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Zur Theorie der Klassenkoérper der Kreis-
korper, insbesondere der Strahlklassenkorper
der quadratisch imaginaren Zahlkorper

Von Max Gur, Ziirich Herrn RUDOLF FUETER

anliflich seiner 25jdhrigen Lehrtitigkeit
als Ordinarius vn Ziirich zugeergnet

Die vorliegende Arbeit befafB3t sich mit der Bestimmung des maximalen
absolut-abelschen Korpers, der im Klassenkorper eines beliebigen absolut-
abelschen Korpers, insbesondere auch im Strahlklassenkorper eines
imaginar-quadratischen Zahlkorpers enthalten ist.

Mit £ soll hier immer ein algebraischer Zahlkorper von endlichem Grade
bezeichnet werden und unter ,,Ideal von k* durchwegs ein ganzes Ideal
verstanden werden, speziell nennen wir weiter ein 1deal ungerade, wenn
es durch keinen Primidealteiler von (2) teilbar ist, gerade, wenn es vom
Einheitsideal verschieden und nur durch Primidealteiler von (2) teilbar

ist. Ferner bedeute k, immer den Korper der rationalen Zahlen und
27y

c(m) = kyf e*m——) den Korper der m-ten Einheitswurzeln. Jeder absolut-
abelsche Korper ist bei geeigneter Wahl der natiirlichen Zahl m ein
Unterkorper von c¢(m), und daher wollen wir jeden absolut-abelschen
Korper kurz einen Kreiskorper nennen.

Ist k ein beliebiger Kreiskorper, { ein Ideal von k, so bezeichne K{f} den
zu k gehorigen Strahlklassenkorper mit dem Fiihrer { und k{f} den maxi-
malen Unterkorper von K{f}, der absolut-abelsch ist. Insbesondere ist
also K{1} der absolute (Hilbert’sche) Klassenkorper, k{1} der maximale
Unterkorper dieses Korpers, der absolut-abelsch ist.

Die vorliegende Arbeit zerfallt in zwei Teile. Im ersten kiirzern Teile
wird in

1. eine neue einfache Formulierung fiir die Bestimmung von k{1} ge-
geben, falls k& ein beliebiger Kreiskorper ist;
dann auf Grund dieser Formulierung in

2. der Korper k{1} auf eine neue Art bestimmt fiir den Fall, daB} k ein
imaginirer, ferner bestimmt fiir den Fall, daBl & ein reeller quadra-
tischer Zahlkorper, endlich das Kompositum von absolut-quadra-
tischen Zahlkorpern ist;

und in
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3. der Korper k{1} bestimmt fiir den Fall, dal % ein absolut-zyklischer
Korper vom ungeraden Primzahlgrad ¢ oder das Kompositum von
solchen ist, die alle den Grad ¢ haben.

Der zweite umfangreichere Teil der vorliegenden Arbeit befaf3t sich mit
der Bestimmung von k{f}, falls k£ ein quadratisch-imaginarer Zahlkérper
ist, also k = k,(V'm) ist, wo m eine beliebige quadratfreie negative
ganze Zahl bedeutet und ebenso { beliebig ist.

Ist die Norm von f eine Primzahl oder die Potenz einer Primzahl, so
wollen wir in dieser Arbeit { als ein Stammideal bezeichnen. Beniitzt man
die Formel fiir die Strahlklassenzahl, so wird sich insbesondere fiir ein
Stammideal f ein genauer Uberblick iiber den Aufbau von K{f} aus K{1}
ergeben.

Im 4. Abschnitt stellen wir einige allgemeine Satze und Formeln zur
Bestimmung von k{f} zusammen. Hierauf bestimmen wir £{f} zunachst
fiir den Fall, daB f ein Stammideal ist gemaB folgender Ubersicht:

f ust ein ungerades Stammaideal :
5. Abschnitt: 1. Hauptfall: p = p, n(p) = p2
. Abschnitt: 2. Hauptfall: p = p - p’, p £ p/, n(p) = n(p’) = p.
7. Abschnitt: 3. Hauptfall: p =p2?, n(p) = p -

=7}

f ust ein gerades Stammideal :

8. Abschnitt: m =3  (mod. 4).
9. Abschnitt: m = 4 2 (mod. 8).
10. Abschnitt: m =5  (mod. 8).
11. Abschnitt: m =1  (mod. 8).

Endlich bestimmen wir im 12. Abschnitt k{f}, falls { weder das Einheits-
ideal, noch ein Stammideal ist.

Das klassische Problem, alle in bezug auf einen quadratisch-imaginéren
Zahlkorper relativ-abelschen Korper durch singulire Werte von analy-
tischen Funktionen festzulegen, ist auf mehrere Arten gelost worden.
Je nachdem man z. B. die Kreiskorper explizite adjungiert oder nicht, je
nachdem man ferner bei festgehaltenem Grundkorper nur die Wurzeln 1)
der Klassengleichung oder aber die Wurzeln aller Ringklassengleichungen
der absolut-invarianten Modulfunktion adjungiert, endlich je nachdem
man die Wurzeln der Teilungsgleichungen der Jacobi’schen oder aber der
Weierstraf3’schen elliptischen Funktionen adjungiert, ergibt sich eine
andere Form der Theorie. Wir wollen hier nicht auf eine Darstellung der

1) Natiirlich geniigt immer auch die Adjunktion je einer Wurzel, da es sich ja um relativ-
Galois’sche Gleichungen handelt!
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begangenen Wege eintreten, sondern nur die beiden grundlegenden Tat-
sachen benutzen, daf die Wurzeln der Klassengleichung der absolut-
invarianten Modulfunktion jedenfalls den (Hilbert’schen) Klassenkorper
des imagindr-quadratischen Grundkoérpers liefern, und nach deren Ad-
junktion die Wurzeln der zu festem f gehorigen Teilungsgleichung der
Weierstraf3’schen Funktion

S(z; 0, w) = 32&);’ ZZZ P2;0,m), fall m + —2 41,
3 ’
1
6(2; wlaw2)= gz(w1 wz) /72(2;6()1, (02), falls m = —1 ’
S(z; W, wy) = 2g3(w11 g P3(z; 0y, wp), falls m = —3,

den Strahlklassenkorper zu vorgegebenem f festlegen.

Daf} die Gesamtheit der so erzeugten Korper gerade vollstindig alle in
bezug auf quadratisch-imagindre Grundkorper relativ-abelschen Koérper
liefern, ist von Fueter?) bewiesen worden. Fiir den Beweis dieser funda-
mentalen Aussage wird noch die Funktion

o2) (2529
P —p (2252

und damit der Ringklassenkoérper zum Fiihrer 4 herangezogen. Der Grund
liegt darin, dal3 einerseits die arithmetische Natur der Multiplikations-
formeln der Funktion S(z; w,, w,) zu wenig bekannt ist3), tieferliegend
aber darin, daf} der zum Fiihrer 4§ gehorige Strahlklassenkoérper sich aus
den zu den Fiihrern 4p* gehorigen Strahlklassenkorpern rational zu-
sammensetzt, wo p¥ die in { enthaltenen Primidealpotenzen durchléuft,
wahrend diese Eigenschaft i. a. nicht gilt, wenn man den Faktor 4 weg-
laBt*). Von dieser beweistechnischen Notwendigkeit soll also hier ganz
abgesehen werden.

z(z) Wy, 602):

%) Vergleiche die ausfiihrliche Darstellung in Fueter, Rudolf, Vorlesungen tuber die
singularen Moduln und die komplexe Multiplikation der elliptischen
Funktionen. 1. Teil (1924), 2. Teil (1927), B. G. Teubner, Berlin und Leipzig. In der
vorliegenden Arbeit werden diese beiden Bénde mit fortlaufender Paginierung immer
kurz durch die Angabe des Autornamens zitiert.

8) Vergleiche Weber, Heinrich, Lehrbuch der Algebra, 3. Band; 2. Auflage (1908);
Friedrich Vieweg und Sohn, Braunschweig; S. 576.

