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Ûber die singulâren Gebilde der regulâren
Funktionen einer Quaternionenvariabeln

Von Walteb Nef, Zurich

Einleitung.

Herr Rud.Fueter hat in mehreren Arbeiten1) die Théorie der regulâren
Funktionen einer Quaternionenvariabeln entwiekelt. Insbesondere hat
er das Problem, aile Môglichkeiten aufzuzàhlen, die fur isolierte singu-
lâre Punkte bestehen, vollstândig gelôst. Sein Résultat2) ist kurz folgen-
des : Der Punkt z 0 sei eine isolierte Singularitât der rechtsregulàren
Funktion w f(z) Dann existieren rechtsregulàre Funktionen

Pnin2nt(*) > qnin2nz(*) > (*l »2 > *8 0 1 2

sodafi in einer gewissen Umgebung von z 0

/(Z) Z Z K^n, Pnin,nt (Z) +

ist. Hierbei sind die anin2tls und 6niW2W8 konstante Quaternionen.

Nun zeigt schon das Beispiel der analytisch regulâren Quaternionen-
funktionen, welche durch die Zusammenfassung zweier analytiseher
Funktionen zweier komplexer Variabeln entstehen3), daB die Singulari-
tâten im allgemeinen nicht isolierte Punkte sind, indem sie in diesem
Falle eine im allgemeinen zweidimensionale Mannigfaltigkeit erfûllen.
Allgemein lassen sich die Singularitâten in die isolierten singulâren Punkte

1) Rud.Fueter, Die Funktionentheorie der Differentialgleichungen Ju — 0

und JJu 0 mit 4 reellen Variabeln. Comm. Math. Helv., vol. 7, S. 307 (zitiert als
Fueter /).

Rud. Fueter, Ûber die analytische Darstellung der regulâren Funktionen
einer Quaternionenvariabeln. Comm. Math. Helv., vol. 8, S. 371 (zitiert als
Fueter II).

Rud. Fuetery Die Singularitâten der eindeutigen regulâren Funktionen
einer Quaternionenvariabeln I. Comm. Math. Helv., vol. 9, S. 320 (zitiert als
Fueter III).

Rud. Fueter, Integralsâtze fur regulâre Funktionen einer Quaternionenvariabeln.

Comm. Math. Helv., vol. 10, S. 306 (zitiert als Fueter IV).
2) Fueter III.
3) wlt w2 seien analytische Funktionen der komplexen Variabeln z1 (#0 + *ia;i)»

z2 — (x2 -f~ itx9). Dann ist w wx -\-i2w2 eine rechtsregulâre Funktion von z Man
nennt sie analytisch rechtsregulâr.
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und in ein- und zweidimensionale singulare Gebilde einteilen. Ein singu-
lares Gebilde heiBt isoliert, wenn in einer gewissen Umgebung desselben
keine weiteren singulàren Punkte liegen.

Die vorliegende Arbeit beschâftigt sich mit den eindimensionalen singulàren

Gebilden. Dabei nehinen wir an, daB das Gebilde eine endliche
geradlinige Strecke sei. Wir kônnen dann annehmen, es liège auf der
Strecke —1^ co^+ 1 der reellen Achse4). Unter dieser Voraussetzung
lôsen wir das Problem vollstândig. Wir beschrànken uns vorerst auf
unwesentlich singulare Gebilde (§§ 4—17), um hernach (§ 18) die wesent-
lichen durch unwesentliche zu approximieren. In dem in Hauptsatz 11

ausgesproehenen Résultat unserer Untersuchungen spielt der Begriff des

Stieltjèsschen Intégrais eine zentrale Rolle. Es scheint mir beachtenswert,
daB sich dieser Begriff hier als so eng mit der Funktionentheorie ver-
knupft erweist.

Mit dem Résultat dieser Arbeit wird eine Vermutung von Herrn Fueter
bestâtigt5).

1.

Das isolierte singulare Gebilde S der reehtsregulâren Funktion w f(z)
befinde sich auf der reellen Achse des i24 und zwar auf ihrem Intervall
— 1 < a:0< +1 R sei die aus den folgenden Punkten (x0, xti x2, x3)

gebildete Hyperflàche, welche S in ihrem Innern enthâlt:

A
1. Die Punkte, fur welche

und
— 1 — ri ^ x0 ^ 1 + rj ist.

2. Die Punkte, fur welche

x0 — 1 — rj
oder

x0 + 1 + rj
und

#î + #2 + xl ^ ^2 is^-

Hierin bedeuten q und rç zwei beliebige positive Zahlen, die jedoch so
klein zu wàhlen sind, daB innerhalb und auf R keine weiteren singulàren

4) Ist f(z) rechtsregulâr, so ist es auch f(az -f 6), wo a, 6 beliebige konstante Quater-
nionen sind.

5) Rud. Fueter, Ûber vierfach periodische Funktionen. Monatshefte fur Math.
und Physik, Bd. 48, S. 161.

10 Commentarii Mathematici Helvetici



Punkte auBer denen von (5 sich befinden. Die aus den Punkten (1) ge-
bildete Flâche sei mit M, die aus den Punkten (2) gebildeten Flâehen
mit G{~] bzw. 6?(+) bezeichnet. K sei irgendeine R in ihrem Innern ent-
haltende geschlossene Hyperflàche, auf der und innerhalb der keine
Singularitàten auBer S liegen.

2.
Es gilt nun:

fur aile Punkte z auBerhalb R und innerhalb K Das erste Intégral
stellt eine innerhalb K regulàre, von K unabhângige Funktion dar,
welehe auf den Charakter von f(z) auf S keinen EinfluB hat. Deshalb
bezeichnen wir im folgenden mit f(z) die Funktion :

R

3.

co(C) sei die réelle Komponente von £. Dann ist :

Wenn nun z auBerhalb R liegt, und wenn, falls | z — co(z) \ < q ist,
zugleich xo< — 1 — rj — q oder x0 > 1 + V + Q erfullt ist, so gilt :

I f — co(C) I < h — co(f | Deshalb wird :

n=0 n=
M

•) JPweier I, S. 318.

