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Uber die singulidren Gebilde der reguldren
Funktionen einer Quaternionenvariabeln

Von WaLTeEr NEF, Ziirich
Einleitung.

Herr Rud. Fueter hat in mehreren Arbeiten!) die Theorie der regulidren
Funktionen einer Quaternionenvariabeln entwickelt. Insbesondere hat
er das Problem, alle Moglichkeiten aufzuzihlen, die fiir isolierte singu-
lire Punkte bestehen, vollstindig gelost. Sein Resultat?) ist kurz folgen-
des: Der Punkt z = 0 sei eine isolierte Singularitdt der rechtsreguldren
Funktion w = f(z) . Dann existieren rechtsregulire Funktionen

pnlnzna (Z) ’ Qn1n2n3 (Z) ’ (nl ’ nz y Ny = 0 ’ 1 ’ 2 re ') ’

sodaB in einer gewissen Umgebung von z = 0

f(z) = 2 2 [a’nlnzn3 pnlnzn, (Z) + bnlngn, inngns (z)]

n=0 mn=n3+ny+ng

ist. Hierbei sind die @, ,, und b, ,, konstante Quaternionen.

Nun zeigt schon das Beispiel der analytisch reguldren Quaternionen-
funktionen, welche durch die Zusammenfassung zweier analytischer
Funktionen zweier komplexer Variabeln entstehen?), dal die Singulari-
titen im allgemeinen nicht isolierte Punkte sind, indem sie in diesem
Falle eine im allgemeinen zweidimensionale Mannigfaltigkeit erfiillen.
Allgemein lassen sich die Singularitdten in die ¢solierten singuldren Punkte

1) Rud. Fueter, Die Funktionentheorie der Differentialgleichungen Ju=0
und 44u=0 mit 4 reellen Variabeln. Comm. Math. Helv., vol. 7, 8.307 (zitiert als
Fueter I).

Rud. Fueter, Uber die analytische Darstellung der reguliaren Funktionen
einer Quaternionenvariabeln. Comm. Math, Helv., vol. 8, S.371 (zitiert als
Fueter I1I).

Rud. Fueter, Die Singularitaten der eindeutigen reguldren Funktionen
einer Quaternionenvariabeln I. Comm. Math. Helv., vol. 9, S.320 (zitiert als
Fueter I111I).

Rud. Fueter, Integralsatze fiir regulare Funktionen einer Quaternionen-
variabeln., Comm. Math. Helv., vol. 10, S, 306 (zitiert als Fueter IV).

2) Fueter I11.

3) w,, w, seien analytische Funktionen der komplexen Variabeln 2z, = (z, + ¢, #,;),
zy = (%, + 9,2;) . Dann ist w = w; + ¢, w, eine rechtsregulare Funktion von z. Man
nennt sie analytisch rechtsregular,
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und in ein- und zweidimensionale singuldre Gebilde einteilen. Ein singu-
lires Gebilde heif}t isoliert, wenn in einer gewissen Umgebung desselben
keine weiteren singuliren Punkte liegen.

Die vorliegende Arbeit beschéiftigt sich mit den eindimensionalen singu-
liren Gebilden. Dabei nehmen wir an, dal das Gebilde eine endliche
geradlinige Strecke sei. Wir kénnen dann annehmen, es liege auf der
Strecke —1<C ¢y <<+ 1 der reellen Achse?). Unter dieser Voraussetzung
l6sen wir das Problem vollstindig. Wir beschrinken uns vorerst auf
unwesentlich singulire Gebilde (§§ 4—17), um hernach (§ 18) die wesent-
lichen durch unwesentliche zu approximieren. In dem in Hauptsatz 11
ausgesprochenen Resultat unserer Untersuchungen spielt der Begriff des
Stueltjésschen Integrals eine zentrale Rolle. Es scheint mir beachtenswert,
daBl sich dieser Begriff hier als so eng mit der Funktionentheorie ver-
kniipft erweist.

Mit dem Resultat dieser Arbeit wird eine Vermutung von Herrn Fueter
bestitigt®).

1.

Das isolierte singuldre Gebilde & der rechtsreguliren Funktion w = f(2)
befinde sich auf der reellen Achse des R, , und zwar auf ihrem Intervall
—1<<{2zy<<+1. R sei die aus den folgenden Punkten (x,, z,, x,, ;)
gebildete Hyperfliche, welche G in ihrem Innern enthélt:

1. Die Punkte, fiir welche
a® 4 a3 + x5 = ¢
und
— 11—y <2 <1+ 10 ist.
2. Die Punkte, fiir welche

Tg=—1—1
oder

To=+ 14179

und
x; + 23 + a2 < p? ist.

Hierin bedeuten p und # zwei beliebige positive Zahlen, die jedoch so
klein zu wihlen sind, daB innerhalb und auf R keine weiteren singuldren

%) Ist f(z) rechtsregular, so ist es auch f(az + b), wo a, b beliebige konstante Quater-
nionen sind.

5) Rud. Fueter, Uber vierfach periodische Funktionen. Monatshefte fiir Math.
und Physik, Bd. 48, S. 161.
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Punkte auller denen von & sich befinden. Die aus den Punkten (1) ge-
bildete Fldche sei mit M, die aus den Punkten (2) gebildeten Flichen
mit G- bzw. G+ bezeichnet. K sei irgendeine R in ihrem Innern ent-
haltende geschlossene Hyperfliche, auf der und innerhalb der keine
Singularitdten auler S liegen.

Es gilt nun:

1) = 5 [ Q42 AC — 27+ [HO a2 AC =2, 9
K R

fir alle Punkte z auflerhalb R und innerhalb K . Das erste Integral
stellt eine innerhalb K reguldre, von K unabhéngige Funktion dar,
welche auf den Charakter von f(z) auf & keinen Einflufl hat. Deshalb
bezeichnen wir im folgenden mit f(z) die Funktion:

1e) = gz [ 1) dZ AC —2)1 .
R

3.

co(C) sei die reelle Komponente von {. Dann ist:

1) = o [ 10142 A€ —0(0) — G — (@) T -
R

Wenn nun z auBlerhalb R liegt, und wenn, falls | 2 — cy(2) | < o ist,
zugleich zy <—1—#n—p oder zy,>1-+4 5 + o erfilllt ist, so gilt:
| C—co(l) | <|2—co(¢)| . Deshalb wird:

f(Z) = Siz n§) 2 f’(:) dZ pnlnzna(c’_co(c)) 'qn1n2n3 (z-—-co({‘)) =
R

n=ny+nz+ny

= 8;2 néo n-—=n£ng+n3 g@(f._‘—f—i_fg R

=) ¢+ M

¢) Fueter I, S. 318,
") Fueter 11, S, 373.
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Die drei Integrale untersuchen wir einzeln:

= 2 2 2 ff(c) dZ pnlngn, (C'_—' CO(C) ) 'innzn, (Z - cO(C) ) =
n n=n3+ng+n,

1 »
- 8 n? né;) n=n1§l2+ﬂauj f(C) dZ pnlnzn, (C + 1 + n)'inngn, (z + 1 + 77) =

= %; Z A;?nzn, : innzns (Z + 1 + 77) . (l)

n=ny+ns+ng

2. Ebenso wird:

%
‘ = 2 Bl iy Anymgny (2—1—1).
8 2 ne0 n1+n2+n,f e n1+n2+n3 NifgNg nynyng

3. Es sel K, die zweidimensionale Kugelfliche, welche aus denjenigen
Punkten von M besteht, fiir die za=c, ist (—1—7n<co<1+4 7).
Den jedem Punkte von K, zugeordneten Vektor, dessen Linge gleich
dem Oberflichenelement auf K, und dessen Richtung die Senkrechte
auf K, in der zur z,-Achse senkrechten Hyperebene durch den Punkt
(co, 0, 0, 0) ist, bezeichnen wir mit dK . '

