par 4 . Nous pouvons déterminer ces géodésiques par les cosinus
angulaires au point 4 , c’est-a-dire par les valeurs des dérivées z(0) {i £ n}.

Les valeurs zi(u,) sont des fonctions des valeurs z*(0), nous avons les
relations:

xt () = [f*(2™(0)) t=1,...,n—1,k=1,...,n—1 . (3)

Considérons d’autre part les solutions des équations différentielles (2)
déterminées par les conditions initiales:

7*(0) =0 t=1,...,n—1.

Nous avons une relation linéaire entre les valeurs #*(u,) et 7*(0)
n—1 ‘
7 () = & a5 7% (0) i=1,2,..,n—1 . (4)
k=1

On montre que le déterminant fonctionnel des équations (3) est égal
au déterminant fonctionnel des équations (4) pour z* = 0. Or le déter-
minant fonctionnel des équations (4) s’annulle précisément dans le cas
ou les équations linéaires (4) sont dégénérées, mais cela signifie précisé-
ment que B est un point conjugué de 4 et réciproquement.

Si B n’est pas conjugué de 4 , il existe une relation biunivoque entre
les valeurs x'(u,) et les valeurs ¢(0) lorsque ces derniéres valeurs sont
suffisamment petites.
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Sur la variété géodésique formée par toutes les géodésiques normales
a g en B, il existe donc pour chaque point P dans un certain voisinage
de B une et une seule ligne géodésique issue de 4 et passant par P, et
Pon peut étendre cette correspondance a tout un voisinage de B . Autre-
ment dit on peut introduire dans le voisinage de B des coordonnées de
Riemann de centre A .

Un cas particulier ivmportant. Nous examinerons un cas qui va se pré-
senter assez souvent, c’est celui ou il existe un point P qui jouisse de la
propriété suivante:

Le point P ne possede de point conjugué sur aucune géodésique,
autrement dit, les rayons géodésiques issus de P représentent tous un
minimum relatif.

En ajoutant I’hypothése que I’espace est simplement connexe, Cartan
et Myers ont démontré qu’on peut étendre la correspondance biunivoque
entre les coordonnées de Fermi et les coordonnées de Riemann de centre
P a tout I'espace. Cela signifie que les coordonnées de Riemann de centre
P conviennent a tout ’espace.

Cela signifie en particulier qu’un tel espace est homéomorphe & ’espace
euclidien. En effet, il suffit pour avoir une représentation topologique de
Pespace V, sur I’espace euclidien R, de faire correspondre au point de V,,
dont les coordonnées de Riemann sont !, 22,... z® le point de R, dont
les coordonnées cartésiennes sont x!, x2,... a™.

Une conséquence des résultats précédents est celle-ci:

Si un espace V, contient un point P sans points conjugués, alors
Pespace simplement connexe de recouvrement est homéomorphe au R, .

Nous appellerons espace a pdole un espace qui posséde un point P
(le pole) tel que tous les rayons géodésiques issus de P soient des rayons
géodésiques minimaux. Un tel point ne posséde de point conjugué sur
aucune géodésique. Il est d’autre part simplement connexe. (Si un espace
n’est pas simplement connexe, il existe pour tout point @ un arc géo-
désique fermé faisant éventuellement un angle en @ .) Un tel espace est
donc homéomorphe au R, . Nous allons souvent faire usage des derniéres
propriétés des espaces a poles 23).

7. On peut déduire d’un théoréme général de Smith?*) le théoréme
particulier:

23) Ces résultats sur les espaces & pdles ont été exposés par Rinow 2!) et Myers 3).

24) P, A. Smith: A theorem of fixed points for periodic transformations.
Annals of Math. II. s. 35 (1934), 572—578. S. Eilenberg: On a theorem of P. A.
Smith concerning fixed points for periodic transformations. Duke math.
journal. 6 (1940).
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Toute transformation topologique de l’espace euclidien R, sur lui-
méme qui est périodique posséde un point fixe.

Comme le groupe fondamental d’un espace V, peut toujours étre
considéré comme un groupe d’isométrie sans points doubles de l’espace
simplement connexe de recouvrement nous pouvons déduire, en nous
servant des résultats du dernier paragraphe:

Si un espace V, posséde un point P sans points conjugués, alors tout
élément (# e) du groupe fondamental est d’ordre infini.

8. Les lignes géodésiques dans les espaces a poles.

Nous pouvons considérer un espace a pdle comme un espace euclidien
doué d’une certaine métrique, et nous pouvons choisir la représentation
de telle facon que les droites (au sens euclidien) issues du point P (le
pole) correspondent & des géodésiques.

Dans cette représentation une ligne géodésique g est, ou bien une droite
passant par P, ou bien une courbe qui n’est tangente & aucune droite
passant par P (les géodésiques sont les solutions d’équations différen-
tielles du deuxiéme degré). Par conséquent si I'on se borne & la deuxiéme
possibilité, le cone de sommet P et de directrice g est un cone régulier
(au sens euclidien) H .

La métrique de I’espace V, induit une certaine métrique sur le céne
H ; dans cette métrique, les droites passant par P restent évidemment
des géodésiques. Nous pouvons développer ce cone sur le plan euclidien,
il est possible que le plan euclidien soit recouvert plusieurs fois ou qu’il
ne soit pas recouvert tout entier. Nous appellerons D la portion de sur-
face de Riemann ainsi obtenue. Nous pouvons introduire sur D un sys-
teme de coordonnées polaires (au sens euclidien) de centre P, ce qui
revient sur H & un systéeme de coordonnées polaires géodésiques.