*) ^we^er //, S. 373.
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Die drei Intégrale untersuchen wir einzeln:
1.

,-.,£,„./

— y y

2. Ebenso wird:

«
lBi

• gBin2B9 (z+l + r,) (1)

+

3. Es sei Kc die zweidimensionale Kugelflâche, welche aus denjenigen
Punkten von M besteht, fur die x0 c0 ist (— 1 — ^<co<l + ^)«
Den jedem Punkte von Kc zugeordneten Vektor, dessen Lange gleieh
dem Oberflàchenelement auf KCq und dessen Richtung die Senkrechte
auf Kc in der zur #0-Achse senkrechten Hyperebene dureh den Punkt
(c0, 0, 0, 0) ist, bezeichnen wir mit dK

Dann wird:
1 ~ „

M

dcoiï Z Çd

Z Çdc0 «?) (c0)

1+1?

ÇZ
n=0

WO

— c0)

-«.) ist-

Es ist somit in dem zu Beginn dièses § bezeichneten Gebiete:

• qnin%n, (z — c,)J
-i-n



Also gilt fur aile z in i?4 mit Ausnahme des Intervalls

— 1 — rj < xQ < 1 + rj
auf der reellen Achse :

f(z) lim

4.

Wir schâtzen nun die Koeffizienten -4^n2nt und Blfy^ a^- ^a f(z)
auf (?(~) und Oi+) regulâr ist, ist es daselbst besehrânkt und es môge
gelten :

| f(z) | < M auf O{~] und
Dann wird:

da

Also wird

| jB^i)n2ns |

129nin2W3 (f —

lim ï
c=0 -0 n=

weil die Reihe

tn2n^ (I)

absolut konvergiert, sobald | q \ < 3 111 ist. 9)

Also ist nun:

(5)

~i-y

8) Fueter III, S. 327.
») Fueter III, S. 328.
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Jetzt setzen wir S als unwesentlich singular von der Ordnung N voraus.
Darunter verstehen wir folgendes: Es gibt eine natûrliche Zahl N von
der Art, daB

IM I <
M

wo q den Abstand des Punktes z von S bedeutet, d. h. die untere Grenze
der Abstânde des Punktes z von den einzelnen Punkten von S Es wird
dann (vgl. (2)):

U(c0)

1 M
4. ^ n2

8tz* qn
Q

dK c0)

M ftn+2-iV

Wenn

fur

ist, so wird also:
- 1 — rj < c0

%! n2\ n3l

(6)

lim

wegen der absoluten Konvergenz der auftretenden Reihe10) fur
\q\ < 3 | z — c0 |min und dem in jedem Summanden auftretenden Faktor q
Es wird somit :

^(Co) • gw(*-c.) (7)£
Aus (3, 4, 6) folgt noeh, dafi die Konvergenz in (7) gleichmâfiig ist fur

aile z einer beliebigen abgeschlossenen Menge, welche keinen Punkt mit dem
reellen Intervall — 1 — rj ^ x0 ^ 1 + rj gemeinsam liât. Denn fur eine
solehe Menge sind aile qnin^nz {z — c0) beschrankt.

5.

Satz 1. &(n%2n9 (c0) (%, n2, n3 0 1 2... (q > 0) seien irgend-
welche fur q> 0 in — 1 — rj < c0 < 1 + V stetige Funktionen von cQ,
und es sei eine rechtsregulâre Funktion g (z) in der Form dargestellt :

10) Fueter III, S. 328.
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N-2
9{z) ïï £ïï £ -- *- <«--*>,

sei die Konvergenz gleichmàfiig in jeder abgeschlossenen Menge
von z-Werten, die Jceine Punkte mit dem reellen Intervall —1—rj^xo^l~{-r]
gemeinsam hat. r(z) sei eine auf und in einer gewissen Umgebung von S
linksregulare Funktion. Die geschlossene Hyperflâche 8 môge ganz in dieser

Umgebung liegen und au/ierdem umschliefie sie Q Dann gilt :

dc #«> (r \ **r (Co)
N-2

lim Z
<?=0 n=0

Insbesondere existiert also der links stehende Grenzwert.

Beweis : Wir setzen

N-2
g«>(z)=Z S

n=0 w=Wi4"W2+W;

Es wird dann:

n-2
" Z
n=0

i-hil*.
Da aile auftretenden Funktionen stetig sind, kônnen wir die Reihen-

folge der Integrationen vertauschen :

(8)

(c0) Jînin2Ws (C - c0)27 27
n=»0 n==tii-\-n2+nz — f

Nun gilt fur zwei beliebige, auf S rechts- bzw. linksregulare Funktionen
w(z) und v(z) :

Ç(w{k) dZv + w dZ v{k) 0 (k 0, 1, 2, 3)

wo /M v dwlz) ttvîi;**' (2) -—~- ist. ")

ll) Fueter IV, S. 309.
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Wenden wir dièse Formel auf die Punktionen w(z) gnin!n$(z — c0)

und v(z) r(z) an, so erhalten wir:

lnin2ns(C — C0)dZr(C) I qni-ln2n3(C — C0)0

und durch (% -f" ^2 + ^3) " malige Anwendung derselben Formel:

ï 0 0 0 0 ^
^ «.,

2) •

Setzen wir dies in (8) ein, so erhalten wir:

dnr(c0)00 /• Q

S Si dcoK%int(co)-^

S

Nun ist gleichmâfiig auf S :

Km

Also existiert:

Km S ifns+«, J dCo **--(Co) a^ a^ a<- ~
1»^

6.

sei eine in — 1 — rj ^cQ ^ l -{- rj stetige und stetig differen-
zierbare Funktion. Wir betrachten das Intégral

dc0 #(c0) #ninon8(z — c0) worin nx ^ 0 sei.

