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Uber Bewegungsmittelwerte
konvexer Korper in Gittern

Von E. Prrisic, Baden

Wird ein k-dimensionaler Bereich mit Jordanschem Volumen in einem
k-dimensionalen Einheitspunktgitter allen Translationen bzw. allen Be-
wegungen unterworfen, so ergibt sich als Translations- bzw. Bewegungs-
mittelwert der Bedeckungszahl von Gitterpunkten das Volumen. Es kann
die Frage aufgeworfen werden, ob noch Aussagen dhnlicher Art gemacht
werden konnen, wenn man an Stelle des Punktgitters ein Unterraum-
gitter G,, bestehend aus (k — g)-dimensionalen Unterrdumen betrachtet
und die Treffzahl des Bereichs in @, iiber eine bestimmte Bewegungs-
gruppe mittelt. Es zeigt sich, da} dies tatsdchlich der Fall ist, wenn man
als Bereich einen konvexen Korper wihlt und die Mittelwertsbildung
iiber die volle Bewegungsgruppe erstreckt.

Das Hauptresultat der vorliegenden Arbeit lautet kurz gefalit so:

Bezeichnet J, ), den Bewegungsmittelwert der Treffzahl des kon-
vexen Korpers im Unterraumgitter G,_,, W, das i-te QuermafBlintegral
des Korpers, endlich «, das Volumen der k-dimensionalen Einheitskugel,
so gilt die Relation

W,\ == . J E—X o

Ke—2

Nach dieser Formel werden die £+ 1 QuermaBintegrale W, bis W,
eines konvexen Korpers als Treffzahlmittelwerte des Korpers in den
k4 1 moglichen Unterraumgittern G, bis G, dargestellt.

Fiir dreidimensionale Eikérper ergeben sich z.B. Volumen, Oberfliche
und das Integral der mittleren Kriimmung als Treffzahlmittelwerte bei
Bewegung des Eikorpers im Punkt-, Geraden- und Ebenengitter.

Eine direkte Definition der Mittelwerte, etwa durch Riemannsche
Integrale in einem geeigneten Parameterraum der Bewegungsgruppe,
wird umgangen. Die Mittelwerte werden als Resultat einer abstrakten
Mittelwertsoperation dargestellt, die durch fiinf Postulate charakterisiert
ist, und der als Definitionsbereich eine geeignet abgegrenzte Klasse von
Funktionen iiber der Bewegungsgruppe zugeordnet ist. Die Mittelwerts-
operation wird als bewegungsinvariant, additiv, monoton, normiert und
zerlegbar vorausgesetzt. Aus der Existenz einer Mittelwertsoperation, die
diesen fiinf Postulaten geniigt, folgt ihre Eindeutigkeit. Die Existenz
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kann dadurch sichergestellt werden, dafl man sich auf die Klasse der
mittelbaren Funktionen beschrinkt. Diese Mittelbarkeit fiir Funktionen
iiber Bewegungsgruppen wird im AnschluBl an eine analoge Begriffs-
bildung von J. v. Neumann') in der Theorie der fastperiodischen Funk-
tionen in geeignet abgednderter Form gewidhlt, dhnlich wie das von
W.Maak?) in seinen Grundlagen der ebenen Integralgeometrie gemacht
worden ist. Fiir die bei der Bearbeitung des vorliegenden geometrischen
Problems auftretenden Funktionen iiber Translations- und Drehgruppen
wurde der erforderliche Nachweis der Mittelbarkeit erbracht.

Raum, Gitter und Bewegung
§ 1. Raum, Punkf{gitter und Unterraumgitter

Die folgenden Ausfithrungen beziehen sich auf den k-dimensionalen
euklidischen Raum, den wir mit R, bezeichnen. P(z,, z,,..., ;) be-
zeichne einen Punkt mit den Koordinaten z,, z,,..., z,, die auf ein
orthogonales Koordinatensystem des R, bezogen sind.

Alle Punkte P(z,, x,,..., x;), deren Koordinaten xz, ganze Zahlen
sind, bilden ein Punktgitter, das wir mit &, bezeichnen. Jedem Gitter-
punkt P(z,, z,,..., z;) ordnen wir genau einen Gitterwiirfel zu, ndm-
lich die Gesamtheit der Punkte Q(x;+ u,, s+ ts,- .., ;+ u;), wobei
0 < u,<1 ist. Einen solchen Wiirfel nennen wir halbabgeschlossen.
Die Festsetzung des Variabilitdtsbereiches der Groen x im Sinne dieser
Ungleichungen hat den Vorteil, dafl der Raum durch diese Gitterwiirfel
genau einfach iiberdeckt wird und zu jedem solchen Wiirfel genau ein
Gitterpunkt gehort.

Im weitern errichten wir Gitter aus (k — p)-dimensionalen Unter-
rdumen, die auf einem p-dimensionalen Unterraum senkrecht stehen. Ein
solches Unterrawmgitler bezeichnen wir mit G,. @, besteht aus allen
Punkten P(z,, ,,..., z;), fir welche z, ganz ist fir 1 <» < o, be-
liebig fiir p<v=Fk .

Insbesondere ist G, der Raum R,; G, ist das Gitter aus (k — 1)-
dimensionalen Hyperebenen, die senkrecht stehen auf der Geraden

1) J.wv. Neumann, Almost periodic functions in a group I. Trans. Amer.
Math. Soc. 36, 445—492 (1934).

?) W. Maak, Integralgeometrie 18 (Grundlagen der ebenen Integralgeometrie).
Abhandlungen aus dem Math. Seminar der Hansischen Universitat 12, 1. Heft,
83—110 (1937).
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Ty = X3 =---= x, = 0; G,_, ist das Gitter aus den Geraden, die senk-
recht stehen auf der (¥ — 1)-dimensionalen Hyperebene z, = 0; G, ist
das Punktgitter des R,, das oben beschrieben wurde.

§ 2. Bewegungen im Raum

P gei ein Punkt allgemeiner Lage mit den Koordinaten z,, z,,.. ., 2,
den wir durch eine Operation X der Bewegungsgruppe X in den Punkt P’

mit den Koordinaten z}, z;,. .., ) iberfithren. Dann gilt
) k
.’L‘,, = 2 alv,l. xp. + tv (1)
p=1
oder
' =42+ T, (2)
wobei A = ||a,,|| eine quadratische Matrix mit £ Reihen darstellt und
T =||t,|| eine Matrix mit einer einzigen Spalte. A bestimmt die

Drehung, 7' die Translation. Die Bewegung X bezeichnen wir kurz
durch?)