L’élément d’arc est alors donné par la formule 25):

ds?* = dr? 4+ G2(r, ¢)d¢? .

La fonction G (r, @) dépend de la courbure intrinséque de H de la facon
suivante: Soit K, la courbure de H le long de la géodésique ¢ = ¢,
G(r, ¢) satisfait & ’équation de Jacobi:

G'I'T(T’ ‘Po) + KOG(T’ 990) =0

avec les conditions initiales: G (0, ¢,) = 0 G.(0, ) =1 .

25) Blaschke: Differentialgeometrie I, § 57 (Berlin, 1930), nous appelons G2 ce
que Blaschke désigne par G.
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Une géodésique g de l'espace V, correspond naturellement aussi a
une géodésique de H et son équation différentielle est:

d ( dr Gdp\
g (12.?) — G (—a;—) =0

(Equation d’Euler-Lagrange pour le minimum de 8).

Nous introduisons I'angle ¢ (0 < v << n) que fait la tangente & la géo-
désique g dans le sens des s croissants avec la géodésique ¢ = ¢, dans
le sens des 7 croissants. On voit que:

sin yp = —C—{di—q—?—
dr
COS P =~

Si nous introduisons cette notation, 1’équation différentielle de la
géodésique devient:

dy
o G, .

Ces résultats sont généraux, nous n’avons pas fait intervenir la
courbure de l’espace V,. Ils ne donnent d’ailleurs que l'indication du
comportement de la géodésique g sur le développement du coére géo-
désique, mais pas dans l'espace V, .

Chapitre troisiéme
Les espaces de courbure partout négative

1. Le théoréme fondamental sur les espaces simplement connexes de
courbure partout négative 1¢)

Dans le cas ou la courbure est partout négative, les équations (3) du
chapitre I, 3 montrent que la deuxieme variation de la longueur d’une
géodésique est toujours positive, ce qui signifie que tout arc géodésique
réalise un minimum relatif de la longueur. Choisissons un point quel-
conque P, toutes les géodésiques issues de P sont des rayons géodésiques
qui ne contiennent pas de points conjugués de P ; si, en plus, I'espace
est simplement connexe, les résultats de 6, II montrent que le point P
est un pole et que 'espace est homéomorphe & I'espace euclidien.
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Théoréme 1: Un espace stmplement connexe de courbure partout négative
est homéomorphe a Uespace euclidien. 1)

Une conséquence immédiate, c’est que la variété simplement connexe
de recouvrement de tout espace de courbure partout négative est un
espace homéomorphe & l’espace euclidien.

Ezxemple : 11 est impossible de recouvrir d’'une métrique de courbure
partout négative une variété topologique qui serait le produit topolo-
gique d’une spheére et d’un cercle. En effet, la variété simplement connexe
de recouvrement est le produit topologique d’une sphére et d’'une droite
qui n’est pas homéomorphe & I’espace euclidien. (Elle est homéomorphe
8 ’espace euclidien dont on a enlevé un point.)

Une conséquence du fait qu’on peut considérer tout espace simple-
ment connexe de courbure partout négative comme un espace & pole,
dont le péle peut étre choisi arbitrairement, c’est que:

deux points quelconques ne peuvent étre joints que par une seule

ligne géodésique;

en particulier il n’existe pas de géodésique fermée.

2. L’allure des lignes géodésiques des espaces simplement connexes de
courbure partout négative 14)

Nous allons appliquer la méthode exposée dans le paragraphe 8, II
3 l’étude de lallure des géodésiques dans le cas ol la courbure est
partout négative.

Soit P un point quelconque de la variété que nous considérerons
comme pdle et g une géodésique quelconque ne passant pas par P.
Nous construisons & nouveau le céne géodésique de sommet P et de
directrice g sur le développement duquel nous introduisons un systéme
de coordonnées polaires géodésiques. L’élément d’arc s’exprime alors

par la formule: ds? = dr? 4 G*(r, ¢)de?

et I’équation de la géodésique g sur le développement du céne géodésique
est: dy

ou y représente 'angle de la géodésique g (dans le sens des s croissants)
avec la ligne ¢ = ¢, (dans le sens des r croissants). Nous allons démontrer
successivement les trois lemmes suivants:

Lemme 1: Dans un espace de courbure partout négative, la quantité
G, est partout positive quelle que soit la géodésique g choisie.
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Lemme 2: Si la quantité G, est partout positive et qu’il existe un
7
2
partir de M s’éloignent de fagon monotone vers I’infini.

point M sur g tel que p = — alors les deux branches de la géodésique &

Lemme 3: Sila quantité G, est positive partout, alors il existe un point
7

M sur g tel que p(M) = -5 -

Démonstration du lemme 1: Le cone géodésique que nous avons cons-
truit contient une infinité de géodésiques de V,. Il en passe une par
chaque point. D’apres le lemme de Synge, la courbure intrinséque du
céne en un de ses points est inférieure ou égale a la courbure de 1'espace
pour le méme élément plan. Par conséquent la courbure intrinséque du

cone est négative en tous ses points. Or nous savons que G (r, ¢) est la
solution de I’équation de 1’équation de Jacobi:

Grr(r, (PO) + KOG(ra (Po) =0

qui satisfait aux conditions initiales: G/(0, ¢,) = 0,G,(0, @) = 1 .
L’équation de Jacobi montre immédiatement que si K, < 0, G, croit
avec r pour r > 0. Donc G, >1>0 .