^we^er /, S. 318.
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Nun ist

înmtf», (z — c0) — -^— gWl_x n2 n$ (2; — e0) 13)

Da aber qni-intn9 (z— c0) eine linksregulâre Funktion ist, so gilt
auBerdem :

also
d

Wegen
dgni-i«2n,(z

Î£Hj,"~l W2 Wg v^1

— c0)

— c0)

-c0) x-1 n2

dxQ dc0

wird schliefilich:

J
1+1?

n3 (« ~ ©o) I

— dc0â'(c0)-i1.qni_ln%nt(z — c9) +

i+y
+ j dco#(co).vgMi_ln2+1W8(z — c0)

1»?

Wir haben damit das gegebene Intégral in eine Summe von Integralen
zerlegt, in denen allen der erste Index der Funktion qnin^n (z — c0) um
1 erniedrigt ist, die ûbrigen erhôht werden, aber so, da6 die Summe der
Indizes gleich bleibt. Der neben diesen Integralen noch auftretende
Summand wird im folgenden keine Rolle spielen. Auf dieselbe Art kônnen
wir natiirlich den zweiten oder dritten Index erniedrigen.

13) Fueter IV, S. 314.
14) Fueter J, S. 310.
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In
N-2 i-i-n

s
sei JVi die grôBte der unter den ersten Indizes der qni<n%n% (z — c0) auf-
tretenden Zahlen. In allen Summanden, in denen Nt tatsàchKch als
erster Index auftritt, erniedrigen wir denselben naeh dem in 6. beschrie-
benen Verfahren um 1. Wir erhalten dann eine neue Darstellung von
f(z), in weleher der hôchste auftretende erste Index

ist.
In allen Gliedern mit hôchstem ersten Index erniedrigen wir denselben

wieder um 1, usw. SchlieBlieh erhalten wir eine Darstellung:

Km j £ Z fdc0d (C0) ' ^0 n2ns {Z - C0)
ç=0 \ n=0 «=«2+w8 v

E
n=0

[<U, • ?„,„,„, (2 + 1 + V) + i^U • ?«>n2n, (Z-1-T

Die Koeffizienten oc\^n2n9, jS^^n, sind lineare Kombinationen der

n8 i 1 db *?) und je endlich vieler ihrer Ableitungen an denselben
Stellen. Wegen

dK

wird:

Da aber f(z) in allen Punkten mit x0 ± 1 ± ^ regulâr ist, so ist
es mitsamt den in der Darstellung der (x{^n2nz » P{nin2n3 auftretenden
Ableitungen auf allen
wird

gleichmàBig in g
nin2n3

beschrânkt.

Jim «<•>„,„ lim
o

0

Deshalb

(9)
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Sehreiben wir noch t?^ n^
anstelle von #*n($8 so wird jetzt

/(z) lim S Z / dc0 #„« Bj (c0) • ?„ „,„, (2 - c0) (10)
—1—»7

Z)a die Konvergenz in (7) gleichmàjiig war filr jede abgeschlossene Menge
von z-Werten, die keine Punkte mit dem reellen Intervall —1—r)^xo^l-\-rj
gemeinsam hat, folgt vermittelst (9) dasselbe fur (10).

8.

Wir begeben uns nun in eine komplexe Zahlenebene mit den Einheiten
M.

a) Wir betrachten die Folge von analytischen Funktionen im Einheits-
kreis | z \ < 1 :

(2-2
1 1 \ 2 fc

^±YJ (*=i, 2, s,...)
Sie hat die Eigenschaften :

a) falls z reell ist, so ist /Â,k(z) reell, /n^z) ^ 1 und
lim nk{z) — + oo auBer fur z 0 ;
*->oo

P) falls z rein imaginâr ist, so ist fik{z) reell, 0 < jbtk(z) ^ 1 und
lim fik(z) 0 auBer fur z 0

b) Die Folge von im Einheitskreis eindeutigen analytiachen
Funktionen :

J & *= 1,2,3,...)
wobei die Intégration uber einen beliebigen in | z \ < 1 gelegenen
Weg zu erstrecken ist, hat deshalb die folgenden Eigensehaften :

<x) falls z reell ist, z ^ 0 so ist Xk{z) reell und Xk(z) 2g 0

lim Xk(z) =±00;
j8) falls z rein imaginâr ist

mit

mit

positivem Koeffizienten von i, so ist Xk(z) rein imaginâr

Koeffizienten von i und lim Xk(z) 0

negativem

positivem
negativem

Es ist ûbrigens fur aile rein imaginâren z im Innern des Einheits-
kreises | Xk(z) \ < 1

154



Deshalb nimmt keine der Funktionen Xk(z) auf der imaginâren Achse die
Werte ±i an. Ein rein imaginârer Wert kann aber von einer Funktion
Xk{z) nur auf der imaginâren Achse angenommen werden. Wàre nàmlich
Xk(x + iy) rein imaginâr, x ^ 0 so ware Xk{— x + iy) Xk(x + iy)
aus Symmetriegrûnden.

Das ist aber fur x ^ 0 nicht môglich, da die Funktionen w Xk(z)

das Kreisinnere | z | < 1 schlicht abbilden, wie wir jetzt zeigen wollen.
Wâre nâmlich fur irgendein k die Abbildung nicht schlicht, also etwa

Xk(z*) kt{z**) z* ^ z**

so verbinden wir z* und 2** durch eine in | z | < 1 verlaufende stetige
Kurve. Das Bild derselben ist eine auf der Riemannschen Flâche der
inversen Funktion z z(w) verlaufende Kurve, die zwei liber demselben
t^-Wert liegende Punkte derselben verbindet und die ganz im Bildgebiet
von | z | < 1 verlâuft. Dièses muBte also einen Windungspunkt der
Riemannschen Flàche enthalten, also eine singulâre Stelle der Funktion
z z(w) Eine solche kann nur aufbreten, wenn an der entsprechenden
z-Stelle

entweder w Xk(z) singulâr ist
oder wf= Xk(z) 0 ist.