Dann wird:
1 J B
8n* , 0 n= ”1+ﬂz+nz
- 1+
b [doo] [ 10 4K Daspyn&—0)| Gupmanstz—0) =
n=0 n1+n2+n, (
-1-% K”o
147
= fdco ﬁsﬁ)nzn, (60) : innzn, (z - co) ’
"=0 n= 1+ﬂ2+ﬂ11_
WO
1 .
05“;)”2"3 (co) = 82 fj(z:) dK Pryngn, (£ —c¢o) ist. (2)

Kco

Es ist somit in dem zu Beginn dieses § bezeichneten Gebiete:

o0

fe)= X 2

n=0 mn=n;+ng+ny

Aszﬂzzn, : qnlngna (z + 1 + 77) +
+ Bs:i)ngna ‘ innzna (z —1— 77) +
1+7

+ [ deo in, (€0) - Tuynyny (2 — €0)
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Also gilt fiir alle z in B, mit Ausnahme des Intervalls

—1—<2, <1419
auf der reellen Achse :

o0

fz) = lim { X 2 [A8. - Dange,Z+ 1 +0) +

=0 n=0 n=n3-4tny,tng

+ Bﬁlﬁitgn, ' q’nlnzna (z—1— 77) =t

147

+ fdc 79'51?1131&,( 0) : inngna (z -

—1—9

4.

Wir schitzen nun die Koeffizienten A{¢, , und B{®,  ab. Da f(z)
auf G und G+ regulir ist, ist es daselbst beschrinkt und es mége

gelten:
|fR)| <M auf G- und G |
Dann wird:

lAst?n,n l 4 M
: = o an+3
B9, | ST e+ ()
da :
— Qn . t 8)
Ipnlngna (C CO(C)) l ‘{ nl! n2! na! 18T.
Also wird
lim X z ALy * Imyngny 2 + 1+ 1) +
e=0 =0 nmmtnt el B et Immgny (2 — 1 —M) } =0,

weil die Reihe
>y £

n=0 n=ny+ng+tng nl! 7&2! na!

* Qnyngny (&)

absolut konvergiert, sobald |p| <3 |&]| ist. ?)

Algo ist nun:

o 149
2) = lim J (@ X —
ﬂ ) =0 n=0 n=n1+ns+na fdcoﬁnwaﬂs (CO) q"‘l‘”z"a (z 00) ¢

(3)

(4)

(5)

8) Fueter 111, S. 327.
%) Fueter III, S. 328.
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Jetzt setzen wir G als unwesentlich singuldr von der Ordnung N voraus.
Darunter verstehen wir folgendes: Es gibt eine natiirliche Zahl N von
der Art, daB

l‘f(z)|<—£v—l—,

wo p den Abstand des Punktes z von & bedeutet, d. h. die untere Grenze
der Abstéinde des Punktes z von den einzelnen Punkten von & . Es wird
dann (vgl. (2)):

1
0;(313733( o) | = I"‘S";é“ ff(c) dK pnlnzna(c — o)
K¢
1 M n M n-+2—N
a5 tne’ 1Q$ o ) ? N
8na2 o ny! ny! mg! 27 n,! ny! ng!
Wenn
l qﬂlﬂzna (z - co) I < Qﬂl”n"a
fur

, —1l—n<c¢<1+7
ist, so wird also:

149

lim ‘ i
l e=0 n=§ i ""”1+"2+na gfdco 19"91"2"2 q"1"2"3 (z - co) ] <
o (6)
«© n+2—N M Q
< lim e : MMt (9 1 2p) =0,
= =0 ﬂ=§—1 ﬂ=n1-}-2'nz+n3 nl! nz! n3! 2n ( + n)

wegen der absoluten Konvergenz der auftretenden Reihe!?) fiir
lo] <3 |2—¢g|piy und dem in jedem Summanden auftretenden Faktor o .
Es wird somit:

N—2 149
z) = lim (e) —
f( ) 0=0 n‘\jo ne n1+n2+n3 fdcoﬁnlnzns 0 q'nlnzna(z 00) i (7)
».1 h

Aus (3, 4, 6) folgt noch, daf3 die Konvergenz tn (7) gleichmdfig ist fir
alle z einer beliebigen abgeschlossenen Menge, welche keinen Punkt mit dem
reellen Intervall — 1 — n < xy < 14 7 gemeinsam hat. Denn fiir eine
solche Menge sind alle g, ,,,, (2 — ¢,) beschrénkt.

b.
Satz 1. %9  (c,) (my, My, m3 =0,1,2...), (0> 0), seien irgend-

Nnynang

welche fiir p>0 in —1—n << ¢y <1+ 5 stetige Funktionen von c,,
und es sei eine rechisregulire Funktion g (z) in der Form dargestellt :

10) Fueter II1I, S. 328,
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N-—2 1ty
2) = lim J (@ . _
g( ) e=0 n=0 n= ﬂ1+nz+ﬂa fdco 01‘1”2"3 00) qnlngns(z 60) ’
—-1-7
und zwar sei die Konvergenz gleichmdfig in jeder abgeschlossenen Menge
von z- Werten, die keine Punkte mit dem reellen Intervall —1—n<z, <1417
gemeinsam hat. r(z) sei etne auf und in einer gewissen Umgebung von S
linksregulire Funktion. Die geschlossene Hyperfliche S mége ganz in dieser
Umgebung liegen und auperdem umschliefe sie S . Dann gilt:

1+7
lim fdco 05‘91)’12’% (co) - 9™ r (cq)

e=0 n.-O n—-nl—{-n,-}»n, axll ax;‘a ax”s

_ f g(¢) dZ r({)

Insbesondere existiert also der links stehende Grenzwert.

Beweis: Wir setzen
N—2 1+7

(@) —_
g (z) nfo n=nl§na+n3 fdc ﬂsg)ﬂzﬂa( 0) : qnlnz'ns (z - co) .
Es wird dann:

(9@ (2) dZ n(g) =
s
N-2 147
=3 3| dey B0, (00) + Ganyny (E— o) (dZT(C) -
n=0 n=n;+ns+ng S —1%y

Da alle auftretenden Funktionen stetig sind, kénnen wir die Reihen-
folge der Integrationen vertauschen:

(9@ (2) dZ r(¢) = 8)
‘s
N—2 147
=2 deo @, (o) - [Qanyn, (E— o) dZ 1(Z)
n=0 n=n;+netng —1—9 S

Nun gilt fiir zwei beliebige, auf S rechts- bzw. linksregulidre Funktionen
w(z) und v(z) :

f(w""dZv+dev"")= 0, (k=0,1,2,3),
S

ow(2)
0z,

WO

w® (2) = ist. 11)

11) Fueter IV, 8. 309.
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Wenden wir diese Formel auf die Funktionen w(z) = g n,n,(2—c¢,)
und »(z) = r(z) an, so erhalten wir:

ar(%)
:qunlnzn, (C - 00) dZ 7" anl 1n, 'n:, 0) dZ 651 ’

und durch (n, 4+ n, + »,;) - malige Anwendung derselben Formel:

o" 7({)
dE™M 9Er: g™

[ Granana (€ = 00 4210 = [[000 (6 — 20 42
S S

0" r(c,)

= —2n° M1 Jpelte N3
Oxy10xy? 0xy

12) .

