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Quelques propriétés globales
des espaces de Riemann

Par Alexandre Preissmann, Zurich

Introduction
1. Le problème général

Des recherches récentes ont eu pour but d'étendre aux variétés de
Riemann des résultats connus sur les surfaces.

Comme les résultats ne sont pas encore très étendus, il va être encore
possible de donner dans le présent travail une idée d'un large secteur
de ces recherches*).

Afin de donner au problème qui sera traité ici un énoncé et une
signification précis, il est nécessaire d'introduire quelques définitions.

On entend par variété topologique à n dimensions un espace topologique

connexe tel que tout point possède un entourage homéomorphe
à l'intérieur d'une sphère de l'espace euclidien à n dimensions. On peut
alors recouvrir une telle variété par des systèmes de coordonnées
cartésiennes qui soient définis chacun pour une portion de variété et qui
empiètent les uns sur les autres x1, x2, xn Si en tout point où deux
systèmes se recouvrent la transformation des coordonnées est analytique

et de déterminant fonctionnel non-nul on dit que la variété est
analytique.

On passe aux variétés analytiques de Riemann en donnant pour chacun
des systèmes de coordonnées des fonctions analytiques gtJ telles que la
forme gtjdxidxi soit définie positive et invariante quand on passe d'un
système de coordonnées à un autre. On définit alors la longueur d'un
arc de courbe PtP2 P^r l'expression:

où l'intégrale est prise sur la courbe.
On métrise les espaces de Riemann en définissant comme distance de

deux points la borne inférieure de la longueur des courbes qui joignent
ces deux points. Il est clair que si les deux points sont différents la distance
est positive.

*) On trouve un exposé sur le problème qui est traité ici et sur les principaux résultats
obtenus dans; H. Hopf : Differentialgeometrie und topologische Gestalt;
Jahresbericht der D.M.V., 41. Band (1932), 209—229.
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Nous sommes maintenant en mesure de définir, comme pour les
surfaces, des caractéristiques locales de la géométrie différentielles des

variétés : le transport par parallélisme, la valeur de la courbure, l'équation
des lignes géodésiques, etc. Ces propriétés sont étudiées en détail en particulier

dans les ,,Leçons sur la géométrie des espaces de Riemann" de

Cartan, dont nous avons gardé les notations. Toutes les propriétés locales,
dont nous pourrons avoir besoin, se trouvent expliquées dans les

,,Leçons" 2).

Il ne sera question ici que des propriétés internes des espaces de Rie-
mann, c'est-à-dire des propriétés indépendantes du fait que ces espaces
puissent être plongés ou non dans un espace euclidien de dimension
supérieure.

Il est possible que certains des résultats énoncés puissent être obtenus
sans qu'on fasse d'hypothèses sur la nature analytique des fonctions

9a »
e^ qu'il suffise de supposer qu'elles sont dérivables un nombre

suffisant de fois, mais cette question ne nous occupera pas ici.

Le problème général est le suivant:
Quelles sont les relations qui lient les propriétés locales d'une variété

d'une part et ses propriétés globales d'autre part?

Un certain nombre de théorèmes connus fournissent déjà des réponses
partielles. Ils ont été démontrés par différentes méthodes. Le but de

ce travail est d'abord de démontrer ces théorèmes par une méthode unique,
puis d'ajouter quelques nouveaux théorèmes démontrés d'ailleurs par la
même méthode.

Suivant le point de vue d'où on l'envisage le problème général présente
deux aspects principaux: le problème du prolongement et le problème de

la métrisation.
Le problème du prolongement se présente comme un problème

analogue au problème du prolongement des fonctions analytiques : On donne

une portion suffisamment petite d'une variété, la prolonger de façon à

obtenir toute une variété *).
Le problème de la métrisation est, dans une certaine mesure, le

problème inverse: On donne une variété topologique, trouver des fonctions

g{j de façon à métriser toute cette variété.

2) E. Cartan: Leçons sur la géométrie des espaces de Riemann (Paris, 1928).
(Nous abrégerons ,,Leçons"). Les éléments de topologie, dont nous pourrions avoir
besoin, se trouvent également expliqués dans les ,,Leçons". Les désignations sont les
mêmes. (Nous appelons groupe fondamental, ce qui dans les ,,Leçons" est appelé groupe
de connexion.)
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Avant d'esquisser les principaux résultats obtenus, il faut éelaircir
un point essentiel: Que doit-on entendre par l'expression: toute une
variété ou bien une variété complète?

On pourrait dire : une variété complète est une variété qui ne saurait
être prolongée, c'est-à-dire une variété qui ne saurait être considérée
comme portion d'une variété qui la contiendrait. En tout cas, les variétés
prolongeâmes doivent être exclues. MM. Hopf et Rinow ont atteint ce
but en imposant aux variétés complètes l'une ou l'autre de quatre conditions

dont ils ont démontré l'équivalence3). Les espaces normaux de
Cartan ont la même extension que les espaces complets. Les espaces
complets (normaux) forment une sous-classe véritable de la classe des

espaces non-prolongeables. Il y a cependant intérêt à ne considérer que
les espaces complets, et c'est ce que nous ferons ici. Dans le chapitre II
nous étudierons quelques propriétés des espaces complets.

2. Le problème de la métrisation

Nous ne considérerons que très incidemment le problème du prolongement1)

et c'est le problème de la métrisation qui fera l'objet du travail.
Dans le problème de la métrisation, il s'agit de tirer de la connexion

topologique d'un espace de Riemann des conclusions sur les possibilités
de choisir les fonctions gl3 qui déterminent la métrique. Tous les travaux
qui seront discutés ici sont consacrés au problème suivant:

De la connexion topologique d'un espace déduire des conséquences au
sujet du comportement de la courbure, ou, de façon plus restrictive:

Quelles sont les variétés topologiques qu'on peut métriser par une métrique
dont la courbure garde un signe constant

Ce problème est évidemment une généralisation du problème spatial
de Clifford-Klein. On peut en effet considérer les formes spatiales comme
des variétés qu'on peut métriser par des métriques de courbure constante.
C'est ce cas particulier qui a été traité dans les premiers travaux sur le
sujet de la métrisation1).

Un autre cas particulier important qui a été abondamment traité est
celui des variétés riemanniennes à deux dimensions, c'est-à-dire des
surfaces. Le cas des surfaces est passablement plus facile à traiter que le
cas général parce qu'on peut se servir avec avantage de la formule de

3) H HopfundW Bmow. Ûber den Begnff der vollstandigen differential-
geometnschen Flache, Commentarii mathematici Helvetici 3 (1931), 209—225.

La généralisation, immédiate, aux espaces à plus de deux dimensions est formulée dans :

S. B.Myers: Riemannian mamfolds in the large. Duke mathematical Journal 1

(1935), 39—49.
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Gauss-Bonnet. Il n'existe pas pour les espaces à plus de deux dimensions
d'équivalent de la formule de Gauss-Bonnet, sauf dans des cas tout-à-fait
spéciaux1). Dans ces conditions, il est compréhensible que la plupart des

résultats obtenus pour les surfaces n'aient pas pu être généralisés pour
les espaces à plus de deux dimensions. La méthode qui a été employée
presque exclusivement consiste dans l'étude du voisinage des géodésiques
et en particulier des géodésiques minimales. C'est d'ailleurs cette même
méthode qu'on applique dans le cas des surfaces pour démontrer un théorème

de Bonnet 4).

3. Le lemme de Synge

Le théorème de Bonnet se démontre à l'aide de l'équation de Jacobi
et des théorèmes de comparaison de Sturm. Dans le cas de n dimensions
on peut donner du théorème de Bonnet la généralisation suivante:

Un espace complet dont la courbure est partout supérieure à un nombre

positif h est un espace fermé de diamètre inférieur à ——.Vk

Myers3) et Schoenberg5) ont démontré ce théorème à l'aide de
généralisations des théorèmes de Sturm6). Il est possible aussi de ramener le

cas de n dimensions au cas de deux dimensions à l'aide d'un lemme qui
sera employé dans toutes nos démonstrations et que nous démontrerons
dans le premier chapitre: le lemme de Synge 7).

Lemme de Synge: La courbure intrinsèque d'une portion de surface V2

qui passe par une géodésique g d'un espace de Riemann Vn ne dépend
le long de g que du ruban des plans tangents le long de g Cette courbure est

inférieure ou égale à la courbure de Vn pour les éléments plans tangents à V2

II n'y a égalité que lorsque le ruban des plans tangents peut être obtenu par
le déplacement parallèle d'un vecteur le long de g

4) W. Blaschke: Vorlesung ûber Differentialgeometrie I. (Berlin, 1930),
§ 100. Dans les démonstrations du théorème de Bonnet antérieures à celles données par
H* Hopf et W. Rinow 3), le fait que l'espace est fermé fait partie des hypothèses. On le

remplace par l'hypothèse que la surface est complète.
5) J. M. Schoenberg : Some applications of the calculus of variation to

Riemannian geometry. Annals of mathematics. (2), 33, 485—495. Ici aussi on
suppose que l'espace est fermé.

*) M. Morse: A generalization of the Sturm séparation and comparison
theorems. Math. Annalen 103, 59—62.

7) J. L. Synge: The first and second variations of the length in Riemannian

space. Proceedings of the London math. Society 25 (1926). Nous reproduisons cet
article à quelques différences près dans l'introduction des coordonnées.
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Lorsque la courbure d'un espace est partout négative, l'application
du lemme de Synge montre que toute surface de cet espace qui contient
une famille de géodésiques est de courbure négative. Dans le cas des

espaces de courbure partout positive, la dernière partie du lemme permet
de construire dans le voisinage d'un arc de géodésique une portion de
surface de courbure positive.

4. Les espaces de courbure partout positive

La généralisation du théorème de Bonnet qui a été formulé dans le
paragraphe précédent peut aussi être démontrée à l'aide du lemme de

Synge, c'est cette démonstration que nous reproduirons dans le
chapitre IV 8).

Comme corollaire indiqué par Cohn-Vossen9) on peut déduire le théorème

:

Le groupe fondamental d'une variété fermée de courbure partout positive
est fini.

Mais Synge a démontré passablement plus dans un cas particulier:
Un espace fermé orientable de dimension paire et de courbure partout

positive est simplement connexe 10).

Un corollaire immédiat est le suivant :

Un espace fermé non orientable de dimension paire et de courbure partout

positive possède un groupe fondamental d'ordre 2.