Démonstration du lemme 2: 1.’équation:

dy
qp = G

(1)

appliquée au point M montre immédiatement que pour un point R tel
que ¢(R)> ¢(M), nous aurons p(R) < p(M) = % .
Je prétends que lorsque s tend vers l'infini par valeurs positives r tend

aussi vers linfini. En effet, pour ¢ > ¢(R) I'équation (1) montre que
p < p(R) . Par conséquent:

%—zcos p >cos y(R)
r—r(R)>cosp(R){s—s(R)} .

Et 'on voit que r tend vers l'infini avec s . On démontre de méme que r

tend vers I'infini quand s tend vers I'infini par valeurs négatives.
Démonstration du lemme 3: Nous allons faire la démonstration par

Pabsurde: Choisissons un point quelconque @ sur g . Nous pouvons sup-
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T, . . .
poser que (@) > -Q-(smon nous ferions croitre s dans le sens contraire).

Supposons que lorsque s augmente, p ne devienne jamais égal & % ,

autrement dit, reste toujours supérieur a 5 Dans ces conditions 7

diminue constamment, en effet:

_ﬁiL = cos p<O0

ds ¥

tout le rayon issu de @ serait donc compris dans la sphére r < r(Q), il
faudrait alors supposer que la géodésique g fit une infinité de tours autour
de P dans le développement du coéne géodésique (en effet, la relation:

__ sin p-.ds sin p(Q) ds
p=—"0q > G

et le fait que G possede dans la spheére r < (@) un certain maximum

montrent que ¢ croit indéfiniment quand s croit indéfiniment). Comme

d’autre part G, a dans la sphére compacte » < r(¢)), un certain minimum
positif x on a:

dy

dp

py—yp)<—ax{p—9@]} .

:—_Gr<-—'“

Comme on peut choisir ¢ aussi grand qu’on veut, cela signifie que y

X ) 7 ., . .
atteindra une fois la valeur 5 Nous sommes arrivés & une contradiction.

Le lemme 3 est donc démontré.

Les lemmes 2 et 3 ont été démontrés sans qu’on tienne compte du fait
que la courbure était partout négative. Nous pourrons par conséquent
les appliquer dans le chapitre suivant.

Dans le cas olt la courbure est partout négative, nous avons démontré
plus que le lemme 1, nous avons démontré G, > 1 .

Et alors:

Supposons ¢ = 0 pour le point M & distance minimale de P . Nous
voyons:

ol<|v—3] .
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T

5 < @< 0,

Comme o varie entre = et 0, ¢ varie entre ¢, et ¢, (——
0< ¢y <=
‘31 92

Nous résumons par le théoréme:

Théoréme 2: Toute géodésique g qui ne passe pas par un point P d’une
variété de courbure partout mégative posséde un point ¢ distance minimale
de P . A partir de ce point les deux branches de la courbe s’éloignent de P
de fagon monotone vers U'infint.

Nous allons déduire du développement du cone géodésique de sommet
P et de directrice g d’autres conséquences.

3. La somme des angles d’un quadrilatére géodésique dans une espace
simplement connexe de courbure partout négative

Théoréme 3: La somme des angles d’un triangle géodésique dans un
espace stmplement connexe de courbure partout négative est inférieure d
deux droits.

On entend par angle de deux rayons géodésiques évidemment la déter-
mination de cet angle positive et inférieure a deux droits.

Le théoréme a souvent été démontré, mais pour des triangles suffi-
samment petits 26).

Démonstration : Soit ABC un triangle géodésique quelconque. Nous
considérons 4 comme pdle et nous construisons le cone géodésique de
sommet 4 dont la géodésique BC est une directrice. Nous développons
ce cone comme nous 'avons fait dans 8, II, I’équation de la géodésique
g = BC est:

Y g1
do T
d’otu 'on tire:
Yi— Yo > P2— @1 -

Or y, c’est 'angle y, v, est le supplément de I'angle § du triangle
ABC, ¢, — ¢, étant obtenu par un développement est plus grand que
I'angle « du méme triangle. On trouve:

T—B—7>Q— >0,
c’est-a-dire :
x+p+y<m.

Ce qu’il fallait démontrer.

%) Voir par exemple ,,Lecons‘‘ p. 234.
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Nous sommes en mesure de démontrer facilement le théoréme:

Théoréme 4: La somme des angles d’un quadrilatére géodésique dans
un espace simplement connexe est inférieure a quatre droits.

Démonstration : Nous tracons la ligne géodésique BD, et ainsi nous
obtenons les deux triangles géodésiques A BD et BCD . Pour ces deux
triangles nous pouvons appliquer le théoréme 3. Soient «’, B/, 8’ les
angles du triangle ABD et 87, v, 6" les angles du triangle BCD :

x + B+ 0 <=
‘B/I_’_7)_i__al/'<;’z
d’ou:

a+ B +8)+y+ (0 + ) <2xn.

Or 'angle ABC est inférieur & la somme des angles ABD et CBD, ou
éventuellement égal & cette somme:

B+ 8"<p
de méme:

8+ 6" o
d’ou 'on déduit:

«+pf+y+o<2m.