Setzen wir dies in (8) ein, so erhalten wir:

145 a"( )
°° x r(c,
> X J dey 99 (co) —
n=0 n=n1+nz+n3—i_n 0 7 ninany 170 axfl ax’;’ ax;"

1
= — —— | g @(0)dZ () .
27::2‘!

Nun ist gleichméaBig auf S:
ﬁf}) 99 () =g() -

Also existiert:

o ry ar(c,)
li dey 99 (o) i
;EI(I] EO n= n1+n2+n, f %0 Uninans o) axi‘l ax;"‘ ax:'?
—~1—%
1 »
— w. z. b. w.
st | 90042 10)
S

6.

#(c,) sei eine in — 1 — 7 < ¢y < 1+ 7 stetige und stetig differen-
zierbare Funktion. Wir betrachten das Integral
1+
‘dco HCo) I myny (2 — Cp) , WoOTIN m; 7= 0 sei.
—ity
13) Fueter I, S. 318.
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Nun ist
0

ox,

inn,ng (z - cO) = in-—l g g (z - c()) 13) .

Da aber gn,—1n,15, (2 —¢,) eine linksregulire Funktion ist, so gilt
aullerdem :

0 0 0 0
. S T S S S S P 14
(axo + 141 axl + 12 axz t %3 axa) in—l Ny Ng (z CO) 0 ’ )
also
0 . 0 . 0 . 0
——.—537_1 Gny—1,n5,n, (2—Co) = (_ 4 'a‘a':'; — 1 55; + 2, ”é“g)q”rl na ns (2—Cp) -
Wegen

aQn,——l ng 1y (Z - co)
o0z,

- T q‘nr“l fny+1 ﬂa(z - cO) ’

aqﬂr‘l Ny Ny (Z - co)

= —qn-1mn ﬂa+1(z —Co) »

ox,
aqM,—l ng Ny (z —c¢y) - aqm-l ng n,(z — €p)
oz, ac, ’
wird schlieBlich:
147 1+
J dco Q9(60) 1y nony (z — co) = 0(00) 'il'in—-l ng ny (2 - 60) ‘ -
—-1—-7% —1—-7
147
- ‘( dco 29/(c())'il'qnl——lnz ng (z - 60) =
1+
-+ f de, D(Co) 23" T —1myt1 ng (2 — Co) —
—1=
141
- f dc ?9(00)'7;2'Qn1-1n2n3+1 (2 —¢o) -

Wir haben damit das gegebene Integral in eine Summe von Integralen
zerlegt, in denen allen der erste Index der Funktion g, ,,, (2—¢o) um
1 erniedrigt ist, die iibrigen erhoht werden, aber so, dafl die Summe der
Indizes gleich bleibt. Der neben diesen Integralen noch auftretende
Summand wird im folgenden keine Rolle spielen. Auf dieselbe Art konnen
wir natiirlich den zweiten oder dritten Index erniedrigen.

13) Fueter IV, S. 314.
18) Fueter I, S. 310.
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In
N-2 1
fz) = lim % f doa 8D, (Co) dmympm (2 — Co) (vEL. (7))
=0 n=0 n= n1+n2+n3

sei N, die grofite der unter den ersten Indizes der g, ,,, (z — ¢,) auf-
tretenden Zahlen. In allen Summanden, in denen N, tatsidchlich als
erster Index auftritt, erniedrigen wir denselben nach dem in 6. beschrie-
benen Verfahren um 1. Wir erhalten dann eine neue Darstellung von
f(z), in welcher der héchste auftretende erste Index

<N, —1
1st.
In allen Gliedern mit héchstem ersten Index erniedrigen wir denselben
wieder um 1, usw. SchlieBlich erhalten wir eine Darstellung:

149
N-—-2 »
f(z) = lim : 2 ) J dc, ’9(:552, (Co)* Qo myny (2 — Co) +
o=0 n=0 n=ngtny il

N-3

“l"‘ 2 Z [o‘iﬁzzgn, q'nl'nzna (2 + 1 + 77 + m‘lnzns qﬂlﬂzna (z—l—n)] )

n=0 n=n;+ns+ng

Die Koeffizienten cxﬁf’nm O n, sind lineare Kombinationen der
#®,n (= 1 £ %) und je endlich vieler ihrer Ableitungen an denselben

Stellen. Wegen

C) dK pn1n2n3 (C - CO) (Vgl (2) )

;‘i)ngn, (co) =

Ke,
wird ;

v 1
ﬁilg)ﬂ(zn)a (CO) = 8 n2 ff( V) (C) dK pnlngns (C - co) *
K

Da aber f(z) in allen Punkten mit xy= -1 4 5 reguldr ist, so ist
es mitsamt den in der Darstellung der &2,  , B, . auftretenden
Ableitungen auf allen K, ,,, gleichmiBig in ¢ beschrinkt. Deshalb
wird

| lim & , =lm g9, . =0.. (9)

nyNngNg Nyinagng
e=0 e=0
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Schreiben wir noch 9 , anstelle von #7(% , so wird jetzt

Ong ny 0 nony
Nes - 1ty
f@) =lim X X [dog 0,0, (0 domm(z—c0) - (10)
e=0 n=0 n=ng+ng .

Da die Konvergenz vn (7) glesichmdfig war fiir jede abgeschlossene Menge
von z-Werten, die keine Punkte mit dem reellen Intervall —1—n<x,<1+1
gemeinsam hat, folgt vermittelst (9) dasselbe fir (10).

8.
Wir begeben uns nun in eine komplexe Zahlenebene mit den Einheiten
1,1.
a) Wir betrachten die Folge von analytischen Funktionen im Einheits-
kreis |z | < 1:

ﬂk(z)z(z2+l)2k k=1,2,3,...) .

22 —1

Sie hat die Eigenschaften:

o) falls z reell ist, so ist u,(2) reell, u,(z) > 1, und

lim p,(2) = + oo, auller fir z=0;
k>

f) falls z rein imagindr ist, so ist u,(2z) reell, 0 < u,(z) <1, und

lim y,(z) = 0, auBler fiir z=10.
k> oo

b) Die Folge von im Einheitskreis eindeutigen analytischen Funk-
tionen : 4
A(2) =Jyk(z)dz . (k=1,2,3,...)

wobei die Integration iiber einen beliebigen in |z | < 1 gelegenen
Weg zu erstrecken ist, hat deshalb die folgenden Eigenschaften :

o) falls z reell ist, 2 == 0, so ist 4,(z) reell und 4,(2) = 0,
lim 2,(2) = &+ oo ;

k>oo

p) falls z rein imaginér ist

i posm?rem Koeffizienten von 7, so ist 1,(2) rein imaginér
negativem

jt, | POSIIVOIR | oo ot ienten von i und lim Az) =0 .
negativem k>

Es ist iibrigens fiir alle rein imaginéren z im Innern des Einheits-
kreises | 4,(2) | < 1.
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Deshalb nimmt keine der Funktionen 4,(z) auf der imagindren Achse die
Werte -+ an. Ein rein imaginidrer Wert kann aber von einer Funktion
2,(z) nur auf der imagindren Achse angenommen werden. Wire nidmlich
A(x + 1y) rein imagindr, x % 0, so wire A,(— x + 1y) = A.(x + 1y),
aus Symmetriegriinden.

