
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 15 (1942-1943)

Artikel: Über Bewegungsmittelwerte konvexer Körper in Gittern.

Autor: Preisig, E.

DOI: https://doi.org/10.5169/seals-14883

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-14883
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Ùber Bewegungsmittelwerte
konvexer Kôrper in Gittern

Von E. Pbeisig, Baden

Wird ein &-dimensionaler Bereich mit Jordanschem Volumen in einem
&-dimensionalen Einheitspunktgitter allen Translationen bzw. allen Be-

wegungen unterworfen, so ergibt sich als Translations- bzw. Bewegungs-
mittelwert der Bedeckungszahl von Gitterpunkten das Volumen. Es kann
die Frage aufgeworfen werden, ob noch Aussagen âhnlicher Art gemacht
werden kônnen, wenn man an Stelle des Punktgitters ein Unterraum-
gitter GQ, bestehend aus (k — ^)-dimensionalen Unterràumen betrachtet
und die Treffzahl des Bereichs in GQ liber eine bestimmte Bewegungs-

gruppe mittelt. Es zeigt sieh, daB dies tatsâchlich der Fall ist, wenn man
als Bereich einen konvexen Kôrper wâhlt und die Mittelwertsbildung
ûber die voile Bewegungsgruppe erstreckt.

Das Hauptresultat der vorliegenden Arbeit lautet kurz gefaBt so :

Bezeichnet Jk_\ &en Bewegungsmittelwert der Treffzahl des
konvexen Kôrpers im Unterraumgitter Gk_x > W\ das A-te QuermaBintegral
des Kôrpers, endlich Kk das Volumen der i-dimensionalen Einheitskugel,
so gilt die Relation

Wx -?*- Ju-x •

Nach dieser Formel werden die k-\-l QuermaBintegrale Wo bis Wk
eines konvexen Kôrpers als Treffzahlmittelwerte des Kôrpers in den
k + 1 môglichen Unterraumgittern Gk bis Go dargestellt.

Fur dreidimensionale Eikôrper ergeben sich z.B. Volumen, Oberflàche
und das Intégral der mittleren Krùmmung als Treffzahlmittelwerte bei
Bewegung des Eikôrpers im Punkt-, Geraden- und Ebenengitter.

Eine direkte Définition der Mittelwerte, etwa durch Riemannsche
Intégrale in einem geeigneten Parameterraum der Bewegungsgruppe,
wird umgangen. Die Mittelwerte werden als Résultat einer abstrakten
Mittelwertsoperation dargestellt, die durch fiinf Postulate charakterisiert
ist, und der als Definitionsbereich eine geeignet abgegrenzte Klasse von
Funktionen liber der Bewegungsgruppe zugeordnet ist. Die Mittelwertsoperation

wird als bewegungsinvariant, additiv, monoton, normiert und
zerlegbar vorausgesetzt. Aus der Existenz einer Mittelwertsoperation, die
diesen funf Postulaten geniigt, folgt ihre Eindeutigkeit. Die Existenz
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kann dadurch sichergestellt werden, da8 man sich auf die Klasse der
mittelbaren Funktionen beschrànkt. Dièse Mittelbarkeit fur Funktionen
uber Bewegungsgruppen wird im AnschluB an eine analoge Begriffs-
bildung von J. v. Neumann1) in der Théorie der fastperiodischen
Funktionen in geeignet abgeânderter Form gewâhlt, âhnlieh wie das von
W.Maak2) in seinen Grundlagen der ebenen Integralgeometrie gemacht
worden ist. Fur die bei der Bearbeitung des vorliegenden geometrischen
Problems auftretenden Funktionen iiber Translations- und Drehgruppen
wurde der erforderliche Nachweis der Mittelbarkeit erbracht.

Raum, Gitter und Bewegung

§ 1. Raum, Punktgitter und Unterraumgitter

Die folgenden Ausfûhrungen beziehen sich auf den &-dimensionalen
euklidischen Raum, den wir mit Rk bezeichnen. P(xx, %$,..., xk) be-
zeichne einen Punkt mit den Koordinaten xl9 x2i..., xk, die auf ein
orthogonales Koordinatensystem des Rk bezogen sind.

Aile Punkte P^,^,...,^), deren Koordinaten xv ganze Zahlen
sind, bilden ein Punktgitter, das wir mit Ok bezeichnen. Jedem Gitter-
punkt P(xt, #2,..., xk) ordnen wir genau einen Gitterwiirfel zu, nâm-
lich die Gesamtheit der Punkte Q{x1-]-fx1, x2-\-fi2,..., xk-\-ju,k), wobei
0 ^ jbtv < 1 ist. Einen solchen Wùrfel nennen wir halbabgeschlossen.
Die Festsetzung des Variabilitâtsbereiches der GrôBen fi im Sinne dieser

Ungleichungen hat den Vorteil, daB der Raum durch dièse Gitterwiirfel
genau einfach ûberdeckt wird und zu jedem solchen Wurfel genau ein
Gitterpunkt gehôrt.

Im weitern errichten wir Gitter aus (k — ^)-dimensionalen Unter-
râumen, die auf einem g-dimensionalen Unterraum senkrecht stehen. Ein
solches Unterraumgitter bezeichnen wir mit GQ. OQ besteht aus allen
Punkten P(xl9 x2,..., xk), fiir welche xv ganz ist fur 1 ^ v ^ q, be-

liebig fur q < v ^ k
Insbesondere ist O0 der Raum Rk; Ox ist das Gitter aus (k — 1)-

dimensionalen Hyperebenen, die senkrecht stehen auf der Geraden

1) J. v. Neumann, Almost periodic functions in a group I. Trans. Amer.
Math. Soc. 36, 445—492 (1934).

2) W. Maak, Integralgeometrie 18 (Grundlagen der ebenen Integralgeometrie).
Abhandlungen aus dem Math. Seminar der Hansischen Universitât 12, 1. Heft,
83-—110 (1937).
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x% x3 •.. xk 0; G^! ist das Gitter aus den Geraden, die senk-
recht stehen auf der (Je — l)-dimensionalen Hyperebene xk 0; Gk ist
das Punktgitter des Bk, das oben beschrieben wurde.