Nous démontrerons par la même méthode:

Un espace fermé de dimension impaire et de courbure partout positive
est orientable.

On connaît fort peu de théorèmes sur les espaces ouverts de courbure

partout positive. Cohn-Vossen11) a donné dans le cas des surfaces des

propriétés globales pour les géodésiques, mais il fait un usage constant

8) J L Synge On the neighborhood of a géodésie in Riemannian spaoe.
Duke mathematical Journal I (1935), 527—537

9) S Cohn-Vossen Compte rendu de Myers (3) dans Zentralblatt fur Mathematik 11

(1935), 225—226
10) J. L Synge On the eonnectivity of spaces of positive curvature.

Quarterly journal of math (Oxford séries), 7 (1936), 316—320

n) S Cohn-Vossen- Kurzeste Wege und Totalkrummung auf Flachen.
Compositio mathematica 2, 69—133 S Cohn-Vossen Totalkrummung und geo-
datischen Linien auf emfachzusammenhangenden vollstandigen Flaehen-
stucken. Recueil mathématique de Moscou, I (43), 1936, 139—163
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de la formule de Gauss-Bonnet pour laquelle nous n'avons pas d'équivalent.

Il a aussi indiqué12) pour le cas de n dimensions le théorème
suivant :

Un espace ouvert de courbure partout positive n'a qu'une ^extrémité"
(pour la définition de F,,extrémité" voir le chapitre II).

Un cas particulier plus facile est celui des espaces qui possèdent un
pôle, c'est-à-dire un point tel que tout arc géodésique ayant ce point
comme origine soit un arc géodésique minimal. Von Mangoldt13) a étudié
les surfaces à pôles de courbure partout positive, mais en faisant un usage
constant de la formule de Gauss-Bonnet. Nous retrouverons les mêmes

propriétés pour les variétés en appliquant le lemme de Synge :

Les pôles d'une variété de courbure partout positive forment un ensemble

borné.

Dans une variété de courbure partout positive qui possède un pôle P,
toute géodésique possède un point à distance minimale de P. A partir de

ce point les deux branches de la géodésique s'éloignent de P de façon monotone

vers l'infini.

5. Les espaces de courbure partout négative

Les espaces simplement connexes de courbure partout négative ont
déjà été étudiés passablement en détail. Il est aisé de démontrer que:

Un espace simplement connexe de courbure partout négative est un espace
à pôle et on peut choisir comme pôle un point quelconque de l'espace. On
en déduit que tout espace simplement connexe de courbure partout négative
est homéomorphe à l'espace euclidien 14).

On en déduit également que la variété simplement connexe de recouvrement

de tout espace de Biemann de courbure partout négative est

homéomorphe à l'espace euclidien.

Pour démontrer d'autres propriétés, nous établirons le théorème
suivant:

La somme des angles d'un triangle géodésique dans un espace simplement

connexe de courbure partout négative est inférieure à deux droits.

12) S. Cohn-Vossen: Vollstàndige Riemann'sche Eâume positiver Krûm-
mung. C. R. Acad. des Sciences de l'U.R.S.S. 1935, III, 387—389.

1S) H. v. Mangoldt: Ûber diejenigen Punkte auf positiv gekrûmmten
Flàchen, welche die Eigenschaft haben, daû die von ihnen ausgehenden
geodàtischen Linien nie aufhôren, kûrzeste Linien zu sein, Crelles Journal
91 (1881), 23—52.

14) ,,Leçons", Note III.
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En considérant le groupe fondamental comme groupe d'isométrie de

l'espace simplement connexe de recouvrement et en appliquant le théorème

énoncé ci-dessus on trouve les théorèmes:
Si le groupe fondamental d'une variété de courbure partout négative est

cyclique, cette variété possède au plus une géodésique fermée.
Toute variété de courbure partout négative possède au plus une géodésique

fermée de chaque type d'homotopie.

Dans le cas particulier des espaces fermés nous sommes sûrs de l'existence

d'une géodésique fermée de chaque type d'homotopie (excepté le

type nul) et nous pourrons démontrer le théorème :

Tout sous-groupe abélien du groupe fondamental d'une variété fermée
de courbure partout négative est un groupe cyclique.

D'autre part nous montrerons que le groupe fondamental d'une variété
fermée de courbure partout négative ne saurait être un groupe cyclique.

Ces théorèmes permettent d'exclure un grand nombre de variétés
topologiques fermées de la classe des variétés topologiques métrisables

par une métrique de courbure partout négative ; en particulier le produit
topologique de deux variétés fermées ne peut pas être métrisé par une métrique
de courbure partout négative.

D'autre part ces théorèmes s'appliquent aux formes spatiales
hyperboliques pour lesquelles on avait démontré le théorème:

Le groupe fondamental d'une forme spatiale hyperbolique fermée ne
saurait être abélien.

Chapitre premier

Le voisinage d'une géodésique

C'est la connaissance du comportement d'un espace de Riemann dans
le voisinage d'une géodésique qui permettra de déduire du signe de la
courbure les propriétés topologiques de ces espaces. L'étude du voisinage
d'une géodésique nécessite des coordonnées appropriées.

1. Les coordonnées normales de Riemann 15)

Soit A un point d'un espace de Riemann à n dimensions Vn et U un
voisinage suffisamment petit de A pour qu'il n'existe dans U qu'une
seule géodésique joignant A à un point quelconque de U

16) ,,Leçons", chapitre IX.
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Menons par A n gréodésiques orthogonales : gXi g2, gn que nous
appellerons les axes du système de coordonnées. Pour fixer une géode-
sique quelconque g passant par A il suffit de donner les n grandeurs:
oc* qu'on appelle cosinus directeurs:

a* cos(g,gt) ;

les quantités <x% ne sont pas indépendantes, mais liées par la relation:

Pour fixer un point quelconque P de U il suffit de donner les cosinus
directeurs de la géodésiques A P et la distance AP s

Les coordonnées normales de Riemann sont les quantités:

xl soc1

Si l'espace considéré est l'espace euclidien, alors les coordonnées
normales de Riemann sont les coordonnées cartésiennes rectangulaires.

Avec ces coordonnées les coefficients gtj jouissent au point A de
propriétés particulières, en effet au point A le carré de l'élément linéaire:

ds2 g%i dx*dxj
devient

ds2 (dx1)* + (dx2)* + -" + (dxn)%

d'où
0 si i ^ j
1 si i j«..=à»

On vérifie de même que les premières dérivées partielles des coefficients

gi} sont nulles au point A et par conséquent aussi les symboles de Chri-
stoffel r\i et riik :

2. Les coordonnées de Fermi le)

II est possible d'introduire dans le voisinage d'un arc fini, simple, de

géodésique des coordonnées qui jouissent des mêmes propriétés que les
coordonnées de Riemann dans le voisinage d'un point.

ie) ,,Leçons'*, p. 262. T. Levi-Cività : Sur l'écart géodésique. Math. Annalen 97
(1926).
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Soit un arc simple de géodésique g0 AB entouré d'un voisinage
suffisamment petit pour que par chaque point de ce voisinage qui ne
soit pas sur g0 il n'existe qu'une seule géodésique ne sortant pas de U
et coupant g0 à angle droit.

Au point A choisissons n — 1 directions :

3(1) 3(2) J(n-l)AA » AA > AA

perpendiculaires entre elles et perpendiculaires à g0 et déplaçons
parallèlement ces directions le long de g0 elles resteront perpendiculaires entre
elles et perpendiculaires à g0. L'ensemble des géodésiques passant par
un point quelconque Po de g0 et coupant g0 à angle droit est une variété
géodésique à n — 1 dimensions Vn^1 (Po) dans laquelle nous introduisons
des coordonnées de Riemann en choisissant comme axes les géodésiques
dans les directions:

3(1) 3(2) }(n-l)AP0 ' APo ' ' ' * ' APo

Soit P un point de U (mais pas sur g0), menons la géodésique g qui
coupe g0 à angle droit en Po P est alors dans la variété Vn_1(P0) et aura
dans cet espace les coordonnées normales x1, ce2,..., xn~x ; pour fixer
définitivement P, il faut encore donner la distance AP0 xn Les
nouvelles coordonnées : x1, x2,..., xn sont appelées les coordonnées de Fermi
dans le voisinage de g0 Elles jouissent pour tout point Po de g0 des

propriétés suivantes:

\) o r^Po) o rl3k(P0) o"). (2)

Comme ces égalités ont lieu quel que soit Po c'est-à-dire quel que soit
xn, nous aurons encore:

dxn \

3. La deuxième variation de la longueur d'une géodésique 8)

Soit gQ un arc de géodésique AB ; dans le voisinage U de g0 nous
introduirons un système de coordonnées de Fermi:

X1, X2,. Xn

17) T Levi-Civitï1*)?. 227.
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Soit F2 une surface analytique passant par g0 que nous recouvrons
d'un réseau de coordonnées u,v qui jouisse des propriétés suivantes:
xl xl(u, v) est l'équation de la surface.

1. xl(u, v) est une fonction analytique en u et v

2. xl(u, 0) 0 si i ^éz n et xn(u, 0) u C'est-à-dire que la courbe

v o est la géodésique g0 et que le paramètre u sur cette courbe est
l'arc AP0

3. ~^—(xn(u, 0)) 0, c'est-à-dire que les lignes u u0 coupent g0

à angle droit.
Nous appellerons ,,courbes aux variations" les courbes: xi xl(u, v0)

où v0 a une valeur constante. Nous comparerons, entre deux valeurs
de u : u1 et u2, la longueur d'une de ces courbes à la longueur de g0

Cette longueur dépend du paramètre v de la famille des courbes aux
variations, nous l'appellerons L(v)

du'

Avant de calculer 1/(0) et 2/'(0) qui sont la première et la deuxième
variation de la longueur, nous introduirons quelques notations.

Soit X une fonction quelconque sur F2 : nous désignerons par le signe •

la dérivée par rapport à u et par le signe ' la dérivation par rapport à v.

dX - dX _,A —r— Adu ' dv

En particulier:
|* x% rf xtf

d'où:

Les coordonnées de Fermi choisies montrent que:

£*{u, 0) 0 pour i ^ n £n(u,0)

Yf*>(u, 0) 0

La quantité:

est désignée par:
F{u,v); F(u,Q) 1
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Or

ou

•m

bien :

F'

F'

(F*)'
2F

1

2F

1

2F

dxh h 4- 2e & rP

F'(u, 0) est nul quel que soit u; en effet sur g0 en vertu des coordonnées
choisies :

dxĥ- 0 (2)

L'expression gtJ |* rf se réduit lorsque v 0 k rjn ov rjn est nul quel
que soit u lorsque v est nul, par conséquent aussi rf1.