Das ist aber fiir x 7% 0 nicht moglich, da die Funktionen w = 1,(z)
das Kreisinnere | z | << 1 schlicht abbilden, wie wir jetzt zeigen wollen.
Wire ndmlich fiir irgendein k£ die Abbildung nicht schlicht, also etwa

Ae(2¥) = A(2**) A S A

so verbinden wir z* und z** durch eine in |z| < 1 verlaufende stetige
Kurve. Das Bild derselben ist eine auf der Riemannschen Fliche der
inversen Funktion z = z(w) verlaufende Kurve, die zwei iiber demselben
w-Wert liegende Punkte derselben verbindet und die ganz im Bildgebiet
von |z| < 1 verlduft. Dieses miite also einen Windungspunkt der Rie-
mannschen Fliche enthalten, also eine singuldre Stelle der Funktion

z = z(w) . Eine solche kann nur auftreten, wenn an der entsprechenden

z-Stelle . .
entweder w = 1,(2) singulér ist

oder w'=1,/(2) =0 ist.
Beides ist fiir | 2| < 1 nirgends der Fall.

Keine Funktion 4,(z) nimmt also fiir |z| < 1 die Werte 4-72 an. Eine
nihere Betrachtung zeigt sogar, dafl es je eine feste Umgebung dieser
Werte gibt, so dal die Funktionen keine Werte der Umgebung annehmen.

¢) Nun betrachten wir die Folge von Funktionen

‘pk(z):—i— arctg [ﬂk(_g‘)‘l , (k=0,1, 2,...)
(lz]<3),

wo von der Funktion arctg der Hauptwert zu nehmen ist. Da die Funktion
arctg als einzige singulire Stellen die Punkte - ¢ hat, folgt aus dem zuletzt
iiber 4,(z) gesagten, daB die ¢, (2) fiir | z | < 3 gleichméBig in k beschrinkt
sind. Aus (b, «) ergibt sich, daB fiir reelles 2=20 : lim ¢,(z) = 41,
@x(0) = 0. Frroe

d) Jetzt beachten wir noch die folgende leicht nachzupriifende Tat-
sache: ) .

p(x + 1y) = uo(x, y) + tuy(x, y)

sei eine analytische Funktion der Variabeln z + iy . Dann ist
P(2) = uo(Zy, 1) + 1, Uy (T, )
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eine zugleich rechts- und linksregulidre Funktion der Quaternionenvaria-
beln z = z, + 4,2, + 4,2, + 32, . Es sei nun:

Pr(T + 1Y) = Uro(®, y) + a2, ¥) -
Wir bilden die Folge von regulidren Quaternionenfunktionen
Pi(z) = Upo(Zo , &1) + 21Upa(%0 , 1) -

Aus dem unter (c) gesagten ergibt sich, dafl diese Funktionenfolge die
Eigenschaften hat:

1. Die @, (z) stnd in | x4 + 1,2, | < 3 rechts- und linksregulir.

P(0) = 0.

Awuf der reellen Achse st fiir | 2| < 3: @uz) < 1.

Auf der reellen Achse ist fir x,= 0: (| 25| < 3) lim g,(2z) = 41 .

k>0

5. Es gibt etne Umgebung U von S (z. B.| 2| < 2) innerhalb derer die
@i(2) gleschmdfig in k beschrinkt sind. U madge so gewdihlt werden, daf
es von etner geschlossenen Hyperfliche S begrenzt wird. Innerhalb und
auf S moge gelten :

le )| <M. (=0, 1, 2,...)

Ll ol

9.

Jetzt greifen wir auf die Darstellung (10) zuriick:
147
fiz) = lim o deo 9,0, (00)  Gomgn, (2 —c0)

e=0 n=0 n=ny+ng ¢
—1—-7

wir werden im folgenden iiber dieselbe beweisen:
Hauptsatz 2. Zu jedem Indexsystem (0, v,, v3) (vy + v3 < N — 2) gibt

es evne Funktion o ,,, (Co) , diein —1—n < ¢y <1+ n von beschrankter
Schwankung ist, und fiir die gilt :

1+ 1+
lim de, ’98@32 vs (o) - 7(cy) = fd [O‘o Vavs (co)] - 7(Cq)
e=0
~1-7 -1~y

fur jede auf —1—n<co<<1+ n stetige Funktion r(c,) .
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Den Beweis werden wir durch eine vollstindige Induktion beziiglich

v = v, 4 v, fithren. Wir setzen voraus, daB der Satz fiir v < v, gilt.
Dann folgt, daB

N—-2
hVo (2) = lim X 2 fdco 1%9132113 (Co) * o ngng (2 — ¢y)
=0 n=vy n=ns+tns —i—ﬁ

existiert, und wir beweisen:

Hilfssatz 3. Es existiere die Funktion

14+
N—-2
hvo (Z) = lim 2 2 dco 1989712"3(00) *qo NoNg (z _ Co)

=0 n=v, n=ng+ny
fir alle z, die nicht auf S liegen. Dann gibt es zu jedem Indexsystem
(0, vy, v5) mit vy + vy = vy eine Funktion oy, , (o) , sodaf fir jede in
—1—n << ce <1+ n stetige Funktion r(c,) :

1+ 1+7
lim [ deo 9, (co) - 7(ce) = f d [0y, (¢0) ] - 7(co)
e=0
—1-% —-1-7

18t.
Der Beweis dieses Hilfssatzes wird in den §§ 10—16 gefiihrt.
Fir spateren Gebrauch setzen wir noch

N-—-2

Ko@) =% X f deq 952, (Co)  Gomm 2 — o) 5 (11)

n=vy n=ng+ng

und stellen fest, dafl aus der GleichméBigkeit der Konvergenz in (10)
und aus der Giiltigkeit des Hauptsatzes 2 fir » < », folgt: -

h,, (z) = lin; K2 (z) | - (12)
o=

gleichmiBig in jeder abgeschlossenen Menge von z-Werten, die keine
Punkte mit dem Intervall — 1 — 7 << xy<<1 + 7 gemeinsam hat.

10.

Wir wenden jetzt Satz 1 an, indem wir an Stelle von ¢(z) die Funktion
h,(z) und an Stelle von 7(z) die Funktion p, ., (2), [v, + v;3 = ¥,
v, beliebig] einsetzen.
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Bedenken wir, da die Funktion p, , , (2) folgende Eigenschaften hat:

"D, (2)
1. 3 ‘a ;Q‘" =0 , sobald n,> », oder n; > », ,
0" Dyyyyy, (2)
2. ViVaVs - —
PRTERT Py, 00(2)
1 . — 1
= Al (2 — 1, &)1 = A ’ 1,) (Zo+1,2,)"1,
so erhalten wir (nach Satz 1, (11) und (12)):
1+9
Jdco Ovzv, co) Dy, 00(00) = Vo (C)
und (13)
1+ 1 ,
iif; dcoﬂf)g:)zv,( )'pv,oo(co) = "“WJ h,o(C) dZ pvlvzv,(¢) :
—1— S

Da die in 8 definierten Funktionen ¢,(z) (k=1,2,...) analytische
Funktionen der Variabeln x, 4 ¢z, sind, gibt es solche Koeffizienten
a® (k,v,=0,1,...), daB

@r(2) = X pvloo(z)'a'gi) , (k=1,2,...)

V1=0

fir alle z aus der Umgebung U von & .