4) Vergleiche hierzu auch das 2. Alinea im Vorwort zum 2. Teile von Fueter.
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Da die Kreiskorper absolut-abelsch sind, sind sie a fortiori relativ-
abelsch zu jedem quadratisch-imagindren Zahlkérper, und daher werden
auch sie geliefert durch die Wurzeln der Klassengleichungen der absolut-
invarianten Modulfunktion und durch die Wurzeln der Teilungsgleichun-
gen der S-Funktion. Die vorliegende Arbeit setzt sich also in anderer Form
ausgedriickt auch zum Ziele, festzustellen, wie dies geschieht. Umge-
kehrt zeigt diese Untersuchung, welche Kreiskérper die Galois’sche Gruppe
der Klassengleichung der absolut-invarianten Modulfunktion und einer
Teilungsgleichung der S-Funktion reduzieren. Fiir die Klassengleichung
ist das Resultat®) klassisch und wohlbekannt, fiir die Teilungsgleichungen
der S-Funktion ist aber diese Untersuchung meines Wissens noch nicht
durchgefiihrt worden.

Abgesehen von dem wichtigeren theoretischen Interesse erleichtert
diese Kenntnis die Berechnung der Wurzeln der Teilungsgleichungen der
S-Funktion. Fiir den Korper der 3. Einheitswurzeln sind fiir viele Fiihrer
die Teilungsgleichungen berechnet worden von Bindschedler, fiir den
Korper der 4. Einheitswurzeln von Hagenbuch, der auflerdem noch die
Wurzeln der Teilungsgleichungen fiir eine Reihe von Fiihrern berech-
nete®). Beide Autoren verwenden nicht die von Fueter benutzte S-Funk-
tion, sondern Hagenbuch die Funktion

4

g2 (wl ’ 0)2)

und Bindschedler die Funktion

P2(z; 0w, 0), m=—1,

1

}93(z ; W1, W)

g3 (w;, wy) - , m=—3.

Da sich aber die erste dieser Funktionen nur um den Faktor 4 von der von
Fueter benutzten &S-Funktion unterscheidet, die zweite abgesehen vom
Faktor 2 die reziproke der von Fueter benutzten S-Funktion ist, hat die
Verschiedenheit der Normierung natiirlich keinen Einfluf} auf die Galois-
sche Gruppe einer Teilungsgleichung und deren Reduktion. Wenn wir
daher weiter unten Teilungsgleichungen und Wurzeln von Teilungs-
gleichungen angeben, um Beispiele zur allgemeinen Theorie zu liefern,

§) Vergleiche hier Abschnitt 2.

¢) Vergleiche die Tabellen am SchluB in den beiden Inaugural-Dissertationen der Ziircher
Universitat: Bindschedler, Carl, Die Teilungskorper der elliptischen Funk-
tionen im Bereich der dritten Einheitswurzel, Journal fir die reine und an-
gewandte Mathematik, Band 152, 8. 49 (1922) und Hagenbuch, Gustav, Uber die Tei-
lungskoérper der elliptischen Funktionen fiir den Grundkérper k(V=—1),
Ziirich 1926.
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werden wir, um den Vergleich zu erleichtern, die von Bindschedler und
Hagenbuch benutzte Normierung verwenden.

Es ist sehr zu wiinschen, da@ trotz der groflen rechnerischen Schwierig-
keiten auch fiir den Fall eines vom Korper der 3. oder 4. Einheitswurzeln
verschiedenen quadratisch-imaginaren Grundkoérpers Teilungsgleichungen
und deren Wurzeln berechnet wiirden, um Illustrationen fiir die hier all-
gemein entwickelte Theorie zu liefern?).

Fiir die auch in der Theorie wichtigen Fithrer 2 und 4 fallt bei jedem
quadratisch-imaginiren Korper k = kq(Vm) je der Strahlklassenkorper
mit dem Ringklassenkoérper desselben Fiihrers zusammen?®). Beriicksich-
tigt man daher die Ausfiihrungen iiber die singularen Werte der Funktion

4.3.}9(“’1_";_“_’1)

(ESNES

auf Seite 111 u. f. in Fueter, so ergeben die Tabellen auf Seite 351—354
jenes Buches, die ich seiner Zeit berechnete, sofort die Strahlklassen-
korper K{2} und K{4} fiir die dort aufgefiihrten Werte von m. Wir ver-
zichten daher hier auf die Angabe diesbeziiglicher Beispiele.

t(wl ’ (Dz) =

1. Ist m = 2%lM _ J** die Primzahlpotenz — Produktdarstellung
der natiirlichen Zahl m = 3, wo also die [, r = 1, 2, ... R, voneinander
verschiedene ungerade Primzahlen bedeuten, so zerfallen die Unter-
korper von ¢(m) in 2 Typen, namlich solche, die als direktes Kompositum
von Unterkorpern der Korper ¢ (2™), ¢(h),. .., ¢(I*®) dargestellt werden
konnen, und die ich in einer fritheren Arbeit®) Awusgangs-Kreiskorper
nannte, und solche, die diese Eigenschaft nicht haben, und die ich hier
kurz verschrinkte Kreiskorper nennen will.

Jedem Kreiskorper £ sei dann eine Hiille k5 in folgender Weise zuge-
ordnet: Ist k ein Ausgangs-Kreiskorper, so ist seine Hiille ky mit k iden-
tisch: kg = k. Ist k ein verschrinkter Kreiskorper, so ist kg der kleinste,

) Auller einigen Teilungsgleichungen fiir die T-Funktion fiir den Korper k,(V—T),
die ich auf S. 357/358 in Fueter angegeben habe, sind mir keine solchen Berechnungen
bekannt.

8) Dies entnimmt man sofort der diesbeziiglichen Formel auf S. 181, 5. Zeile von unten,
der Abhandlung: Fueter, Rudolf, Abelsche Gleichungen in quadratisch-imagi-
néaren Zahlkérpern, Math. Ann., Bd. 75, S. 177 (1914). Diese Arbeit ist im gesamten
von Interesse fiir das vorliegende Thema.

*) Gut, Mazx, Die Zetafunktion, die Klassenzahl und die Kronecker’sche
Grenzformel eines beliebigen Kreiskérpers, Comment. Math. Helvet., vol. 1,
S. 160 (1929).

85



d. h. am wenigsten Elemente umfassende Ausgangskreiskorper, der k als
Unterkorper enthalt.

Dann gilt der Satz : Ist k ein beliebiger Kreiskorper, so ist k{1} gleich der
Hiille von k.

In der Tat ist zundchst geméB dem letzten Satz, S. 220 der eben
zitierten Arbeit die Relativdifferente von der Hiille k5 jedes verschrank-
ten Kreiskorpers k in bezug auf k gleich 1. Ferner ist die Relativdifferente
jedes Ausgangskreiskorpers in bezug auf jeden in ihm enthaltenen echten
Unter-Ausgangskreiskérper von 1 verschieden. Endlich ist bei sukzessiven
einfachen algebraischen Erweiterungen die Relativdifferente der gesam-
ten Erweiterung gleich dem Produkt der Relativdifferenten der einzelnen
sukzessiven Erweiterungen.

Selbstverstandlich ergibt sich dann als Korollar, daf} die (absolute)
Klassenzahl ~ von k£ durch den Relativgrad von £{1} in bezug auf % teilbar
ist. Hiebei ist natiirlich die Aquivalenz der Ideale im engeren Sinne
zugrunde gelegt, was insbesondere bei den reell-quadratischen Koérpern,
deren Grundeinheit eine positive Norm hat, im néchsten Abschnitt zu
beachten ist1?).

2. Es sei die ganze rationale Zahl m £ 1 quadratfrei, k& = ko(V'm) ein
reeller oder imaginarer quadratischer Korper.

Aus der in Anmerkung 9 zitierten Arbeit ergibt sich sofort, daf falls
m = 1 (mod. 4) ist, die Hiille k5 von k aus dem Kompositum aller Aus-

-1
gangskreiskorper ko( (— I)Tl) besteht, wo ! die ungeraden Prim-
teiler von m durchlauft. Falls m = 3 oder = 2 (mod. 4) ist, kommt dann
noch genau ein absolut quadratischer Unterkorper des Korpers ¢ (8), d.h.
entweder k,(V—1) oder ky(V2) oder k,(V¥—2) dazu.

Wir zeigen, dafl zwe: dieser Unterkorper und damit ¢(8) nicht in kg
stecken konnen. In der Tat ist in ¢(8) das Ideal (2) = 2%, wo & ein Prim-
ideal von ¢ (8) ist, und die absolute Differente von ¢ (8) ist £8. Die Diffe-
rente von k,(Vm) ist aber im Falle m =3 oder m =2 (mod. 4) gleich
2Vm. Ist | das in 2 enthaltene Primideal von k, so ist die Potenz, in
der | in der Differenten von k auftritt, gleich [, falls m = 3 (mod. 4),
und gleich I3, falls m = 2 (mod. 4) ist. Mithin ist diese Differente, als Ideal
von c(8) aufgefaBt, gleich £* bzw. £8. Wegen 4 < 6 < 8 kann mithin
¢(8) nicht in k5 stecken.