4. Certaines isométries des espaces simplement connexes de courbure
partout négative

On peut considérer le groupe fondamental d’'un espace de Riemann
comme groupe d’isométries de I’espace simplement connexe de recouvre-
ment comme nous 'avons vu dans 2, II. Les isométries de ce groupe sont
des isométries sans points fixes. C’est pourquoi nous allons étudier les
isométries possibles d’un espace simplement connexe de courbure par-
tout négative sans aucun point fixe. En particulier, nous étudierons les
isométries qui transforment une géodésique en elle-méme en induisant
une translation sur cette géodésique. Ces isométries sont analogues aux
translations de 1’espace hyperbolique. Nous les appellerons des ,,trans-
lations®‘.

Théoréme 5% : Toute isométrie d’'un espace simplement connexe de cour-
bure partout négative ne transforme pas plus d’une géodésique en elle-méme.

Démonstration : Supposons qu’une isométrie transforme les géodé-
siques g, et g, en elles-mémes et soient A4, et 4, deux points situés respec-
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tivement sur g, et g,, soit encore g la géodésique 4,4, . L’isométrie fait
correspondre & A,, 4, et g, les points 4], 4, et la géodésique g’ (4] et
Ag’ se trouvent respectivement sur g, et g,). Comme g, se transforme en
elle-méme par I'isométrie, celle-ci fera correspondre & l'angle 4,44
I'angle congruent A4;4;4) . De méme langle 4,4,4, est congruent &
Iangle AJA;A}, de telle sorte que la somme des angles du quadrillatére
géodésique A4,4,4;A4] est égale & quatre droits, ce qui est impossible
d’aprés le théoreme 4.

Théoréme 6*: Si une isométrie a est échangeable avec une autre 1somé-
trie b, et que a transforme une géodésique g en elle-méme, alors b transforme
aussi g en elle-méme.

Démonstration : Je prétends qu’avec les hypothéses de 1’énoncé, la
géodésique b (g) est transformée en elle-méme par I'isométrie a, en effet:

a(b(g)) = ab(g) = b(a(g)) = b(g) .

D’aprés le théoréme 5%, cette géodésique est donc identique & ¢ .
Nous allons maintenant donner quelques propriétés des groupes dis-
continus d’isométrie.

Théoréme 7*: Les sous-groupes abéliens d’un groupe discontinu d’iso-
métries sans points fixzes qui contiennent au moins une ,translation* sont
des groupes cycliques.

En effet, d’aprés ce qui précéde, nous savons que tous les éléments
d’un groupe abélien qui contiennent une ,,translation‘ sont des ,,trans-
lations* sur la méme géodésique. Comme le groupe est discontinu et que
ses éléments n’admettent pas de points doubles, alors le groupe est déter-
miné complétement par le groupe de translations des points de la géo-
désique fixe commune et ce groupe est un groupe cyclique.

St le groupe d’isométrie ne contient que des tramslations, alors tout sous-
groupe abélien du groupe d’isométrie est un groupe cyclique.

Il est important d’autre part de connaitre le domaine fondamental
d’un groupe cyclique infini de ,,translations®.

La chose est, dans le cas des espaces de courbure partout négative,
particulierement simple. Nous savons en effet (théoréme 2) que par un
point extérieur on ne peut mener qu’'une géodésique qui coupe & angle
droit une géodésique donnée.

Soit a la ,translation‘‘ qui engendre le groupe cyclique, et g la géodé-
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sique fixe qui correspond & @, P est un point quelconque de V, . Menons
par P la géodésique » normale & g, et soit ) le pied de la normale. La
,,translation‘‘ a fait correspondre au point ¢ un point a (@) sur ¢, a la
normale n une géodésique a(n) normale & g, & P un point sur la géodé-
sique a(n) tel que la distance a(P)a(Q)) soit égale a la distance PQ .
D’apres ce qui précede, on voit facilement que le domaine fondamental
est le domaine compris entre deux variétés géodésiques normales a g (ces
variétés géodésiques n’ont aucun point commun) et passant respective-
ment par les points S et a(S), ou S est un point quelconque de g . Ce
domaine fondamental n’est pas borné et nous déduisons le théoreme:

Théoréme 8* : Le domaine fondamental d’un groupe cyclique de ,trans-
lations'‘ n’est pas borné.

b. Les groupes fondamentaux des espaces de Riemann de courbure
partout négative

Dans 2, IT nous avons vu que le groupe fondamental d’une variété
non simplement connexe peut étre considéré comme un groupe d’iso-
métries de l’espace simplement connexe de recouvrement. Une géodé-
sique fermée du type d’homotopie a correspond dans I’espace simplement
connexe de recouvrement & une ligne géodésique invariante par rapport
a isométrie a. Les théoremes 5*, 7* et 8% qui concernent les groupes
d’isométrie de I’espace simplement connexe de recouvrement deviennent
alors quand on les considére comme des théorémes sur les groupes fonda-
mentaux:

Théoréme 5: Dans un espace de courbure partout négative, il existe au
plus une géodésique fermée de chaque type d’homotopie.

Théoréme 7: Siv un sous-groupe abélien du groupe fondamental d’un
espace de courbure partout négative contient un élément pour lequel il cor-
respond une géodésique fermée, ce sous-growpe est cyclique.

Et enfin:
Théoréme 8: Le groupe fondamental d’une variété fermée de courbure
partout négative n’est pas un groupe cyclique.

Dans le cas particulier des espaces fermés, le lemme 1 de 4, II assure
Vexistence d’une géodésique fermée correspondant & chaque classe d’ho-
motopie et le théoréme 7 devient:

Théoréme 9: Tout sous-groupe abélien du groupe fondamental d’un
espace fermé de courbure partout négative est un groupe cyclique.
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Des théoremes 8 et 9 nous pouvons déduire le théoréeme 10:

Théoréeme 10: Le groupe fondamental d’une variété fermée de courbure
partout négative n’est pas un groupe abélien.