X=4,7. (3)

X, =(4,,T,) sei eine erste, X, = (4,,T,) eine zweite Bewegung.
Fiithren wir zuerst die Bewegung X, und dann die Bewegung X, aus, so
gilt fiir die Zusammensetzung

X2X1 = (Az Al? A2T1 + Tz) ’ (4)

wie sich aus (1) leicht ergibt.

Bezeichnen wir die k-reihige Einheitsmatrix mit Z, so ist (%, 0)
das Einheitselement der Bewegungsgruppe, wobei 0 eine Spalte von
k Nullen darstellt. (Z, 0) bezeichnet die Ruhelage; Z = (4, 0) stellt
eine reine Drehung, Y == (&, T') eine reine Translation dar.

Jede beliebige Bewegung X = (4, 7') kann dargestellt werden als

X =Y7,

wobei Y nunmehr stets eine Translation und Z eine Drehung bezeichnen
soll; denn aus (4) folgt:

(B,T) (A,0)=(BA,E0+T)=(4,7T) .

3) Bezeichnung in Anlehnung an J. J. Burckhardt, Zur Theorie der Bewegungs-
gruppen. Comment. math. helv. 6, 169—184 (1933/34).
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Die bekannte Tatsache, dafl sowohl die Drehungen fiir sich als auch die
Translationen fiir sich Untergruppen der Bewegungsgruppe X bilden,
findet ihren formelméBigen Ausdruck im Bestehen der Relationen

(42, 0) (4,4, 0) = (454, 0)
(B, T) (B, T))=(E, T+ T) .
Die Untergruppe der Drehungen soll mit 3, diejenige der Translationen

mit ¥ bezeichnet werden.
Bildet man alle Translationen der Form

—_ ie * __ 0
T,= 0 und T, = for || 7
0 t,

so bilden die Translationen 7', eine Untergruppe I, der Translations-
gruppe 9). Fiihrt man ndmlich zwei Translationen der Form 7', nach-
einander aus, so entsteht wieder eine Translation dieser Form.

Dasselbe gilt fiir die Translationen 75 .

Jede beliebige Translation 7' 1lat sich eindeutig zerlegen in
T=1T,TF . Die Translationen 7, fiilhren alle Unterrdume von @,
einzeln in sich tiiber.

Bewegungsmittelwerte

§ 3. Die Mittelwertsoperation fiir Funktionen iiber Bewegungsgruppen

Jedem Element X einer Bewegungsgruppe X sei eindeutig eine reelle,
nicht negative Zahl ' = F(X) zugeordnet.

Auf diese Weise wird eine Funktion F(X) iiber der Bewegungsgruppe X
definiert. Wir betrachten insbesondere Mittelwerte derartiger Funktionen;
diese konnten bei geeignet gewéhlter Parameterdarstellung der Gruppe
als Integrale im Parameterraum dargestellt werden. Wir wihlen aber
einen andern Weg, bei dem die direkte Definition des Mittelwertes um-
gangen wird?).

4) Vgl. dazu: H, Hadwiger, Flacheninhalte und Kurvenldngen als geo-
metrische Mittelwerte. Jahresbericht der D. M. V. 51, 212—218 (1941).
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Der Mittelwert wird als Resultat eines auf Funktionen F(X) einer
bestimmten Menge 9t ausgeiibten Operators M aufgefaft, symbolisch:

J = M, {F(X)} .

Der Mittelwertsoperator M ordne jeder Funktion F(X) des Definitions-
gebietes M eindeutig die reelle Zahl J zu, die wir Mittelwert der Funktion
F(X) nennen. Dieser Mittelwertsoperator soll die folgenden 5 Postulate
erfiillen:

(I) Wenn F(X)cM, und AcX, Bc X, so gilt M {F(AXB)} =
MAF(X)} ;
d.h. M ist bewegungsinvariant.
(I1) Wenn F(X)cM,, G(X)cIM, und F(X) 4+ G(X)cIN,,
so gilt
M {F(X) + G(X)} = M {F(X)} + M {G(X)} ;

d.h. M ist additiv.

(ITI) Wenn F(X)c M., G(X)c M, und F(X) <G(X),
so gilt
M.{F(X)} < M {G(X)} ;

d.h. M ist monoton.

(IV) Ist C eine beliebige reelle nicht negative Konstante, so gilt

FX)=Cc®M, und M {C} =
d. h. M ist normaert.

(V) Wenn jedes Element X der Bewegungsgruppe X eindeutig zerlegt
werden kann in X = YZ, mit Y ), Zc 3, wobei ) und 3
Untergruppen von X sind, und fiir festes Z F(YZ)c IN,,
M {F(YZ)} cIR,, so gilt

F(X)c I, ,
und
M {F(X)} = MM, {F(YD)} ;
d. h. M ist zerlegbar.

§ 4. Mittelbare Funktionen

Die Existenz der Mlttelwertsopera,tlon kann dadurch sichergestellt
werden, daf iiber die Funktion F'(X) geeignete Voraussetzungen gemacht
werden.
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In Anlehnung an J.v. Neumann’) und W. Maak®) fithren wir den
Begriff der Muttelbarkeit in geeignet abgednderter Form ein.

X, X,,...,X,,... seien die Elemente einer geeignet gewihlten, nicht
von der Funktion abhidngigen abzahlbaren Teilmenge von X.
N, <Ny,<Ng< .- ist eine feste, von der Funktion unabhingige

monotone Folge von natiirlichen Zahlen.

Wir definieren nun:

Eine Funktion F(X) iiber der Bewegungsgruppe X heillt mattelbar,
wenn eine reelle nicht negative Zahl J existiert, so dal zu jedem & > 0
ein Index n, angegeben werden kann, so daB fiir alle n > n,

1 Nn

y- 2 FAX,B)—7J | <e

ausfillt fiir alle 4, B aus X.