10) Vergleiche hiezu z. B. Hilbert, David, Die Theorie der algebraischen Zahl-
koérper, Gesammelte Abhandlungen, 1. Band, Berlin 1932, § 24, S. 112 und § 83, S. 186
und 187.
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Da V'm gewiB in k; vorkommt, ist der quadratische Unterkérper von
c(8), der in kg steckt, falls m = 3 oder m = 2 (mod. 4) ist, der Korper

m
().
T—1) 21

wo das Produkt iiber alle ungeraden Primteiler von m zu erstrecken ist.

Wir erhalten also in jedem Falle das Resultat:

k{1} = kO(V;ﬁ, V(-__ 1)112_1 Liyern, V(_. 1)132_113) ,

falls I,, r = 1, 2, ... R die ungeraden Primteiler von m sind!?).

Es 1aBt sich auch so formulieren:

W L1—1 w lp—1

m = 1 (mod. 4) : k{l}zko( (—1) 2

)
m = 3 (mod. 4) : k{l}:ko(V:—T,i (_1)112_111,... -/(__1)%213)
)
)

( ] By 1 ] Ig—1

m=2(mod. 8): k{1} =k, \V 2 ,V(—1) 2 I,,...., (—1) 2 1g/,
( ] L—1 } lp—1

m=6(mod. 8): k{1} =k \V—2,FV (—1) 2 [,...., ¥V (—1) 2 Iz

Bemerkung : Ist allgemeiner fiir quadratfreies m, 1, s =1, 2,... 8§,
der Korper k = ko(Vm, , Vm, , ... Vmg) ein Koérper vom Grade 25, und
sind I;, 1,, ..., lp die simtlichen in den m,, s = 1, 2, ..., § aufgehenden
voneinander verschiedenen ungeraden Primzahlen, so ist

k{1}=ko(Vm_1, Vm““z,-.-V'ﬁzE:V(—n 20y, V(——IZR;ZR),

wie man auf gleiche Weise sofort einsieht. Insbesondere ergibt sich so
k{1} fiir einen Dirichlet’schen Korper: k=ko(V—1, ¥Vm), wo m 5= 41
und quadratfrei ist.

11) Fiir quadratisch-imaginire Zahlkérper wurde dieses Resultat zum ersten Male mit
Hilfe der Theorie der Geschlechter und mit Hilfe der Primzahlzerfallung in den Korpern
K {1} und ¢(m) fir geeignetes m bewiesen durch Weber, Heinrich, Uber Zahlengruppen
in algebraischen Kérpern; Zweite Abhandlung. Math. Ann., Bd. 49, 8. 83 (1897),

vgl. dort 8. 99. Einen weiteren Beweis auf gruppentheoretischer Grundlage gab Fueter,
giehe Fueter, S. 74 und S. 181—185.
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3. Sei k ein absolut-zyklischer Korper vom Grade ¢, wo ¢ eine ungerade
Primzahl ist!2).

Die Diskriminante d von k enthalte die voneinander verschiedenen
ungeraden Primzahlen [,,l,, ..., l,, die natiirlich alle =1 (mod. ¢) sind,
bzw. die Primzahlen g, l,,l,, ..., lz. Ist A, eine Primitivzahl des Unter-
koérpers vom absoluten Grade ¢ des Korpers ¢(l,), r =1, 2, ..., R, z. B.

r

eine gliedrige Periode, ferner A, eine Primitivzahl des Unter-

korpers vom absoluten Grade ¢ des Korpers c(q?) — alle diese Korper
sind Ausgangskreiskorper — so ist die Hiille von k:

{1} = ko(4y, A5, ..., ),
bezw.
k{l} - ko(lo, Al’ 12, ey ZR) .

Bemerkung : Ist k das Kompositum von 8 absolut-zyklischen Korpern,
die alle vom ungeraden Primzahlgrade ¢ sind, und d die Diskriminante
von k, so gilt die gleiche Vorschrift wie eben.

4. Zur Bestimmung von £{f} brauchen wir allgemein die in diesem Ab-
schnitt zusammengestellten Bezeichnungen, Sétze und Formeln.

Liegt irgend eine Galois’sche Erweiterung K eines beliebigen Grund-
korpers k vor, so bezeichne immer & die Galois’sche Gruppe und fiir ein
festgehaltenes Primideal P von K stets 3, T und B bzw. die relative Zer-
legungs-, Tragheits- und gesamte Verzweigungsgruppe von .

Es sei nun K im folgenden insbesondere abelsch iiber k¥ vom Relativ-
grade n, P ein Primideal von K, das im Primideal p von %4 und in der
Relativdifferenten © von K in bezug auf k£ aufgeht. Um eine einfache
Formulierung der zu benutzenden Formeln zu erhalten, bézeichne man
dann die Tragheitsgruppe T von B mit B,, und es sei

Byo2B;2B,2...0B,,0B, =€

die vollstandige Reihe der Tragheitsgruppe und der voneinander verschie-
denen Verzweigungsgruppen von PB. Falls also T = B ist, so ist B, =
T = B und B, eine echte Untergruppe von B; falls T o B ist, ist B, = T,
dagegen B, = B. Fiir 9 =0, 1, 2,...r sei n, die Ordnung der Gruppe B,,
so daf3

12) Auf Grund der Ausfithrungen in meiner in Anmerkung 9 zitierten Arbeit ist dieser
Fall schon behandelt worden von Carlitz, L., On abelian fields, Transactions of the
American Math. Society, vol. 35, pag. 122 (1933).
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NZNg >SNy >Ng > vve >N >N = 1.
Man setze endlich
’00-""—-"—1, (1)

und fiir alle g sei v,,, der grofite Exponent, so daB fiir alle Automorphis-
men V, aus B, und fiir alle ganzen Zahlen I"aus K die Kongruenz

V,I'=1TI (mod. Prett)
(im additiven Sinne) gilt. Speziell ist also v,,; = co.
Unter diesen Voraussetzungen gilt der Satz:

1. Satz : Ist w der Exponent der Potenz, in der p im Fiihrer der zuge-
horigen Strahlklassengruppe auftritt, so gilt die Formel'3):

w = —7‘%['”'0(”1 — Vo) + Ny (Ve — ) + -0 A+ Ny (U, — 'Ur—1)] - (2)

Wir bezeichnen dann f, = p* als den p-Fiihrer von f.

Da der Exponent W der Potenz, in der B in der Relativdifferenten D
von K in bezug auf k auftritt, gleich
W = (ng—1) (,—v¢) + (n,—1) (vg—24) + -+ -+ (B —1) (r—2r—1)  (3)
ist, ergibt sich

W = ngw— (v, + 1), (4)
und damit
W+ (o, + 1)

w = o . (5)

Endlich ist der Exponent der Potenz, in der p in der Relativdiskrimi-
nanten d von K in bezug auf k auftritt:

n

_n—o—[(no" 1) (1)1"”0) + (n1"1) (7)2—-2)1) + e+ (nr-1“'1) (vr"‘vr—l)] ~"w.
(6)

13) Vergleiche zu diesem Satze und den Formeln (3) und (6): Hasse, Helmut, Fiihrer,
Diskriminante und Verzweigungskérper relativ-abelscher Zahlkérper,
Journal fir die reine und angewandte Math., vol. 162, pag. 131 (1930); Hasse, Helmut,
Théorie des restes normiques dans les extensions galoisiennes, C. R. des
séances de I’Académie des Sciences, Paris, vol. 197, pag. 469 (1933); Hasse, Helmut,
Applications au cas abélien de la théorie des restes normiques dans les
extensions galoisiennes, C. R. des séances de I’Académie des Sciences, Paris, vol. 197,
pag. 511 (1933); Vassiliou, Ph., Bestimmung der Fihrer der Verzweigungs-
korper relativ-abelscher Zahlkorper. Beweis der Produktformel fir den
Fiihrer-Diskriminanten-Satz. Journal fiir die reine und angewandte Mathematik,
vol. 169, pag. 131 (1933); Hasse, Helmut, Klassenkérpertheorie, Autographierte Vor-
lesung an der Universitat Marburg gehalten 1932/1933.