§ 2. Bewegungen im Baum

P sei ein Punkt allgemeiner Lage mit den Koordinaten xl9 x29..., xk,
den wir durch eine OpérationX der Bewegungsgruppe X in den Punkt Pf
mit den Koordinaten x[9 x'29..., x'k uberfuhren. Dann gilt

h

x'v 2 aVfl Xp + tv (1)

oder
x' A-x+ T (2)

wobei A \\aVH}\ eine quadratische Matrix mit Je Reihen darstellt und
T =11^11 eine Matrix mit einer einzigen Spalte. A bestimmt die
Drehting, T die Translation. Die Bewegung X bezeichnen wir kurz
durch3)

X (A T) (3)

Xx (Al9 T^) sei eine erste, X2 (A2, T2) eine zweite Bewegung.
Fûhren wir zuerst die Bewegung Xt und dann die Bewegung X2 aus, so

gilt fur die Zusammensetzung

1^ ^^,^ + ^), (4)

wie sich aus (1) leicht ergibt.
Bezeichnen wir die i-reihige Einheitsmatrix mit E9 so ist (E, 0)

das Einheitselement der Bewegungsgruppe, wobei 0 eine Spalte von
Je Nullen darstellt. (E, 0) bezeichnet die Ruhelage; Z (A, 0) stellt
eine reine Drehung, Y (E, T) eine reine Translation dar.

Jede beliebige Bewegung X (A, T) kann dargestellt werden als

X= YZ

wobei Y nunmehr stets eine Translation und Z eine Drehung bezeichnen
soll; denn aus (4) folgt:

(E 9T) (4,0) (EA ,E0+ T)^={A,T)
•) Bezeichnung in Anlehnung an J. J. Burchhardt, ZurTheorie der Bewegungs-

gruppen. Comment, math. helv. 6, 159—184 (1933/34).
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Die bekannte Tatsaehe, daB sowohl die Drehungen fur sich als auch die
Translationen fur sich Untergruppen der Bewegungsgruppe X bilden,
findet ihren formelmàBigen Ausdruck im Bestehen der Relationen

(A%9O){Al9O) (A%A19O)

Die Untergruppe der Drehungen soll mit 3> diejenige der Translationen
mit bezeichnet werden.

Bildet man aile Translationen der Form

m1
Q —

h

0

6

und T*

o

ô

so bilden die Translationen T
Q

eine Untergruppe %Q der Translations-

gruppe Fùhrt man nâmlich zwei Translationen der Form TQ nach-
einander aus, so entsteht wieder eine Translation dieser Form.

Dasselbe gilt fur die Translationen T*.
Jede beliebige Translation T làBt sich eindeutig zerlegen in

T=TQT* Die Translationen T * fuhren aile Unterrâume von GQ

einzeln in sich ûber.

Bewegungsmitteiwerte

§ 3. Die Mittelwertsoperation fur Funktionen îiber Bewegungsgruppen

Jedem Elément X einer Bewegungsgruppe X sei eindeutig eine réelle,
nicht négative Zahl F F(X) zugeordnet.

Auf dièse Weise wird eine Funktion F(X) ùber der Bewegungsgruppe X
definiert. Wir betrachten insbesondere Mittelwerte derartiger Funktionen ;

dièse kônnten bei geeignet gewàhlter Parameterdarstellung der Grappe
als Intégrale im Parameterraum dargestellt werden. Wir wâhlen aber
einen andern Weg, bei dem die direkte Définition des Mittelwertes um-
gangen wird4).

*) Vgl. dazu: H. Hadwiger, Flâcheninhalte und Kurvenlângen als geo-
metrische Mittelwerte. Jahresbericht der D. M. V. 51, 212—218 (1941).
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Der Mittelwert wird als Résultat eines auf Funktionen F(X) einer
bestimmten Menge S01 ausgeiibten Operators M aufgefaBt, symbolisch :

Der Mittelwertsoperator M ordne jeder Funktion F(X) des Definitions-
gebietes S01 eindeutig die réelle Zahl J zu, die wir Mittelwert der Funktion
F(X) nennen. Dieser Mittelwertsoperator soll die folgenden 5 Postulate
erfûllen :

(I) Wenn F(X) c Mx und A c X, B c X so gilt MX{F(AXB)}

d. h. M ist bewegungsinvariant.

(II) Wenn F(X) c 9Jlx, G(X) c Wlx und JP(X) + (?(Z) c
so gilt

MX{F(X) + G(X)} MX{F(X)} + MX{O(X)} ;

d. h. M ist additiv.

(III) Wenn F(X) c SR,, G(Z) c 8K. und ^(Z) ^ G{X),
so gilt

d. h. Jf ist monoton.

(IV) Ist (7 eine beliebige réelle nicht négative Konstante, so gilt

F(X) Gczmx und MX{C} G ;

d. h. M ist normiert.

(V) Wenn jedes Elément X der Bewegungsgruppe X eindeutig zerlegt
werden kann in X YZ, mit 7 c 2), Z c 3, wobei und 3
Untergruppen von X sind, und fur festes Z F(YZ) c3CRy,

SK», sogilt

und

d. h. M ist zerlegbar.

§ 4. Mittelbare Funktionen

Die Existenz der Mittelwertsoperation kann dadurch sichergestellt
werden, daB ûber die Funktion F(X) geeignete Voraussetzungen gemacht
werden.
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In Anlehnung an J. v. Neumann5) und W. Maak6) fuhren wir den
Begrifï der Mittelbarkeit in geeignet abgeanderter Form ein.

X1, X2,..., Xn,... seien die Elemente einer geeignet gewahlten, nicht
von der Funktion abhangigen abzahlbaren Teilmenge von 3£.

Nx < N2 < Nz < • • ist eine feste, von der Funktion unabhangige
monotone Folge von naturlichen Zahlen.