Setzen wir nun

2 (2) = 2 pvlvzv, (2) - a(,,’i) s (k=1,2,...),
V1—~
so folgt aus der in & gleichmiBigen Beschrinktheit der ¢,(z) in U die-
jenige der y,.(z) 16).
Nun multiplizieren wir (13) von rechts mit a‘,,"l) und summieren tiber », .
Dann erhalten wir:

15) Fueter II, S. 372.
18) Fueter III, S. 327,
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[ ae0042,,, 00 wulon = — 55 [B2(0) 42 2,0

und (14)
147 1
lim [ dey 39, (¢0)-x(e0) = — 5z [ B () 42 24(2) -
e=0 T
—1—7 S
11.

Wir setzen (vgl. § 8):
— 1 fiir ¢, < 0
@(co) = lim @, (c,) = 0 fiir ¢ =0
k-t Q+1fﬁrco>0,
und beweisen:

Hilfssatz 4. Be:i festem o ist:

1+ 1+7
tim [ dey 4S,,,(c0) - aleo) = [ dey 92,,,(c0) - plc) -

k> o0
—1—y —1—7

Beweis: a) Wir halten p fest. Es sei 0 < ¢ < 1. Dann ist:

e +e 1479
| dea 99, (¢0) - gulen) = f +) f
-1—-y _1—’7 wt

Das mittlere Integral wollen wir mit H,(¢) bezeichnen. Da die
Konvergenz (§ 8, d, 4) in <—1—5 , —e> und <+¢,14 9>
gleichméafBig ist, so wird:

149 —&
lim | dc, ﬂgv)g v,(Co) * ®x(Co) :j dc, "%?z v (Co) - @(co) +

k> oo
__.1_.77 -—1"'12

+ lim Eyle) + [ deo 93, glea) -

k> o0

Nun ist |B,(e) | <2¢0 , wo 6 das Maximum von &% , (c,) in
— 11— <e <1+ 7 ist.
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Lassen wir also ¢ nach 0 gehen, so erhalten wir:

1+7 . 147
lim  ['de, v%m(co) pulen) = [dey 99, (c0) - plea) -
—1—% —-1—7
Wir setzen nun:
1-|;»;
Aoy, (7 (co)) = leiH; dc, 79(()%)21: (co) - 71C0) (15)

—1-7

fir irgendeine in — 1 — 5 << ¢y < 1 + 7 definierte Funktion r(c,), falls
der rechts stehende Grenzwert existiert. Damait haben wir im Bereich
derjenigen Funktionen r(c,), fir die 4,,,, (r(cy)) exrstiert, ein Funktional
definiert. Das Ziel der nidchsten Paragraphen ist es, zu zeigen, dafl der
Existenzbereich dieses Funktionals alle in —1—7<¢, <1+ 79
stetigen Funktionen umfaft.

Vorldufig beweisen wir:

Satz 5. Das Funktional A,,,,, existiert fur die Funktion ¢(c,) und es ist
AO Vo Vy (?’(Co) ) = ilm AO Vo Vg (‘Pk(co) )

Beweis: Wir beweisen zuerst, daf3

lim AOvzv,(q)k(co))
existiert. e
Nun ist:
147
AOng, (pilco)) = lim | de, %va vy(Co) * Pk (co) = (vgl. (15))
9=0_1_n
147
:fdco 08‘;12) v,(co) - @ilCo) +
—1—7
147
+ lim rdc [79(()91',;;,(‘30 '98‘5}2),,,(60)] - pi(Co) =11 (01) + I¥(0,) (16)
=0 v
bei beliebigem g,. Nach (14) ist
1+
I (2k)(91) = lim dcg [198032 v,(Co) - ﬁf)QJZv,(co)] - @prlco) =
e=0
. "7

— K20 ]dZ 1:(0) -
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Wir behaupten, da lim I{¥)(p,) = 0 ist.
;=0
Es sei ndmlich auf S: | y,(2) | < N . (Die g,(2) sind auf S gleichmiBig
in k£ beschrénkt.)
Dann kénnen wir auf Grund von (12) eine Funktion 7(p,) so bestimmen,
daB auf S:

l h(e) h(v?,l)(é.) | < nle)) fir o< o, (17)
und dafB
lim #(p,) = 0 ist.
1=0
Dann ist ¢

| [ A0 — K201 42 240)| < mten) -8% - N
S

fiir p < g, und alle £, wo 8* den Inhalt der Hyperfliche S bedeutet.
Es ist somit

=0
gleichméBig in k.

Nun sei ¢ eine beliebige positive Zahl. Wir wihlen g, so klein, daB
| I8 (04)] < ~;1- wird. Alsdann wihlen wir %, so, daB fir k, > k, und
ky > kg :

&
| I¥9(e)) — I (e) | <5
wird. Das ist moglich nach Hilfssatz 4.

Dann wird nach (16) fiir k, > k, und %, >k, :

{ Ao;’gv, (P, (co)) — Ao%v, (‘Pk,(co)) |\< €,

d.h. die Folge der 4,,,,, (®x(co)) ist konvergent. Thren Grenzwert wollen
wir jetzt berechnen. Gehen wir in (16) zum lim iiber, so erhalten wir:

k>0
147
lim Angv,((Pk(co)) = lim de, '%Q:}:v, (o) - prlco) +
k-»o0 k—)oo‘;-n
149
+ lim [hm f deo [99,,,(co) — 380, (co)] wk(co)] =
k> co -
= lim [1P(0,) + I{P(e) ] = lim[ lim [ I{(e) + I‘:’(el)]] -
k>0 ¢1=0 “- k>
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Nun ist nach dem Vorhergehenden :

I¥(0;) < nloy) S*N
fiir alle k£, also auch
lim I{P(g,) < n(e,) - 8* - N

k-> o0
und

lim [lim Ifz"l)(gl)] =0 .
0;=0 ko>
Somit wird :

lim A0v2v3 (@x(Co)) = lim [lim I(1k)(91) ] 5

k> oo ;=0 k>oo

also nach Hilfssatz 4:

147
lim onzv, (pxlco)) = lim dcoﬁgeﬁgv,(co) - @(ce) = A, Ve v,(‘P(co)) ’
k> o0 ey w.z.b.w.

12.

Die in diesem Paragraphen auftretenden Funktionen haben reelles Argu-
ment ; thr Wertevorrat besteht jedoch aus Quaternionen. Wir wollen zuerst
definieren, was wir im Bereich dieser Funktionen unter einer Funktion
von beschriankter Schwankung verstehen.

Definition: Die Funktion o(c,), die von der eben beschriebenen Art ist,
hewft in dem (reellen) Intervall a < ¢, << b von beschrinkter Schwankung,
wenn bei beliebiger Wahl der Punkte x; mit a = xy < 2; < 2, < - -
< Ty 1< x,=0b (n beliebig), stets die Ungleichheit erfillt ist:

n
2 ‘ G(xk) - O-(wk——l) l < G ’
k=1
wo G ewne von der Auswahl der Punkte x; unabhdingige positive Zahl ist.

Man beweist ohne weiteres:

Hilfssatz 6. Wenn o(c,) von beschrimkter Schwankung ist, so sind es
auch seine vier Komponenten im Sinne der Theorie der reellen Funktionen.