Beides ist fur | z \ < 1 nirgends der Fall.
Keine Funktion Xk{z) nimmt also fur \z\ < 1 die Werte ±i an. Eine

nàhere Betrachtung zeigt sogar, da6 es je eine feste Umgebung dieser
Werte gibt, so da8 die Funktionen keine Werte der Umgebung annehmen.

c) Nun betrachten wir die Folge von Funktionen

=~- arctg [^ (y) ] (* <>, 1, 2,...)

wo von der Funktion arctg der Hauptwert zunehmen ist. Da die Funktion
arctg als einzige singulâre Stellen die Punkte ±i hat, folgt aus dem zuletzt
uber Xk(z) gesagten, da8 die <pk(z) fur | z \ < 3 gleichmàfiig in k beschrànkt
sind. Aus (6, oc) ergibt sich, dafi fiir réelles s^O : lim <pk(z) -j- 1

d) Jetzt beachten wir noch die folgende leicht nachzuprùfende Tat-
sache :

<p(x + iy) uo(x, y) + iux(x, y)

sei eine analytische Funktion der Variabeln x + i y Dann ist

(p(z) uo(xOi xx) + ix u^Xq, xx)

155



eine ztigleich rechts- und iinksregulâre Funktion der Quaternionenvaria-
bebi z x0 + ixxx + H%i + *3#3 • Es sei nun :

(z, y)

Wir bilden die Folge von regulâren Quaternionenfunktionen

(pk(z) uk0{x0 xt) + itukl(x0 xx)

Aus dem unter (c) gesagten ergibt sich, daB dièse Funktionenfolge die
Eigensehaften hat:

1. Die <pk(z) sind in \ x0 + ixxx \ < 3 rechts- und linksregular.
2. 9h{0) 0

3. Auf der reellen Achse ist fihr \ z \ < 3 : <pk(z) < 1

4. Auf der reellen Achse ist fur x0 ^ 0 : | x0 \ < 3) lim <pk(z) ± 1

5. JS5 gibt eine Umgebung U von S (z. B. | 2 | < 2) innerhalb derer die
<pk(z) gleichmâfiig in k beschrânkt sind. U moge so gewâhlt werden, dafi
es von einer geschlossenen Hyperfldche S begrenzt wird. Innerhalb und
auf 8 moge gelten:

\<pk(z)\<M. (i 0, 1, 2,...)

9.

Jetzt greifen wir auf die Darstellung (10) zurûek:

Z
ç=0 n=0

S2 P
f(z) lim Z Z dc0 êi%n> (c0) • q0 n^ (z - c0) ;

ç=0 n=0 n=n2+n3 v

wir werden im folgenden ûber dieselbe beweisen:

Hauptsatz 2. Zu jedem Indexsystem (0, v2, v3) (v2 + v3 < N — 2) gibt
es eine Funktion oco Vz Va(c0) die in — 1 — rj ^ c0 < 1 + V von beschrànkter

Schwankung ist, und filr die gilt :

lim fdce ^e»2 Vs (c0) • r(c0) fd [«0 Vi „, (c0) ] • r(c0)

-1-»/ -1-^

fur jede auf — 1 — ^<co<l + ^ stetige Funktion r(c0)
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Den Beweis werden wir durch eine vollstandige Induktion bezùglich
v v2 -\- v3 fûhren. Wir setzen voraus, daB der Satz fur v < v0 gilt.

Dann folgt, daB

hVa(z)= lim S S dc0ê<0%n3(c0).q0n^(z-c0)
Ç=0 n—VQ w=/i2+n8 *'

existiert, und wir beweisen:

Hilfssatz 3. Es existiere die Funktion

*>,(«) Km S E

rfie m'cfe aw/ S liegen. Dann gibt es zu jedem Jndexsystem
(0, v2, v3) mit v2 + vs v0 eine Funktion <xOv2V3(co) sodafi fur jede in
— 1 — ^^ co^l + ?7 stetige Funktion r(c0) :

lim fdc0 #<«U (c0) ' r(c0) fd [ixQv^ (c0) ] r(cQ)

ist.
Der Beweis dièses Hilfssatzes wird in den §§ 10—16 gefuhrt.
Fur spàteren Gebrauch setzen wir noch

*-. y
-1-»?

und stellen fest, daB aus der GleichmàBigkeit der Konvergenz in (10)
und aus der Gultigkeit des Hauptsatzes 2 fur v < v0 folgt:

hVo(z) lim hi*(z) (12)

gleichmâBig in jeder abgeschlossenen Menge von 2-Werten, die keine
Punkte mit dem Intervall — 1 — rj < xo^l + rj gemeinsam hat.

10.

Wir wenden jetzt Satz 1 an, indem wir an Stelle von g(z) die Funktion
hVo(z) und an Stelle von r(z) die Funktion yVlV%Vz(z) [v2 + vz v0,

v1 beliebig] einsetzen.
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Bedenken wir, daB die Funktion pVlVsVs(z) folgende Eigenschafben hat:

'« ° »
sobald n2 > *2 oder ^3 > r3

H Xo)Vl

so erhalten wir (nach Satz 1, (11) und (12)):

fdc0 <v,(c0) ^l0 <v,(0) ^l00(0) ^j^U) dZ

und (13)

lim
<?=o

-i-v

Da die in 8 definierten Funktionen q)k(z) (fc=l,2,...) analytische
Funktionen der Variabeln x0 + h#i sind, gibt es solche Koeffizienten

ï p^oo(«) ' < (* 1 2

fiir aile z aus der Umgebung Z7 von S

Setzen wir nun

x*i*) 2 Pw, « • <}. (* i, 2 f...)

so folgt aus der in k gleichmàBigen Beschrânktheit der <pk(z) in U die-
jenige der x*(*)16)-

Nun multiplizieren wir (13) von rechts mit a^ und summieren uber vx.
Dann erhalten wir:

15) Fueter II, S. 372.
1<J) Fueter III, S. 327.
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dZ Xk{Ç)

und (14)
î+v

flim fdco^l\V3(co)^Aco) - - ^fho(C) dZ

11.