89



Hat man insbesondere eine relativ-zyklische Erweiterung vom Prim-
zahlgrade ! (wo [ auch gleich 2 sein darf), soist r = 1, n = n, =1, und
da die {—1 Elemente der Relativdifferenten D das Ideal P gemiaf3 der
Definition von v, in der (v, 1)-ten Potenz enthalten, und p = P! ist,
wird geméal (4), (3) und (1):

n l

=g W=W=lw—@©+1)=(0-1) (n+1),

0

also
lw=1Iv, +1),
d. h.
w=7v, + 1,
und gemaB (4)
2 W=W=0—1w .

N

Das liefert unter Beriicksichtigung von (6), da bekanntlich allgemein
ein Primideal p von & die Ideale d und f immer gleichzeitig teilt oder nicht
teilt, den in der Klassenkorpertheorie wohlbekannten Satz!4):

2. Satz: Ist K relativ-zyklisch vom Primzahlgrade ! iiber k, und
D = {1 die Relativdiskriminante von K in bezug auf k, dann ist { der
Fiihrer der zugehorigen Strahlklassengruppe vom Index ! im Grund-
korper k.

Von hier an bis zum Schlusse dieser Arbeit sei £ endlich immer ein
quadratisch-imagindrer Zahlkorper k = k,(V'm), wo m eine quadratfreie
negative ganze Zahl ist. Ferner soll e immer die Anzahl der Einheiten in
ko(V'm), also die Zahl 2 bzw. 4 bzw. 6 bedeuten, je nachdem m+ —2 41,
bzw. m = — 1, bzw. m = — 3 ist. Endlich bedeute H (f) immer den
Quotienten aus der Anzahl der Strahlklassen, in die alle zum Fiihrer f{
teilerfremden Ideale zerfallen, und der Klassenzahl von k. GemiB dem
Satze 118, Fueter S. 110, gilt der Satz:

3. Satz : Die Funktion H,(f) hat den Wert:

1,4 =D o)

wo ¢,(f) die Anzahl der Strahleinheiten im Strahle mit dem Fiihrer { und
@(f) die Anzahl der zu f teilerfremden Kongruenzklassen (mod. {) in £k ist.

14) Vergleiche z. B. Satz 26, S. 77 in Takagi, Teiji, Uber eine Theorie des relativ
Abelschen Zahlkérpers, Journal of the College of Science, Imp. Univ. of Tokyo,
Bd. 41, Art. 9 (1920).
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Im Falle m £ — 2 4 1 ist also:

H,({) = "‘;“‘P(f) , falls { kein Teiler von (2) ist,
H,f)= +¢(), falls f ein Teiler von (2) ist.
Im Falle m = —1 ist:

H,{) = —7:—:— @(f), falls f kein Teiler von (2) ist,
H,f)=1, falls f= (1 + ) oder f= (2) ist.

Im Falle m = — 3 ist:

H,() =5 o), falls == Y 2 st
H,() =+ p(f), falls = (2) ist.
In den Fallen m = — 2 -+ 1 ist iiberdies bekanntlich die Klassenzahl

des Grundkorpers gleich 1.

Liegt im folgenden eine Differente vor, sei es eine absolute oder eine
Relativdifferente, und teilt man sie durch den zur Primzahl p bzw. zum
Primideal p teilerfremden Faktor, so wollen wir den Quotienten als die
p- bzw. p-Differente bezeichnen. Die p- bzw. p-Differente ist also immer
gleich 1 oder ein Potenzprodukt von nur in p bzw. p aufgehenden
Primidealen.

Da in der Relativdiskriminanten und daher auch in der Relativdiffe-
renten von K{p*}, w = 1, in bezug auf ¥ nur Primideale aufgehen, die
Teiler von p sind, anderseits k{1} ein Ausgangskreiskorper ist, kann
k{p*} aus k{1} nur entstehen durch Adjunktion eines bestimmten Unter-
korpers von c¢(p”) fiir geniigend groBes % ; dabei ist natiirlich p die in p
liegende rationale Primzahl. Ist insbesondere p = p-p’, p + p’, so ist
die Relativdiskriminante irgend eines von % verschiedenen, aber £ ent-
haltenden Unterkorpers von k(c(p?)) in bezug auf k immer gleichzeitig
durch p und p’ teilbar, und daher in diesem Falle

B} = k(p™} = k{1, w21,
und, falls w, =1, w, =1 ist:

B(pp™) = k{p*} , wo w=Min. (w,wy) .  (7)
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Generell ist die triviale Tatsache zu beachten, dal wenn K{f} durch
eine Reihe von Adjunktionen aus £ gewonnen wird, man immer zuerst
die absolut-abelschen Bestandteile adjungieren darf.

6. In diesem Abschnitt soll p eine ungerade Primzahl sein, fiir welche
in k = ky(Vm) die Gleichung p = p, n(p) = p? gilt. p ist also zur Dis-
kriminanten von k teilerfremd.

Gemafl Satz 3 von Abschnitt 4 ist in diesem Falle fiir jede natiirliche
Zahl w:

w ......_}_ w ___1_ w _______1__ —_— Mm2W—2 , pz_——l
H,(p*) = 5 o) = 5 n(") 1——5) =»p —

Mithin wird fiir die Kérper-Relativgrade:
2—1 1
(Kip}: K{1}) = L= = (p—1) LT ;
(E{pw+}: K{p¥}) =p* ,w=z1 .

Beim Ubergang von K{1} zu K{p} werden also nur relativ-zyklische
Korper adjungiert, deren Relativgrade zu p teilerfremd sind, beim Uber-
gang von K{p¥} zu K{p¥+'}, w=1, werden sukzessive zwei relativ-
zyklische Korper vom Primzahlgrade p adjungiert.

Wir bestimmen zunéchst den Fiibrer p¥ von k(c(p*)), » = 1, in bezug
auf den Grundkérper k. In k(c(p?)) ist p = PP»'@-D ynd P ein
Primideal 2. Grades von k(c(p”*)) und vom Relativgrad 1 in bezug auf k.
Ferner wird wegen der vollen Verzweigung:

6=3=T=B,>B=B, 0B, > B, D 2B D%AE%rEG’ﬂ-
ng=p"t (p-1)>n, = PrIS>ny=P"I>ng=p" 0 > - - >y g=p >np=1. (8)

'vo = - 1 <’Ul == O <’l)2=p—-1<'l)3=p2—~1 < oo o Z ’Uh__l =ph_-2—1 <’Uh=pk’_1——-l .

Daher ist gemaB dem 1. Satz des 4. Abschnittes w = h.
Da der Fiihrer von k{1} gleich 1 ist, folgt®)

E{p¥} = B{1} (@) , w=1.

Beim Ubergang von K{1} zu K{p} wird also c(p) adjungiert und ein
p+1
e

15) Vergleiche z. B. Satz 64, S. 71 der in Anmerkung 13 erwéhnten Vorlesungs-Auto-
graphie von Hasse.

nicht absolut-abelscher Kérper vom Relativgrade
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Beim Ubergang von K{p*} zu K{p*+1}, w =1 wird also der Korper
c(p*t') vom Relativgrade p adjungiert und ein nicht absolut-abelscher
Korper vom Relativgrade p.

Anwendung auf die Teilungsgleichungen :

Beispiel firm = —1: K{1} =K1} =k =ko(V—1); e=1.
Damit p Primideal 2. Grades in &k wird, muB (%) = — 1 sein, d. h.
p = 3 (mod. 4).
Set f=p=(3).

Es muB k{f} = K{f} = k{1} (¢(3)) = ko(V—1, V—3) = k(V3)=c(12)
sein. Die Teilungsgleichung lautet bei Hagenbuch:

7,=382—635—1=0.
Thre Wurzeln sind
3+2V3

S = 3

Sie sind in Einklang mit der Behauptung: K{{} = k(V3) .
Beispiel fir m = —3: K{1} = k{1} =k =k,(V—3) ; e=6.

Damit p ein Primideal 2. Grades in £ wird, mufl p+3 und

(:—;5—-3—) =—1, also p = 2 (mod. 3) sein, mithin p = 5 (mod. 6) .

Sei f = p = (5).
Es muB k{f} = K{f} = ¥{1} (c(5)) = k(c(5)) = c¢(15) sein.

Die Teilungsgleichung lautet bei Bindschedler:
7. =G —25C°+ 1582+ 958 —5=0 .