2/(0) est donc aussi nulle, ce qui provient évidemment du fait que
g0 est une géodésique.

Passons à la deuxième variation:

«2 "2 »2

du

«1

Calculons la première intégrale:

u2

«i

Pour # 0, la deuxième intégrale est nulle et il reste de la première :

u2

S

Examinons la somme:

—2 dxh

et remarquons que:

ff(w, 0) 0 si i ^ n £"(1*, 0) 1, ^(u, 0) 0

La somme devient
n h k
xk v n '
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Si nous comparons avec l'expression du tenseur de Riemann:

d*ghn d*gkn

où nous avons supprimé les termes où interviennent les premières dérivées
des gti qui sont nulles; nous voyons que les égalités (3) nous donnent:

Autrement dit:

dxk
tt tj _ » yjh ti ^ tj

Comme les vecteurs |* et rf sont perpendiculaires, le deuxième membre
de l'égalité nous donne la courbure de l'élément plan déterminé par les

vecteurs £* et r\x multipliée par le produit des carrés des longueurs 1 et rj
des vecteurs f• et rjl ; nous désignerons la courbure pour l'élément plan
tangent à F2 par K

"(0) J (- Kr? + Uz\t? + hn>) du j *£(#)* ~~ Krf) du
tt2'

I

«1 1 1 ttl 1 1 1*1

Nous pouvons introduire le vecteur unitaire de variation ^ c'est
le vecteur unitaire tangent à F2 le long de la géodésique g0 et perpendiculaire

à g0

n—1 n-1 n-1 w-1
^

n-1
27 (^*)2 y2 ' 27 (^)2 + î?2 27 (/**)2 + 2?7?7 27 /i*'/*1 ^2 + ??2 27 (/*^)2

En remplaçant dans l'expression de la deuxième variation

L/f(0) J (rf + ^2 [ 27 (/W*) — -ST] dw -f- t]n | (1)
«! 1 1 Mi

Quant /i* est nul, c'est-à-dire si //* est transporté parallèlement à

lui-même, alors l'expression de la deuxième variation devient:

1/(0) | (rç2 — Krj2) du + r\n' \ (2)

18) ,,Leçons", p. 186.
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Que se passe-t-il si Ton considère comme courbes aux variations les
courbes passant par les deux points fixes Px et P2

Quelle est la deuxième variation de la longueur?

2/(0) ="jf # - (K -"iV)1) V2} du (3)
ui i l

En effet, ^n est nul pour % et u2 quel que soit v, donc :

^'(^,0) rj"'(u2, 0) 0

Les formules (1), (2), (3) joueront un grand rôle par la suite, nous
les appellerons les formules de la deuxième variation.

4. Le lemme de Synge

Nous pouvons introduire sur la surface F2 donnée par les équations:

xl x* (u, v)

dans laquelle l'élément linéaire est donné par l'élément linéaire
correspondant dans Vn, un système de coordonnées de Fermi.

Nous pouvons aussi calculer la deuxième variation en nous plaçant
dans le cas où les extrémités sont fixes et nous trouvons :

où Ko désigne la courbure intrinsèque de la surface F2.
En effet, sur une surface, tout vecteur déplacé de façon à rester

perpendiculaire à une géodésique est déplacé parallèlement à lui-même,

par conséquent jx1 est nul.
En comparant ce résultat avec celui de la formule (3), on trouve

K— 2 (£<)* Ko (4)

C'est cette égalité qui exprime le lemme de Synge ; on en tire :

Ko < K (5)

C'est-à-dire que la courbure gaussienne intrinsèque de la variété V2 le

long de la géodésique gQ est inférieure ou égale à la courbure riemannienne
de Vn pour le même élément plan.
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L'égalité n'a lieu que si Jjl% est nul, c'est-à-dire si le plan tangent à V2

le long de g0 est obtenu par le déplacement parallèle d'un vecteur le long
de la géodésique g0 19).

Nous voyons donc en particulier que la courbure d'une surface qui
passe par une géodésique g0 d'un espace de Riemann Vn ne dépend le

long de g0 que du ruban des plans tangents. Il est donc légitime de parler
de la courbure d'un tel ruban.

Dans l'espace euclidien à trois dimensions, les remarques précédentes
impliquent le théorème:

Deux surfaces qui se touchent le long d'une droite ont la même courbure
le long de cette droite.

En particulier les surfaces qui, comme les surfaces développables,
touchent un plan tout le long d'une droite ont aux points de contract
une courbure gaussienne nulle.

La formule :

K- E (h* *« (4)

devient ici:

[i* désigne le vecteur unitaire tangent à la surface et perpendiculaire à
la droite de contact d, les composantes jll1 et \i2 sont les projections du
vecteur ju,* sur deux droites quelconques perpendiculaires à d et perpendiculaires

entre elles. Désignons par <x l'angle de /a1 avec une direction fixe
perpendiculaire à dy nous aurons:

o
oc2 — eos2<x- ôc2 —k2

qui est une expression de la courbure gaussienne d'une surface passant

par une droite, cette courbure est négative ou nulle.
Revenons au cas général : Dans bien des cas le lemme de Synge permet

de ramener le problème du minimum de la distance dans un Vn au
problème du minimum de la distance dans une surface F2.

Or, dans le cas des surfaces, nous connaissons les propriétés minimales
des géodésiques:

L'arc de géodésique joignant deux points A et B tels que toute solution
de l'équation de Jacobi:

y + Koy 0

19) Ces propriétés pourraient aussi être tirées de théorèmes exposés dans les ,,Leçons",
p. 196.
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(Ko représente la courbure de la surface, la dérivée indiquée par le signe •

est prise par rapport à l'arc compté sur la géodésique) ne possède qu'au
plus une racine dans l'intervalle AB est un arc géodésique qui réalise
le minimum relatif de la distance, c'est-à-dire que cet arc est plus court
que toute autre courbe joignant A et B et située dans un certain voisinage
de la géodésique.

S'il existe une solution de l'équation de Jacobi qui possède deux racines
à l'intérieur de l'intervalle AB, alors l'arc de géodésique AB n'est
certainement pas le plus court chemin entre A et B 4).

Chapitre deuxième

Les espaces complets

Quand nous cherchons à déduire des propriétés globales de toute une
variété des conséquences sur le comportement de la courbure, il est clair
que nous pensons à une variété non prolongeable, c'est-à-dire à une variété
qui ne puisse pas être considérée comme une portion d'une variété plus
grande. Toutes les variétés dont les propriétés globales interviendront
ici seront des variétés non-prolongeables. Mais cette classe est encore
trop grande pour le but que nous nous proposons.

1. Définitions
Les espaces qui interviendront ici sont des espaces complets au sens de

MM. Hopf et Rinow que Cartan appelle des espaces normaux 3).

Les espaces complets sont astreints à l'une quelconques des quatre
conditions suivantes qui sont équivalentes entre elles:

1. Le postulat du report. On peut reporter sur chaque rayon géodésique
toute longueur à partir de son origine.

2. Le postulat d'infinité. Toute ligne divergente est infiniment longue
(on entend par ligne divergente l'image univoque et continue d'un rayon
dans le cas où à toute suite divergente du rayon il correspond une suite
de points divergente dans la variété).

Les postulats suivants se rapportent à la variété considérée comme
espace métrique. On peut en effet toujours considérer un espace de
Riemann comme un espace métrique en définissant la distance de deux
points comme la borne inférieure de la longueur des courbes qui joignent
ces deux points.
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3. Le postulat de Cauchy : Toute suite fondamentale de Cauchy
converge.

4. Le postulat de compacité : Tout ensemble borné est un ensemble

compact.

2. L'espace simplement connexe de recouvrement

Dans le cas où la variété n'est pas simplement connexe, il arrivera que
nous ayons besoin de nous servir de la variété simplement connexe de

recouvrement, c'est pourquoi nous rappellerons certaines propriétés de
la variété simplement connexe de recouvrement. A chaque point de la
variété simplement connexe de recouvrement Vn correspond un seul

point de Vn mais à chaque point de Vn correspondent en général
plusieurs points de Vn A une courbe fermée de Vn du type d'homotopie a
et passant par le point x correspondent des arcs de courbe joignant en
particulier deux points correspondant à x : a/ et x". Si Ton choisit xf
fixe, alors xn ne dépendra pas de la forme particulière de la courbe fermée
de type a dans Vn Ainsi la classe d'homotopie a fait correspondre à

un point xr de l'espace simplement connexe de recouvrement un point
x" qui est l'image du même point de Vn Comme x" ne dépend que de

a et de x', nous écrirons: xn a(xf)
A chaque élément du groupe fondamental correspond donc une

transformation de l'espace simplement connexe de recouvrement sur lui-
même. Cette transformation est une transformation sans points doubles
et les points qui se correspondent dans cette transformation sont des

images du même point de Fn Si nous douons la variété simplement
connexe de recouvrement dans l'entourage quelconque d'un point de la
même métrique que celle de l'entourage correspondant de Vn nous
avons métrisé Vn et il s'ensuit que la transformation qui correspond à
l'élément a est une isométrie. Nous appellerons également a l'isométrie
qui correspond à l'élément a du groupe d'homotopie.

Encore une remarque : Considérons dans Vn une ligne fermée de type a
indéfiniment parcourue dans les deux sens et passant par un point x,
il lui correspondra dans Vn en particulier une ligne passant par un
point x et aussi par les points ak(x) la ligne est fermée si l'élément a
est d'ordre fini dans le groupe d'homotopie, elle est ouverte (et
divergente) si a est d'ordre infini.

Si Vn est un espace normal, il satisfait au postulat 3 (par exemple),
et il est aisé de voir qu'alors Vn satisfait aussi au postulat 3. Donc:

La variété simplement connexe de recouvrement d'un espace complet est

aussi un espace complet.

190



3. Un théorème fondamental

MM. Hopf et Rinow3) ont démontré pour les espaces de Riemann un
théorème qui n'est pas vrai pour tous les espaces non prolongeables et
qui sera très souvent appliqué dans la suite:

Théorème fondamental des variétés complètes : On peut joindre deux
points quelconques d'une variété complète par un arc géodésique minimal.