Une conséquence du théoréme 10 c’est que le tore de » dimensions ne
saurait étre recouvert d’une métrique de courbure partout négative.
On?') avait déja démontré le fait pour le cas de la courbure constante
négative, c’est-a-dire pour le cas des formes spatiales hyperboliques.
Mais les théorémes 8 et 9 permettent de montrer davantage, par exemple
que le produit topologique, d’un cercle et d’une surface de genre 2 ne
peut pas étre recouvert d’une métrique de courbure par tout négative.
En général aucun produit topologique de deux variétés topologiques
fermées ne peut étre métrisé par une métrique de courbure partout
négative (théoréme 9).

Remarque : D’apres 7, II nous savons que tous les éléments du groupe
fondamental d’un espace de courbure partout mégative sont d’ordre infini.
En effet, la variété simplement connexe de tout espace de courbure par-
tout négative est homéomorphe & ’espace euclidien.

Chapitre quatriéme
Les espaces de courbure partout positive

1. La généralisation d’un théoréme de Bonnet

Théoréme 11: Un espace complet dont la courbure est, pour tout élément
plan, supérieure ¢ un nombre positif k est un espace fermé dont le diamétre

7
est inférieur a —— . 3), °
f Vk ), %)

Démonstration : 1l s’agit de montrer que si 4 et B sont deux points
quelconques de I'espace, 'arc géodésique minimal qui les joint (cet arc
existe puisque l’espace est complet) est de longueur inférieure & T/% .
Soit g ’arc minimal 4B et R un ruban obtenu en déplacant par paral-
lélisme un vecteur perpendiculaire & g. Nous pouvons construire dans le
voisinage de g une surface V, qui contienne le ruban R . D’apres le lemme
de Synge nous savons que la courbure gaussienne de la surface V, le
long de g est égale & la courbure riemannienne de V, pour le méme élé-
ment plan tangent a V, le long de g, cette courbure est donc aussi supé-
rieure & k. Nous savons alors que, déja pour les variations de la géodé-

: . . 7 :
sique sur V,, un arc qui serait plus long que Ve ne serait pas un arc
géodésique minimal.
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Remarque : La courbure d’un espace fermé de courbure partout posi-
tive posseéde un certain minimum positif. En effet, ’ensemble des éléments
plans d’un espace fermé est un ensemble compact, et la courbure est une
fonction continue des éléments plans. Le minimum de la courbure est
donc atteint pour un certain élément plan. Ce minimum est donc positif.

Théoréme 12: Le groupe fondamental d’une variété fermée de courbure
partout positive est fini. 9)

Démonstration : D’aprés la remarque, la courbure est partout supé-
rieure & une constante k. La courbure de l’espace simplement connexe
de recouvrement ¥V, est, pour chaque élément plan, égale 4 la courbure
de I’élément plan correspondant dans V,, elle est donc aussi supérieure
a k. V, est donc aussi, d’aprés le théoréme 11, un espace fermé, donc
borné et le groupe fondamental ne saurait étre infini.

2. D’autres propriétés des espaces fermés de courbure partout positive

Théoréme 13: Un espace orientale fermé V, de courbure partout positive
et de dimension paire est simplement connexe.

Ce théoréme a été démontré par Synge.

Nous démontrerons d’abord le lemme:

Lemme: Dans un espace de courbure positive et de dimension paire il
n’existe pas de géodésique fermée plus courte que toutes les lignes fermées
voisines et telle que Uorientation soit conservée quand on la parcourt une fois.

Démonstration du lemme : Supposons qu’il existe une telle géodésique g,
je prétends que nous pourrons construire une surface V, de courbure
positive dans le voisinage de g .

Choisissons un point quelconque P de g et en ce point un vecteur p
perpendiculaire & g que nous transportons parallélement & lui-méme le
long de g . Quand, apres avoir décrit la courbe g, nous sommes revenus
au point P, le vecteur v a pris la position v’. Le vecteur v’ ne coincide
en général pas avec le vecteur v, mais en tout cas, v’ est perpendiculaire
34 ¢g. En P nous avons construit une certaine correspondance (v, v’)
entre les vecteurs perpendiculaires & g . Cette correspondance est ortho-
gonale, ce qui est évident & cause des propriétés du déplacement paral-
lele. Or I'espace des vecteurs perpendiculaires & g au point P est un
espace euclidien & » — 1 dimensions et la correspondance (v, b’) est une
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transformation orthogonale de cet espace laissant invariant le point P.
Les transformations orthogonales d’un espace euclidien laissant invariant
un point fixe sont des rotations accompagnées ou non de symétrie. Ici,
comme nous supposons que 'orientation est conservée, il ne peut s’agir
que de rotations.

Or les rotations autour d’un point P d’un espace euclidien & un nombre
impair de dimensions laissent invariante au moins une direction passant
par P. Cela signifie qu’il existe au moins un vecteur p, invariant dans la
transformation (v, v’).

Si nous déplagons les vecteurs v, et —p, parallélement & eux-mémes
le long de ¢, nous obtenons un ruban continu le long de ¢ .

Nous construisons une portion de surface quelconque V, contenant
ce ruban. Le long de g la courbure K, de V, est positive (lemme de Synge).
Nous allons montrer que, déja pour les variations effectuées dans le
champ V,, g ne saurait étre une courbe fermée minimale.