Vermoge Adjunktion von ¥5 wird 7T'; ein Produkt von 2 Faktoren
2. Grades:

25 +9V5
2

Tﬁz[ez_ 6-(20+9V3)]><

[62-— 25 —9V5

5 6——(20.—-9V‘5‘)].
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Der erste quadratische Faktor zerlegt sich so:
[6—— 25-;-91/3+ 9+3V5 V___5+V5H

4
also der zweite so:

25+9V5 91L3Vs — 54 V5 |
R e e

25—9V5 9-—31/‘
o[t 2= )
25—9V5 9—3V5 _,—— 5—V5
[6—-—% 1 — 1 V—3V_~—-—__2 ”

Ein Vergleich mit den Werten fiir die 5. Einheitswurzeln!®) zeigt den
Einklang mit der Behauptung K{f} = k(c(5)).

6. In diesem Abschnitt soll p weiter eine ungerade Primzahl sein, fiir
welche aber in k = ky(V'm) die Gleichung p = p - p’ gilt, wobei p + p’,
n(p) = n(p’) = pist. p ist also zur Diskriminanten von k wieder teiler-
fremd. Man beachte hier generell die Formel (7).

Gemafl Satz 3 von Abschnitt 4 ist in diesem Falle fiir jede natiirliche
Zahl w:

1 1 l 2 __1 2
H,(p*)=— @@ p'*) = —n(pp") (1 “""p’) = pro-s. 2= 1,

Mithin wird fiir die Korper-Relativgrade:
1)2

&) Ky =2 —p 1) 2L

(K{p»*+'} : K{p*}) =p? w=1.

Beim Ubergang von K{1} zu K{p} werden also nur relativ-zyklische
Korper adjungiert, deren Relativgrade zu p teilerfremd sind, beim Uber-
gang von K{p*} zu K{p¥+'}, w =1, werden sukzessive zwei relativ-
zyklische Korper vom Primzahlgrade p adjungiert. Ferner ist:

1

1 p—1
WY — Twy — w —_ mw—1, . >
H,(p*) = H,(p"*) = —n(p )(1 20) P —w =1,

also fiir die Korper-Relativgrade:

(K{p} : K(1) = (K(p'} : K(1}) = 2=

(K{pw+} : K{p¥}) = (K{p'w+}: K{p'*}) =p ; w=1.

18) Vergleiche z. B. 8. 79 in Fueter, Rudolf, Synthetische Zahlentheorie, 1. Auf-
lage, Berlin und Leipzig 1917.
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Wir bestimmen zunéchst den Fiihrer von & (c(p?)), 2 = 1, in bezug auf
den Grundkorper k. In k (c(p))ist p = Pr** -1 ynd p’ = PP -1
wo P und B’ Primideale von k(c(p”)) sind, die den absoluten Grad 1
haben. Sowohl! fiir B wie fiir P’ gilt die Aufstellung (8), und daher ist der
zugehorige Fiihrer gleich p” - p’* = p*. Da der Fiihrer von k{1} trivialer-
weise gleich 1 ist, folgt analog:

B{p®} — K1} (c(p®) , w = 1.

Beim Ubergang von K{1} zu K{p} wird also ¢(p) adjungiert und ein
nicht absolut-abelscher Korper vom Relativgrad —2—%——1— ;

Weil K{p} das Kompositum der beiden Korper K{p} und K{p'} als
Unterkorper enthalt, wobei iibrigens der Relativgrad von K{p} in bezug
auf dieses Kompositum nach dem 215. Satz, Fueter S. 236, hichstens
gleich e ist, ist der letztere Korper gerade ein beliebiger der beiden relativ-
konjugierten Korper K{p} oder K{p’}, von denen ja ein jeder ein nicht

absolut-abelscher Erweiterungskorper von K{1} vom Relativgradep : 1
1st.

Aus dem gleichen Grunde kann man K{p} offenbar aus K{1} gewinnen,
indem man sowohl K{p}, als auch K{p’} adjungiert. Da die beiden
Relativdifferenten dieser beiden Korper in bezug auf K{1} zueinander
teilerfremd sind, ergibt die Adjunktion dieses Kompositums einen Kor-

per, der in bezug auf K{1} den Relativgrad (29——-;:—1)2 hat, so dafl K{p}in

bezug auf dieses Kompositum auch genau den Grad e hat. Nach Adjunk-
tion von K{p}, bzw. K{p’} zu K{1} sind dann die beiden weiteren Ad-
junktionen von K{p’}, bzw. K{p}, und in jedem Falle dieses weiteren
Korpers vom Relativgrade e zur Gewinnung von K{p} dquivalent der
Adjunktion von ¢(p) zu K{p}, bzw. K{p'}.

Beim Ubergang von K{p*} zu K{p*+}, w =1, wird jeweilen der
Korper c¢(pw+l) vom Relativgrade p in bezug auf K{p*} adjungiert und
ein nicht absolut-abelscher Korper, der in bezug auf K{p*} den Relativ-
grad p hat. Dieser Korper ist gerade wieder einer der beiden relativ-
konjugierten Korper K{p»+'} oder K{p'#+}, von denen jeder in bezug
auf K{p"} den Relativgrad p hat. Insbesondere ist also:

K{p*} = K{p*} (c(p")) = K{p""} (c(p®)) , w=l.  (9)
Anwendung auf die Teilungsgleichungen :
Beispiel firm = —1: K{1} =k{1} =k =k, (V—1); e=4 .
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Damit p sich in zwei verschiedene Primideale zerlegt, muf3 (—-_—2;5-4:) =1

sein, d. h. p = 1 (mod. 4).

S f=p=(6)=(2+1)(2—1) .

Es muB k{f} = K{j} = ¥{1} (c(5)) = k(c(5)) = ¢(20) sein. Die Tei-
lungsgleichung lautet bei Hagenbuch:

T, =c*t—12*—26324+526+1=0.

Vermoge Adjunktion von V5 wird T ein Produkt von zwei Faktoren
2. Grades:

T =[S2—(6—4V5) G+(9—4V5)] [S2—(6+4V5) S+ (9+4V5)].
Der erste quadratische Faktor zerlegt sich so:

‘ 3__92V5 V5+V5 V5—-V5$‘
[_6“‘23“7‘—*“‘2——* — 9 || X

3—2V5 54+ V5 5—V5s
R ke = |

der zweite quadratische Faktor so:

31+ 2V5 5+ V5 5—V5
s 2278 VT, Y557

R LA LC e o = ) |

wie schon von Hagenbuch in Tabelle IT angegeben. Ein Vergleich mit den
Werten fiir die 5. Einheitswurzeln (siche Anmerkung !¢)) zeigt den Ein-
klang mit der Behauptung K{f} = ¢(20), denn ¢ = y—1 liegt ja in .

Beispiel fiir m = — 3 : K{1} = k{1} = k = ko(V—3) ; e = 6.

Damit 9 sich in zwei verschiedene Primideale zerlegt, muf3 (—_;) =1,

27

d.h. p=1 (mod. 3), also p=1 (mod. 6) sein. Es sei immer g=1¢ 3 .

Sei f =p=(7) = (7, 0 — 2) (7, 0 — 2).
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Es muB k{f} = K{f} = ¥{1} (c(7)) = k(c(7)) = ¢(21) sein. Die Tei-

lungsgleichung lautet bei Bindschedler:

T,=G% + 48 S5 — 741 Gt + 1924 G®* — 363 G2 — 141 S + 1 = 0.

Vermoge Adjunktion von ¥'21 wird 7', ein Produkt von zwei Faktoren

3. Grades. Der erste Faktor ist:
561 + 123V21

S® + (24 + 6V21) S2— S — (55 + 12V21),

2
der zweite Faktor ist:
S® + (24— 6V21) S — 561 —-2123Vﬁ S —(65—12V21).

27Tt

Ist Z=e 7 , und bezeichnet man die beiden dreigliedrigen Perioden des

Korpers der 7. Einheitswurzeln mit

n =72 + 2%+ 274,
n =224 7% ,
so wird wegen
V—8=|V3|i=20+1,
V—T=|V7]|i=2np+1 :

V21=— Q2+ 12+ D=2+ D27 +1)=
=2+ D)2+ )=—2+127n" +1).