§ 5. Eindeutigkeit der Mittelwertsoperation fiir mittelbare Funktionen

Voraussetzung: F(X) ist mittelbar.
Wir geben eine beliebige Zahl & > 0 vor. Wegen der Mittelbarkeit
konnen wir immer endlich viele Elemente X, so wihlen, dafl fir alle

n > n,
1 ¥

& \ __8‘
J— g <y ZFAX,B)<T 4 . (1)

Ferner konnen wir 2 Paare ganzer Zahlen p,, ¢, und p,, q, so wihlen, dafl

D1 & & P2
J—e< < J——; J4 <2< e, (2)
=g 2 T g ‘
also
D1 1 Zn De
< F A.XVB < T e 3
o ~W. Vé‘l ( ) N (3)
Durch Multiplikation von (3) mit N,q,q, erhalten wir
Ny
N,¢2p7 <9,9: 2 F(AX,B)< N, psq; - (4)
v=1

M, sei irgend eine Mittelwertsoperation, die die Postulate I—V
erfiillt.

) J. v. Neumann, Almost periodic functions in a group I. Trans. Amer.
Math. Soc. 36, 445—492 (1934).

8) W. Maak, Integralgeometrie 18 (Grundlagen der ebenen Integralgeometrie).
Abhandlungen aus dem Math. Seminar der Hansischen Universitav 12, 1. Heft, 83—110
(1937).
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M, werde auf die Ungleichung (4) ausgeiibt. Im Hinblick auf
Postulat II gilt

M, {mFy=M,{F+F+ --- +F}=mM,{F}.
Wegen Postulat IV ist
M, (Nngsp1) = N, g0, -

Beriicksichtigen wir noch Postulat III, so erhalten wir
Ny
NugaP1 < 019: EMA{F(AXVB)}<NnP2§I1 . (5)

Wegen Postulat I gibt M, {F(4X, B)} fiir alle X, denselben Wert
M {F(A)}.
Aus (5) erhalten wir somit

N.q:0: < 19N, M {F(4)} < N,p,q,
oder

%<MA{F(A)}<—§2— : (6)

2
Aus (2) und (6) folgt dann
J—e< M {FA}Y<J + ¢;
| M {F(A)} —J|<e. (7)
Weil die Ungleichung (7) fiir jedes beliebige ¢ > 0 richtig ist, folgt
M {F(X)} =J ;

d. h.: Wenn die Mittelwertsoperation existiert, ist sie eindeutig bestimmt.

§ 6. Existenz der Mittelwertsoperation fiir mittelbare Funktionen

Wir wollen nun nachweisen, daf3 der Operator M, der jeder mittelbaren
Funktion den durch die Mittelbarkeitsbedingung eingefithrten Wert

J = M {F(X)}
zuordnet, die Postulate I—V erfiillt.

1. Bewegungsinvarianz:

F(X) sei mittelbar itber der Gruppe X. Zu ¢ > 0 gibt es ein #n,, so daB
firallen > nound 4, Bc X
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Np
1 Spax,B) —J|<e
Nn y=1

ausfallt. Wir betrachten nun die Funktion
F*(X)=FUXV),
wo U und V zwei feste Bewegungen aus X sind. Mit 4/, B’ c X gilt
F*(A'XB'y = F¥(U'AXBV-') = F(AXB) ,

wenn fir 4 = UA’ und B = B’V gesetzt wird. Demzufolge erhalten wir

Np
; S F*A' X, B) —J | < ¢
n v=1

fiir alle n > ny,und A’, B’ c X, d. h. mit F(X) ist auch F*(X) mittelbar,
und beiden Funktionen ist der gleiche Wert J zugeordnet.

2. Additivitat:

F,(X) und F,(X) seien mittelbar iiber der Gruppe X. Zu ¢> 0 gibt es
ein n,, so daf} fir n > n,und 4, Bc X

1 €
v 2 Fi(AXB) —Ji| <4
L N F(4X,B)—J,| <%
Nn — 2 Ay ) 2 2

wird. Hieraus ergibt sich

Nn
“Nl_ 3 [F1(4X, B) + F,(AX, B)] — [J, + 73]

n v=1

<e,

d.h. mit F,(X) und F,(X) ist auch F,(X)+ F,(X)=F(X) mittelbar,
und fiir die zugewiesenen Werte J,, J,, J gilt J;, 4+ J, = J.

3. Monotonie:

F,(X) und F,(X) seien mittelbar iiber der Gruppe X. Es gelte fiir alle
XcXx
F.(X) =F,(X).

Wir zeigen, daB fiir die zugewiesenen Werte J; und J,

J, = J, gilt.
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Wir nehmen an, es wire im Gegenteil

Jl"“"J2=8>O.
Es gibt ein n so, daB

L ¥ rxy)—J,|<2
N, < 1 (Xy) —J, <—2‘
L S x)—J,|<f
Nn i 2 V) 2 <_2—
ausfillt. Hieraus folgert man
1 ¥n
Nn vé'l[Fz(Xv)_—Fl(‘Xv)] + [JI_JZ] <E,

oder
|44 €| < e,

also wegen 4 = 0 einen Widerspruch.

4. Normierung:

F(X) = C ist iiber der Gruppe X offenbar mittelbar, und fiir den zu-
gewiesenen Wert J gilt
J=0C.
5. Zerlegbarkeit:

Fir X c X gelte die eindeutige Zerlegung
X=YZ Yc9,Zc3,

wobei ), 3 Untergruppen von X sind.
F(YZ) sei fiir jedes Z diber ¥) mittelbar,

MAF(Y2)} = J(Z) ;
ferner sei J(Z) iiber 3 mittelbar,

M {J(Z)} = M| M {F(YZ)}| = J* .