Wir definieren nun:
Eme Funktion F(X) uber der Bewegungsgruppe X heiBt mittelbar,

wenn eine réelle nicht négative Zabi J existiert, so daB zu jedem e > 0
ein Index n0 angegeben werden kann, so daB fur aile n > n0

S F(AXVB) — J <e

ausfallt fur aile A, B aus X.

§ 5. Eindeutigkeit der Mittelwertsoperation fur mittelbare Funktionen

Voraussetzung : F(X) ist mittelbar.
Wir geben eme beliebige Zahl e > 0 vor. Wegen der Mittelbarkeit

konnen wir immer endlich viele Elemente Xv so wahlen, daB fur aile
n > n0

J-ï<-è-NÊF{AXvB)<J + -e- (1)

Ferner konnen wir 2 Paare ganzer Zahlen p±, qx und p2, q2 so wahlen, daB

J-e<-^<J-L; J + ^<^-<J^e, (2)
qx a a q2

also i NÊ )<-^- (3)

Durch Multiplikation von (3) mit Nnqxq2 erhalten wir

Nn q, Pi < îrf, Ê F(AXVB) < Nn p2 9l (4)

MA sei irgend eine Mittelwertsoperation, die die Postulate I—V
erfullt.

5) J v Neumann, Almost periodic functions in a group I. Trans Amer.
Math Soc 36, 445—492 (1934)

6) W Maak, Integralgeometrie 18 (Grundlagen der ebenen Integralgeometrie)
Abhandlungen aus dem Math Semmar der Hansischen Universitat; 12, 1 Heft, 83—110
(1937).
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MA werde auf die Ungleichung (4) ausgeiibt. Im Hinblick auf
Postulat II gilt

MA{mF) MA{F + F + + F} mMA{F}

Wegen Postulat IV ist

MA(Nnq2p1) Nnqtpx

Beriïcksichtigen wir noch Postulat III, so erhalten wir

Nnq%p1<q1qtNÊMA{F(AXvB)}<Nnp2q1 (5)

Wegen Postulat I gibt MA{F(AXVB)} fur aile Xv denselben Wert
MA{F{A)}.

Aus (5) erhalten wir somit

(6)

q1q2NnMA {F(A)} < Nnp2 qx
oder

Aus (2) und (6) folgt dann

J-s<MA{F(A)}<J + e;
\MA{F{A)}-J\<e. (7)

Weil die Ungleichung (7) fur jedes beliebige e > 0 richtig ist, folgt

MX{F(X)} J ;

d. h. : Wenn die Mittelwertsoperation existiert, ist sie eindeutig bestimmt.

§ 6. Existenz der Mittelwertsoperation fur mittelbare Funktionen

Wir wollen nun nachweisen, da8 der Operator M, der jeder mittelbaren
Funktion den durch die Mittelbarkeitsbedingung eingefuhrten Wert

J MX{F(X)}

zuordnet, die Postulate I—V erfullt.

1. Bewegungsinvarianz :

F(X) sei mittelbar uber der Gruppe 3£. Zu e > 0 gibt es ein n0, so daB

fur aile n> n0 und A, B a£
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* ZF{AXVB)-J < e

ausfàllt. Wir betrachten nun die Funktion

F*{X)=F(UXV)

wo U und V zwei feste Bewegungen aus X sind. Mit Af9 Bf czX gilt

F*(ArXBf) F^U^AXBV-1) F(AXB)

wenn fur A UAT und B B'V gesetzt wird. Demzufolge erhalten wir

N ZF*{ArXvBf)—J
n v=l

< e

fur aile n > n0 und A\ B1 c X, d. h. mit F(X) ist auch F*(X) mittelbar,
und beiden Funktionen ist der gleiche Wert J zugeordnet.

2. Additivitât :

Ft (X) und F2 (X) seien mittelbar iiber der Gruppe X. Zu e > 0 gibt es
ein n0, so da8 fur n > nQ und 4,5cï

e

wird. Hieraus ergibt sich

1~ Z [FAAXVB)
1}/ n v=l - [Ji + ja] <£

d.h. mit Ft(X) und F2(X) ist auch ^(X) + F2(X) -F(X) mittelbar,
und fur die zugewiesenen Werte J1} J2, J gilt Jx + J2 «^•

3. Monotonie :

j?! (X) und F2 {X) seien mittelbar ûber der Gruppe X. Es gelte fur aile
XczX

Ft(X) £Ft(X).
Wir zeigen, dafi fur die zugewiesenen Werte Jx und J2

J1 ^ J2
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Wir nehmen an, es wâre im Gegenteil

Jx — J2 e > 0
Es gibt ein n so, da8

1

N

1

ausfâllt. Hieraus folgert man

U FAX^—J,

oder
' n v=l

I ¦*¦* n
V7 TJP t Y" \ TP / Y \1 I

also wegen A ^ 0 einen Widerspruch.

4. Normierung :

-F(X) C ist iiber der Grappe X ofïenbar mittelbar, und fur den zu-
gewiesenen Wert J gilt

j ri
5. Zerlegbarkeit :

Fur X c X gelte die eindeutige Zerlegung

X"\rr7 ~V ,— on V Oï Ju 1 C yj, Z/ C ^3

wobei 3 Untergruppen von X sind.
sei fur jedes Z iiber mittelbar,

ferner sei J(Z) ûber 3 mittelbar,

Wie soeben bewiesen wurde, sind My und Mz Operationen, fur die die
Postulate I bis IV gelten. Man verifiziert leicht, da6 die Zusammensetzung
MzMy als Opération, die auf Grand der Zerlegung X YZ auf F(X) an-
wendbar ist, die nâmliche Eigenschaft aufweist. Das Résultat der
Zusammensetzung kann als Mittelwertsoperation M* gedeutet werden.
Nach dem im vorstehenden Paragraphen bewiesenen Eindeutigkeitssatz,
nach welchem die Einzigkeit eines solchen Operators sichergestellt ist,
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darf der Stem, der die spezielle Konstruktion des Operators andeutet,
weggelassen werden. So ergibt sich

Bemerkung :

Die Définition der Mittelbarkeit stutzte sich wesentlich auf eine nicht
von den Funktionen abhàngige abzâhlbare Teilmenge von Elementen
der Gruppe sowie auf eine zugehôrende monotone Folge natûrlicher
Zahlen. Es kann von einer Basis fur die Mittelbarkeit gesprochen werden.
Auf Grand der soeben erreiehten Resultate ergibt sich im Hinblick auf
den Eindeutigkeitssatz fur Mittelwertsoperationen, fur welche die
Postulate I — IV Geltung haben, da6 der sich aus der Définition der
Mittelbarkeit ergebende Mittelwert von der Basis unabhàngig ist. Eine
Funktion kann in bezug auf verschiedene Basen mittelbar sein, der
Mittelwert aber muB stets derselbe sein

Jordanscher Bereich im Punktgîtter

§ 7. Die Bedeckungszahl im Punktgitter

Gegeben sei ein &-dimensionaler Bereich SB vom Jordanschen Volu-
men V und das Punktgitter Gk des Bk (vgl. § 1).