Hilfssatz 7. Wenn die vier Komponenten der Funktion o(c,) tm Sinne
der Theorie der reellen Funktionen von beschrinkter Schwankung sind, so
18t es o(cy) 1m eben definierten Sinne.
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Wir geben nun auf dem Intervall < a, b > eine Folge von Untertei-
lungen:

UM :a=a <al) <-..<a)<al) ,=b,(v=1,2,3,...)

mit der Eigenschaft:

lim d = 0, wo d™ die groBte unter den Lingen der Teilintervalle von
y->oo

U™ ist. Dann gilt:

Satz 8. o(c,) ser in < a,b> von beschrinkter Schwankung. r(c,) se:
wm selben Intervall stetig. Damn existiert das Stieltjéssche Integral :

= lim 2 [O'(x(kv)) — G(x(kvll)] : r(f(kv)) (T < 52') < )

v>oo k=1

Beweis: Es sei

3
=2 1,0, , r=21,7, .
m=0 n=0

Dann ist:

[o(@}) — (@) ] - n(&) =

:23* % bt [Om(@)) — 0 (22 1)] - 70 (L) .

m=0 n=0

Nach Hilfssatz 6 sind die Funktionen o,, von beschrinkter Schwan-
kung. Die Funktionen r sind stetig. Wie in der Theorie der reellen Funk
tionen gezeigt wird, existiert dann

b
fd[am(co)] '7‘.,,(00) (m>n: 0,1, 2, 3) X 17)

Also existiert auch

b s 3 b
fd[o(co)] cr(c) = 2 2 imznfd[am(co -r(Cp) , W.z.b.w.

m=0 n=0

17) H. Lebesgue, Leg¢ons sur l'intégration et la recherche des fonctions
primitives. Paris 1928. S. 253f.
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13.

Wenden wir alle Uberlegungen von § 11 statt auf die Funktionen
#x(2), (), x(2) auf die Funktionen g,(z— ao), ¢z — ), Lu(z — o)
(@greell, — 2 < ay < + 2) (p,(2) ist ja reguldr fiir | z | < 3) an, so erhalten
wir als Analogon zu Satz 5:

Aoy, (pleo—ay)) = ’}im AOv-zv, (prlco —ay)) (18)
wO

— 1 fiir ¢, < a,,
0 fir ¢y = a,, ; ist.
+ 1 fir co>a0,§

@ (co — ay) '—'—; im ¢,(co —ay) =

Nun definieren wir die Funktion:

p(Co — ay) = ‘%‘ [1 ""?’(co“"ao] e
= lm 3[1 — g (co—ay)] =

| ]
1 fir ¢, < a,,
= lim y,(cq — ag) = {% fiir ¢, =a, ,
ko0 0 fiir ¢, > a,

Setzen wir in (18): ay < —1— 17, so erhalten wir die Existenz
von 4,,,, ((1)). Somit existiert auch

A0v2 Vs ('/’(60 - “o) ) ’

und es gilt
AOv,v, (w(co —ay)) = ’}im A0v2v, (pelco—ay) - (19)
Wir setzen nun
147
A0v2 Vs (’P(Co - a'o) ) = hII; dco Q%Qv)g Vs (co) ) 'P(co‘“““'o) = Kop,v, (“o) (20)
Qo=
—1—7

und beweisen:

Satz 9. Die Funktion x,,, (@) ist in —1—n<a, <1+ n von be-
schrdinkter Schwankunyg.

Beweis: Auf Grund von Hilfssatz 7 beweisen wir, daB3 jede Kompo-
nente von oy, (@) von beschrinkter Schwankung ist. Nun ist:

| “(()i:);g Vs (x;) — 0‘8':);”, (x;-q) | =

= & (“gi:):, Vs (z,) _0‘8‘:);2»,(“75—1)) (e;= +41) .
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g sei ein Polynom in z,+ i, z, mit reellen Koeffizienten, das folgende
Eigenschaften hat:

1. Auf der reellen Achse ist es = 0 in allen offenen Intervallen (z,_,, z,),
in denen ¢; = 41 ist.

2. In den Punkten x, ist g = 0, wenn es in beiden angrenzenden Inter-
vallen entgegengesetztes Vorzeichen hat, sonst ist es % 0.

3. Die Umgebung U von & wird durch g(z) auf einen Teilbereich abge-
bildet.
DaB ein Polynom mit den Eigenschaften (1) und (2) existiert, ist

klar. Um aus einem solchen eines mit der Eigenschaft (3) zu erhalten,

braucht man es nur mit einer geniigend kleinen reellen Konstanten zu
multiplizieren.

Wir bilden nun die Funktionsschar:

T:(2) = @.(9(2)) k=1,2,...).
Auf Grund obiger Eigenschaft (3) und Eigenschaft (d, 5) in § 8 gilt:
| Twz) | <M in U.

Wegen obiger Eigenschaften (1) und (2) und der Eigenschaften (d, 2, 4)
in § 8 wird:

s’ +1in (x;-,, 2;), wenn e; = -1 ist.
lim 7,(cy) = T(cy) ={ +1in z; , wenn e; = e;;, = -+ 1 ist.
foo l 0 in 2z, , wenn e; 7 ey, ist.

Es ist also:
T(co) = 2 €; ['I’(Co — ;) — ylco — x;4)] -

Aus der Existenz von

AO VoV (1/’(60 - x)) = lim AO Vo Vy (')Uk (co - x)) (Vgl- (19))

k> oo

folgt deshalb die von
Aoy2 va(T(co)) = lim AOvzvs (T fco)) -

k—>»o0

Weil 7,(2) eine analytische Funktion der Variabeln (x, 4 ¢,,) ist, ist
in U: ©
T(z) = Zpuloo(z) . bﬁ,"l) .

v1==0
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Setzen wir:

Zylz) = > Dy, ver, (2) - 6,

VI—O

so erhalten wir, indem wir (13,) von rechts mit 5’ multiplizieren und

summieren :

gy (T2(e9) = — 55 [ B, ()42 ZW(0) -

S

Aus der aus obiger Eigenschaft (3) folgenden in k£ gleichméiBigen Be-
schrinktheit der 7',(¢) auf S folgt diejenige der 2',(¢). Es sei| 2 (0)|< P
auf §. Dann wird:

1
|A0v2v3(Tk(co)) I < o2q2 ° H.S8*P ’

wo H das Maximum von bk, (2) auf S und S* den Inhalt der Hyper-
fliche S bedeutet.

Also wird auch
| Agy,v, (T(eo)) | <

Aus
X0 v, Vs (a’()) = AO Va vy (1/)(00 - a()) )
und
T(cy) = 2 é; ['P(co — &;) — p(Co — x!—l)]
j

folgt aber:
AO Va Vg (T(CO) ) = 2.: eJ [“0 Vo Vg (x.") - “0 VaVg (x."‘l)]
7

Die Zahlen e; = -+ 1 waren aber so gewidhlt, dall auf der rechten Seite
die ¢-te Komponente von [«x(x,;) — x(x,_,)] iiberall positives Vorzeichen
hat. Deshalb ist

Z l“gzl)’z'l’s xj) —*—“gil)’zvs (x.f—l) l = ‘Z’ e.’i(agzl)’gva (xi) “g'l)ﬂ'gv’(x.’i—l)) <
7
\<\ lz ei({xOvz va(xi) — &g vzvs(wa’-—l)) I = |A0v2v3(T(00)) I g

i

HS*P w.z.b.w.

S 271:2

166



14.