Wie soeben bewiesen wurde, sind M, und M, Operationen, fiir die die
Postulate I bis IV gelten. Man verifiziert leicht, dafl die Zusammensetzung
MM, als Operation, die auf Grund der Zerlegung X = YZ auf F(X) an-
wendbar ist, die ndmliche Eigenschaft aufweist. Das Resultat der Zu-
sammensetzung kann als Mittelwertsoperation M* gedeutet werden.
Nach dem im vorstehenden Paragraphen bewiesenen Eindeutigkeitssatz,
nach welchem die Einzigkeit eines solchen Operators sichergestellt ist,
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darf der Stern, der die spezielle Konstruktion des Operators andeutet,
weggelassen werden. So ergibt sich

M {F(X)} = M| M {F(YZ)}].
Bemerkung:

Die Definition der Mittelbarkeit stiitzte sich wesentlich auf eine nicht
von den Funktionen abhingige abzdhlbare Teilmenge von Elementen
der Gruppe sowie auf eine zugehdrende monotone Folge natiirlicher
Zahlen. Es kann von einer Basis fiir die Mittelbarkeit gesprochen werden.
Auf Grund der soeben erreichten Resultate ergibt sich im Hinblick auf
den Eindeutigkeitssatz fiir Mittelwertsoperationen, fiir welche die
Postulate I—1IV Geltung haben, dafl der sich aus der Definition der
Mittelbarkeit ergebende Mittelwert von der Basis unabhingig ist. Eine
Funktion kann in bezug auf verschiedene Basen mittelbar sein, der
Mittelwert aber muf} stets derselbe sein !

Jordanscher Bereich im Punktgitter

§ 7. Die Bedeckungszahl im Punktgitter

Gegeben sei ein k-dimensionaler Bereich 8 vom Jordanschen Volu-
men V und das Punktgitter G, des R, (vgl. § 1).

Der Bereich 8B bedeckt einen Punkt des Punktgitters ¢;,, wenn der
Punkt zur Punktmenge B gehort. Dabei kann es sich um einen innern
Punkt oder um einen Randpunkt handeln. Bei der Vorgabe des Be-
reiches B mull fir jeden Randpunkt die Zugehorigkeit oder Nicht-
zugehorigkeit zu B entschieden werden.

Der Bereich B werde im Punktgitter bewegt. B, sei der Bereich nach
der Bewegung X, B, der Bereich nach der Translation Y. Die Zahl] der
von B, bedeckten Gitterpunkte bezeichnen wir mit N(X); N(Y) ist die
Bedeckungszahl von B, .

N(X) bzw. N(Y) sind Beispiele fiir Funktionen iiber der Bewegungs-
gruppe X bzw. iiber der Untergruppe 9 der Translationen.

§ 8. Das Yolumen als Translationsmittelwert

Auf die Bedeckungszahl N(Y) des Bereiches 8B, iiben wir die Mittel-
wertsoperation aus. Das Definitionsgebiet des Mittelwertoperators be-
steht aus der Menge I aller auf diese Weise darstellbaren Funktionen
sowie aus Konstanten. Zur Abkiirzung setzen wir

M, {N(Y)} = M(B) .

9 Commentarii Mathematici Helvetici 129



Die Postulate I—IV erfahren in diesem Falle folgende anschauliche
Deutung:

(I) Wenn der Bereich B durch eine Translation mit dem Bereich B,
zur Deckung gebracht werden kann, so ist

M(B,) = M(B) ;

d. h. der Mittelwert ist von der Anfangslage des Bereichs nicht
abhéingig.

(II) Wenn der Bereich B in die beiden Teilbereiche B, und B, zerlegt
wird, so gilt
M(B) = M(B,) + M(B,) .

(III) Wenn B, c B, d. h. wenn der Bereich B, im Bereich B enthalten
ist, so gilt
M(B,) = M(B) .

(IV) Wenn der Bereich B nach jeder Translation genau C Gitterpunkte
bedeckt, so ist
MB)=C.

Es 148t sich nun zeigen, da der Translationsmittelwert
M(B) = M, {N(Y)}

stets gleich dem Jordanschen Volumen V des Bereiches B ist.

B, sei der in § 1 erwihnte halbabgeschlossene Gitterwiirfel mit dem
Volumen V(2W,) = 1. Da er nach allen Translationen genau einen Gitter-
punkt bedeckt, ist nach Postulat IV

MW, =1= V() .

Zerlegen wir B, in n* Wiirfel 28, der Kantenlinge —71%—, die alle durch

Translation ineinander iibergefiihrt werden konnen, so ergibt sich mit
Riicksicht auf die Postulate I und II, daf3

M(@,)=— =V, i

Ist B* ein Bereich, der sich in m derartige Wiirfel zerlegen 143t, so folgt

nach Postulat II, daB
m

M (B = — = V(B*) st
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Es sei nun B ein beliebiger Bereich mit dem Jordanschen Volumen
V=V(®3).

Ist &€ > 0 beliebig vorgegeben, so lassen sich zu hinreichend groB gewihl-
tem n stets zwei Bereiche B;* und B, finden, die sich in lauter Wiirfel 33,
zerlegen lassen und noch folgende Eigenschaften haben:

a) B¥cVcBF,
b) V(BF) - V(B <e.

Da nun nach Postulat III die Ungleichung

M(B)) < M(B) = M(B)
gilt, so folgt

| M(B) — V(B)| < e,
oder also

M(B) = M, {N(Y)} = V(B) .

Satz 1. Der Translationsmittelwert der Bedeckungszahlen eines k-dimen-
sionalen Bereichs im Punktgitter des R, ist gleich seinem Jordanschen
Volumen?).

§ 9. Das Volumen als Bewegungsmittelwert

Wir iiben nun die Mittelwertsoperation M auf die Bedeckungszahlen
N(X) des Bereichs B, aus, wobei X die Elemente der Bewegungsgruppe X
darstellen. Das Definitionsgebiet des Mittelwertoperators besteht auch
hier aus der Menge I aller auf diese Weise darstellbaren Funktionen
sowie aus Konstanten. Die Postulate I—1IV erfahren eine dhnliche an-

) Far k= 2:

H. Hadwiger, Flacheninhalte und Xurvenlidngen als geometrische
Mittelwerte. Jahresbericht der D. M. V., 51, 212—218 (1941).

Weitere Literatur:

H. Hadwiger, Uber Mittelwerte im Figurengitter. Comment. math. helv. 11,
221—233 (1938/39).

H. Hadwiger, Uber statistische Flachen- und Langenmessung. Mitt. der
Naturf. Ges. Bern, 1938.

L. 4. Santalé, Geometria Integral 31. Sobre valores medios y probabilidades
geometricas. Abhandlungen aus dem Math. Seminar der Hansischen Universitat 13,
284—294 (1939).

L. A. Santalé, Sur quelques problémes des probabilités géométriques.
Téhoku Math. J. 47, 159—171 (1940).

L. A. Santald, Geometria Integral de figuras ilimitadas. Publicaciones del
instituto de matematicas, 1, No. 2, 5—58. Rosario 1939.
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schauliche Deutung wie im vorhergehenden Paragraphen; nur ist tiberall
die Translation durch eine beliebige Bewegung zu ersetzen.