Wir setzen (vgl. § 8) :

— 1 fur c0 < 0

<p(c0) lim (pk(c0) j 0 fiir c0 0
*"*°° + 1 fur c0 > 0

und beweisen:

Hilfssatz 4. Bei jestent g ist :

//»dc0 &$ v (c0) • <Pjc(Cq) I dc0 &QQJ
v (c0) • (p(c0)

Beweis : a) Wir halten g fest. Es sei 0 < e < 1 Dann ist:

l+ij —e +£

f dco #o$tV%(co) ' Vk(<>o) f + f
-lg-i? -1-)? -e +e

Das mittlere Intégral wollen wir mit Ek(e) bezeichnen. Da die
Konvergenz (§ 8, d, 4) in < — 1 — rj —e>
gleichmàBig ist, so wird:

im fde, #\?lVilim
x>

-1-rç

+ lim Ek(e) -f

Nun ist |JS?fc(e) | < 2 e© wo & das Maximum von &$%Vt{c0) in
-1 — ^^co^l+?y ist.
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Lassen wir also e nach 0 gehen, so erhalten wir :

lim Cdc0 ê$t Vs(c0) - cpk(c0) Cdc0 ê(oej2 Vs(c0) • <p(c0)
£->oo J J

-l-i? -1-i?
Wir setzen nun:

7

V9(r(cQ)) =lim (\fco0&U

fur irgendeine in — 1 — ?] ^ c0 < 1 + r\ definierte Funktion r(c0), falls
der rechts stehende Grenzwert existiert. Damit haben wir im Bereich

derjenigen Funktionen r(c0), fur die ^o^v3(r(co)) existiert, ein Funktional
definiert. Das Ziel der nâchsten Paragraphen ist es, zu zeigen, daB der
Existenzbereich dièses Funktionals aile in — 1 — rj ^ c0 ^ 1 + ï]
stetigen Funktionen umfaBt.

Vorlàufig beweisen wir:

Satz 5. Das Funktional AQv^Vi existiert fur die Funktion ç?(c0) und es ist

%) Hm Ao,2 v%
(<pk(c0))

Beweis : Wir beweisen zuerst, daB

Mm AOV2V%(<pk(cQ))

existiert. *~*°°

Nun ist:
1+

dcn

-l-Yl

lim Ç

(16)

-1-1?

bei beliebigem qx. Nach (14) ist

2t) lim
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Wir behaupten, daB lim /^(gi) 0 ist.

Es sei nâmlich auf S : \ #fc(z) \ < N (Die %k(z) sind auf 8 gleichmâBig
in k beschrànkt.)

Dann kônnen wir auf Grund von (12) eine Funktion rj(Qi) so bestimmen,
daB auf S :

l^l-^IOK^) fe e<ft, (17)
und daB

lim tjiQi) 0 ist.

Dann ist
Xk(C) • N

fur ^ < qx und aile iy wo S* den Inhalt der Hyperflâche S bedeutet.
Es ist somit

lim /<2*>(ei) 0

gleichmâBig in k.
Nun sei e eine beliebige positive Zahl. Wir wâhlen gt so klein, daB

i)! < "5" wird. Alsdann wàhlen wir fc0 so, daB fur kx > fc0 und

k0 :

wird. Das ist môglich nach Hilfssatz 4.

Dann wird nach (16) fur kx > k0 und k2 > k0 :

I Aov,v, (?*2 (c0) ~ AOV2Vs ((pkl(c0)

d.h. die Folge der -4oy2v8(9?fc(co)) ^ konvergent. Ihren Grenzwert wollen
wir jetzt berechnen. Gehen wir in (16) zum lim ùber, so erhalten wir:

lim AOV2Vi(<pk(co) lim Çdc0 #0«j>y% (c0). <pk(c0)

-i-n

+ lim \ lim fcfco W,»Mo) ~ C^e^o)] ^(

lim [/<*>(^) + I{kHQl)] limf lim [/

11 Commentarii Mathematici Helvetici



Nun ist nach dem Vorhergehenden :

fur aile h, also auch

lim Ii"H6l) < r)(Ql) -8*-N
k->co

und
lim [lim Ig^iQi)] 0
6l=0 k->oo

Somit wird :

lim A0ViVt(<pk{c0)) lim [lim I[k)(Qi) ]
k+co Qi=O k->oo

also nach Hilfssatz 4:

]imAQV2Vz(<pk(c0)) lim [dcoê^lVz(co) • <p(cQ) A0V2Vt(<p(c0))
*^ 0 w.z.b.w.

12.

Die in diesem Paragraphes, auftretenden Funktionen haben réelles
Argument; ihr Wertevorrat besteht jedoch aus Quaternionen. Wir wollen zuerst
definieren, was wir im Bereich dieser Funktionen unter einer Funktion
von beschrânkter Schwankung verstehen.

Définition: Die Funktion o(c0), die von der eben beschriebenen Art ist,
heijit in dem (reellen) Intervall a < c0 ^6 von beschrânkter Schwankung,
wenn bei beliebiger Wahl der Punkte xt mit a x0 < xx < x2 <
< ^«-i< xn ^ (n beliebig), stets die Ungleichheit erfullt ist:

t^o G eine von der Auswahl der Punkte x{ unabhângige positive Zahl ist.

Man beweist ohne weiteres:

Hilfssatz 6. Wenn a(c0) von beschrânkter Schwankung ist, so sind es

auch seine vier Komponenten im Sinne der Théorie der reellen Funktionen.