Somit existiert nach Satz 8 fiir jede in — 1—#n << ¢y <147 stetige
Funktion r(c,) das Stieltjéssche Integral

149
jd[‘xo vgva(co)] - 7(Co) -

—1—9

Es existiert auch fiir die Funktionen, die in <—1—1#, 1+ 5> endlich
viele Unstetigkeitsstellen haben, von denen keine mit einer der abzéhl-
bar vielen Unstetigkeitsstellen von «,,,, (¢,) zusammenfillt. Unter
diesen werden wir insbesondere diejenigen Funktionen brauchen, die im
Innern eines jeden Intervalls, das von zwei aufeinanderfolgenden Un-
stetigkeitsstellen begrenzt ist, konstant sind, und die an den Unstetig-
keitsstellen den Mittelwert der oberen und unteren Limesfunktion
annehmen. Solche Funktionen wollen wir im folgenden mit #(c,) be-
zeichnen. Offenbar kann jede Funktion ¢(c,) mit Hilfe der in § 13
definierten Funktionen y(c, — @,) in der Form dargestellt werden:

t(co) = 2 g; (wlco — ¢;) — plco —C5—1)) » (21)

wo die ¢; alle Unstetigkeitsstellen von #(c,) durchlaufen und wo g; der
Wert von t(c,) in (c;_,, ¢;) ist.

Setzen wir
ti(Co) = 2 9; ('l’k (€p — ¢;) — wrlco — 0;_1)) R
so wird
t(co) = lim ¢, (c,) , (22)
k—>o0
und aus
4, vavs (plco—e¢;)) = klim 4, Vavs (wilco—c¢y)) (vgl (19))
folgt
A, Vavs (t(co)) = ,}im 4, vavs (te(co)) - (23)

Nun bemerken wir, daB aus der Definition der Funktion «,,,, (vgl. (20))

unmittelbar folgt:
149

Ayyy, (9o —0)) = | dxy,0,(c0)] - wles—rcy)
~iq
Daraus folgt wegen (21):
147
4,,,,, (t(co)) = fd[“o Vs v,(co)] -t(¢co) - (24)
1%y
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16.

r(c,) sei jetzt irgendeine auf — 1 — 7 < ¢y < 1+ 5 stetige Funktion.
Dann gibt es eine solche Folge von Funktionen #*)(c,), (v = 0,1,...),
von der Art der im vorigen Paragraphen betrachteten Funktionen t(c,),
daB gleichméflig auf —1—7n<<c¢, <1+ 75 :

r(cy) = lim ¥ (c,) ist. (25)
P>
Falls in demselben Intervall |r(c,) | <@ ist, so konnen auch alle
| £ (c,) | < G gewdhlt werden. Das tun wir auch. Nun sei
£ (c) = lim t{"(c,) , gemiB (22).
k>

Ferner sei {¢,}, (1 = 0, 1,...) eine beliebige Nullfolge. Nach (23) kénnen
wir zu ]edem p ein kD so bestimmen, daB fiir k, >k :

l A‘O VaVg (t(k’:Z (60) ) - AO Va Vg (t ('L)(CO) ) I < 8,4 (26)
wird. Wir withlen nun zu jedem u ein k, so, dafl

Lk, >k, daB also (26) gilt.
(27)
2. 7r(cy) = lim t‘{," (c,) wird,

p>o0

und zwar gleichméfligin —1—7n<<c, <1+ 7 .

Die Erfiillbarkeit der Forderung (2) ergibt sich aus der GleichmaBigkeit
der Konvergenz (§ 8, d, 4) in jedem abgeschlossenen Intervall, das den
Punkt z,= 0 nicht enthilt, und daraus, dafl auf der reellen Achse stets

0 < yiley) < 1
ist. Es gilt dann:
4, Vo vy (r( (co)) = lim 4, Vavs (t(”)(co)) (28)

>0

.Beweis: Wir zeigen zuerst, daBl der rechts stehende Grenzwert exi-

stiert. Es ist: 1+
Ao, (K0(00) = lim [deg 842, , (c0) - t2(ce) = (29)
0=0-1_n
147
= [ doo 05, (00 120 +
147
-+ 111% dey [“9833 vy(Co) — 198°&3v,(co)] . t(k‘:,)(co) B 'Kg“)(gl) + K (e,)
Qz
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bei beliebigem g, . Wegen obiger Forderung (2) ist die Folge

{Kf(e))} (r=0,1,...)

konvergent.
Fir K{(p,) finden wir nach der schon § 10 angewendeten Methode:

Kg“)(Ql) =

h(vi)(c) h(@x) ]dZ 0(#)(:)

wo o'W ({) diejenige Funktion ist, die aus tgg;g(c ) dadurch hervorgeht, daB
man t‘,,’:j(é' ) in eine Reihe nach den p, 4,(() entwickelt und darin p, ,0(¢)

durch p,,,,, () ersetzt. Wegen | h@(2)—h@(Z) | < 5(e,) (e < 01, £ auf 8)
(vgl. §11) wird:

1
| K(zu)(gl)

S 5o o) 8% 0, (30)

wo C eine solche Zahl ist, daBl auf S :

o) | < C (u=0,1,...)
wird.
Eine solche Zahl existiert namlich. Es ist ja:

|0 (2)] < f,,, | T @)1,

wo 7¥({) die Funktion ist, die durch absolute Summation der Reihe
fiir t(,g":(c ) entsteht. Die in u gleichmiBige Beschriinktheit der z#(¢) auf

8 ist dann gleichbedeutend mit derjenigen der t‘,ﬁﬁ(g‘ ) . Diese aber kénnen
wir so beweisen :

Es ist
| t(") &) | = IZ.‘](“)(%#(C = G == 'I’kp(c —¢ia)) | <

<@- 2 | '{’k,,,(é' —¢;) — 'I)kp_(c —¢ia) | .
i

Die Behauptung, daf3 dies unter einer von x unabhingigen Schranke
liegt, ist dquivalent damit, da die v, ({ — c,) als Funktionen von ¢, in
— 1 —1n < ¢y < 1 + 5 gleichmiBig in k£ und £ (¢ auf §) von beschrinkter
Schwankung sind. Wir wissen aber, dafl diese Funktionen gleichmiBig
in & und ¢ beschrinkt sind. Da sie analytische Funktionen der Variabeln
&y + 1,2, sind, haben auch ihre Ableitungen diese Eigenschaft, also sind
sie selber von gleichmifig beschrinkter Schwankung.
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Da nun lim #(g,) = 0 (nach (17)), so wird auf Grund von (30) auch

21=0

lim k¥ (o) =0 .

@1=0

Nun sei ¢ eine beliebige positive Zahl. Wir wihlen o, so, daB

| K8 (04) | <—§— , und hernach fiir dieses p, eine Zahl u, so, daB fiir
My =pe und p, =gt | Ki%(0) — Kt (0,) | < < wird. Es ist dann fir

3
solche u, , u, :

| 4oy,v, (t(t:f:(co)) —A4,,,,, (t(k’:l)(co)) |<e,
d. h. die Folge der 4,,,,, (t(,c’:"(co)) ist konvergent.

Nunmehr gehen wir in (29) zum lim g — oo iiber:

1+7
lim Ay, (t2(c0)) = | dog %), (co) - r(cq) + lim K$¥(oy) -
p> # —1-7 p->

Gehen wir hierin schliellich zum lim g, = 0 iiber, so erhalten wir
unsere Behauptung (28).