Wir wollen nun zeigen, dafl auch der Mittelwert iiber die Bedeckungs-
zahlen N(X) gleich dem Jordanschen Volumen des Bereiches B ist.

Nach § 2 148t sich jede Bewegung X eindeutig in eine Translation Y
und eine Drehung Z zerlegen, wobei Y ein Element aus der Unter-
gruppe 9 der Translationen und Z ein Element aus der Untergruppe 3
der Drehungen ist.

Mit Riicksicht auf Postulat V gilt dann

M ANX)} = M, M N(YZ)}] .

Fiir festes Z ist nach Satz 1

M {NYZ)} =7V,
und nach Postulat IV
M (V)=V.
Somit ist
MA{NX)}=V.

Satz 2. Der Bewegungsmittelwert der Bedeckungszahlen eines k-dimen-
stonalen Bereichs im Punktgitter des R, ist gleich seinem Jordanschen
Volumen.

§ 10. Die Mittelbarkeit der Bedeckungszahl

Bis jetzt haben wir die Existenz der Mittelwertsoperation fiir Be-
deckungszahlen stillschweigend vorausgesetzt. Im folgenden wollen wir
nun nachweisen, daBl N(Y) mittelbar ist. Gelingt uns dies, so folgt nach
(V) die Existenz der Mittelwertsoperation fiir N(X), da jede Konstante
mittelbar ist.

Zu diesem Zwecke errichten wir im Raume R, das p-fach unterteilte
Punktgitter, das wir mit G’ bezeichnen. Jedem Gitterpunkt ist dann
wiederum ein halboffener Gitterwiirfel zugeordnet.

N, (Y) sei die Bedeckungszahl im p-fach unterteilten Punktgitter;
U,(Y) sei das Volumen aller Gitterwiirfel von G, die Punkte des
Bereiches B enthalten;

V,(Y) sei das Volumen aller Gitterwiirfel, die ganz im Bereiche liegen.

Dann gilt:
V(Y)=sV=U,(Y) . (1)
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Jedem der N ,(Y) Gitterpunkte ist genau ein Wiirfel zugeordnet. Das
Volumen dieses Wiirfelaggregates ist

1 k
@)mww
Es ist nun

V,(Y) < (%)kNp(Y) < U,(Y) . (@)

Um jeden Randpunkt des Bereiches 8B legen wir eine Kugel vom Radius r
und betrachten alle Punkte, die in solchen Randkugeln liegen. Die
Gesamtheit dieser Punkte heifle die Umgebung des Randes. Das Volumen
dieser Umgebung bezeichnen wir mit R,. Offenbar gilt®)

lim R,=0 . (3)
r->0
Wihlen wir r = Y (Diagonale eines Gitterwiirfels), so gilt

Up(Y)—V,(Y)< Ry fir alle Y .
Wir erhalten somit ’
I(—;T)kNp(Y)———V|<RE (4)

fiir alle Y. ’
Das p-fach unterteilte Gitter G¢’ kann in n, = p* normale Gitter

zerlegt werden :
G(Icp) =G + G+ +'ank .

Diese Gitter gehen durch Translation auseinander hervor.
T® sei die Translation, die ,@, in G, iiberfilhrt, und 7 sei die
Identitét.
N (Y) sei die Treffzahl des Bereiches B, mit ,G.
Es ist nun
Np(Y)le(Y)—}—2N(Y)—{—---+npN(Y) (5)
und
N(Y) = N(YT®) . (6)

8) Der hier betrachtete Grenzwert, der im Hinblick auf das monotone Verhalten der
Funktion R, mit abnehmendem r fiir beliebige beschrinkte Punktmengen sicher vorhan-
den ist, stellt ein Volumen dar, das formal in die Reihe der Minkowski’schen MaBzahlen
(vgl. H. Minkowski, Jahresbericht der D. M. V. 9, 115—121 [1901]) eingegliedert werden
kann. Wie man ohne Miihe nachweist, fallt dieses Minkowskische Volumen mit dem
duflern Jordanschen Volumen der Punktmenge zusammen und wird somit fiir die Rand-
punktmenge einer Jordan-mef3baren Menge nach einem bekannten Satz verschwinden.
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Aus (3), (4), (5) und (6) folgt:
Zu jedem ¢ > 0 lift sich ein Index p, so angeben, da fiir alle p > p,

L 3 N¥TP)—7| <
np y =1

ausfillt fir alle Y.
Zur Abkiirzung setzen wir

Z» (Y) =

1 n
> NXTP) .
ni’ y=1

Die Funktionenfolge x,(Y), (p=1,2,3,...), konvergiert gleich-
méfig gegen V.
Die Funktionen der Folge

Ny Xy (Y) + 1y Xy(Y) 4 - -« + 0, %, (Y)
L0l PN U ol (% ’
(p=1, 2, 3,...), konvergieren dann auch gleichmiBig gegen ¥V ?) und

wir erhalten:
Zu jedem & > 0 finden wir einen Index p, so, da} fiir alle p > p,

Y, (Y)=

NI+ +NY T NI TP) 4 - -+ N(Y TS+ - -+ NFTD)

N+ Mg+« +Ny

-Vi<e

ausfallt fiir alle Y.

Damit ist der Beweis fiir die Mittelbarkeit der Funktion N(Y) erbracht.
Die der Mittelbarkeit zugrunde liegende Basis besteht aus der Menge der
in einer natiirlichen Reihenfolge ausgezihlten Gittertranslationen

1 1 2 2 (3
..o e TR, TR
in Verbindung mit der monotonen Folge

N,=n+n,+--+mn, 19 p=123,...) .

%) Fur festes Y liegt eine bekannte Relation in bezug auf Mittelbildung vor. Vgl.
Q. Pélya und @. Szegd, Aufgaben und Lehrsatze aus der Analysis, Bd. I,
Berlin 1925, S. 11, Nr. 72.
Bei Anwendung dieses Theorems im vorliegenden Fall ist noch wesentlich, da3
n
lim 2
S n1+"2+“'+np
B+ k(1 4+ P)— B4 (0)
14k ’

=0 gilt.