En effet, construisons sur V, un réseau (u, v) de coordonnées de Fermi,
c’est-a-dire que les coordonnées d’un point voisin de g sont données:

v par la longueur de la géodésique (sur V,) perpendiculaire & g .

» par la longueur de I’arc de g, d’une origine fixe au pied de la perpen-
diculaire.

g est alors donné par ’équation v = 0.

Considérons comme ,,courbes aux variations‘ les courbes fermées

v = const.

La formule (2) de la deuxiéme variation (Chapitre I) nous donne:

8

L"(0) = | (n* — Kn?) du + o |

0 0
ou s représente la longueur de g .

Or, dans notre cas, les coordonnées (u, v) coincident avec les coordon-
nées de Fermi, par conséquent 5 =1, 5 = 0, d’autre part le point
(s, 0) coincide avec le point (0, 0), le second terme du second membre

est donc nul. Il reste:
8

L(0) ::j'——-Kdu .

0

Si K est positif, la deuxiéme variation est négative, il ne saurait s’agir
d’un minimum. Nous avons donc démontré le lemme.
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Démonstration du théoréme 13: Un espace fermé orientable non simple-
ment connexe posséde une géodésique fermée minimale pour chaque
type d’homotopie, si 'on décrit 1'une de ces géodésiques l’orientation
est conservée. Or ceci d’apres le lemme ne se produit jamais pour des
espaces de courbure partout positive.

Du théoréme 13 nous pouvons déduire le

Théoréme 13': Un espace mon orientable fermé de courbure partout
positive et de dimension paire posséde un groupe fondamental d’ordre 2.

Théoréme 13”: Un espace de courbure partout positive et de dimension
paire est orientable °).

On démontre le théoréme 13”7 4 I'aide du lemme:

Lemme : Dans un espace de courbure partout positive et de dimension
imparre il n’existe pas de géodésique fermée plus courte que les lignes fermées
voisines et telle que Uorientation change lorsqu’on la parcourt une fois.

La démonstration est tout-a-fait analogue & celle du lemme précédent.

3. Un théoréme sur les espaces ouverts de courbure partout positive

On sait peu de choses sur les espaces ouverts de courbure partout
positive. Nous allons démontrer un théoréme de Cohn-Vossen 28).

Théoréme 14 : Les espaces ouverts de courbure partout positive ne peuvent
avoir qu’une extrémité.

Nous établirons d’abord deux lemmes:

Lemme 1: A chaque géodésique g passant par un point P d’un espace
de courbure partout positive on peut faire correspondre un nombre r tel
que st les points Q et R sont situés sur g de part et d’autre de P et que :

PQ>r PR>r ,

alors DUarc de géodésique QPR ne représente pas le plus court chemin QR .

27) 11 ne semble pas que Synge ait démontré le théordme 13 .

28) La démonstration de Cohn-Vossen 12) différe un peu de la nétre. Cohn-Vossen se sert
de deux lemmes: 1. Tout espace qui posséde plus d’une extrémité posséde une ,,droite
géodésique* (ligne géodésique qui représente toujours le plus court chemin entre deux
quelconques de ses points). 2. Dans un espace de courbure partout positive, il n’existe pas
de droite géodésique. On construit la droite géodésique du lemme 1 par un procédé de
convergence, le lemme 2 est une conséquence immédiate de notre lemme 1.
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Démonstration du lemme 1: Choisissons par P une direction v quel-
conque, perpendiculaire & la géodésique g et transportons cette direction
par parallélisme le long de g. Nous obtenons ainsi un ruban & deux
dimensions le long de g . D’aprés le lemme de Synge, il correspond &
chaque point de g une certaine courbure K, du ruban et cette courbure
est positive. Examinons la solution de 1’équation différentielle:

y+ Koy =0 (1)

définie par les conditions initiales: y(P) =1, y(P)=0 .

Choisissons deux points L ev M de part et d’autre de P a la distance
arbitraire ¢ de P, mais suffisamment prés de P pour que y soit positif
entre L et M. Comme, dans 'intervalle LM, la concavité de la courbe
y = y(u) est tournée vers le bas, nous aurons: y(L)> 0 et y (M) < 0.
Les tangentes & la courbe en L et M coupent 'axe des w en 7' et en U’.
Comme K, est positif, la courbe coupe I’axe des » au moins en un point
T compris entre 7'/ et P, et en un point U compris entre P et U’. Nous
pouvons maintenant construire entre 7'/ et U’ (par exemple) une portion
de surface V, qui admette le ruban R entre ces deux points. g est encore
une géodésique pour la surface et la courbure de V, le long de g est K .
L’équation (1) est ’équation de Jacobi pour la surface V, le long de ¢ .
Et nous venons de montrer qu’il existe une solution de cette équation
dont deux racines 7' et U sont de part et d’autre de P. Tout arc qui
contient I’arc 7'U n’est donc pas un arc minimal déja pour les variations
sur ¥V, . On peut choisir par exemple » comme la plus grande des deux
longueurs (sur g) PT' et PU’. Toute valeur plus grande jouit naturelle-
ment de la méme propriété, qui est celle énoncée dans le lemme 1.