Der erste kubische Faktor von 7', hat die drei Wurzeln:

Ci=3—14+9[2@ +2%+3(2*+2°)]+

+3R2e+1[3(Z —2°+3(2*—2%)—2(2*—Z%]},

C:=3{—1+9[2(2*+ 2%+ 3(Z2*+ 2] +
+ 3820+ 1)[3(22—2°% +3(Z—2%—2(Z*—2Z°]},

S, =4{—1+9[2(2*+2°)+3(Z+29] +

+ 3@2e+1)[8(2*—2° +3(22—2Z°)—2(Z—2%]};

folglich hat der zweite kubische Faktor von 7', die drei Wurzeln:

Si=HH{—1+9[2(Z +2+3 (2 + 2] +
+ 3(2024+1)[3(Z—2°% +3(Z*—2%)—2(Z*—2Z%]} ,

7 Commentarii Mathematici Helvetici
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So=3{—14+9[2(Z*+2° +3(2*+2°] +
+ 32+ 1)[3(22—2%)+3(Z—2%—2(2* -29]},

So=34{—14+9[2(2*+23)+3(Z +29] +
+ 3@+ [8(24—2°)+3(2*—2°)—2(Z—29]} ,

und damit ist 7', in der Tat in ¢(21) in Linearfaktoren zerlegt.

Bemerkung : Die Formel (9) ist von groBter Bedeutung bei der Berech-
nung konkreter numerischer Beispiele, denn sie gestattet (die Kenntnis
von K{1} natiirlich vorausgesetzt), die Berechnung von K{p“}, falls nur
die Teilungsgleichung T, = 0 in Linearfaktoren zerlegt werden kann,
d. h. also auch, wenn 7', = 0 nicht bekannt ist oder wegen rechnerischen
Schwierigkeiten nicht in Linearfaktoren zerlegt werden kann. Denn man
beachte, dal der Grad von 7', = 0 das p*~! (p — 1)-fache des Grades
von T,, = 0 betrigt. Ferner zerfallt T, =0, w =2, in K{p* '} in

pw-2 . P : 1 Faktoren vom Grade p.

Wir geben fiir den Fall w = 1 je ein Beispiel fiir & = k,(¥—1) und
k = ko(V—3). Dabei ist also

K{p} = K{p} (c(p)) = K{p'} (c(p)) , (10)

und der Grad von T, = 0 das (p — 1)-fache des Grades von 7', = 0.

Beispiele fiir die Benutzung der Formel (10):

Beispiel fir m = —1: K{1} = k{1} = k = ky(V—1) ; e=4.

Set p =13, p = (3 + 2¢), p/ = (3 — 24).

Die Teilungsgleichung fiir den Fiihrer p lautet bei Hagenbuch:
Tyoi = (3+21) G°+ (34 24) (1 — 24) &2 — (3+24) (1—4i) S+1=0.
Thre Wurzeln sind:

3 3
. . 1/245i+3V3 V2+57:—-3V§
6‘““(“1+2’+4 CIEE T R AT EWET) )

3

o 3 R ——
21 5i13V3 _}_4@2‘/24-5%-31/3)’

62:"3‘(’“1+2i+49 2(3 1+ 29) 2(3 + 24)

3 3
1 X 2-4+5:-1-3V3 21 54—3V3
S = ("‘1+2”+492V —{2—(32—:—213) +49V —;(3z+2@') )



25
dabei soll p=e 3 sein, und die Determination der Kubikwurzeln ist so
zu nehmen, daB ihr Produkt

3 3
V2+5i+3V§ .V2+51§~—3V§ _

2(3 + 24) 2(3 + 21)
Mithin wird, falls G eine beliebige der drei Wurzeln bezeichnet
27 27

K{p} = k(e’e—lg) = ko(eﬁ ’ 6) ’
d. h.

3 3
(2 ) 2+5i4+3V3 V2+5i-—3l/§
Kiph = koo - serey T sgreg )

womit dieser Korper vom Grade 72 festgelegt ist, obwohl wir 7';, = 0
nicht kennen, welche Gleichung vom Grade 36 ist.

27¢

Beispiel fiir m = — 3: K{1} = k{1} =k = ko(V—3);e =6,0=1¢ 5 .
Sei p=13, p=(4+0)=Bo—1), p = (4 + 0% = (3 0>—1).

Die Teilungsgleichung fiir den Fiihrer p lautet bei Bindschedler:
T30 =S+ (B¢g—1)(8¢+2)8—Be—1)=0.
Die Wurzeln dieser Gleichung sind:

S — —(Bo—1) Bo+2)+3(e+2)Ve+o
2

Es ist daher
K{p}=k(Vi+o) =k (V—3,Vi+y) .

Weil 4 + p quadratischer Nichtrest mod. p’ ist, hat die Primzahl 13
in K{p} die Primidealzerlegung:

13 =P P'; N(P)=13; N(P) =13

Da in einem absolut-galois’schen Korper alle Primidealteiler einer ratio-
nalen Primzahl gleichen Grad und gleiche Ordnung haben, gilt dies a for-
tiori in einem absolut-abelschen Korper. Mithin ist K{p} nur relativ
abelsch iiber K{1} = k.

T, o2 —1 entsteht aus 7', durch den Automorphismus ¢ — p?, und
daher wird K{p'} = k(V4 + 0?) = ko(V—3, V4 + p2) .

99



Nun ist

Vi +po-Va+ o2 =V13,
folglich erhalt man fiir das Kompositum:
Ki{p} (E{p'}) =k (V—3,Vd + 0, Vi+¢%)
= K{1} (V4 + o, V4 + ¢?)
= K{1} (V4 +¢, V13)
= K{1} (V4 + %, V13) .

ko(V13) ist aber der Unterkorper von ¢(13) vom absoluten Grade 2, wie
es die Theorie verlangt.

Die Teilungsgleichung fiir p = 13 ist bei Bindschedler nicht ausgerech-
net, aber wir konnen sofort schlieflen:

2e 2me
K{(13)=k(Vafo,eB)=ky (V=3 , Vito,eB) =
2y 27y

=ky(e3, Vd+ o) =ky(e?® , V4 + p2) =

=¢(39) (V4+o) =¢(39) (V4 +¢?) -

Damit ist eine einfache Festlegung fiir diesen Koérper vom absoluten
Grade 48 geliefert.

7. In diesem Abschnitt sei die Primzahl p weiter ungerade, aber Teiler
der Diskriminanten von k: p = p?, n(p) = p. GemaB Satz 3 von Ab-
schnitt 4 ist jetzt:

1 1 1 —1
H (") = o 9() =5 o0 (1—)=p = wz1,

auler im Falle m =—3, p=3, w=1, wofir

1 —
H,p) = 5o =5np) 01— =E5==1.

Der Fall m = — 3 sei daher im folgenden zunéchst ausgeschlossen.
Es wird fiir die Korper-Relativgrade:

(Kfp} : K1y = 21,

(K{p“+}: K{p*}) =p, w=1.
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Beim Ubergang von K{1} zu K{p} werden also nur relativ-zyklische
Korper adjungiert, deren Relativgrade zu p teilerfremd sind, beim Uber-

gang von K{p“} zu K{p*+'}, w = 1, nur ein relativ-zyklischer Korper

vom Primzahlgrade p adjungiert.
Wir bestimmen zunéchst wieder den Fiihrer von k(c(p*)), h = 1, in

bezug auf den Grundkorper k. Es sind zwei Hauptfille zu unterscheiden:

1. Hauptfall. p—1
Es sei p=3 (mod. 4) und m=—p=(— I)Tp. Dann ist
p-1
k= ko(Vm) =k, ( V(- 1) 2 p) , ferner k(c(p*)) = c(p*) und gemil
Abschnitt 2 ist £ = k{1}. In Fk(c(p?)) wird

h—-1 p—l

p=9" T

Wegen der vollen Verzweigung wird

6=3=T=Byo>B=B;oB, 5B, >o:---2B,, 5%8,=0,=C;
r=h.
—1
no o ph-l . p 5 >nl=ph—1>n2=ph—2>n3=ph—3>, . '>nh—1= p >nh:1
Vo = —1 <=0 <vp=p-l<o;=p>-1<- . - <v,_=p"2-1<v,=p"1-1.

Nach dem 1. Satz von Abschnitt 4 ergibt sich: w=2h—1.