16.
Nach (24) ist:
147
onz”s (t(“) (co)) = fd[“m/gv,(co)] ) t(m(co) ’
—12y
also wegen (25):
149
lim Aoy, (%(c0) = [ @[30y,u,c0)] - rlen) - (31)
>0 —Y—y

Daraus und aus (27,) und (28) folgt die Behauptung von Hilfssatz 3.
Setzen wir in demselben v, = 0, so wird A, (2) = hy(2) = f(2), was
sicher existiert. Hilfssatz 3 gibt uns in diesem Fall den Hauptsatz 2 fir
vy = v3 = 0. Damit ist der letztere durch vollstindige Induktion be-

wiesen.
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17.

Aus (10) und Hauptsatz 2, angewendet auf 7(Co) = Qonyn,(2 — o), er-
gibt sich:

1+
N—2 ;

.f(z) - fd[(xo Ng na(co ] QOn2 n,(z ) ¢

n=0 n= n2+n3
_..1_..

Gehen wir die Definitionen der Funktionen *0nyny(Co) (VEL. (20)) noch-
mals durch, so sehen wir, dafl bei beliebigen 0 < ¢ < 7 :

—1—e

d [O‘Onz n3(co)] *Gon, ns(z _— CO) = 0
===t
14y
j‘ d [“0"2 "3(00)] ’ qug n,(z — 00) =0 .
14-¢

Es ist deshalb:

1+s
N-—-2

f(z) = li_rf)l E) __Z; J @ [0y n(€0) ] * Qo ny ny(2 — Co) -
21T 3 s

Definieren wir nun die Funktionen:

/ -1
/

&0 ng ny(— 1) + lim d[oc(,nz,,,'(co)] fir cg= —1 ,
£=0
—1—¢
60112 n,(CO) =\ %on, na(co) fir —1< Co < + 1,
1+¢
Xongny(+ 1) + lim fd[%ngn,(co )] fiir ¢g= 41,
£=0
80 wird:
N-—-2
.f(z) = %70 _ + f d[aOnzna(co ] quan,(z ) .

SchlieBlich beachten wir noch, dafl wir in § 6 statt den ersten Indizes
alle 2. oder 3. Indizes auf 0 hitten reduzieren kénnen. So erhalten wir:

Hauptsatz 10. Die Funktion f(z) set im ganzen R, rechtsregulir mait
Ausnahme der Strecke — 1 < xy < + 1 der reellen Achse, welche also ein
eindimensionales, isoliertes singuldres Gebilde darstelle. Das Gebilde set
wnwesentlich singulir von der Ordnung N . Dann gibt es solche Funktionen
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60n3n,(co) ’ (nz + ng < N — 2) ’
6:110 n,(co) ’ (nl + g < N — 2) ’
‘3n1n20 (60) ’ (nl + ny \<\ N — 2) s

die fir —1<co<<+ 1 von beschrinkter Schwankung sind, daf im
ganzen R, mit Ausnahme der Punkte des singuldiren Gebildes f(z) in jede
der Reihen entwickelt werden kann :

+1

n=n£ns :[d [0y ny(C0) ] * Gony ny(2 — o) =

-2

N
fz) =2

n=0

N-2

+1
=2 > fd[anIOn,(co)] ‘g, On,(z - cO) =
-1

n=0 n=n;+ng

n=0 n=ny+4ne

N-—2 oy
_y x f A[B1nnl€0)] - o moolz — €0) -
-1

Umgekehrt hat jede in dieser Form darstellbare Funktion das reelle Intervall
— 1 << 2y < + 1 als singuldres Gebilde, das unwesentlich von einer Ord-
nung < N + 1 ust.

18.

Wir gehen zu dem Fall iiber, wo & ein wesentlich singulires Gebilde
der rechtsreguliren Funktion w = f(z) ist. Es ist dann:

1+
f(z) = lim 2 2 dco ﬂSzel)nz ng (co) *Qny ny n,(z - 00) (Vg] (5)) .
e=0 n=0 n=-—-'nl-{-112-{-113_1_17

Aus der absoluten Konvergenz der unter dem lim-Zeichen stehenden
Reihe folgt, daf} es zu jedem p ein n,(g) gibt, sodaB

149
)
n ;12:+1 n=n +%1+n dco 29(”‘?"2 ns(co) ' qm ny n,(z - 00) < 8(9)
=MNg =mny 2 3

ist, fiir alle z, deren Abstand von & > 2 ist. Hierbei ist ¢(p) irgendeine
positive Funktion mit lim ¢(¢) = 0. Fiithren wir die Bezeichnung ein:
e=0
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1+7

o
ﬂQ)(Z) :=né(') n:—-:nz;n +n f dco 0551)"2 Ny (Go) ) q"l na n:(z T Go) .

so wird
f(z) = lim flo)(z) .

e=0

Nun ist f(@(z) eine rechtsregulire Funktion, die das reelle Intervall
—1—79 < 2y < 14 7 als unwesentlich singuldres Gebilde von einer
Ordnung <(n, + 3) hat. Nach Hauptsatz 10 ist also fiir alle z in R,, die
nicht auf — 1 — 5 < 2y <1 + 7 liegen:

1+7

f(q) (Z) = 2' Z J. d [66012, n,(cl))] : qO ng ns(z - 00) ’

n=0 n=ng+n,

—1—-%
WO
63971)2”‘(00) =0 fir ny + ny>mne) +1 .
Also wird:
Y e
fo) =lim 3 5 [ d[8200] donul — o
=0 n=0 "=“2+”a_l_n

fir alle z in R, mit Ausnahme der Punkte von —1— <z, <1+ 9
auf der reellen Achse. Nun kénnen wir die Theorie der §§ 9—16 wortlich
auf den Fall iibertragen, wo an Stelle der iiber — 1 —#n ¢, <1+ 9
erstreckten Riemannschen Integrale Stieltjéssche auftreten. Wir finden
dann, wenn wir

149
60 Ng n,(ao H 77) = hm d [6(()%)2 n,(co)] : 'P(co — ao)
B
setzen : (vgl. 20)
147
f(Z) = 2 2 fd[aongn,(coa 77)] 'q()ngn,(z""'co)
n=0 n=np+n,
fir jedes >0, also auch
147

f(z) = lim 2' 2 f d[ 60”2 n,(CO’ 72)] * Qo n, n.(z — Cy) -

7=0 n=0 n=ng+tns
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Wenden wir das ganze Verfahren nochmals an, so erhalten wir

schlieBlich:
1+

fa= % & [ altnne] Gonnl— 00 ;
—1—9

wenn wir
1+9

60”2 ’"a(ao) = hm f d[éonz ng co’ 77)] 'P - a’O)

_1 )2
setzen.

Da wir ebensogut alle 2. oder alle 3. Indizes auf 0 hitten reduzieren
konnen, so erhalten wir:

Hauptsatz 11. Die rechisrequlire Funktion w = f(z) habe als einziges
singulires Qebilde das Intervall — 1 < xy < + 1 der reellen Achse des
R, . Dann gilt fiir alle z in R, mit Ausnahme der Punkte dieses singuldren
Gebildes jede der folgenden Entwicklungen :

)= % f d [0, 2.(00) ]+ Gomy my(2 — Co) =

n=0 n= n2+n,

= ) fd[anl Ona(co ] Qn, Ona CO) =

n=0 n=n, +n3

fd [6141 ngy o(co)] 9111 ny 0 z - co)

n—n1+n2

Hierin sind die Funktionen g, u (Co) (Rys mg = 0,1...) , usw. n
— 1 < ¢y < + 1 von beschrinkter Schwankung.

(Eingegangen den 1. Juli 1942.)
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