Hilfssatz 7. Wenn die vier Komponenten der Funktion o(c0) im Sinne
der Théorie der reellen Funktionen von beschrânkter Schwankung sind, so

ist es o(cQ) im eben definierten Sinne.
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Wir geben nun auf dem Intervall <a,b> eine Folge von Untertei-
lungen :

£/<*> : a 4V) < x[v) < < x{:l < x%l_x 6 (v =1,2, 3

mit der Eigenschaft:

lim d<v) 0, wo d(v) die grôBte unter den Lângen der Teilintervalle von
F->OO

Uiv) ist. Dann gilt:

Satz 8. a(c0) sei in <a,b> von beschrànkter Schwankung. r(c0) sei
im selben Intervall stetig. Dann existiert das Stieltjèssche Intégral:

lim S [*(*<;> — a (x^) ] • r{tf>) (x^ < 4"> < as»)

B e w e i s : Es sei
3 3

o Z imom r £
m=0

Dann ist:

3 3

m=0 n=0

Nach Hilfssatz 6 sind die Funktionen am von beschrànkter Schwankung.

Die Funktionen r sind stetig. Wie in der Théorie der reellen Funk
tionen gezeigt wird, existiert dann

b

j d[ajco)] ¦ rn(c0) (m n 0 1 2 3) ")
a

Also existiert auch

b 3 3^fd[o(c0)].r(c*) - Z E iminfd[an(c0)] -r(c0) w.z.b.w.

17) H. L&besgue, Leçons sur l'intégration et la recherche des fonctions
primitives. Paris 1928. S. 253f.
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13.

Wenden wir aile Ùberlegungen von § 11 statt auf die Funktionen
<pk(z), <p(z), Xk(z) auf dîe Funktionen <pk(z — a0), tp(z — a0), %k(z — a0)
(a0 reell, — 2 < a0 < + 2) {(pk(z) ist ja regulâr fur | z | < 3) an, so erhalten
wir als Analogon zu Satz 5:

WO

c0 — a0) Hm Co — ao)

Nun definieren wir die Funktion:

lim \ [1 —

lim y>k(c0 — a0)

>((pk(c0 — a0))

— 1 fur c0 < a0,
0 fur co ao,

+ 1 fur cQ > a0

(18)

ist.

1 fur co<ao,
\ fur co ao
0 fur cQ> a0

Setzen wir in (18) : a0 < — 1 — rj so erhalten wir die Existenz
von -40v2v, (1) • Somit existiert auch

f

und es gilt

Wir setzen nun

und beweisen:

Satz 9. Die Funktion aOV2l,8(ao) is£ in — 1 —
schrânkter Schwanhung.

a0) • (19)

1 + rj von 6e-

Beweis : Auf Grand von Hilfssatz 7 beweisen wir, da6 jede Kompo-
nente von <%Ov2v$(ao) von beschrànkter Schwankung ist. Nun ist;

e, (e, ±



g sei ein Polynom in xQ-\- ixx1 mit reellen Koeffizienten, das folgende

Eigenschaften hat:

1. Auf der reellen Achse ist es g* 0 in allen offenen Intervallen {xj^1, x^,
in denen ei ± 1 îst.

2. In den Punkten xé ist g 0, wenn es in beiden angrenzenden Inter¬
vallen entgegengesetztes Vorzeichen hat, sonst ist es ^ 0

3. Die Umgebung U von S wird durch g(z) auf einen Teilbereieh abge-
bildet.

Da6 ein Polynom mit den Eigenschaften (1) und (2) existiert, ist
klar. Um aus einem solchen eines mit der Eigenschaft (3) zu erhalten,
braucht man es nur mit einer genugend kleinen reellen Konstanten zu
multiplizieren.

Wir bilden nun die Funktionsschar :

Auf Grund obiger Eigenschaft (3) und Eigenschaft (d, 5) in § 8 gilt:

| Tk(z) \<M in U

Wegen obiger Eigenschaften (1) und (2) und der Eigenschaften (d, 2, 4)
in § 8 wird :

± 1 in (#,_!, x}) wenn e3 ±1 ist.

± 1 in x, wenn e3 em ± 1 ist.
0 in x3 wenn e, ^ e3+t ist.

Mm Tft(c0) 7'(c0)

Es ist also:
T(c0) E e9 [y>(c0 — x,) — y(c0 — x,^)]

Aus der Existenz von

Av2vz(v(Co — «)) UmA0VtV%{Vk(c0 — x)) (vgl. (19))
ifc-^oo

folgt deshalb die von

AV2v3(nc0)) Km A0V2VB(Tk(c0))

Weil Tfe(2;) eine analytische Funktion der Variabeln (x0 -f- ixx^) ist, ist
in U :

Vx-0
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Setzen wir:

so erhalten wir, indem wir (132) von rechts mit 6(lf) multiplizieren und
summieren :

A0ViVs(Tk(c0))

Aus der aus obiger Eigenschaft (3) folgenden in k gleichmâBigen Be-
schrànktheit der Tk(Ç) auf S folgt diejenige der Z k(Ç). Es sei | £k(Ç) |^ P
auf 8 Dann wird :

wo H das Maximum von /&,,0(z) auf S und $* den Inhalt der Hyper-
flâche S bedeutet.

Also wird auch

Aus

und

T(cQ) 21 c,. [y(c0 — X;) — v(c0 —

folgt aber:

Die Zahlen ey ± 1 waren aber so gewahlt, daB auf der rechten Seite
die i-te Komponente von [^(^) — ^(^_i)] uberall positives Vorzeichen
hat. Deshalb ist

< I 2 ei(«0r.r.(^) — «Or,^**-!» I I

< -^H S* P w.z.b.w.
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14.

Somit existiert nach Satz 8 fur jede in — 1 — ^^co^l+^ stetige
Funktion r(c0) das Stieltjèssche Intégral

v3(co)] -r(c0)

Es existiert auch fur die Funktionen, die in < — 1 — tj, l + rj> endlich
viele Unstetigkeitsstellen haben, von denen keine mit einer der abzàhl-
bar vielen Unstetigkeitsstellen von ocOVzV3(co) zusammenfàllt. Unter
diesen werden wir insbesondere diejenigen Funktionen brauchen, die im
Innern eines jeden Intervalls, das von zwei aufeinanderfolgenden
Unstetigkeitsstellen begrenzt ist, konstant sind, und die an den
Unstetigkeitsstellen den Mittelwert der oberen und unteren Limesfunktion
annehmen. Solehe Funktionen wollen wir im folgenden mit t(cQ) be-
zeichnen. Offenbar kann jede Funktion t(c0) mit Hilfe der in § 13

definierten Funktionen tp(c0 — a0) in der Form dargestellt werden:

t(c0) Zg,(y(cQ — c,) — y>(c0 — cM)) (21)

wo die c3 aile Unstetigkeitsstellen von t(c0) durchlaufen und wo g3 der
Wert von t(c0) in (c^, c3) ist.