10) Es ist

N,=1k {2k 4 ... 4 pk =
wo By (z) das v-te Bernoullische Polynom bezeichnet.
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§ 11. Der Satz von Blichfeldt

Satz 1 enthdlt eine spezielle Fassung eines bekannten Satzes von
H. F. Blichfeldt'') als einfache Konsequenz.

Dieser Satz laBt sich folgendermaflen aussprechen:

Ein Bereich vom Jordanschen Volumen V kann durch eine Translation
tmmer tn eine solche Lage gebracht werden, daf3 die Zahl der von thm bedeck-
ten Qitterpunkte nicht kleiner ist als V.

Da nicht alle Bedeckungszahlen kleiner als der Mittelwert sein konnen,
folgt der Blichfeldtsche Satz ohne weiteres aus Satz 112).

Konvexe Korper und QuermaBintegrale

§ 12. Der konvexe Korper

Eine Punktmenge hei3t konvex, wenn sie mit zwei Punkten stets deren
Verbindungsstrecke enthilt. Eine abgeschlossene beschrinkte konvexe
Menge heillt konvexer Korper'3).

Jeder konvexe Korper besitzt ein Volumen im Jordanschen Sinnel?).

§ 13. QuermaBe und ihre Drehmittelwerte

Es sei & ein konvexer Korper des R,. R, sei ein p-dimensionaler
Unterraum (p = 1,2,...,k — 1).

1) H. F. Blichfeldt, A new principle in the geometrie of numbers with
some applications. Trans. Amer. Math. Soc. 15, 227—235 (1914).

Ein kurzer Beweis findet sich bei W. Scherrer, Ein Satz tuber Gitter und
Volumen. Math. Ann. 86, 106—107 (1922),

12) Im zweidimensionalen Fall hat H. Hadwiger (Uber Mittelwerte im Fi-
gurengitter. Comment. math. helv. 11, 221—233, 1938/39), schon auf diesen Zu-
sammenhang hingewiesen.

Vgl. dazu auch L. A. Santalé, Geometria Integral de figuras ilimitadas.
Publicaciones del instituto de matematicas, 1, No. 2, 5—58. Rosario 1939, S. 51—53.

Uber gewisse Verfeinerungen im Zusammenhang mit einer Fragestellung von
L. A. Santalé vgl. noch H. Hadwiger, Bemerkungen tiber Gitter und Volumen.
Mathematica (Cluj) Vol. XVIII, 97—103 (1942).

13) Uber konvexe Mengen und Kérper siehe die Abhandlung von 7. Bonnesen und
W. Fenchel, Theorie der konvexen Kdérper. Ergebnisse der Math. und ihrer
Grenzgebiete. Berlin, J. Springer (1934).

14) Uber die Existenz des Volumens eines konvexen Korpers sehe man: H. Minkowski,
Theorie der konvexen Kérper, insbesondere Begriindung ihres Oberflachenbegriffs.
Ges. Abh. Bd. 2, 131—229, Leipzig und Berlin (1911).

W. Blaschke, Kreis und Kugel, § 17, Leipzig (1916).
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Projiziert man den Korper & senkrecht auf R,, so entsteht im R, ein
konvexer Korper & ,, dessen g-dimensionales Volumen V, als ein g-dimen-
sionales Quermaf von K bezeichnet wird.

Ist R,(0 < o) ein im R, liegender Unterraum, so sind die o-dimen-
sionalen Quermafle von &, zugleich ¢-dimensionale Quermafie von K1%).

Projizieren wir den Korper R auf einen festen Unterraum R,, so éndert
sich das Quermafl ¥V, bei einer Translation des Korpers nicht. V, kann
als Funktion iiber der Drehgruppe dargestellt werden.

Wir beweisen nun, dafl die Funktion V,(Z) fir p = k—1 iiber der
Drehgruppe mittelbar ist.

Dem konvexen Korper & wird eine Einheitskugel eingelagert und der
Korper um den Mittelpunkt der Kugel gedreht. Das Quermaf V, wird
dann zur Funktion dieser Drehungen:

Vo= V,(2).

Jeder Drehung Z des Korpers wird nun der Punkt P der Kugel-
oberfliche eindeutig zugeordnet, der DurchstoBpunkt des vom Kugel-
mittelpunkt O auf den Unterraum R, gefillten Lotes mit der mit-
gedrehten Kugeloberfliche ist. Bei einer Drehung um das Lot OP #ndert
sich das QuermaBl V, nicht.

Auf diese Weise wird iiber der Kugeloberfliche die Funktion V,(P)
durch

Vo(P)=V,(Z) definiert.

Das mittlere p-dimensionale Quermaf 1ifit sich nun als Integralmittel-
wert auf der Kugel darstellen:

1
J9=E¢VQ(P)dw ,

9 nkl2
wobei w, = -—-7—%—-— die Oberfliche der k-dimensionalen Einheitskugel
il

2
ist, und dw das Oberflichenelement auf der Einheitskugel darstellt.

Die Kugeloberfliche teilen wir nun in zwei gleiche Teile ein, die wir mit
A0 und 4,0 bezeichnen. Jede Hilfte wird sodann wieder halbiert, und
die so entstehenden 4 Zellen werden fortlaufend numeriert: 4,0, 4,0,

18) T'. Bonnesen und W. Fenchel, a. a. O., Seite 45—46.
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Azw, Ago . Dieser Teilungsprozell wird ohne Ende weitergefiihrt und zwar
so, daf3 die Durchmesser?®) d,, d,, d,,... eine Nullfolge bilden.

In der abgeschlossenen Zelle A4,w wihlen wir irgend einen Punkt P, und
erhalten so eine Punktfolge P,, P,, P,,... .