Der Bereich SB bedeckt einen Punkt des Punktgitters Gk, wenn der
Punkt zur Punktmenge SB gehôrt. Dabei kann es sich um einen innern
Punkt oder um einen Randpunkt handeln. Bei der Vorgabe des Be-
reiches 93 muB fur jeden Randpunkt die Zugehôrigkeit oder Nicht-
zugehôrigkeit zu SB entschieden werden.

Der Bereich SB werde im Punktgitter bewegt. $}x sei der Bereich nach
der Bewegung X, %5y der Bereich nach der Translation Y. Die Zahl der

von 23a. bedeckten Gitterpunkte bezeichnen wir mit N(X); N(Y) ist die

Bedeckungszahl von 93 v.
N(X) bzw. N( Y) sind Beispiele fur Funktionen iiber der Bewegungs-

gruppe X bzw. ûber der Untergruppe der Translationen.

§ 8. Das Volumen als Translationsmittelwert

Auf die Bedeckungszahl N(Y) des Bereiches 23 y ùben wir die Mittel-
wertsoperation aus. Das Definitionsgebiet des Mittelwertoperators be-
steht aus der Menge SOI aller auf dièse Weise darstellbaren Funktionen
sowie aus Konstanten. Zur Abkûrzung setzen wir

My{N(Y)}

9 Commentaril Mathematici Helvetici



Die Postulate I—IV erfahren in diesem Falle folgende anschauliche
Deutung :

(I) Wenn der Bereich 58 dureh eine Translation mit dem Bereieh 58 0

zur Deckung gebraeht werden kann, so ist

M(93O) M(SB) ;

d. h. der Mittelwert ist von der Anfangslage des Bereichs nicht
abhàngig.

(II) Wenn der Bereich 58 in die beiden Teilbereiche SBi und 58 2 zerlegt
wird, so gilt

Jf(8) Jf(«x) + Jf(©,)

(III) Wenn 23O c 93, d. h. wenn der Bereich 5B0 im Bereich SB enthalten
ist, so gilt

Jf(80) ^ Jf(8)

(IV) Wenn der Bereich 58 nach jeder Translation genau C Gitterpunkte
bedeckt, so ist

if (SB) C

Es làBt sich nun zeigen, daB der Translationsmittelwert

if(SB)- My{N(T)}

stets gleich dem Jordanschen Volumen V des Bereiches SB ist.

JBi sei der in § 1 erwahnte halbabgeschlossene Gitterwiirfel mit dem
Volumen 7(933!) 1. Da er nach allen Translationen genau einen Gitter-
punkt bedeckt, ist nach Postulat IV

M(3Bi) 1 7(338!)

Zerlegen wir SDSi in nk Wûrfel SïBn der Kantenlànge —, die aile durch
IV

Translation ineinander iibergefûhrt werden kônnen, so ergibt sich mit
Rucksicht auf die Postulate I und II, daB

4
IV

Ist SB* ein Bereich, der sich in m derartige Wûrfel zerlegen làBt, so folgt
nach Postulat II, daB

jf(SB*) -^- F(5B*) ist.

130



Es sei nun 93 ein beliebiger Bereich mit dem Jordanschen Volumen

F - F(»)

Ist e > 0 beliebig vorgegeben, so lassen sich zu hinreichend groB gewâhl-
tem n stets zweiBereiche 23f und 23* finden, die sich in lauterWurfel2Bn
zerlegen lassen und noch folgende Eigenschaften haben:

a) SB* c S c 95*

b) 7(33?)- F(S*)<a.

Da nun nach Postulat III die Ungleichung

Jf(93*) ^
gilt, so folgt

|Jf(»)
oder also

Jf(S)-=-&,{#( 7)} F(33).

Satz 1. Z>er Translationsmittélwert der Bedeckungszahlen eines k-dimen-
sionalen Bereichs im Punktgitter des Rk ist gleich seinem Jordanschen
Volumen7).

§ 9. Das Volumen als Bewegungsmittelwert

Wir uben nun die Mittelwertsoperation M auf die Bedeckungszahlen
N(X) des Bereichs <i&x aus, wobei X die Elemente der Bewegungsgruppe X
darstellen. Das Definitionsgebiet des Mittelwertoperators besteht auch
hier aus der Menge 9JI aller auf dièse Weise darstellbaren Funktionen
sowie aus Konstanten. Die Postulate I—IV erfahren eine ahnliche an-

7) Fut Je 2:

H. Hadwtger, Flachenmhalte und Kurvenlangen als geometrische
Mittelwerte. Jahresbencht der D M V 51, 212—218 (1941)

Weitere Literatur:
H. Hadwiger, Ûber Mittelwerte im Figurengitter Comment math. helv. 11,

221—233 (1938/39).
H Hadwtger, tJber statistische Flachen- und Langenmessung Mitt. der

Naturf Ges. Bern, 1938
L. A. Santalô, Geometria Intégral 31 Sobre valores medios y probabihdades

geometneas. Abhandlungen aus dem Math Semmar der Hansischen Universitat 13,
284—294 (1939).