4. Une application aux espaces non simplement connexes

Nous allons démontrer le théorème suivant que nous appellerons le
lemme 1

Lemme 1 : A chaque élément a ^ e) du groupe fondamental d'un
espace fermé non simplement connexe correspond une ligne géodésique
fermée du type a, qui réalise le minimum de la longueur des courbes
fermées du type a

Démonstration : Soit Vn l'espace simplement connexe de recouvrement
de Vn et soit Yln un domaine fondamental de Vn dans Vn Tout élément

a(^e) fait correspondre à tout point xr de Vrn un point x" a{xr)
Toute ligne joignant x1 à x" correspond dans l'espace Vn à une courbe
de type a et passant par x et réciproquement. Or dans Vn la distance
l(xr, xn) est une fonction continue des variables xf et xf/, comme x" est
une fonction continue de xr, l{x\ xn) sera aussi une fonction continue"
de xf. Comme Vfn est un domaine compact, la fonction l(x', x") atteint
son minimum au moins pour un point £ Construisons un arc géodésique
(l5 a(ï) qui réalise la distance Z(|, a(|) (Cet arc minimum existe en
vertu du théorème fondamental sur les espaces complets.) Dans Fn cet
arc correspond à un arc géodésique fermé qui fait éventuellement un
angle en |. Nous allons montrer que cette éventualité ne se présente pas,
c'est-à-dire que nous avons construit une géodésique fermée.

Supposons en effet que l'arc géodésique considéré ait un angle en f
nous pouvons choisir sur les deux côtés de l'angle deux points xx et x2
suffisamment rapprochés de £ pour que le petit triangle xx f x2 soit homo-
tope 0 Dans ces conditions le cycle géodésique x1Mx2x1 est du même

type a que l'arc géodésique Çx1Mx2Ç Or l'inégalité du triangle montre
que le second cycle est plus long que le premier; l'arc géodésique ÇMÇ

ne représenterait pas alors le minimum de la longueur des courbes de

son type.
Il existe donc pour chaque type a une courbe de longueur minimale

qui est une géodésique fermée.
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5. Les rayons géodésiques minimaux et les extrémités des espaces ouverts

Nous appellerons rayon géodésique minimal un rayon géodésique qui
représente la plus courte distance entre son origine et chacun de ses points.
Contrairement à ce qui se passe pour les espaces fermés, Rinow20) et
Myers3) ont montré que dans un espace ouvert, il existe par chaque point
au moins un rayon géodésique minimal. Nous allons donner une esquisse
de cette démonstration.

Soit A un point quelconque de la variété ouverte Vn et

m >
P P P

une suite divergente de points; nous construisons les géodésiques:

g1 AP1,g% AP2,...,gm APm,

qui donnent les plus courtes distances entre leurs extrémités.
L'ensemble des directions des géodésiques gt, g2, •, gm en A possède

au moins une direction d'accumulation, il est facile de voir que la
géodésique ayant cette direction au point A est une géodésique minimale.
Nous avons ainsi construit un rayon géodésique minimal par le point
quelconque A. Il est possible qu'il n'en existe qu'un. On voit facilement
que l'ensemble des directions des rayons géodésiques minimaux par un
point est un ensemble fermé.

Une question en rapport avec celle des rayons géodésiques minimaux
est celle des extrémités des espaces ouverts 21).

Explication: Nous dirons qu'une suite de points:

diverge vers une extrémité, si, quelles que soient les suites partielles:

Q1,Q2,...,Qm,... (2)

8lt8a,...,Smt... (3)

extraites de la suite (1) et quel que soit le domaine compact D, il est

possible de trouver des courbes joignant:

Q1k81,Q2kS2,...,QmhSm,...
20) W.Rinow: Ûber Zusammenhânge der Differentialgeometrie im Grofîen

und imKleinen. Mathematische Zeitschrifb 35 (1932). Rinow a démontré le théorème

pour les surfaces, Myers l'a généralisé pour les variétés.
*l) H. Freudenthal: tJber die Enden topologischer Ràume und Gruppen.

Math. Zeitschrift 33 (1931), 692—713.
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qui n'aient, à un nombre fini d'exceptions près, aucun point commun
avec le domaine D

Dans tout espace riemannien ouvert il existe une suite de points qui
diverge vers une extrémité. L'exemple est fourni par une suite divergente

de points sur un rayon géodésique minimal g d'origine A Soient
en effet deux suites partielles de cette suite:

Qli H52>* • • J Qm> • • •

^1 > ^2 » • * *' ^m > * * *

nous joignons:
x k8l9 Q2 à flfa,..., Qm à Sm9.

par les arcs de géodésiques minimaux qui sont des arcs de g A cause
de la propriété minimale de g, les points de l'arc QnSm sont à une distance
de A comprise entre les distances A et ASm qui toutes deux tendent
vers l'infini avec m A partir d'un certain rang ces arcs n'ont aucun
point commun avec un domaine compact donné quelconque. Dans ces
conditions nous dirons que le rayon géodésique g diverge vers une extrémité.

Explication : Nous dirons que deux suites de points :

*19 -*2> • • • •> -* w> • • •

Qli Q2 > • • • » Qm> * • •

divergent vers la même extrémité, si la suite:

-*1 > Ql 9 *2 9 Q2 9 • • • 9 * m 5 HJ m > • • •

diverge vers une extrémité.
Si les deux suites :

P\9 P2>* • •> Pmy • •

divergent Tune et l'autre vers une extrémité, mais ne divergent pas vers
la même extrémité (nous dirons alors que les deux suites divergent vers
des extrémités différentes), alors il existe un domaine compact D tel que
parmi les arcs quelconques joignant:

P, à<9l5 P2 àQ Pm kQm>...

il en existe une infinité qui aient des points communs avec le domaine D
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On montre que dans ces conditions il existe un domaine D tel que,
à un nombre fini d'exceptions près, tous les chemins joignant

P, kQl9 P2 àQ2,..., Pm kQm9...

ont un point commun avec le domaine D
Un espace n'a qu'une extrémité si toute suite divergente diverge vers

une extrémité.
Exemple: l'espace euclidien.
Un espace a deux extrémités s'il existe deux suites Pt et Qt qui divergent

vers deux extrémités différentes et si toute suite divergeant vers une
extrémité diverge, soit vers l'extrémité de la suite Pt9 soit vers l'extrémité

de la suite Qt.
Exemple: un cylindre circulaire.
On définit de même les espaces à 3, 4,..., n extrémités. Il peut exister

des espaces à une infinité d'extrémités.
On démontre qu'il existe au moins un rayon géodésique minimal issu

d'un point quelconque A qui tend vers une extrémité choisie à l'avance.
On le construit en choisissant une suite divergeant vers l'extrémité
donnée :

Mj ^2> * • • i * m-> • • •

et en menant les arcs géodésiques minimaux:

4P 4P 4P

Les directions de ces arcs géodésiques ont en A au moins une direction
d'accumulation. Le rayon géodésique g ayant une direction d'accumulation

comme tangente en A est un rayon géodésique minimal qui tend
vers la même extrémité que la suite Pt

En effet, nous savons que ce rayon est un rayon géodésique minimal.
Soit D un domaine compact quelconque, nous pouvons construire une
Sphère S qui contienne D

Pour n suffisamment grand les rayons géodésiques APn coupent S

en des points Qn dont le point d'intersection Q de g avec 8 est un point
d'accumulation. (Les points Qn dépendent de façon continue de la direction

des géodésiques AQn en A Si Qn est suffisamment près de Q on
peut joindre ces deux points par une courbe sur la frontière de la sphère 8.

Soit PSi,..., PJn,... une suite partielle de la suite Pt telle que les

QH correspondants tendent vers Q A partir d'un certain jn on peut
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joindre P3n à un point quelconque P de g en dehors de S de la façon
suivante: de P3n à QJn sur l'are géodésique minimal AP3n, de Qjn à Q

sur la frontière de S, de Q à P sur Tare ^ Nous avons ainsi évité le
domaine D Une suite divergente sur g tend donc vers la même extrémité
que la suite P3n, donc que la suite P%

6. Les points conjugués sur une géodésique et les espaces à pôles

La méthode que nous employerons habituellement pour répondre à
la question:

,,L'arc géodésique z AB représente-t-il le plus court chemin entre
A et B pour des variations suffisamment petites de l'arc géodésique?
(minimum relatif de la distance)."
consiste à ramener ce problème, grâce au lemme de Synge, au problème
équivalent pour les surfaces.

Il est possible cependant de traiter ce problème directement selon une
méthode que nous allons esquisser et que Myers3) a spécialement emplo-
yée «).

Le but des considérations qui vont suivre est de montrer qu'on peut
définir les points conjugués sur une géodésique de la même façon que
pour les surfaces et qu'il est possible de démontrer le théorème suivant :

Si B n'est pas un point conjugué de A sur une géodésique g il est
possible d'introduire dans le voisinage de B des coordonnées normales
de Riemann de centre A

La deuxième variation de la longueur d'une géodésique est :

u(B) u(B)
1/(0) J (RinJn rfr? + E &V) du + ,«' | (1)

u{A) u{A)

où les différentes lettres ont la même signification que dans le chapitre I
et où en particulier les coordonnées choisies sont des coordonnées de

Fermi. Les équations différentielles qui correspondent à l'équation de
Jacobi dans le cas des surfaces sont alors:

On dit que A et Af sont des points conjugués si une solution des équations

(2) s'annulle pour A et A1.
On montre que les équations (2) jouissent de propriétés analogues à

celles des équations de Jacobi, c'est-à-dire:

22) Voir, à part Myers 3), Levi-Cività 16) où l'on trouve des compléments sur le sujet
traité ici.
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8'il n'existe pas sur Varc AB de point conjugué de A alors Varc AB est

un minimum relatif de la distance entre A et B ; s'il existe sur Varc AB
un point A1 conjugué de A alors Varc AB ne représente pas un minimum
relatif de la distance entre A et B

Les équations (2) ont encore une autre signification. Considérons une
famille de géodésiques de paramètre oc :

xl xl(u, oc) 1 <S i ^ n — 1

xn u

dans le voisinage de g — AB {u(A) 0, u(B) u0} telle que x%(u, 0) 0

i ^zn c'est-à-dire que la géodésique de la famille qui correspond à la
valeur a 0 soit g On montre que les dérivées x%a satisfont aux équations

différentielles linéaires (2) quelle que soit la famille choisie. On
appelle les équations (2) aussi les équations différentielles des géodésiques
voisines de g

Quelle est dans cette nouvelle interprétation la signification des points
conjugués?