@ sei eine im Riemannschen Sinne eigentlich integrierbare Funktion
auf der Kugeloberfliche w,. Dann hat die Punktfolge die Eigenschaft,
dafl zu jedem £ > 0 ein N so angegeben werden kann, daf} fiir alle n > N

—l—f‘@(P,,)-——-J!<e

n y-1

ausfallt, wobei

J = _}_‘QS'Q(P) do  ist.
Wy

A und B seien nun zwei beliebig gewéhlte Drehungen. Wir betrachten
die Funktion
Vi(P)= V3 (Z)= V,AZB) ,

wo V,(Z) die weiter oben definierte Funktion iiber der Drehgruppe ist.
Es bezeichne nun weiter M, (4, B) bzw. m, (4, B) das Maximum bzw.
das Minimum, das von der Funktion V}(P) in der Zelle 4, angenommen
wird. M, und m, sind im Hinblick auf die Stetigkeit der Funktion V}(Z)
von A und B stetig abhingig.
Ist P, der oben gewdhlte Punkt der Zelle 4,w, und wird die Drehung
Z, so gewihlt, daB V3 (P,) = V3 (Z,) ist, so gilt

m (A4, B) < V,(4Z,B) = M (4, B) . (x)
Zur Abkiirzung fithren wir ein:
1 n
xn(AaB)::;; 2 MV(AaB) ’
v=1
V,(4,B)=- 3 m(4,B) .

y=1

Bei festem A, B 1ifit sich nun zu einem beliebigen ¢ > 0 ein N so
finden, dafB} fir alle n > N

| %.(4, B) —J, | <e,
| ¥, (4, B) —J,| <e.
X, und ¥, sind als Funktionen von 4 und B stetig.

1¢) Unter dem Durchmesser einer Zelle verstehen wir wie iiblich die maximale Distanz
zweier Punkte der Zelle.

137



Infolge der fortschreitenden Zweiteilung der Zellen gilt:

x’\8+l = x'\a

A, =2(28—1) .
wAs—H = Tf\s ( )

Die Funktionen X, und ¥, mit s =1, 2, 3,... bilden eine monotone,
konvergente Folge stetiger Funktionen, die gegen die stetige Grenz-
funktion J, konvergiert.

Nach dem Satz von Dini'?) ist diese Konvergenz gleichmiiig, d. h.:
Zu jedem ¢ > 0 1aBt sich ein Index S so angeben, daB fiir alle s > S

| %,(4,B)—J,|<e
| ¥ (4,B)—J, | <e @
ist fiir alle 4, B.
Aus (x) gewinnt man
¥),(4,B) = -2 VelAZ.B) = 1,4, B )

und mit Riicksicht auf (8) und (y) schlieBen wir:

Zu jedem & >0 laBt sich ein Index S so angeben, daf fiir alle s > 8
und alle A, B der Drehgruppe

;8 vg'qu(AZ,,B)———JQ <e
ausfillt. Der Nachweis der Mittelbarkeit von V,(Z) fir o<k —1
kann nun induktiv geschehen, indem man das Quermafl V, als o-
dimensionales Quermall des (k¥ — 1)-dimensionalen Korpers darstellt,
den man durch Projektion des urspriinglichen Kérpers im R, auf einen
R,_, erhalt. Allgemein gilt also:

Das Quermaf V, eines konvexen Korpers ist mittelbar iber der Dreh-
gruppe.

§ 14. QuermaBintegrale und die Formel von J. Steiner

a) Linearkombination zweier konvexer Korper; gemischte
Volumina.

K, und K, seien zwei k-dimensionale konvexe Korper. ¥, bzw. x, be-

zeichne den Vektor, der vom Koordinatenursprung O zu einem willkiir-

lichen Punkt des Korpers ], bzw. &, filhrt. Sind 4, und A, feste nicht-

17) Vgl. R. Courant, Vorlesungen tiber Differential- und Integralrechnung,
Berlin 1931, S. 89—090.
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negative Zahlen, so durchlduft der Endpunkt des von O aufgetragenen
Vektors 4,%, + A,%, wieder einen konvexen Koérper £, falls die Punkte %,
und x, unabhéngig voneinander die Korper &, bzw. &, durchlaufen. Man

schreibt dann
»8 == AIRI + 2232 .

Das Volumen des Korpers  ist ein homogenes Polynom k-ten Grades
der Parameter A, und A,:

k
P SHaR) = X (J)47R TSR - O

v=0

Die Koeffizienten V, (8;, &) sind nur von den Kérpern & und K, ab-
hiingig und werden als gemischte Volumina bezeichnet!s).

Dabei ist V,(R;, &,) gleich dem Volumen V(&,;) des ersten Korpers
und V. (K, K;) = V(K,).

b) Der Parallelkérper eines konvexen Koérpers und sein
Volumen.

Im folgenden bezeichne < stets die Einheitskugel des k-dimensionalen
Raumes.

Ist K ein beliebiger konvexer Korper, so heiflit der Korper
P=K+rS (r =0)

der Parallelkorper von & im Abstand r. Der Parallelkérper P von K im
Abstand r besteht aus allen Punkten, deren Entfernung von & nicht
grofer als r ist. Das Volumen des Parallelkorpers 148t sich nach Formel (1)
durch die gemischten Volumina ausdriicken'®):

V(R+r6)=§(7;)rk-mﬁ,e) . ()

A=0
Zur Abkiirzung setzen wir

ViR, S) = W,.

18) Vgl. T'. Bonnesen und W. Fenchel, a. a. O., 29—30, 38—43.

Uber das Volumen in linearen Scharen konvexer Polyeder und Kérper vgl. :

H. Minkowski, a. a. O., vor allem § 20—22. Dort findet sich auch eine geometrische
Interpretation fiir die gemischten Volumina konvexer Polyeder.

1%) Fiir k = 2, 3 wurde diese Formel schon von Steiner gefunden: J. Steiner, Uber
parallele Flachen. Monatsber. PreuB. Akad. Wiss. (1840), 114—118; Ges. Werke,
Bd. I1, 173—176.

139



Die GroBe W, wird das A-te Quermafintegral genannt. Insbesondere ist

Wo = V,(R, ©) das Volumen von & ,
EW, =k-V,(&, S) die Oberfliche von & ,
W, = V(K &) das Volumen «, der Einheitskugel.

Mit den Bezeichnungen fiir die Quermaf@integrale 148t sich die Stei-
nersche Formel wie folgt schreiben:

k k
V(R+r6)=W0+(1)W1T+(2)W2’I‘2+ cee - Witk ] (3)

c) Das Quermaflintegral W,(R).

Bezeichnet man das (1 — 1)-te QuermaBintegral der Projektion &’ von
R auf eine Hyperebene mit W_,(R), so gilt fiir das A-te QuermaBintegral
die Formel von Kubota 2°):

1
WA(R) = 7 j W (R)de | - (4)
wobei
l_c_—dl
2
Mgy == —————Z—Tl_—l— = Volumen der (k— 1)-dim. Einheitskugel,
r()
5
E
2
o = k- = — = Oberflache der &-dim. Einheitskugel,

dw = Oberflichenelement der k-dimensionalen Einheitskugel.