L A. Santalôy Sur quelques problèmes des probabilités géométriques.
Tôhoku Math. J. 47, 159—171 (1940)

L. A. Santalô, Geometria Intégral de figuras îlimitadas. Publicaciones del
instituto de matematicas, 1, No. 2, 5—58. Rosano 1939.
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schauliche Deutung wie im vorhergehenden Paragraphen ; nur ist iiberall
die Translation durch eine beliebige Bewegung zu ersetzen.

Wir wollen nun zeigen, da6 auch der Mittelwert liber die Bedeckungs-
zahlen N(X) gleich dem Jordanschen Volumen des Bereiches SB ist.

Nach § 2 lâBt sich jede Bewegung X eindeutig in eine Translation Y
und eine Drehung Z zerlegen, wobei Y ein Elément aus der Unter-
gruppe der Translationen und Z ein Elément aus der Untergruppe 3
der Drehungen ist.

Mit Riïeksicht auf Postulat V gilt dann

M.{N(X)} MZ\MV{N(YZ)}\

Fur festes Z ist nach Satz 1

My{N(YZ))=V
und nach Postulat IV

MZ(V)= V
Somit ist

MX{N(X)} F

Satz 2. Der Bewegungsmittelwert der Bedeckungszahlen eines k-dimen-
sionalen Bereichs im Punktgitter des Rk ist gleich seinem Jordanschen
Volumen.

§ 10. Die Mittelbarkeit der Bedeckungszahl

Bis jetzt haben wir die Existenz der Mittelwertsoperation fur
Bedeckungszahlen stillschweigend vorausgesetzt. Im folgenden wollen wir
nun nachweisen, daB N( Y) mittelbar ist. Gelingt uns dies, so folgt nach
(V) die Existenz der Mittelwertsoperation fur N(X), da jede Konstante
mittelbar ist.

Zu diesem Zwecke errichten wir im Raume Rk das ^?-fach unterteilte
Punktgitter, das wir mit (?(/) bezeichnen. Jedem Gitterpunkt ist dann
wiederum ein halboffener Gitterwiirfel zugeordnet.

N9 Y) sei die Bedeckungszahl im p-fach unterteilten Punktgitter ;

UP(Y) sei das Volumen aller Gitterwiirfel von G^\ die Punkte des

Bereiches 33 enthalten;

V9 Y) sei das Volumen aller Gitterwiirfel, die ganz im Bereiche liegen.

Dann gilt:
Vp(Y)<:VgU,(T) (1)
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Jedem der NP(Y) Gitterpunkte ist genau ein Wurfel zugeordnet. Das
Volumen dièses Wûrfelaggregates ist

(})'
Es ist nun

()k U,{Y) (2)

Um jeden Randpunkt des Bereiches 23 legen wir eine Kugel vom Radius r
und betrachten aile Punkte, die in solchen Randkugeln liegen. Die
Gesamtheit dieser Punkte heiBe die Umgebung des Randes. Das Volumen
dieser Umgebung bezeichnen wir mit Rr. Ofïenbar gilt8)

lim Rr 0 (3)

Vïc
Wàhlen wir r (Diagonale eines Gitterwiirfels), so gilt

UP(Y)—VP(Y)<RyE fur aile Y
V

Wir erhalten somit

fur aile Y. *

Das #>-fach unterteilte Gitter 0^ kann in np pk normale Gitter
zerlegt werden :

Dièse Gitter gehen durch Translation auseinander hervor.
î7(lf) sei die Translation, die vGk in Gk uberfuhrt, und î7(1p) sei die

Identitàt.
VN(Y) sei die Treffzahl des Bereiches 93„ mit vGk.
Es ist nun

N,{ Y) XN( Y) + 2N(Y)+--- +npN( Y) (5)
und

VN(T) N{7^). (6)

8) Der hier betrachtete Grenzwert, der im Hinblick auf das monotone Verhalten der
Funktion Rr mit abnehmendem r fur beliebige beschrànkte Punktmengen sicher vorhan-
den ist, stellt ein Volumen dar, das formai in die Reihe der MinJcowsM'schen Mafizahlen
(vgl. H. Minkowski, Jahresbericht der D. M. V. 9, 115—121 [1901]) eingegliedert werden
kann. Wie man ohne Mûhe nachweist, fâllt dièses Minkowskische Volumen mit dem
aufîern Jordanschen Volumen der Punktmenge zusammen und wird somit fur die Rand-
punktmenge einer Jordan-mefîbaren Menge nach einem bekannten Satz verschwinden.
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Aus (3), (4), (5) und (6) folgt:
Zu jedem e > 0 lâBt sich ein Index p0 so angeben, daB fur aile p> p0

JL J — V < e

ausfâllt flir aile Y.
Zut Abkurzung setzen wir

*(7) ^
Die Funktionenfolge XP(Y), (p 1, 2, 3, konvergiert gleich-

màBig gegen F.
Die Funktionen der Folge

ni _|_ n2 _j_ _j_ np

(p=l} 2, 3,...), konvergieren dann auch gleichmàBig gegen F9) und
wir erhalten :

Zu jedem e > 0 finden wir einen Index p0 so, daB fur aile p> p0

-F <e
nt + n2 + • • • + np

ausfâllt fur aile Y.

Damit ist der Beweis fur die Mittelbarkeit der Funktion N( Y) erbracht.
Die der Mittelbarkeit zugrunde liegende Basis besteht aus der Menge der
in einer naturlichen Reihenfolge ausgezâhlten Gittertranslationen

77(1) 77(1) 77(2) 77(2) 77(3)¦* 1 • • • -1 ni » ± \ ' • ' -* n2 » A 1 • ' •

in Verbindung mit der monotonen Folge

9) Fût festes Y liegt eine bekannte Relation in bezug auf Mittelbildung vor. Vgl.
O, Pôlya und G. Szegô, Aufgaben und Lehrsàtze aus der Analysis, Bd. I,
Berlin 1925, S. 11, Nr. 72.

Bei Anwendung dièses Theorems im vorliegenden Fall ist noch wesentlich, dafi

lim ^ 0 gilt.