Setzen wir
tk(c0) zg,(Vk{c0 — c3) — y>k(c0 — c,.!)) >

so wird
t(c0) Km tk(c0) (22)

und aus

Aov2vt (vfco — c,) lim A0V2Vt (y>k(c0 — cs)) (vgl. (19))
fc->oo

folgt
A0ViVi(t(cg)) lim A0V2Vi(tk(c0)) (23)

Nun bemerken wir, daB aus der Définition der Funktion oc0v2Vs (vgl. (20))
unmittelbar folgt:

1+1?

Ao v2 v% (¥fiQ — c,) J d [oco
V2 Vi(c0) ] y>(c0 — ct)

Daraus folgt wegen (21) :

l-H?

^o,2v3(^(co)) J d[«oFiFl(cp)] -*(c0) (24)
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15,

r(c0) sei jetzt irgendeine auf — 1 — < c0 ^ 1 + *? stetigeFunktion.
Dann gibt es eine solche Folge von Funktionen ^(Cq), (p 0, 1,...),
von der Art der im vorigen Paragraphen betraehteten Funktionen t(c0),
da8 gleichmàBig auf — 1 — y ^c0 ^. l + rj :

r(co) fim<^(co) ist. (25)

Falls in demselben Intervall | r(c0) \ < G ist, so kônnen auch aile
I < ^ gewàhlt werden. Das tun wir auch. Nun sei

tW(c0) lim tP(c0) gemàB (22).

Ferner sei {e^}, (fi 0, 1,... eine beliebige Nullfolge. Nach (23) kônnen
wir zu jedem fi ein if® so bestimmen, daB fur k^ ^ k^ :

2,Ç it)) | < eM (26)

wird. Wir wâhlen nun zu jedem fi ein k^ so, daB

1. kp > kf daB also (26) gilt.
(27)

2. r(co) lim^(co) wird,

und zwar gleichmàBig in — 1 — ^<co<l + ^-
Die Erfullbarkeit der Forderung (2) ergibt sich aus der GleichmâBigkeit
der Konvergenz § 8, d, 4) in jedem abgeschlossenen Intervall, das den
Punkt xQ 0 nicht enthâlt, und daraus, daB auf der reellen Achse stets

0 < y>k(c0) < l
ist. Es gilt dann :

MH)) (28)

Beweis : Wir zeigen zuerst, daB der rechts stehende Grenzwert exi-
stiert. Es ist:

Ç%>(c0).ttHc0)= (29)

1+tJ

+ lim
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bei beliebigem gx Wegen obiger Forderung (2) ist die Folge

G» 0,1,...)
konvergent.
Fiir K^^) finden wir nach der schon § 10 angewendeten Méthode:

ttVt) £(£)] dz ¦

S

wo <7</x)(C) diejenige Funktion ist, die aus 4^(0 dadurch hervorgeht, daB

man if£\Ç) in eine Reihe nach den pVl0o(0 entwickelt und darin pVl00(Ç)
durch^ViV2V3(C)ersetzt. Wegen | fc<«>(C) —fc< L
(vgl. § 11) wird:

wo (7 eine solche Zahl ist, da6 auf 8 :

<0 (^ 0,1,...)
wird.

Eine solche Zahl existiert nâmlich. Es ist ja:

1

wo r^f) die Funktion ist, die durch absolute Summation der Reihe
fur t$\Ç) entsteht. Die in /a gleichmâBige Beschrânktheit der t^(£) auf
8 ist dann gleichbedeutend mit derjenigen der ^(C) • Dièse aber kônnen

wir so beweisen:

Es ist

Die Behauptung, daB dies unter einer von ju unabhângigen Schranke
liegt, ist àquivalent damit, daB die ipk(Ç — c0) als Funktionen von c0 in
— 1 — rj ^ c0 < 1 + rj gleichmâBig in Je und f (C auf 8) von beschrânkter
Schwankung sind. Wir wissen aber, daB dièse Funktionen gleichmâBig
in k und f beschrânkt sind. Da sie analytische Funktionen der Variabeln
x0 + ixxx sind, haben auch ihre Ableitungen dièse Eigenschaft, also sind
sie selber von gleichmâBig beschrânkter Schwankung.
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Da nun Km 77(^3) 0 (nach (17) so wird auf Grund von (30) auch
ei=o

lim K?>{ei) 0

Nun sei e eine beliebige positive Zahl. Wir wàhlen qx so, daB

l^£(£i)l <~q" > un(i hernach fur dièses qx eine Zahl //0 so, daB fur
o

^1 ^/^o un^ /*2 ^ Po : I Ki2(Qi) — J^ïM^i) i < -tt wird. Es ist dann fur
o

solche fjLx /u2 :

d. h. die Folge der A0VîVj(t(^)(co) ist konvergent.

Nunmehr gehen wir in (29) zum lim fi ->oo ùber:

i+vi+v
i dcoâftlVt(co). r(co)+ lim

Gehen wir hierin schlieBlich zum lim qx 0 ûber, so erhalten wir
unsere Behauptung (28).

16.
Nach (24) ist:

4>rtr,(*C|i>(c0)) J rf[«oMvt(Co)] -

also wegen (25) :

lim A0VîV9(tW(c0)) riKFiFi(c0)] -r(c0) (31)

Daraus und aus (27X) und (28) folgt die Behauptung von Hilfssatz 3.