Considérons encore l'arc géodésique g et les géodésiques voisines de g

passant par A Nous pouvons déterminer ces géodésiques par les cosinus

angulaires au point A c'est-à-dire par les valeurs des dérivées xl(0) {i ¦=£ n}.
Les valeurs xl(uQ) sont des fonctions des valeurs xl(0), nous avons les

relations :

^ i= l,...,n— 1, k= l,...,n—1 (3)

Considérons d'autre part les solutions des équations différentielles (2)
déterminées par les conditions initiales:

rç»(0) 0 i=l,...,n—1.
Nous avons une relation linéaire entre les valeurs r\% (u0) et y]x (0)

rjHuo) =Eclk rjk(O) i 1, 2, n — 1 (4)

On montre que le déterminant fonctionnel des équations (3) est égal
au déterminant fonctionnel des équations (4) pour xl 0 Or le
déterminant fonctionnel des équations (4) s'annulle précisément dans le cas
où les équations linéaires (4) sont dégénérées, mais cela signifie précisément

que B est un point conjugué de A et réciproquement.
Si B n'est pas conjugué de A il existe une relation biunivoque entre

les valeurs xi(u0) et les valeurs x%(0) lorsque ces dernières valeurs sont
suffisamment petites.
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Sur la variété géodésique formée par toutes les géodésiques normales
à g en B, il existe donc pour chaque point P dans un certain voisinage
de B une et une seule ligne géodésique issue de A et passant par P, et
l'on peut étendre cette correspondance à tout un voisinage de B Autrement

dit on peut introduire dans le voisinage de B des coordonnées de
Riemann de centre A

Un cas particulier important. Nous examinerons un cas qui va se
présenter assez souvent, c'est celui où il existe un point P qui jouisse de la
propriété suivante:

Le point P ne possède de point conjugué sur aucune géodésique,
autrement dit, les rayons géodésiques issus de P représentent tous un
minimum relatif.

En ajoutant l'hypothèse que l'espace est simplement connexe, Cartan
et Myers ont démontré qu'on peut étendre la correspondance biunivoque
entre les coordonnées deFermi et les coordonnées de Riemann de centre
P à tout l'espace. Cela signifie que les coordonnées de Riemann de centre
P conviennent à tout l'espace.

Cela signifie en particulier qu'un tel espace est homéomorphe à l'espace
euclidien. En effet, il suffit pour avoir une représentation topologique de

l'espace Vn sur l'espace euclidien Bn de faire correspondre au point de Vn
dont les coordonnées de Riemann sont x1, x2,... xn le point de Rn dont
les coordonnées cartésiennes sont x1, x2,... xn

Une conséquence des résultats précédents est celle-ci:
Si un espace Vn contient un point P sans points conjugués, alors

l'espace simplement connexe de recouvrement est homéomorphe au Rn
Nous appellerons espace à pôle un espace qui possède un point P

(le pôle) tel que tous les rayons géodésiques issus de P soient des rayons
géodésiques minimaux. Un tel point ne possède de point conjugué sur
aucune géodésique. Il est d'autre part simplement connexe. (Si un espace
n'est pas simplement connexe, il existe pour tout point Q un arc
géodésique fermé faisant éventuellement un angle en Q Un tel espace est
donc homéomorphe au Rn Nous allons souvent faire usage des dernières

propriétés des espaces à pôles 23).

7. On peut déduire d'un théorème général de Smith24) le théorème
particulier :

23 Ces résultats sur les espaces à pôles ont été exposés par Rinow 21) et Myers 8).

24) P. A. Smith: A theorem of fixed points for periodic transformations.
Annals of Math. II. s. 35 (1934), 572—578. S.Eilenberg: On a theorem of P. A.
Smith concerning fixed points for periodic transformations. Duke math.
journal. 6 (1940).
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Toute transformation topologique de l'espace euclidien Rn sur lui-
même qui est périodique possède un point fixe.

Comme le groupe fondamental d'un espace Vn peut toujours être
considéré comme un groupe d'isométrie sans points doubles de l'espace
simplement connexe de recouvrement nous pouvons déduire, en nous
servant des résultats du dernier paragraphe:

Si un espace Vn possède un point P sans points conjugués, alors tout
élément (7^ e) du groupe fondamental est d'ordre infini.

8. Les lignes géodésiques dans les espaces à pôles.

Nous pouvons considérer un espace à pôle comme un espace euclidien
doué d'une certaine métrique, et nous pouvons choisir la représentation
de telle façon que les droites (au sens euclidien) issues du point P (le
pôle) correspondent à des géodésiques.

Dans cette représentation une ligne géodésique g est, ou bien une droite
passant par P, ou bien une courbe qui n'est tangente à aucune droite
passant par P (les géodésiques sont les solutions d'équations différentielles

du deuxième degré). Par conséquent si l'on se borne à la deuxième
possibilité, le cône de sommet P et de directrice g est un cône régulier
(au sens euclidien) H

La métrique de l'espace Vn induit une certaine métrique sur le cône

H ; dans cette métrique, les droites passant par P restent évidemment
des géodésiques. Nous pouvons développer ce cône sur le plan euclidien,
il est possible que le plan euclidien soit recouvert plusieurs fois ou qu'il
ne soit pas recouvert tout entier. Nous appellerons D la portion de
surface de Riemann ainsi obtenue. Nous pouvons introduire sur D un
système de coordonnées polaires (au sens euclidien) de centre P, ce qui
revient sur H à un système de coordonnées polaires géodésiques.

L'élément d'arc est alors donné par la formule 25) :

La fonction 0 (r, q>) dépend de la courbure intrinsèque de H de la façon
suivante: Soit Ko la courbure de H le long de la géodésique cp ç)0,

0{r, q>) satisfait à l'équation de Jacobi:

Grr(r,(po) + K0O(r9cp0) 0

avec les conditions initiales: C?(0, <p0) 0 6rr(0, q>0) 1

25) Blaschke: Differentialgeometrie I, § 57 (Berlin, 1930), nous appelons G2 ce

que Blaschke désigne par G.
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Une géodésique g de l'espace Vn correspond naturellement aussi à

une géodésique de H et son équation différentielle est:

d<p \ds r\ ds

(Equation d'Euler-Lagrange pour le minimum de s).
Nous introduisons l'angle yj(O ^ xp < n) que fait la tangente à la

géodésique g dans le sens des s croissants avec la géodésique <p <pQ dans
le sens des r croissants. On voit que:

Gdw
sm w — 7 —r ds

dr
cos y) ,—

Si nous introduisons cette notation, l'équation différentielle de la
géodésique devient:

J>V -—G
d(p

Ces résultats sont généraux, nous n'avons pas fait intervenir la
courbure de l'espace Vn Ils ne donnent d'ailleurs que l'indication du
comportement de la géodésique g sur le développement du cône
géodésique, mais pas dans l'espace Vn

Chapitre troisième

Les espaces de courbure partout négative

1. Le théorème fondamental sur les espaces simplement connexes de

courbure partout négative 14)

Dans le cas où la courbure est partout négative, les équations (3) du
chapitre I, 3 montrent que la deuxième variation de la longueur d'une
géodésique est toujours positive, ce qui signifie que tout arc géodésique
réalise un minimum relatif de la longueur. Choisissons un point
quelconque P, toutes les géodésiques issues de P sont des rayons géodésiques
qui ne contiennent pas de points conjugués de P ; si, en plus, l'espace
est simplement connexe, les résultats de 6, II montrent que le point P
est un pôle et que l'espace est homéomorphe à l'espace euclidien.
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Théorème 1 : Un espace simplement connexe de courbure partout négative
est homéomorphe à l'espace euclidien. 14)

Une conséquence immédiate, c'est que la variété simplement connexe
de recouvrement de tout espace de courbure partout négative est un
espace homéomorphe à l'espace euclidien.

Exemple : II est impossible de recouvrir d'une métrique de courbure
partout négative une variété topologique qui serait le produit topologique

d'une sphère et d'un cercle. En effet, la variété simplement connexe
de recouvrement est le produit topologique d'une sphère et d'une droite
qui n'est pas homéomorphe à l'espace euclidien. (Elle est homéomorphe
à l'espace euclidien dont on a enlevé un point.)

Une conséquence du fait qu'on peut considérer tout espace simplement

connexe de courbure partout négative comme un espace à pôle,
dont le pôle peut être choisi arbitrairement, c'est que :

deux points quelconques ne peuvent être joints que par une seule

ligne géodésique;
en particulier il n'existe pas de géodésique fermée.

2. L'allure des lignes géodésiques des espaces simplement connexes de

courbure partout négative 14)

Nous allons appliquer la méthode exposée dans le paragraphe 8, II
à l'étude de l'allure des géodésiques dans le cas où la courbure est

partout négative.
Soit P un point quelconque de la variété que nous considérerons

comme pôle et g une géodésique quelconque ne passant pas par P
Nous construisons à nouveau le cône géodésique de sommet P et de
directrice g sur le développement duquel nous introduisons un système
de coordonnées polaires géodésiques. L'élément d'arc s'exprime alors

par la formule : _ o ~9, or ds2 dr2 + G2(r, y) dtp2

et l'équation de la géodésique g sur le développement du cône géodésique
est: t

d<p - Gr

où xp représente l'angle de la géodésique g (dans le sens des s croissants)
avec la ligne <p ç>0 (dans le sens des r croissants). Nous allons démontrer
successivement les trois lemmes suivants:

Lemme 1 : Dans un espace de courbure partout négative, la quantité
Gr est partout positive quelle que soit la géodésique g choisie.
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Lemme 2: Si la quantité Gr est partout positive et qu'il existe un

point M sur g tel que \p — alors les deux branches de la géodésique à
ù

partir de M s'éloignent de façon monotone vers l'infini.