10) Es ist

wo Bp (x) das v-te Bernoullische Polynom bezeichnet.
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§ 11. Der Satz von Blichîeldt

Satz 1 enthalt eine spezielle Fassung eines bekannten Satzes von
H. F. Blichfeldt11) als einfache Konsequenz.

Dieser Satz laBt sich folgendermaBen aussprechen :

Ein Bereick vom Jordanschen Volumen V Jcann durch eine Translation
immer in eine solche Lage gebracht werden, da/i die Zahl der von ihm bedeck-

ten Gitterpunkte nicht kleiner ist als V.

Da nicht aile Bedeckungszahlen kleiner als der Mittelwert sein konnen,
folgt der Blichfeldtsche Satz ohne weiteres aus Satz l12).

Konvexe Kôrper und QuermaBintegrale

§ 12. Der konvexe Kôrper
Eine Punktmenge heiBt Jconvex, wenn sie mit zwei Punkten stets deren

Verbindungsstrecke enthalt. Eine abgesehlossene beschrankte konvexe
Menge heiBt konvexer Kôrper13).

Jeder konvexe Kôrper besitzt ein Volumen im Jordanschen Sinne14).

§ 13. QuermaBe und ihre Drehmittelwerte

Es sei 51 ein konvexer Kôrper des Rk. RQ sei ein £-dimensionaler
Unterraum (q — 1, 2,..., k — 1).

n) H F Bhchfeldt, A new pnnciple in the géométrie of numbers with
some applications Trans Amer Math Soc 15, 227—235 (1914)

Ein kurzer Beweis findet sich bei W Scherrer, Ein Satz uber Gitter und
Volumen Math Ann 86, 106—107 (1922).

12) Im zweidimensionalen Fall hat H Hadwiger (Ûber Mittelwerte im Fi-
gurengitter Comment math helv 11, 221—233, 1938/39), schon auf diesen Zu-
sammenhang hmgewiesen

Vgl dazu auch L A. Santalô, Geometna Intégral de figuras îlimitadas.
Pubhcaciones del instituto de matematicas, 1, No 2, 5—58 Rosario 1939, S 51—53

XTber gewisse Verfemerungen im Zusammenhang mit emer Fragestellung von
L A Santalô vgl noch H Hadwiger, Bemerkungen uber Gitter und Volumen.
Mathematica (Cluj) Vol XVIII, 97—103 (1942)

13 Ûber konvexe Mengen und Kôrper siehe die Abhandlung von T Bonnesen und
W. Fenchel, Théorie der konvexen Korper Ergebnisse der Math, und îhrer
Grenzgebiete Berlin, J Sprmger (1934)

14) Ûber die Existenz des Volumens emes konvexen Korpers sehe man: H Minkowski,
Théorie der konvexen Korper, msbesondere Begrundung îhres Oberflachenbegriffs.
Ges Abh Bd 2, 131—229, Leipzig und Berlin (1911)

W. Blaschke, Kreis und Kugel, § 17, Leipzig (1916).
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Projiziert man den Kôrper 51 senkrecht auf RQ, so entsteht im RQ ein
konvexer Kôrper SiQ, dessen g-dimensionales Volumen VQ als ein g-dimen-
sionales Quermafi von R bezeichnet wird.

Ist Ra{a < q) ein im RQ liegender Unterraum, so sind die cr-dimen-
sionalen QuermaBe von $tQ zugleich a-dimensionale QuermaBe von il15).

Projizieren wir den Kôrper Si auf einen festen Unterraum RQ, so ândert
sich das QuermaB VQ bei einer Translation des Kôrpers nicht. VQ kann
als Funktion ùber der Drehgruppe dargestellt werden.

Wir beweisen nun, daB die Funktion VQ (Z) fur q k — 1 uber der
Drehgruppe mittelbar ist.

Dem konvexen Kôrper Si wird eine Einheitskugel eingelagert und der
Kôrper um den Mittelpunkt der Kugel gedreht. Das QuermaB FQ wird
dann zur Funktion dieser Drehungen :

Ve=Ve(Z).

Jeder Drehung Z des Kôrpers wird nun der Punkt P der Kugel-
oberflâche eindeutig zugeordnet, der DurchstoBpunkt des vom Kugel-
mittelpunkt 0 auf den Unterraum RQ gefâllten Lotes mit der mit-
gedrehten Kugeloberflâehe ist. Bei einer Drehung um das Lot OP ândert
sich das QuermaB VQ nicht.

Auf dièse Weise wird ùber der Kugeloberflâehe die Funktion VQ(P)
durch

Ve(P)= Ve(Z) definiert.

Das mittlere g-dimensionale QuermaB lâBt sich nun als Integralmittel-
wert auf der Kugel darstellen:

wobei cok y x die Oberflâche der &-dimensionalen Einheitskugel

ist, und d(o das Oberflâchenelement auf der Einheitskugel darstellt.

Die Kugeloberflâehe teilen wir nun in zwei gleiche Teile ein, die wir mit
Axœ und A2co bezeichnen. Jede Hâlfte wird sodann wieder halbiert, und
die so entstehenden 4 Zellen werden fortlaufend numeriert: A3co9 Aéœ,

u) T. Bonnesen und W. Fenchel, a. a. O., Seite 45—46.
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ABco, A6(o. Dieser TeilungsprozeB wird ohne Ende weitergefûhrt und zwar
so, da8 die Durchmesser16) dx, d2, dz,... eine Nullfolge bilden.

In der abgeschlossenen Zelle Ava> wâhlen wir irgend einen Punkt Pv und
erhalten so eine Punktfolge P1? P2, P3).

0 sei eine im Riemannschen Sinne eigentlich integrierbare Funktion
auf der Kugeloberflache ook. Dann hat die Punktfolge die Eigenschaft,
da6 zu jedem e > 0 ein N so angegeben werden kann, daB fur aile n> N

ausfâllt, wobei
iri '": ' <£

J — d)0(P)da) ist.