Die Kubotasche Formel besagt: Das A-te Quermaflintegral eines kon-
-fachen Mittelwert der (4 — 1)-ten

vexen Korpers K ist gleich dem —*

Kr—1
Quermafintegrale seiner Orthogonalprojektionen auf (4 — 1)-dimen-
sionale Unterrdume.
Die Projektion K’ des Korpers & auf einen (k¢ — 1)-dimensionalen
Unterraum ist ein (k¢ — 1)-dimensionaler konvexer Korper. Somit lafit

30) T'. Kubota, Uber konvex geschlossene Mannigfaltigkeiten. Sci. Rep.
Téhoku Univ., Bd. 14, 85—99 (1925). Kubota bezeichnet dort die Quermafintegrale als
Mittelvolumina.
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sich auf ihn Formel (4) wieder anwenden, wobei 4 durch A — 1 und %
durch £ — 1 ersetzt wird. Zudem ist eine (¢ — 2)-dimensionale Projek-
tion (]’)’ von K’ gleich der (k — 2)-dimensionalen Projektion &, , des
Korpers & selbst auf denselben (k — 2)-dimensionalen Unterraum.
Eine einfache Rechnung ergibt, daBl W, der

Ky

- fache Mittelwert

Ky—

der (A — 2)-ten QuermaBintegrale der Projektionen Rzk_z ist. Diese lassen
sich durch die (A — 3)-ten QuermafBintegrale der Projektionen &,_, aus-
driicken usw. Schlieflich gelangen wir zu den 0-ten QuermaBintegralen
von Projektionen auf (£ — A)-dimensionale Unterrdume, also zu den
(k — A)-dimensionalen Quermaflen von & und wir erhalten:

Wa=—%* Jus| - (5)

Kk—2

Das A-te Quermafintegral eines konvexen Korpers K ist gleich dem
Ky

o fachen Muttelwert der (k — A)-dimensionalen Quermafle von K.
k_.

Fir 2 =1 erhalten wir als Spezialfall die Oberflichenformel von
Cauchy :

0(R) = Jea | - (6)

In Worten: Die Oberfliche eines konvexen Korpers ist gleich dem
Wy

— - fachen Mittelwert seiner (k — 1)-dimensionalen Quermafe.
k-1

Bewegungsmittelwerte konvexer Korper in Unterraumgittern

§ 15. Der Mittelwertssatz fiir Bewegung im Unterraumgitter

Im Raume R, sei das in § 1 eingefithrte Unterraumgitter G, aufge-
spannt. Der konvexe Korper & fithre eine Bewegung X der Bewegungs-
gruppe X aus. Die Zahl der von ihm nach der Bewegung X getroffenen
Unterrdume des Gitters bezeichnen wir mit N, (X).

Auf diese Bedeckungszahlen iiben wir die Mittelwertsoperation M aus.
Das Definitionsgebiet des Mittelwertsoperators besteht aus der Menge I
aller auf diese Weise darstellbaren Funktionen sowie aus Konstanten.
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Da sich jede Bewegung X eindeutig in eine Translation Y und eine
Drehung Z zerlegen 14d8t, gilt nach Postulat V:

M {N,(X)} = M,{M,[N,ZY)]} .

Die Translation Y liBt sich nach § 2 eindeutig zerlegen in Y=Y - Y .
Also gilt:

M, {M,[N(2Y)]} = MM, [M} {N,(2Y,Y})}]} -

Die Translationen Y’Q" fithren alle Unterrdume von G, einzeln in sich
tiber. Bei einer solchen Translation dndert sich die Treffzahl N, nicht.
Somit ist nach Postulat IV auch ihr Mittelwert eine Konstante und wir
erhalten:

MM, (M) (N(2Y,Y3)}]] = MM, [N (27 )]}

Die Treffzahl des Koérpers & mit den (k¥ — p)-dimensionalen Unter-
riumen des Gitters G, ist gleich der Treffzahl seiner Projektion &, mit
dem Punktgitter des Unterraumes R,, der auf dem Gitter G, senkrecht
steht. Die Projektion K&, ist selbst wieder ein konvexer Korper.

Ubt man auf den Korper & alle Translationen der Form Y, aus, so
fiihrt die Projektion zu Y, parallele Translationen aus. Das sind alle im
R, moglichen Translationen.

Der Mittelwert My {N,(ZY, } ist somit nach Satz 1 gleich dem
o-dimensionalen Volumen der Projektion R],, also gleich dem g-dimen-
sionalen Quermall V, des Korpers ! und wir erhalten :

Mw{Ne(X)}zMz{Ve} =Je )

Satz 3. Der Bewegungsmittelwert der Treffzahlen eines konvexen Korpers
mit dem Unterrawmgitter G, ist gleich dem Mittelwert seiner g-dimensionalen
Quermafe.

Da nach § 14 das QuermaBintegral

ist, folgt :
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Satz 4. Das Quermafintegral W eines konvexen Korpers ist gleich dem
Ky

o fachen Bewegungsmittelwert der Treffzahlen des Korpers tm Unter-
Kp—

raumgitter G,_y.
Setzen wir speziell 1 = 0, so erhalten wir:

Satz b. Das Quermafintegral W (==Volumen) eines konvexen Korpers
18t gleich dem Bewegungsmittelwert der Treffzahlen des Korpers tm Punkt-
gitter G,

Da nach der Formel von Cauchy (§ 14) die Oberfliche

0=-2%_j. .,

Kr—1

ist, folgt :

Satz 6. Die Oberfliche eines konvexen Korpers ist gleich dem D

-fachen
Kr—1
Bewegungsmittelwert der Treffzahlen des Korpers im Geradengiiter G,_; .

Die Formel von J. Steiner fiir das Volumen des Parallelkérpers R +-rS
eines Korpers K 1a8t sich ebenfalls mit Hilfe der Bewegungsmittelwerte
der Treffzahlen des Korpers & mit den Unterraumgittern darstellen:

VR +r8) = 3 (G ) Tear

A=0 Ki—x

(Eingegangen den 18. Juni 1942.)
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