-1

2. Hauptfall. v
Es sei nicht gleichzeitig p =3 (mod. 4) und m = —p=(—1) 2% p .

r—1

Dann hat gemiaf Abschnitt 2 der Korper & (V(— 1) 2 p ) , der vom
Relativgrade 2 in bezug auf £k ist, die Relativdifferente 1 in bezug auf k.

p—1

Da pink (V(-—~ 1) 2 p) unverzweigt ist, gibt es zwei Unterfalle:

1. Unterfall.
p—1
p wird in & ( (—1) 2 p) ein (Primideal vom 2. Relativgrad. Dann
ist in k(c(ph)) :

b9

p= in 2,
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wo B ein Primideal von % (c(p*)) ist, das in bezug auf ¥ den Relativgrad
2 hat. Mithin ergibt sich fiir die Adjunktion von ¢(p”*) zu k und das Prim-
ideal PB: :

653:)15%03%5%13%23 %33 '--D-th_lDQ}hESB,.E(E; r=h.

Hier ist die Ordnung = von & gleich n = p*1(p — 1), aber die Werte fiir
die n; und v;; 7 = 0,1, 2, ..., h = 7, sind die gleichen wie im 1. Haupt-
fall, und daher ergibt sich wieder w = 2h — 1.

2. Unterfall.

p—1
p zerlegt sich in % (V(—-— 1) 2 p) in zwei voneinander verschiedene
Primideale vom 1. Relativgrad. Dann ist in £ (c(p?)):

h—-1 p-1

:pz(%'%/)p .—2—,

wo B und P’ zwei voneinander verschiedene Primideale von k (c(p"))
sind, die in bezug auf ¥ den Relativgrad 1 haben. Mithin ergibt sich fiir
die Adjunktion von ¢(p*) zu k und jedes der beiden Primideale P und P’:

633 —’——'155803235%135823 2333 > -D%h_lD%hE‘B,E(E, r=h.

Hier ist die Ordnung » von & gleich n = p*»(p — 1), aber die Werte
fiir die »; und v;; j=0,1,2,..., h = r, sind nochmals die gleichen
wie im 1. Hauptfalle, und folglich ergibt sich wiederum w = 2h —1.

Durch Induktionsschluf nach A ergibt sich in jedem Falle:

k{p*} = k{1} (c(p[wTH]) ) , w=1.

1%

Beim Ubergang von K{1} zu K{p} wird also der Korper ¢(p) adjun-

giert, der in bezug auf K{1} den Relativgrad p_——2:_1 hat. Denn da

m + — 1 ist, und ebenso m = — 3 ausgeschlossen wurde, ist e = 2.

Beim Ubergang von K{p¥-1} zu K{p**}, w =1, wird je ein nicht
absolut-zyklischer Korper vom Relativgrade p adjungiert; beim Uber-
gang von K{p*7} zu K{p**+1}, w = 1, der Korper c(p*+!), der in bezug auf
K{p*} den Relativgrad p hat.

&
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ImFalle m=—3, p=3, wirdfir w =2 :
H(p)=3, w=2,
und daher wegen H,(p) = 1:
K{p*} = K{p} = K{1} = k = ko(V—3) .
Fiir w = 3 bleibt die Formel

(Kp=+1} : K{p*}) =p=3; w =3,

erhalten.

Fir A = 2 wird bei der Adjunktion von ¢(3%) zu k:

p= %ph‘l ,
wo P ein Primideal 1. Grades von c(3") ist. Wegen der vollen Verzwei-
gung wird :
6=3=T=B=VP,> B, o B, oD B, >B,.,=8,=C ;
r=h—1,
Ng=p" >0 =p2>n=p" > >n,,=p  >n,=1,
Vo= —1< o =p—1< v, =p*~ 1< - - < v, =p>1<w,_;=p+'—1,

und wie frither wird w = 2h — 1. Mithin ist zunéchst fir w = 3 :

v — 1 (el ) ) |

Wie man sofort sieht, bleibt diese Formel trivialerweise auch richtig fiir
w =1 und w = 2, so daf} diese Formel fiir jeden in diesem Abschnitt 7
betrachteten Fall richtig bleibt.

Beim Ubergang von K{p¥} zu K{p¥+}, w =1, wird mithin der
Korper c¢(3@+') adjungiert, der in bezug auf K{p*'} den Relativgrad
p =3 hat. Beim Ubergang von K{p?**'} zu K{p2+2}, w=1, wird ein
nicht absolut-zyklischer Korper vom Relativgrade 3 adjungiert.

Anwendung auf die Teilungsgleichungen :
27 27

Sei ¢ = e3, Z=-¢e? . Bindschedler gibt folgende Teilungsglei-
chungen an:
f=p"=(20+1)°.

Toppip =G —3&2—24G—1=0 .
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Sie ist das Produkt der 3 Linearfaktoren:

Toovip = [6-{1-3(Z2+Z)}] [6-{1-3(2*+Z)}][6-{1-3 (Z*+Z™*)}],

und
k(ZT + Z77) = kolo, Z7 + Z77) = ko(Z) =c(9); j=1,2,4 .

f=pt= (204 1)*.

Tioopin = G°— 9 S8 + 684 &7 — 3 972 G +
4+ 12033 G5 —19647G*—331833—61116G2 46576 —1=0 .

In ko(Z7 + Z77) zerfallt T4, ;. in das Produkt von 3 Faktoren
3. Grades:
Tigerin = [S°—3 G —8{—173+427(Z14+Z1) 481 (Z2+2-?)} G—1] X
[G*—3 ©*—3{—T73+27(Z2+Z2)+81(Z*+Z )} G—1] X
[63—3 &2—3{—1T73+4-27(Z*+Z~4)+-81(Z*+Z ')} ©—1],
und jede Wurzel legt den gleichen relativ-zyklischen Koérper vom
Relativgrad 3 in bezug auf ¢(9) fest, der nicht absolut-abelsch ist.
8. In diesem Abschnitt sei p =2 und m =3 (mod. 4). Weil 2 in der

Diskriminanten von k = ko(Vm) aufgeht, ist 2 = p?, n(p) = 2. Nach
Satz 3 von Abschnitt 4 wird, falls m £ — 1 ist:

Hs(p) = 1, Hs(pZ) = 2, Hs(pw) = 2" w=3.
Folglich ist:

I

K{p} = K{1};
(K{p?} : K{p}) = 2;
K{p®} = K{p*};
(K{p**'} : K{p*}) = 2, w = 3.

I

Beim Ubergang von K{p*} zu K{p**+}, w = 1 und w = 3, wird also
je ein relativ-quadratischer Korper adjungiert.

Fir m=—1 ist p=(1414) und

H,(p)=H,(p>) =H,(p>) =1, H,(p*) =23, w=4.
Mithin ist -
K{p*} = K{p?} = K{p} = K{1} = k = ko (V—1),
und
(K{p»+1} : K{p*}) =2, w =3.

104



Erst von w=3 an wird also beim Ubergang von K{p¥*} zu K{p®+}
jeweilen ein relativ-quadratischer Korper adjungiert.

Da k{1} den Korper k,(V—1) enthilt, anderseits jeder Unterkorper
eines Korpers c¢(2%), b, = 3, der den Korper k,(V—1) = c¢(4) enthilt,
ein Korper 0(2"5) , 2 < hy< b, ist, geniigt es, den Fithrer von k(c(2%)),
wo hier und im ganzen Abschnitt A, = 3 sei, in bezug auf den Grund-
korper k zu bestimmen.

Es sind 2 Hauptfalle zu unterscheiden:
1. Hauptfall: m + —1 .

Dann hat gem#B Abschnitt 2 der Korper k(V—1), der vom Relativ-
grade 2 in bezug auf k ist, die Relativdifferente 1 in bezug auf k. Da p in
k(V—T1) also unverzweigt ist, gibt es 2 Unterfalle:

1. Unterfall: m = 3 (mod. 8).

p wird in k(V—1) ein Primideal vom 2. Relativgrad. Dann ist in
k(c(2M)) :

p= P,
wo P ein Primideal von k(c(2"0)) ist, das in bezug auf k¥ den Relativ-

grad 2 hat. Mithin ergibt sich fiir die Adjunktion von ¢(2") zu & und das
Primideal B

(5533%'——‘-5352303 5131 D%g D"’D%ho_:; D%ho_25@ X
7' - ho_"2-
=Ml = 2ht S ki ghets s, =2 >, =1,

Vo= —1<0,;=22-1<0p= B - 1< - - - <0, =22 —1<w,, o= 2011,

Nach dem 1. Satz von Abschnitt 4 ergibt sich w = 2 (b, — 1).