Remarque : Les distances PT’ et PU’ qui nous ont servi & apprécier
r ne dépendent que de la courbure dans le voisinage LM de P choisi
arbitrairement. Si 'on remplagait la courbure par une courbure plus
faible et qu’on fit la méme construction, alors les distances correspondantes
PT" et PU” seraient plus grandes respectivement que PT’ et PU’
comme le montre le théoréme de comparaison de Sturm. Soit par exemple
ky un nombre positif qui soit une borne inférieure de la courbure dans
Pintervalle LM . Nous obtenons alors comme solution de 1’équation:

ﬁ;) + ky=0
y = cos (VE, )
et nous trouvons:

PT" — PU" =t + VII? cbg (VEe 1) -

0
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Cette remarque permet de démontrer le lemme 2:

Lemme 2: Soit D un domaine finy de la variété V,,. Il existe un nombre
r fixe qui jouit pour tout point Q de D et pour toutes les géodésiques passant
par @ de la propriété énoncée dans le lemme 1 par rapport ¢ P.

Démonstration du lemme 2: Définissons le domaine D,, c’est-a-dire le
domaine des points de V, dont la distance a D est inférieure ou égale
a t. Nous choisissons ¢ arbitraire positif. D, est un domaine compact.
La courbure a alors dans le domaine D, un minimum positif que nous
appellerons k, .

Si nous choisissons une géodésique passant par un point quelconque
@ de D, il est certain que le segment de géodésique de centre @ et de
longueur 2¢ est tout entier dans le domaine D,. Par conséquent tout le
long de ce segment la courbure est supérieure & k,. D’aprés la remarque
il suffit de choisir: 1

r=14-4 v ctg (Vk,t) -

0

On voit que 7 ne dépend pas du point choisi Q.

Démonstration du théoréme 14: La démonstration se fait par 'absurde.
Supposons que la variété ait plusieurs extrémités, alors il existe deux
suites divergentes de points:

pP,P,,. .. ,P,,...
Q1 @sse-, @
telles que les lignes joignant:
P,a@,, PaQ,, ... ,P,aQ,,...

aient toutes des points communs avec un certain domaine D compact.
Nous sommes alors sfirs qu’en particulier les arcs géodésiques minimaux:

P.Q,, P,Q,,..., P,Q,.,...

ont des points communs avec le domaine D. A ce domaine nous pouvons
attribuer un nombre r d’aprés le lemme 2. Comme les suites P,, et @,,
sont divergentes, il existe une paire de points P,,, @,, telle que la distance
de chacun de ces points & D soit supérieure & r, mais cela est impossible
puisqu’alors ’arc géodésique minimal ne représenterait pas la plus courte
distance P,,@Q,, .

Exemple : Le produit topologique d’une sphere et d’une droite (homéo-
morphe & l’espace euclidien dont on a enlevé un point) ne saurait étre
recouvert d’une métrique de courbure partout positive. Cet espace posséde
en effet deux extrémités.
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4. Les espaces a poles de courbure partout positive

Tous les espaces simplement connexes de courbure partout négative
sont des espaces a péles; il existe des espaces de courbure partout posi-
tive qui ont un poéle, comme le montre I'’exemple de I’espace donné par
Pélément linéaire: . .

ds? = 3] (dz*)? + (X xidx?)? .
i=1 i=1
On montre d’autre part qu’on peut aussi construire des surfaces ouvertes
simplement connexes et de courbure partout positive qui ne contiennent
aucun pdle. Dans le cas particulier des espaces & pdles on peut démontrer
quelques théoremes.

Théoréme 15: L’ensemble des pdles d'une variété a pole de courbure
partout positive est borné. 13)

Démonstration : Soit P un point quelconque de la variété. Nous mon-
trerons qu’'on peut trouver un nombre fixe r qui jouit de la propriété:

Par un point quelconque § qui est & une distance de P supérieure & r
il passe un rayon géodésique qui n’est pas un rayon géodésique minimal.

Cette distance r est celle que le lemme 2 (3, IV) attribue & I’ensemble
constitué par le seul point P. Soit, en effet, un point ¢ & unedistance de
P supérieure & r, nous pouvons prolonger la géodésique QP au dela de
P d’une distance supérieure & r en K. Le lemme 2 (3, IV) indique que
Parc géodésique QPR n’est pas un arc géodésique minimal et que par
conséquent tous les rayons géodésiques issus de @ ne sont pas des rayons
géodésiques minimaux.

Théoréme 16 : S’il existe dans un espace V,, de courbure partout positive
un point P qui ne posséde de points conjugués dans aucune direction, alors
Despace est homéomorphe a Uespace euclidien et le point P est un pole.

Démonstration : D’aprés ce qui a été exposé en 5,11, nous savons
qu’'une variété qui contient un point P sans point conjugué dans aucune
direction posséde une variété simplement connexe de recouvrement V,,
homéomorphe au R, et que les points P, qui correspondent dans V,
& P sont des poles de V. Ces points P, ne sauraient étre en nombre infini
car alors ils formeraient un ensemble non borné (les points P; ne peuvent
avoir de point d’accumulation) ce qui est en contradiction avec le théo-
réme 15 appliqué & V,. Ils ne sauraient, d’autre part, étre en nombre
fini (# 1) car alors le groupe fondamental serait lui aussi fini ce qui est
en contradiction avec les remarques de 7, II appliquées & V., homéo-
morphe au R, .
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Nous allons démontrer au sujet de I’allure des géodésiques des pro-
priétés analogues & celles qui sont énoncées par le théoreme 3. Nous utili-
serons les lemmes 2 et 3 grace auxquels nous avons démontré ce théoreme
et il nous faut démontrer un lemme analogue au lemme 1.