A und B seien nun zwei beliebig gewâhlte Drehungen. Wir betrachten
die Funktion

V*(P)= FJ(Z)= VQ(AZB)

wo VQ (Z) die weiter oben definierte Funktion iiber der Drehgruppe ist.
Es bezeichne nun weiter MV(A,B) bzw. mv(A, B) das Maximum bzw.

das Minimum, das von der Funktion V*(P) in der Zelle Avco angenommen
wird. Mv und mv sind im Hinblick auf die Stetigkeit der Funktion V*(Z)
von A und B stetig abhângig.

Ist Pv der oben gewâhlte Punkt der Zelle Avw, und wird die Drehung
Zv so gewâhlt, daB V*(PV) V*{ZV) ist, so gilt

mv{A, B) ^ VQ(AZVB) ^ MV{A, B) («)

Zur Abkurzung fuhren wir ein :

%n{A,B) ±-Z MV{A,B)n v==i

¥n{A,B) ±-Z mv(A,B)n v==1

Bei festem A, B làBt sich nun zu einem beliebigen s > 0 ein N so

finden, daB fur aile n> N
| Xn(A, B)-JQ\<e,
\¥n{A,B)-JQ\<e.

Xn und Wn sind als Funktionen von A und B stetig.

1B) Unter dem Durchmesser einer Zelle verstehen wir wie ùblich die maximale Distanz
zweier Punkte der Zelle.
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Infolge der fortschreitenden Zweiteilung der Zellen gilt :

Die Funktionen %xB und W\s mit s 1, 2, 3,... bilden eine monotone,
konvergente Folge stetiger Funktionen, die gegen die stetige Grenz-
funktion JQ konvergiert.

Nach dem Satz von Dini17) ist dièse Konvergenz gleichmaBig, d. h. :

Zu jedem e > 0 làBt sich ein Index S so angeben, daB fur aile s > S

| XXs(A,B) — JQ\<e
\WX8(A,B)-JQ\<e

ist fur aile A, B.
Aus (oc) gewinnt man

Wx8(A B) ^ -J-Z VQ (AZVB) ^ Xx8(A B) (y)

und mit Rûcksicht auf (/S) und (y) schlieBen wir :

Zu jedem s > 0 làBt sich ein Index S so angeben, daB fur aile s > S
und aile A, B der Drehgruppe

1 ÎS.

ZVQ{AZVB)-JQ < e

ausfàllt. Der Nachweis der Mittelbarkeit von Vq (Z) fur q < k — 1

kann nun induktiv geschehen, indem man das QuermaB VQ als £-
dimensionales QuermaB des (Je — l)-dimensionalen Kôrpers darstellt,
den man durch Projektion des ursprunglichen Kôrpers im Bk auf einen
Bk_1 erhàlt. AUgemein gilt also:

Das Quermap VQ eines konvexen Kôrpers ist mittelbar ûber der

Drehgruppe.

§ 14. QuermaBintegrale und die Formel von J. Steiner

a) Linearkombination zweier konvexer Kôrper; gemischte
Volumina.

ilx und $t2 seien zwei &-dimensionale konvexe Kôrper. a^ bzw. s2 be-
zeichne den Vektor, der vom Koordinatenursprung 0 zu einem willkur-
lichen Punkt des Kôrpers 5lx bzw. 5t2 fuhrt. Sind Xx und A2 feste nicht-

17) Vgl. R. Courant, Vorlesungen ûber Differential- und Integralrechnung,
Berlin 1931, S. 89—90.
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négative Zahlen, so durchlauft der Endpunkt des von 0 aufgetragenen
Vektors Xxxx + A2x2 wieder einen konvexen Korper £, falls die Punkte xx
und s2 tinabhangig voneinander die Korper SKX bzw. R2 durchlaufen. Man
schreibt dann

Aï — ^îivi ~f* ^-2^*2 •

Das Volumen des Korpers fi ist ein homogènes Polynom &-ten Grades
der Parameter Xx und A2 '

1 M A* \ ¦ Vv[frx R2) (1)

Die Koeffizienten Fv(5l1, R2) smd nur von den Korpern SKX und 5l2 ab-
hangig und werden als gemischte Volumina bezeichnet18).

Dabei ist Vo (5^, il2) gleich dem Volumen 7(5^) des ersten Kôrpers
und F^,^) - F(ila).

b) Der Parallelkorper eines konvexen Korpers und sein
Volumen.

Im folgenden bezeichne S stets die Einheitskugel des &-dimensionalen
Raumes.

Ist Si ein beliebiger konvexer Korper, so heiBt der Korper

der Parallelkorper von R im Abstand r. Der Parallelkorper ^5 von R im
Abstand r besteht aus allen Punkten, deren Entfernung von 51 nicht
groBer als r ist. Das Volumen des Parallelkorpers laBt sich nach Formel (1)
durch die gemischten Volumina ausdrucken19) :

V(St + r<5)= Z (\\ rx-Vx{&, S) (2)
>=0 \ A /

Zur Abkurzung setzen wir

18) Vgl T Bonnesen und W Fenchel, a a O 29—30, 38—43
Ûber das Volumen in lmearen Scharen konvexer Polyeder und Korper vgl :

H Mmkowski, a a O vor allem § 20—22 Dort findet sich auoh eine geometnsche
Interprétation fur die gemischten Volumina konvexer Polyeder.

19) Fur k 2, 3 wurde dièse Formel schon von Stemer gefunden: J Stemer, Ûber
parallèle Flachen Monatsber PreuB Akad Wiss (1840), 114—118; Ges. Werke,
Bd II, 173—176
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Die GrôBe W\ wird das X-te Quermaflintegral genannt. Insbesondere ist

Wo F0(5l, S) das Volumen von 51,

k Wx &• Fj (51, S) die Oberflâche von Si

PFfc Ffc (51, S) das Volumen k& der Einheitskugel.

Mit den Bezeiehnungen fur die QuermaBintegrale lâBt sich die Stei-
nersche Formel wie folgt schreiben:

Wo+ (3)

c) Das QuermaBintegral W\($t).
Bezeichnet man das {X — l)-te QuermaBintegral der Projektion 5l; von

R auf eine Hyperebene mit W^^Si), so gilt fur das A-te QuermaBintegral
die Formel von Kubota 20) :

wobei

Volumen der (k— l)-dim. Einheitskugel,

2

2n2
cok Je - Kk — —ytt ^ Oberflâehe der &-dim. Einheitskugel,

(4)
dco Oberflâchenelement der A-dimensionalen Einheitskugel.