Lemme S : Si la quantité Gr est positive partout, alors il existe un point

M sur g tel que ip(M) —

Démonstration du lemme 1 : Le cône géodésique que nous avons construit

contient une infinité de géodésiques de Vn Il en passe une par
chaque point. D'après le lemme de Synge, la courbure intrinsèque du
cône en un de ses points est inférieure ou égale à la courbure de l'espace

pour le même élément plan. Par conséquent la courbure intrinsèque du
cône est négative en tous ses points. Or nous savons que 6r(r, <p) est la
solution de l'équation de l'équation de Jacobi:

qui satisfait aux conditions initiales : G (0, ç?0) 0, G>(0, ç?0) 1

L'équation de Jacobi montre immédiatement que si Ko < 0, Gr croît
avec r pour r > 0 Donc Gr > 1 > 0

Démonstration du lemme 2: L'équation:

appliquée au point M montre immédiatement que pour un point R tel

que <p(R)>cp(M) nous aurons tp(R) < tp(M) ~^-

Je prétends que lorsque s tend vers l'infini par valeurs positives r tend
aussi vers l'infini. En effet, pour q> > (p(R) l'équation (1) montre que
tp < ip(R) Par conséquent:

dr n.cos ip > cos ip(R)—

r — r(R)>cosy)(R){s —

Et l'on voit que r tend vers l'infini avec s On démontre de même que r
tend vers l'infini quand s tend vers l'infini par valeurs négatives.

Démonstration du lemme 3: Nous allons faire la démonstration par
l'absurde : Choisissons un point quelconque Q sur g Nous pouvons sup-
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poser que ^(Q)>—-(sinon nous ferions croître s dans le sens contraire).

Supposons que lorsque s augmente, y> ne devienne jamais égal à —
A

autrement dit, reste toujours supérieur à — Dans ces conditions r
ù

diminue constamment, en effet:

dr
ds cos y) < 0

tout le rayon issu de Q serait donc compris dans la sphère r ^ r(Q), il
faudrait alors supposer que la géodésique g fît une infinité de tours autour
de P dans le développement du cône géodésique (en effet, la relation:

_ sin y) ' ds sin y)(Q) ds
dq> >G G

et le fait que G possède dans la sphère r ^ r (Q) un certain maximum
montrent que <p croît indéfiniment quand s croît indéfiniment). Comme
d'autre part Gr a dans la sphère compacte r ^ r{Q), un certain minimum
positif «ona:

dw ~-~*~ — Q < — oc
d<p

w — y{Q) < —^ { 9 — <p{Q)} •

Comme on peut choisir çp aussi grand qu'on veut, cela signifie que %p

atteindra une fois la valeur — Nous sommes arrivés à une contradiction.

Le lemme 3 est donc démontré.

Les lemmes 2 et 3 ont été démontrés sans qu'on tienne compte du fait
que la courbure était partout négative. Nous pourrons par conséquent
les appliquer dans le chapitre suivant.

Dans le cas où la courbure est partout négative, nous avons démontré
plus que le lemme 1, nous avons démontré Gr > 1

Et alors:

Supposons (p 0 pour le point M à distance minimale de P Nous

voyons :

\<P\<
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Comme xp varie entre n et 0, çp varie entre ç?0 et <px l ~ < cp0 < 0,

Nous résumons par le théorème:

Théorème 2 : Toute géodésique g qui ne passe pas par un point P d'une
variété de courbure partout négative possède un point à distance minimale
de P A partir de ce point les deux branches de la courbe s'éloignent de P
de façon monotone vers l'infini.

Nous allons déduire du développement du cône géodésique de sommet
P et de directrice g d'autres conséquences.

3. La somme des angles d'un quadrilatère géodésique dans une espace
simplement connexe de courbure partout négative

Théorème 3: La somme des angles d'un triangle géodésique dans un
espace simplement connexe de courbure partout négative est inférieure à
deux droits.

On entend par angle de deux rayons géodésiques évidemment la
détermination de cet angle positive et inférieure à deux droits.

Le théorème a souvent été démontré, mais pour des triangles
suffisamment petits 26).

Démonstration: Soit ABC un triangle géodésique quelconque. Nous
considérons A comme pôle et nous construisons le cône géodésique de
sommet A dont la géodésique BC est une directrice. Nous développons
ce cône comme nous l'avons fait dans 8, II, l'équation de la géodésique
g BCest:

dcp

d'où l'on tire :

Or ip2 c'est l'angle y, \px est le supplément de l'angle /? du triangle
ABC, q?2 — <px étant obtenu par un développement est plus grand que
l'angle oc du même triangle. On trouve:

n — p — y>?2 — <Pi> ot

c'est-à-dire :

ot + p + y<n
Ce qu'il fallait démontrer.

26) Voir par exemple ,,Leçons" p. 234.
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Nous sommes en mesure de démontrer facilement le théorème:

Théorème 4: La somme des angles d'un quadrilatère géodésique dans

un espace simplement connexe est inférieure à quatre droits.

Démonstration: Nous traçons la ligne géodésique BD, et ainsi nous
obtenons les deux triangles géodésiques ABD et BCD Pour ces deux
triangles nous pouvons appliquer le théorème 3. Soient <xf, /?', ôf les

angles du triangle ABD et /?", y, ô" les angles du triangle BCD :

OC + fi'+ Ô'<71
pf/ + y+ô«<7t

d'où:
oc + (/?' + 0") + y + (d'+ 6") < 2n

Or l'angle ABC est inférieur à la somme des angles ABD et CBD, ou
éventuellement égal à cette somme:

de même:
ôr + à" < ô

d'où l'on déduit:

4. Certaines isométries des espaces simplement connexes de courbure
partout négative

On peut considérer le groupe fondamental d'un espace de Riemann
comme groupe d'isométries de l'espace simplement connexe de recouvrement

comme nous l'avons vu dans 2, II. Les isométries de ce groupe sont
des isométries sans points fixes. C'est pourquoi nous allons étudier les

isométries possibles d'un espace simplement connexe de courbure
partout négative sans aucun point fixe. En particulier, nous étudierons les

isométries qui transforment une géodésique en elle-même en induisant
une translation sur cette géodésique. Ces isométries sont analogues aux
translations de l'espace hyperbolique. Nous les appellerons des
,translations".

Théorème <5* : Toute isométrie d'un espace simplement connexe de cour-
bure partout négative ne transforme pas plus d'une géodésique en elle-même.

Démonstration: Supposons qu'une isométrie transforme les géodésiques

gx et g2 en elles-mêmes et soient At et A2 deux points situés respec-
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tivement sur gt et g2, soit encore g la géodésique AtA2. L'isométrie fait
correspondre à Al9 A2 et #, les points A[, A2 et la géodésique g' (^ et
^2 se trouvent respectivement sur grx et g2). Comme gt se transforme en
elle-même par l'isométrie, celle-ci fera correspondre à l'angle A2AXA'X

l'angle congruent A2A[A" De même l'angle A^A^A^ est congruent à
l'angle A[A2A2, de telle sorte que la somme des angles du quadrillatère
géodésique AxA2Ar2A[ est égale à quatre droits, ce qui est impossible
d'après le théorème 4.

Théorème 6* : Si une isométrie a est échangeable avec une autre isomé-
trie b, et que a transforme une géodésique g en elle-même, alors b transforme
aussi g en elle-même.

Démonstration: Je prétends qu'avec les hypothèses de l'énoncé, la
géodésique b(g) est transformée en elle-même par l'isométrie a, en effet:

D'après le théorème 5*, cette géodésique est donc identique à g
Nous allons maintenant donner quelques propriétés des groupes

discontinus d'isométrie.

Théorème 7* : Les sous-groupes abéliens d'un groupe discontinu dHso-
métries sans points fixes qui contiennent au moins une „translation''' sont
des groupes cycliques.

En effet, d'après ce qui précède, nous savons que tous les éléments
d'un groupe abélien qui contiennent une ,,translation" sont des
,,translations" sur la même géodésique. Comme le groupe est discontinu et que
ses éléments n'admettent pas de points doubles, alors le groupe est déterminé

complètement par le groupe de translations des points de la
géodésique fixe commune et ce groupe est un groupe cyclique.

Si le groupe d'isométrie ne contient que des translations, alors tout sous-

groupe abélien du groupe d'isométrie est un groupe cyclique.

Il est important d'autre part de connaître le domaine fondamental
d'un groupe cyclique infini de ,,translations".

La chose est, dans le cas des espaces de courbure partout négative,
particulièrement simple. Nous savons en effet (théorème 2) que par un
point extérieur on ne peut mener qu'une géodésique qui coupe à angle
droit une géodésique donnée.

Soit a la ,,translation" qui engendre le groupe cyclique, et g la géodé-
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sique fixe qui correspond à a, P est un point quelconque de Fn. Menons

par P la géodésique n normale à g, et soit Q le pied de la normale. La
,,translation" a fait correspondre au point Q un point a(Q) sur g, à la
normale n une géodésique a(n) normale à g, à P un point sur la géodésique

a(n) tel que la distance a(P)a(Q) soit égale à la distance PQ
D'après ce qui précède, on voit facilement que le domaine fondamental
est le domaine compris entre deux variétés géodésiques normales à g (ces
variétés géodésiques n'ont aucun point commun) et passant respectivement

par les points S et a (S), où S est un point quelconque de g Ce

domaine fondamental n'est pas borné et nous déduisons le théorème:

Théorème #* : Le domaine fondamental d'un groupe cyclique de

^translations'( n'est pas borné.

5. Les groupes fondamentaux des espaces de Riemann de courbure
partout négative

Dans 2, II nous avons vu que le groupe fondamental d'une variété
non simplement connexe peut être considéré comme un groupe d'iso-
métries de l'espace simplement connexe de recouvrement. Une géodésique

fermée du type d'homotopie a correspond dans l'espace simplement
connexe de recouvrement à une ligne géodésique invariante par rapport
à l'isométrie a. Les théorèmes 5*, 7* et 8* qui concernent les groupes
d'isométrie de l'espace simplement connexe de recouvrement deviennent
alors quand on les considère comme des théorèmes sur les groupes
fondamentaux :

Théorème 5 : Dans un espace de courbure partout négative, il existe au
plus une géodésique fermée de chaque type d'homotopie.

Théorème 7 : Si un sous-groupe abélien du groupe fondamental d'un
espace de courbure partout négative contient un élément pour lequel il
correspond une géodésique fermée, ce sous-groupe est cyclique.

Et enfin :

Théorème 8: Le groupe fondamental d'une variété fermée de courbure

partout négative n'est pas un groupe cyclique.