Lemme: Soit, dans un espace de courbure partout positive, un rayon
géodésique g tssu d’un point P ; il existe une surface V, contenant g,
telle que la solution de Uéquation de Jacobi :

y+ Kyy=0 (K, courbure de V, le long de g)

qui satisfait aux conditions initiales : y(P) = 0, y(P) = 1 ait en un point
une dérivée négative ou nulle, alors g n’est pas un rayon géodésique minimal.

Démonstration du lemme: Si la dérivée y est en un point négative ou
nulle, il existe un premier point @ pour lequel elle est nulle, et y est
positif entre P et Q.

La surface V,, que nous appelons la surface I(K,= K,;) peut étre
recouverte d’un systéme de coordonnées analogue & celui que nous avons
introduit dans le chapitre I: La géodésique g est la courbe » = 0. Les
courbes wu; = u, sont des courbes orthogonales & g et u; mesure l'arc
sur la courbe g & partir par exemple de l'origine P. La ligne v; = v,
est obtenue en reportant sur les lignes u; = wu, les distances y;(u)v,.
Nous avons ainsi défini un systéme de coordonnées u, v (singulier en P)
dans le voisinage de la géodésique g .

Au point @ la ligne » = u(Q)) possede une tangente perpendiculaire &
g que nous déplacons parallélement & elle-méme le long de g. La cour-
bure du ruban ainsi obtenu est positive (lemme de Synge), nous désigne-
rons cette courbure par Ky .

Choisissons un point R au deld du segment PQ suffissmment prés de @
pour que la solution de I’équation:

2;}11 + Kopthr = 0

déterminée par les conditions initiales: yy(R) = e > 0, g1 (R) = 0 soib
positive en ¢. Nous donnerons alors au nombre e une valeur telle que:
% (@) = yu(@) -

Au point R et & la géodésique g correspond un nombre  (lemme 1, 3, IV)
tel que le premier point S d’intersection de la courbe II avec 'axe des u
a droite de R, soit & une distance de R inférieure & r. Nous pouvons alors
construire une surface II contenant le ruban II entre @ et R, ainsi que
la courbe u; = %;(Q) .
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Sur la surface IT nous construisons un systéme de coordonnées ana-
logue & celui de la surface I. Les lignes u;; = u, sont des lignes normales
a g, et I'on choisit ces courbes de telle sorte que la ligne u;; = uy;(Q)
coincide avec la ligne u; = %;(Q) . On obtient les lignes v;; = v, en repor-
tant sur les lignes u;; = u, la distance (%), -

Enfin, nous construisons la famille de courbes définie de P & § par les
conditions:

De P 4 @ une courbe de la famille est une courbe v; = v, sur la surface I,

qui se continue sur la surface II, par la courbe vy = v, .

(Les deux arcs de courbe se raccordent vraiement & cause de la construc-
tion de la surface II.)

Nous pouvons calculer la deuxieme variation de la longueur de la
courbe g pour cette famille de courbes, cette variation est la somme de
la variation L7 (0) de P & @ sur la surface I et de la variation Lj;(0) de
Q a S surla surface II1.

La formule (1) de 3,1:

uQ . uQ
Li(0) = | (gi — Kornp) du + o7’ |
up up
us ‘us
L{'I(O) = ‘f (77%1 — Ko 77%1) du + 7 |
uQ uQ

Une intégration partielle nous donne:

uQ "Q
L{(0) *§ﬂ1(ﬂ1+K01ﬂ1)du+ﬂ’7 | + 7 |
up up
ug
Li,I(O) "—_f 11 7711 -} Kon’?n) du + 7777 | + 7711 |
%Q uQ

Or ici la valeur de 7 est y. Onvoit que les intégrales sont nulles puisque
ny et nyy satisfont & des équations de Jacobi. Comme toutes les courbes
de la famille passent par les points P et S:

n , 7t sont nuls au point P.

Ny, 7 sont nuls au point § .
Il reste donec:

L"(0) = L{(0) + L{(0) = (mmy — fuoim) + (0 — 7fr)

Les valeurs 7, 5, %™ étant prises au point Q .
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Or les valeurs 7" et 7% ne dépendent que de la courbe u = u(Q) qui
est la méme pour les deux surfaces I et II. D’autre part:

1@ =y@, @ =0 y;@>0
d’ou:
L’(0)<0

ce qui est incompatible avec le fait que g soit un rayon géodésique minimal
relatif. Le lemme est donc démontré.

Nous sommes en mesure de démontrer le théoréme:

Théoréme 17 : Toute géodésique g qui me passe pas par le pole P d’une
variété a pole de courbure partout positive posséde un point & distance mini-
male de P . A partir de ce point les deux branches de la courbe s’éloignent
de P de fagon monotone vers U'infini.

Démonstration : Soit g une géodésique quelconque ne passant pas par
P, nous pouvons faire, comme dans 8, II, la construction du cone géo-
désique de sommet D et de directrice g sur lequel nous introduisons un
systéme de coordonnées géodésiques, I’élément d’arc est donné alors par
la forme:

ds? = dr? + G*d ¢?

et le lemme que nous venons de démontrer montre que quelle que soit
la géodésique g la quantité G, est positive (tout rayon géodésique issu
de P est un rayon géodésique minimal), ce qui est équivalent au lemme 1
(2, III).

Nous pouvons alors appliquer les lemmes 2 et 3 de 2, I1I et nous trou-
vons le théoreme 17.

En particulier nous avons démontré que dans un espace @ pdle de cour-
bure partout positive il n’existe pas de géodésique fermée.

(Recu le 5 juillet 1942.)
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