Die Kubotasche Formel besagt : Das A-te QuermaBintegral eines kon-

vexen Kôrpers 51 ist gleich dem —^--fachen Mittelwert der (A -— l)-ten
Kk—i

QuermaBintegrale seiner Orthogonalprojektionen auf (A — l)-dimen-
sionale Unterrâume.

Die Projektion 5l; des Kôrpers Si auf einen (k — l)-dimensionalen
Unterraum ist ein (k — l)-dimensionaler konvexer Kôrper. Somit lâBt

80) T. Kubota, Ûber konvex geschlossene Mannigfaltigkeiten. Sci. Rep.
Tôhoku Univ., Bd. 14, 85—99 (1925). Kubota bezeichnet dort die QuermaBintegrale als
Mittelvolumina.
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sich auf ihn Formel (4) wieder anwenden, wobei A durch A — 1 und k
durch k — 1 ersetzt wird. Zudem ist eine (k — 2)-dimensionale Projek-
tion ($tf)r von Si1 gleich der (k — 2)-dimensionalen Projektion Sik_2 des

Kôrpers 51 selbst auf denselben (k — 2)-dimensionalen Unterraum.

Eine einfache Rechnung ergibt, daB W^ der -^- - fâche Mittelwert
Kk-2

der (A — 2)-ten QuermaBintegrale der Projektionen Sik_2 ist. Dièse lassen
sich durch die (A — 3)-ten QuermaBintegrale der Projektionen Sik_3 aus-
drûcken usw. SchlieBlich gelangen wir zu den 0-ten QuermaBintegralen
von Projektionen auf (k — A)-dimensionale Unterrâume, also zu den
(k — A)-dimensionalen QuermaBen von R und wir erhalten :

(5)

Das X-te Querma/Untegral eines konvexen Kôrpers Si ist gleich dem

— - fachen Mittelwert der (k -~ X)-dimensionalen Quermafie von Si.

Fur A 1 erhalten wir als Spezialfall die Oberflachenformel von
Cauchy :

(6)

In Worten: Die Oberflâche eines konvexen Kôrpers ist gleich dem

-fachen Mittelwert seiner (k —- l)-dimensionalen Quermafîe.
Kk-1

Bewegungsmittelwerte konvexer Kôrper in Unterraumgîttern

§ 15. Der Mittelwertssatz fur Bewegung im Unterraumgitter

Im Raume Rk sei das in § 1 eingefuhrte Unterraumgitter OQ aufge-
spannt. Der konvexe Kôrper Si fûhre eine Bewegung X der Bewegungs-
gruppe X aus. Die Zahl der von ihm nach der Bewegung X getroffenen
Unterrâume des Gitters bezeichnen wir mit NQ {X).

Auf dièse Bedeckungszahlen ûben wir die Mittelwertsoperation M aus.
Das Definitionsgebiet des Mittelwertsoperators besteht aus der Menge 9ft
aller auf dièse Weise darstellbaren Funktionen sowie aus Konstanten.
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Da sich jede Bewegung X eindeutig in eine Translation Y und eine

Drehung Z zerlegen lâfit, gilt nach Postulat V :

MX{NQ(X)} Mz{My[NQ(ZY)]}

Die Translation Y làBt sich nach § 2 eindeutig zerlegen in Y= YQY*
Also gilt :

Mt{Mv[Ne(ZY)]} M

Die Translationen Y* fiïhren aile Unterrâume von GQ einzeln in sich
xiber. Bei einer solchen Translation ândert sich die Treffzahl NQ nicht.
Somit ist nach Postulat IV auch ihr Mittelwert eine Konstante und wir
erhalten :

Die Treffzahl des Kôrpers & mit den (k — ç)-dimensionalen Unter-
râumen des Gitters GQ ist gleich der Treffzahl seiner Projektion $tQ mit
dem Punktgitter des Unterraumes RQ, der auf dem Gitter GQ senkrecht
steht. Die Projektion $iQ ist selbst wieder ein konvexer Kôrper.

Ûbt man auf den Kôrper 51 aile Translationen der Form YQ aus, so

fuhrt die Projektion zu YQ parallèle Translationen aus. Das sind aile im
BQ môglichen Translationen.

Der Mittelwert MVq{Nq(Z Yq) } ist somit nach Satz 1 gleich dem
g-dimensionalen Volumen der Projektion RQ, also gleich dem g-dimen-
sionalen QuermaB V

Q
des Kôrpers Si und wir erhalten :

Satz 3. Der Bewegungsmittelwert der Treffzahlen eines konvexen Kôrpers
mit dem Unterraumgitter GQ ist gleich dem Mittelwert seiner q-dimensionalen
Quermafie.

Da nach § 14 das QuermaBintegral

Wx -^- J*-x

ist, folgt :
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Satz 4. Das Quermafiintegral W\ eines konvexen Kôrpers ist gleich dem

—~ - fachen Bewegungsmittelwert der Treffzahlen des Kôrpers im Unter-
X

raumgitter

Setzen wir speziell A 0 so erhalten wir :

Satz 5. Das Quermafiintegral WQ(=~Volumen) eines konvexen Kôrpers
ist gleich dem Bewegungsmittelwert der Treffzahlen des Kôrpers im Punkt-
gitter Gk.

Da nach der Formel von Cauchy (§14) die Oberflâche

0 «>* jK*-l
k %

ist, folgt :

Satz 6. Die Oberflâche eines konvexen Kôrpers ist gleich dem ——-fachen
Kfc-l

Bewegungsmittelwert der Treffzahlen des Kôrpers im Geradengitter Gk__1.

Die Formel von J. Steiner fur das Volumen des Parallelkôrpers
eines Kôrpers $t làfit sich ebenfalls mit Hilfe der Bewegungsmittelwerte
der Treffzahlen des Kôrpers $t mit den Unterraumgittern darstellen :

(Eingegangen den 18. Juni 1942.)
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