Dans le cas particulier des espaces fermés, le lemme 1 de 4, II assure
l'existence d'une géodésique fermée correspondant à chaque classe

d'homotopie et le théorème 7 devient:
Théorème 9: Tout sous-groupe abélien du groupe fondamental d'un

espace fermé de courbure partout négative est un groupe cyclique.
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Des théorèmes 8 et 9 nous pouvons déduire le théorème 10:

Théorème 10 : Le groupe fondamental d'une variété fermée de courbure

partout négative n'est pas un groupe abélien.

Une conséquence du théorème 10 c'est que le tore de n dimensions ne
saurait être recouvert d'une métrique de courbure partout négative.
On1) avait déjà démontré le fait pour le cas de la courbure constante
négative, c'est-à-dire pour le cas des formes spatiales hyperboliques.
Mais les théorèmes 8 et 9 permettent de montrer davantage, par exemple
que le produit topologique, d'un cercle et d'une surface de genre 2 ne

peut pas être recouvert d'une métrique de courbure par tout négative.
En général aucun produit topologique de deux variétés topologiques
fermées ne peut être métrisé par une métrique de courbure partout
négative (théorème 9).

Remarque: D'après 7, II nous savons que tous les éléments du groupe
fondamental d'un espace de courbure partout négative sont d'ordre infini.
En effet, la variété simplement connexe de tout espace de courbure
partout négative est homéomorphe à l'espace euclidien.

Chapitre quatrième

Les espaces de courbure partout positive
1. La généralisation d'un théorème de Bonnet

Théorème 11 : Un espace complet dont la courbure est, pour tout élément

plan, supérieure à un nombre positif k est un espace fermé dont le diamètre

est inférieur à 3), 5)
Vk

Démonstration: II s'agit de montrer que si A et B sont deux points
quelconques de l'espace, l'arc géodésique minimal qui les joint (cet arc

existe puisque l'espace est complet) est de longueur inférieure à
Vk

Soit g l'arc minimal AB et R un ruban obtenu en déplaçant par
parallélisme un vecteur perpendiculaire à g. Nous pouvons construire dans le

voisinage de g une surface F2 qui contienne le ruban R D'après le lemme
de Synge nous savons que la courbure gaussienne de la surface F2 le

long de g est égale à la courbure riemannienne de Vn pour le même
élément plan tangent à F2 le long de g, cette courbure est donc aussi
supérieure à k. Nous savons alors que, déjà pour les variations de la géodésique

sur F2, un arc qui serait plus long que -—=- ne serait pas un arc
géodésique minimal.
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Remarque : La courbure d'un espace fermé de courbure partout positive

possède un certain minimum positif. En effet, l'ensemble des éléments
plans d'un espace fermé est un ensemble compact, et la courbure est une
fonction continue des éléments plans. Le minimum de la courbure est
donc atteint pour un certain élément plan. Ce minimum est donc positif.

Théorème 12: Le groupe fondamental (Tune variété fermée de courbure

partout positive est fini. 9)

Démonstration: D'après la remarque, la courbure est partout
supérieure à une constante Je. La courbure de l'espace simplement connexe
de recouvrement Vn est, pour chaque élément plan, égale à la courbure
de l'élément plan correspondant dans Vni elle est donc aussi supérieure
à k. Vn est donc aussi, d'après le théorème 11, un espace fermé, donc
borné et le groupe fondamental ne saurait être infini.

2. D'autres propriétés des espaces fermés de courbure partout positive

Théorème 13 : Un espace orientale fermé Vn de courbure partout positive
et de dimension paire est simplement connexe.

Ce théorème a été démontré par Synge.

Nous démontrerons d'abord le lemme:

Lemme: Dans un espace de courbure positive et de dimensimi paire il
riexiste pas de géodésique fermée plus courte que toutes les lignes fermées
voisines et telle que Vorientation soit conservée quand on la parcourt une fois.

Démonstration du lemme : Supposons qu'il existe une telle géodésique g,
je prétends que nous pourrons construire une surface F2 de courbure
positive dans le voisinage de g

Choisissons un point quelconque P de g et en ce point un vecteur v
perpendiculaire à g que nous transportons parallèlement à lui-même le
long de g Quand, après avoir décrit la courbe g, nous sommes revenus
au point P, le vecteur t) a pris la position d;. Le vecteur t)' ne coïncide
en général pas avec le vecteur v, mais en tout cas, n ' est perpendiculaire
à g. En P nous avons construit une certaine correspondance (t),t)O
entre les vecteurs perpendiculaires à g Cette correspondance est
orthogonale, ce qui est évident à cause des propriétés du déplacement parallèle.

Or l'espace des vecteurs perpendiculaires à g au point P est un
espace euclidien à n — 1 dimensions et la correspondance (t), t>0 est une
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transformation orthogonale de cet espace laissant invariant le point P.
Les transformations orthogonales d'un espace euclidien laissant invariant
un point fixe sont des rotations accompagnées ou non de symétrie. Ici,
comme nous supposons que l'orientation est conservée, il ne peut s'agir
que de rotations.

Or les rotations autour d'un point P d'un espace euclidien à un nombre
impair de dimensions laissent invariante au moins une direction passant
par P. Cela signifie qu'il existe au moins un vecteur v0 invariant dans la
transformation (v,Vf).

Si nous déplaçons les vecteurs t)0 et —1>0 parallèlement à eux-mêmes
le long de g, nous obtenons un ruban continu le long de g

Nous construisons une portion de surface quelconque F2 contenant
ce ruban. Le long de g la courbure KQ de F2 est positive (lemme de Synge).
Nous allons montrer que, déjà pour les variations effectuées dans le
champ F2, g ne saurait être une courbe fermée minimale.

En effet, construisons sur F2 un réseau (u, v) de coordonnées de Permi,
c'est-à-dire que les coordonnées d'un point voisin de g sont données:

v par la longueur de la géodésique (sur F2) perpendiculaire à g

u par la longueur de l'arc de g, d'une origine fixe au pied de la
perpendiculaire.

g est alors donné par l'équation v 0

Considérons comme ,,courbes aux variations" les courbes fermées

v const.

La formule (2) de la deuxième variation (Chapitre I) nous donne:

où s représente la longueur de g

Or, dans notre cas, les coordonnées (u, v) coïncident avec les coordonnées

de Fermi, par conséquent r\ 1, t] 0, d'autre part le point
(s, 0) coïncide avec le point (0,0), le second terme du second membre
est donc nul. Il reste:

Si K est positif, la deuxième variation est négative, il ne saurait s'agir
d'un minimum. Nous avons donc démontré le lemme.
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Démonstration du théorème 13 : Un espace fermé orientable non simplement

connexe possède une géodésique fermée minimale pour chaque
type d'homotopie, si Ton décrit l'une de ces géodésiques l'orientation
est conservée. Or ceci d'après le lemme ne se produit jamais pour des

espaces de courbure partout positive.

Du théorème 13 nous pouvons déduire le

Théorème 13f : Un espace non orientable fermé de courbure partout
positive et de dimension paire possède un groupe fondamental d'ordre 2,

Théorème 13n' : Un espace de courbure partout positive et de dimension
paire est orientable 27).

On démontre le théorème 13" à l'aide du lemme:

Lemme: Dans un espace de courbure partout positive et de dimension
impaire il riexiste pas de géodésique fermée plus courte que les lignes fermées
voisines et telle que Vorientation change lorsqu'on la parcourt une fois.

La démonstration est tout-à-fait analogue à celle du lemme précédent.

3. Un théorème sur les espaces ouverts de courbure partout positive

On sait peu de choses sur les espaces ouverts de courbure partout
positive. Nous allons démontrer un théorème de Cohn-Vossen 28).

Théorème 14 : Les espaces ouverts de courbure partout positive ne peuvent
avoir qu'une extrémité.

Nous établirons d'abord deux lemmes:

Lemme 1 : A chaque géodésique g passant par un point P d'un espace
de courbure partout positive on peut faire correspondre un nombre r tel

que si les points Q et R sont situés sur g de part et d'autre de P et que :

PQ>r PR>r

alors l'arc de géodésique QPR ne représente pas le plus court chemin QR

27 II ne semble pas que Synge ait démontré le théorème 13

28) La démonstration de Cohn-Vossen12) diffère un peu de la nôtre. Cohn-Vossen se sert
de deux lemmes: 1. Tout espace qui possède plus d'une extrémité possède une ,,droite
géodésique" (ligne géodésique qui représente toujours le plus court chemin entre deux
quelconques de ses points). 2. Dans un espace de courbure partout positive, il n'existe pas
de droite géodésique. On construit la droite géodésique du lemme 1 par un procédé de

convergence, le lemme 2 est une conséquence immédiate de notre lemme 1.
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Démonstration du lemme 1: Choisissons par P une direction t>

quelconque, perpendiculaire à la géodésique g et transportons cette direction
par parallélisme le long de g Nous obtenons ainsi un ruban à deux
dimensions le long de g D'après le lemme de Synge, il correspond à

chaque point de g une certaine courbure Ko du ruban et cette courbure
est positive. Examinons la solution de l'équation différentielle:

y + Koy O (1)

définie par les conditions initiales: y(P) 1 y{P) 0

Choisissons deux points L ei> M de part et d'autre de P à la distance
arbitraire t de P, mais suffisamment près de P pour que y soit positif
entre L et M. Comme, dans l'intervalle LM, la concavité de la courbe

y y(u) est tournée vers le bas, nous aurons: y(L) > 0 et y (M) < 0

Les tangentes à la courbe en L et M coupent l'axe des u en Tr et en U1.
Comme Ko est positif, la courbe coupe l'axe des u au moins en un point
T compris entre T1 et P, et en un point U compris entre P et U''. Nous

pouvons maintenant construire entre Tr et Uf (par exemple) une portion
de surface F2 qui admette le ruban R entre ces deux points, g est encore
une géodésique pour la surface et la courbure de V2 le long de g est KQ

L'équation (1) est l'équation de Jacobi pour la surface F2 le long de g

Et nous venons de montrer qu'il existe une solution de cette équation
dont deux racines T et U sont de part et d'autre de P. Tout arc qui
contient l'arc TU n'est donc pas un arc minimal déjà pour les variations
sur F2. On peut choisir par exemple r comme la plus grande des deux
longueurs (sur g) PTr et PUf. Toute valeur plus grande jouit naturellement

de la même propriété, qui est celle énoncée dans le lemme 1.