Setzen wir in demselben v0 0 so wird hVo(z) ho(z) f(z) was
sicher existierb. Hilfssatz 3 gibt uns in diesem Fall den Hauptsatz 2 fur
v2 vz 0 Damit ist der letztere durch vollstândige Induktion be-
wiesen.
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17.

Aus (10) und Hauptsatz 2, angewendet auf r(c0) qQn%nt{z— c0), er-
gibt sich:

N-2
f (*) E X

Gehen wir die Definitionen der Funktionen ocOrl2nz(co) (vgl. (20)) noch-
mals durch, so sehen wir, daB bei beliebigen o < e < rj :

K«,»,W] • îon, ••,(* —Co) 0

fdKn2n,(CO)]^On2n8(2 — Co) 0

Es ist deshalb :

f(z)= lim j? 21 fd["on%n9(c0)]-q0ntnt(z — c0)
£=0 ft=O W=W2-f-îî3 ty

Definieren wir nun die Funktionen:
/ -î

n2n3(— 1) + lim f rf[«0Wlll (c0)] fur co= — 1

«.^(«o) fur — Kco< + 1

1+8

«,«,(+ 1) + Mm Jd[<xo«2«,(co)] fur co= + 1

so wird:

n=0 n=n

4-1

SchlieBlich beaehten wir noch, daB wir in § 6 statt den ersten Indizes
aile 2. oder 3. Indizes auf 0 hâtten reduzieren kônnen. So erhalten wir:

Hauptsatz 10. Die Funktion f(z) sei im ganzen RA rechtsregular mit
Ausnahme der Strecke — 1 < xQ < + 1 der reellen Achse, welche also ein
eindimensionales, isoliertes singulâres Gebilde darstelle. Das Gebilde sei

unwesentlich singulâr von der Ordnung N Dann gibt es solche Funktionen
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(n2 + nz < N — 2)

y (ni + ns ^ N — 2)

die filr —1 < c0 ^ -f- 1 von beschrânkter Schwankung sind, daji im
ganzen i24 mit Ausnahme der Punkte des singularen Gebildes f(z) in jede
der Reihen entwickelt werden kann :

f(z) =NZ Z fd[ôOnins(co)] • qOn2nz(z - c0)

+i

Z 1 fd [ôni 0 flj(c0) ].qni0 nt(z - c0)

-1

+1

w=0 w=:::Wi-|-fî
-1

Umgekehrt hat jede in dieser Form darstellbare Funktion das réelle Intervall
— 1 ^ xQ ^ + 1 a^s singulàres Gebilde, das unwesentlich von einer Ord-

nung ^ N + 1 ist.

18.

Wir gehen zu dem Fall ûber, wo S ein wesentlich singulàres Gebilde
der rechtsregulâren Funktion w f(z) ist. Es ist dann :

n==0
f(z) Km f 2; fdc0 ^>W2 Ws (c0). qni n2 n^ - c0) (vgl. (5)

£O n0 nn+n+n /

Aus der absoluten Konvergenz der unter dem lim-Zeichen stehenden
Reihe folgt, daB es zu jedem q ein no(Q) gibt, sodaB

]L
n=n

+Z+n f dc0 ^>n2 W3(c0) • qni tt2 nz{z — c0)

ist, fur aile z, deren Abstand von 6 > 2q ist. Hierbei ist e(g) irgendeine
positive Funktion mit Km b(q) 0 Fiihren wir die Bezeichnung ein:
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l+V

n=0 n^ni+na+nj J

so wird
/(z) lim/«?>(*)

Nun ist /(c>(2) eine rechtsregulâre Funktion, die das réelle Intervall
— 1 — rj ^. x0 ^ l -}- rj a^s unwesentlich singulâres Gebilde von einer
Ordnung ^ (n0 + 3) hat. Nach Hauptsatz 10 ist also fur aile z in J?4, die
nicht auf — 1 — ^^^0^l + ^ liegen:

î-

n=0 n—n2+n9 %J

c0)

wo
C2nt(^o) =0 fur n* + nz> nQ(Q)

Also wird:

Ç=0 n==0

fur aile z in 2?4 mit Ausnahme der Punkte von — 1 — rj^ xo^l -\- r\
auf der reellen Achse. Nun kônnen wir die Théorie der §§ 9—16 wôrtlich
auf den Fall ubertragen, wo an Stelle der ûber — 1 — r/<co<l + ^
erstreckten Riemannschen Intégrale Stieltjèssche auftreten. Wir finden
dann, wenn wir

^o n2n2 n,(«o, n) Km f d [d$2 w,(c0) ] y>(c0 - a0)

setzen : (vgl. 20)

/() in=0 n=n2+n8

fur jedes rj > 0 also auch

f(z) li 1
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Wenden wir das ganze Verfahren nochmals an, so erhalten wir
schlieBlich :

/(*) E E Çd[ôOn2nz(cQ)]-qOn2nz(z — c0)

wenn wir

setzen.

Km f d[ôOn2n3(co,rj)] -tp(c0 — a0)

Da wir ebensogut aile 2. oder aile 3. Indizes auf 0 hâtten reduzieren
kônnen, so erhalten wir:

Hauptsatz 11. Die rechtsregulâre Funktion w f{z) habe als einziges

singulares Gebilde das Intervall — 1 < x0 < + 1 der reellen Achse des

i?4. Dann gilt fur aile z in jB4 mit Ausnahrne der Punkte dièses singulâren
Gebildes jede der folgenden Entwicklungen :

27 IW —0 M M2~f"^l.
-1

+ 1

E E fd[ôni0nz(c0) ] qni0n3(^ — c0)

-1

+1

^nlo n=n^-n /^K «. o(«û) ] ' Ï«h n. o(« ~ «û) •

-1

Hierin sind die Funktionen <3o«2w8(co) (w2J^3 0,l...) usw. in
— 1 ^ c0 ^ + 1 von beschrânkter Schwankung.

(Eingegangen den 1. Juli 1942.)
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