Remarque: Les distances PTf et PUr qui nous ont servi à apprécier
r ne dépendent que de la courbure dans le voisinage LM de P choisi
arbitrairement. Si l'on remplaçait la courbure par une courbure plus
faible et qu'on fît la même construction, alors les distances correspondantes
PT" et PU" seraient plus grandes respectivement que PTr et PUf
comme le montre le théorème de comparaison de Sturm. Soit par exemple
k0 un nombre positif qui soit une borne inférieure de la courbure dans
l'intervalle LM Nous obtenons alors comme solution de l'équation :

et nous trouvons:

y + hy o

y cos (VTQ u)
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Cette remarque permet de démontrer le lemme 2:

Lemme 2 : Soit D un domaine fini de la variété Vn. Il existe un nombre

r fixe qui jouit pour tout point Q de D et pour toutes les géodésiques passant

par Q de la propriété énoncée dans le lemme 1 par rapport à P.

Démonstration du lemme 2 : Définissons le domaine Dt, c'est-à-dire le
domaine des points de Fn dont la distance à D est inférieure ou égale
à t. Nous choisissons t arbitraire positif. Dt est un domaine compact.
La courbure a alors dans le domaine Dt un minimum positif que nous
appellerons k0

Si nous choisissons une géodésique passant par un point quelconque
Q de Z>, il est certain que le segment de géodésique de centre Q et de

longueur 2t est tout entier dans le domaine Dt. Par conséquent tout le

long de ce segment la courbure est supérieure à k0. D'après la remarque
il suffit de choisir:

On voit que r ne dépend pas du point choisi Q.

Démonstration du théorème 14 : La démonstration se fait par l'absurde.
Supposons que la variété ait plusieurs extrémités, alors il existe deux
suites divergentes de points:

P P P

telles que les lignes joignant:

aient toutes des points communs avec un certain domaine D compact.
Nous sommes alors sûrs qu'en particulier les arcs géodésiques minimaux :

ont des points communs avec le domaine D. A ce domaine nous pouvons
attribuer un nombre r d'après le lemme 2. Comme les suites Pm et Qm

sont divergentes, il existe une paire de points PmiQm telle que la distance
de chacun de ces points à D soit supérieure à r, mais cela est impossible
puisqu'alors l'arc géodésique minimal ne représenterait pas la plus courte
distance PmQm

Exemple : Le produit topologique d'une sphère et d'une droite (homéo-
morphe à l'espace euclidien dont on a enlevé un point) ne saurait être
recouvert d'une métrique de courbure partout positive. Cet espace possède

en effet deux extrémités.
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4. Les espaces à pôles de courbure partout positive
Tous les espaces simplement connexes de courbure partout négative

sont des espaces à pôles; il existe des espaces de courbure partout positive

qui ont un pôle, comme le montre l'exemple de l'espace donné par
l'élément linéaire:

ds* Z {dxlf + {Z xldx1)*

On montre d'autre part qu'on peut aussi construire des surfaces ouvertes
simplement connexes et de courbure partout positive qui ne contiennent
aucun pôle. Dans le cas particulier des espaces à pôles on peut démontrer
quelques théorèmes.

Théorème 15: Uensemble des "pôles d'une variété à pôle de courbure

partout positive est borné. 13)

Démonstration: Soit P un point quelconque de la variété. Nous
montrerons qu'on peut trouver un nombre fixe r qui jouit de la propriété:

Par un point quelconque Q qui est à une distance de P supérieure à r
il passe un rayon géodésique qui n'est pas un rayon géodésique minimal.

Cette distance r est celle que le lemme 2 (3, IV) attribue à l'ensemble
constitué par le seul point P. Soit, en effet, un point Q à une distance de

P supérieure à r, nous pouvons prolonger la géodésique QP au delà de

P d'une distance supérieure à r en M. Le lemme 2 (3, IV) indique que
l'arc géodésique QPB n'est pas un arc géodésique minimal et que par
conséquent tous les rayons géodésiques issus de Q ne sont pas des rayons
géodésiques minimaux.

Théorème 16 : S'il existe dans un espace Vn de courbure partout positive
un point P qui ne possède de points conjugués dans aucune direction, alors
Vespace est homéomorphe à Vespace euclidien et le point P est un pôle.

Démonstration : D'après ce qui a été exposé en 5, II, nous savons
qu'une variété qui contient un point P sans point conjugué dans aucune
direction possède une variété simplement connexe de recouvrement Vn

homéomorphe au Rn et que les points P% qui correspondent dans Vn
à P sont des pôles de Vn. Ces points P% ne sauraient être en nombre infini
car alors ils formeraient un ensemble non borné (les points Pt ne peuvent
avoir de point d'accumulation) ce qui est en contradiction avec le théorème

15 appliqué à Vn. Ils ne sauraient, d'autre part, être en nombre
fini (^ 1) car alors le groupe fondamental serait lui aussi fini ce qui est
en contradiction avec les remarques de 7, II appliquées à Vn
homéomorphe au Rn.

213



Nous allons démontrer au sujet de l'allure des géodésiques des

propriétés analogues à celles qui sont énoncées par le théorème 3. Nous
utiliserons les lemmes 2 et 3 grâce auxquels nous avons démontré ce théorème
et il nous faut démontrer un lemme analogue au lemme 1.

Lemme: Soit, dans un espace de courbure partout positive, un rayon
géodésique g issu d'un point P; s'il existe une surface F2 contenant g,
telle que la solution de Véquation de Jacobi :

y + Koy 0 (Ko courbure de F2 le long de g)

qui satisfait aux conditions initiales : y(P) 0 y(P) 1 ait en un point
une dérivée négative ou nulle, alors g n'est pas un rayon géodésique minimal.

Démonstration du lemme : Si la dérivée y est en un point négative ou
nulle, il existe un premier point Q pour lequel elle est nulle, et y est

positif entre P et Q.
La surface F2, que nous appelons la surface I(K0== Kol) peut être

recouverte d'un système de coordonnées analogue à celui que nous avons
introduit dans le chapitre I: La géodésique g est la courbe v 0. Les
courbes ut u0 sont des courbes orthogonales à g et uY mesure Tare

sur la courbe g à partir par exemple de l'origine P. La ligne Vj v0

est obtenue en reportant sur les lignes uT u0 les distances yj(u)v0
Nous avons ainsi défini un système de coordonnées u, v (singulier en P)
dans le voisinage de la géodésique g

Au point Q la ligne u u(Q) possède une tangente perpendiculaire à

g que nous déplaçons parallèlement à elle-même le long de g. La courbure

du ruban ainsi obtenu est positive (lemme de Synge), nous désignerons

cette courbure par K0II.
Choisissons un point R au delà du segment PQ suffisamment près de Q

pour que la solution de l'équation :

Vu + KonVii 0

déterminée par les conditions initiales : yu (R) e > 0, yn (R) 0 soit
positive en Q. Nous donnerons alors au nombre e une valeur telle que :

Vi(Q) Vn(Q) •

Au point R et à la géodésique g correspond un nombre r (lemme 1, 3, IV)
tel que le premier point 8 d'intersection de la courbe II avec l'axe des u
à droite de R, soit à une distance de R inférieure à r. Nous pouvons alors
construire une surface II contenant le ruban II entre Q et R, ainsi que
la courbe Uj ux(Q)
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Sur la surface II nous construisons un système de coordonnées
analogue à celui de la surface I. Les lignes un u0 sont des lignes normales
à g, et l'on choisit ces courbes de telle sorte que la ligne Ujj Ujj(Q)
coïncide avec la ligne Uj ^(Q) On obtient les lignes vn — v0 en reportant

sur les lignes un u0 la distance yn (u0) v0

Enfin, nous construisons la famille de courbes définie de P à 8 par les

conditions :

De P à Q une courbe de la famille est une courbe vx v0 sur la surface I,
qui se continue sur la surface II, par la courbe vu v0

(Les deux arcs de courbe se raccordent vraiement à cause de la construction

de la surface IL)
Nous pouvons calculer la deuxième variation de la longueur de la

courbe g pour cette famille de courbes, cette variation est la somme de
la variation L'{ (0) de P à Q sur la surface I et de la variation I/jj (0) de

Q h 8 sur la surface IL
La formule (1) de 3,1 :

14(0) }Vr - KolVl) du + rjf \°

Up Up

UQ UQ

Une intégration partielle nous donne:

LJ'(O) - - f ri
Up

us
^n(O) — J t

Uq

Or ici la valeur de r\ est y. On voit que les intégrales sont nulles puisque

Vi e^ ^ii satisfont à des équations de Jacobi. Comme toutes les courbes

de la famille passent par les points P et 8 :

Up

US

nv 1 +

n'

Up

,US

Vn 1

UQ

rjjx, rjii sont nuls au point 8
Il reste donc:

2/(0) L'i(0) + 2&(0) (%% - naha) + («' —

Les valeurs r], rj, rf1' étant prises au point Q
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Or les valeurs rft' et rj^ ne dépendent que de la courbe u u(Q) qui
est la même pour les deux surfaces I et II. D'autre part:

vi (Q) vu (Q), il (Q) o yu (Q) > o

d'où:
1/(0) < 0

ce qui est incompatible avec le fait que g soit un rayon géodésique minimal
relatif. Le lemme est donc démontré.

Nous sommes en mesure de démontrer le théorème :

Théorème 17 : Toute géodésique g qui ne passe pas par le pôle P d'une
variété à pôle de courbure partout positive possède un point à distance minimale

de P A partir de ce point les deux branches de la courbe s'éloignent
de P de façon monotone vers Vinfini.

Démonstration : Soit g une géodésique quelconque ne passant pas par
P, nous pouvons faire, comme dans 8, II, la construction du cône
géodésique de sommet D et de directrice g sur lequel nous introduisons un
système de coordonnées géodésiques, l'élément d'arc est donné alors par
la forme:

et le lemme que nous venons de démontrer montre que quelle que soit
la géodésique g la quantité Gr est positive (tout rayon géodésique issu
de P est un rayon géodésique minimal), ce qui est équivalent au lemme 1

(2, III).
Nous pouvons alors appliquer les lemmes 2 et 3 de 2, III et nous trouvons

le théorème 17.

En particulier nous avons démontré que dans un espace à pôle de courbure

partout positive il n'existe pas de géodésique fermée.

(Reçu le 5 juillet 1942.)
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