2. Unterfall: m = 7 (mod. 8); ((m+—1)) .

p zerlegt sich in k(V—1) in zwei voneinander verschiedene Prim-
ideale vom 1. Relativgrad. Dann ist in k(c(2%)) :

p= (PP,

wo P und P’ zwei voneinander verschiedene Primideale von k(c(2"°) ) sind,
die in bezug auf & den Relativgrad 1 haben. Folglich ergibt sich fiir die
Adjunktion von c¢(2”) zu k und jedes der beiden Primideale ¢ und P’:
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®>o53=T=B=[B,0 B, > B, = S e 1L POY 2B, =€ ;

r = ho == 2 .
n=2ho—l> Rg= 2"0"‘2 > n1=2h°~3>n2=2h°—4>° o> nho_3 = 2 > nho—2 =1 .
Vo = — 1<9,=22—1 <9,=23—1<- .. <'Uh,,--3=2h0—2”1<’vho-2= ghl-1.

Da die Werte fiir die », und v,;, j = 0, 1, 2, ..., by — 2 = r, die gleichen
sind wie im 1. Unterfall, ergibt sich wieder w = 2 (hy — 1).

2. Hauptfall: m = — 1.
Esist k= ko, (V—1), ferner k(c(2™)) = c(2™). In c(2") wird:
p=(1+i)=P"",

wo P ein Primideal von ¢(2"°) vom absoluten Grade 1 ist. Wegen der
vollen Verzweigung wird:

(5535%5235%03%1 3%2 D...D%ho—a D%ho__zEG ;
rzho-"—z )

n=rmy=2"2>np =243 5 p, =20t >5...5n, =2 > Npe = 1.
vo == — 1 <?)1=22— 1 <’02 == 23-—-—- 1<- . -< 'vho‘_3=2h0_2_____1<vho-2=2h0_1__1 .

Aus dem gleichen Grunde wie eben wird wieder w = 2 (b — 1).

Folglich wird in jedem Falle :

bipey = k1 el D) w1

Denn zunéachst ist diese Formel bewiesen fiir w = 4, da aber ¢(4) in £{1}
steckt, gilt sie trivialerweise auch fiir w = 1, 2 und 3.

Ist daher m + — 1, so wird beim Ubergang von K{p} zu K{p?} ein
relativ-quadratischer Korper adjungiert, der nicht absolut-abelsch ist.

Fiir beliebiges m = 3 (mod. 4), also inklusive m = — 1 wird beim
Ubergang von K{p*1} zu K{p>}, w = 2, der Korper c¢(2*+) adjungiert,
der in bezug auf K{p2*1} relativ-quadratisch ist, beim Ubergang von
K{p®} zu K{p*+}, w = 2, ein relativ-quadratischer Korper, der nicht
absolut-abelsch ist.
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Anwendung auf die Teilungsgleichungen :
Beispiele fiir m = — 1. Nach Hagenbuch wird:

f=pt=(1+41)".
(1+;)L—6 '—‘66"‘—1—0

Diese Gleichung hat die Wurzeln 3 4 2 V2, womit K{p%} = c(8) be-
statigt wird.
f=p®=(141)5.

T =G +205°— 2662 +206 +1=0.
Diese Gleichung hat die Wurzeln:
Sro=—5—4V2+2V2(1 +V2)V14V2

und

Coa=—5-1L4V2L2V2(1—V)V1—_V2 ,
so daf3

K{pst=c(8) (V1+V2) .
f=p®= (149

Tipip = G — 887 + 926 — 8726 +
+ 19903 —8723° + 9263*—88G + 1=0 .

Diese Gleichung hat die Wurzeln:

G1a=11+8V24+(8+4Vo) V1+V2 L 2[(3+2V2) +(1+2V2) V1:V2] Va+V2 ,
Gy a=11+8V2-(8+4V V1+V2 £ 2[(3+2V2)-(1+2VEV1+V2] V2+V2 ,
Gso=11-8V2+(8-4V) V1-V2 £ 2[(3-2V2)+(1-2V2) V1-V2] Va2-V2 ,
Cro=11-8V2-(8-4V2) V1-V2 1L 2[(3-2V2)-(1-2V2) V1-V2]|V2-V2 .

Wegen ky(i, V' 2 + V2) = ¢(16) wird also K{p%} = c(16) V11 v?).

Weitere Beispiele fiir die Fiihrer { = (2) = p? und { = (4) = p* findet
man in Fueter, S. 352/353 fiir m = — 5 und m = — 13.

9. In diesem Abschnitt sei weiter p = 2, aber m = 4 2 (mod. 8). Da
wieder 2 = p2, n(p) = 2 ist, gelten die gleichen Werte fiir H,(p¥), w = 1,
wie im letzten Abschnitt fir m=3 (mod.4), m + —1, und mithin
auch fiir die Relativgrade (K{p*} : K{p*}) .
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Weil ¥—1 nicht in k{1} enthalten ist, gilt im relativ-quadratischen
Erweiterungskorper &k (¥—1) die Primidealzerlegung

die Relativdifferente — ¢ ¥m in bezug auf

Vm
141 o
k hat, ist die Relativdifferente von k(¥'—1) in bezug auf k gleich p* oder
p*?2, also die Relativdiskriminante gleich p oder p2. Nach Satz 2 von Ab-
schnitt 4 wird der Fiihrer fiir die Untergruppe vom Index 2 im Grund-
korper k resp. gleich p oder p2. Nach wiederholt angewandtem Schlusse
ist daher entweder k{p} = k{1} (¥—1) oder k{p%} = k{1} (¥—1). Das
erstere ist aber auszuschlieBen, da K{p} = K{1}, also auch k{p} = k{1}
ist, und folglich ¥—1 in k{1} wire, was nicht der Fall ist. Da V2
ebenfalls in k{1} liegt, kann man schreiben:

k{p?} = k{1} (c(2%)) = k{1} (c(2%)) .

Nach einer schon gemachten Bemerkung geniigt es daher, fiir die Er-
weiterung k (¢(2")), ko = 4, den zugehorigen Fiihrer im Grundkorper zu
bestimmen.

und da die ganze Zahl

Es sind wieder zwei Hauptfille zu unterscheiden:
1. Hauptfall: m + — 2 .

Der Korper k(V £2) = k(Vu), wo u= , hat die Relativdifferente 1

m
£2
in bezug auf £ und man sieht sofort!?), dafl zwei Unterfille zu unter-
scheiden sind:

1. Unterfall: m=8 4 2 (mod. 16).

In diesem Falle erhoht p in k(¥ 4 2) seinen Grad von 1 auf 2. Ist daher
B der Primidealteiler von (2) in k(c(2%)), hy =4, so wird

p=P2,
und fiir dieses ¢ in bezug auf k:
G=3>5T=B=[H B, o B, 5.-.0%B, , 5B, ,=E;
r="hy—2.
n=2""1%p =202 g = 2h0"35 5, = 20—t > ., >N _g=2 >nho_—2—__:r—
vVo=—1 <9,=2—1<v,= 28 —1<-- '<”ho—3=2h°—2“1<vh.,_z=2h°"1— 1.

Gemaf3 Satz 1 von Abschnitt 4 wird w = 2k, — 3.

17) z, B. nach Satz 8, S. 377/378 in Hilbert, David, Uber die Theorie des relativ-
quadratischen Zahlkérpers, Gesammelte Abhandlungen, 1. Band, Berlin 1932,
S. 370/482,
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2. Unterfall: m = 4 2 (mod. 16). ((m + —2)) .

In diesem Falle zerfallt p in k(V'+2) = k(Vu) in zwei voneinander
verschiedene Primideale vom 1. Relativgrad. In k(c(2™)), by = 4, wird

ho-3
p=(PP)*
und fiir das Primideal ‘B in bezug auf %:

6-53=F=B=B,o B, - B, D08, 4 28, .=C;
r=h,—2.
n = 2ho—1 >Ny = 9ho—2 >N, = 9ho—3 >n2=2ho’*4> .o s> nh“—ss?’ >nh°—2=1 ]

'Uo = — 1 < 'Dl = 2 ‘-1 < ’02==23—1 <L Z vho—3=2ho—2_1 <vho—2=2ho—l_1 .

Da die Werte fiir die n, und v;; § =0, 1,2, ..., hg— 2 = r, die gleichen
sind wie im 1. Unterfalle, wird wieder w = 2 hy — 3.

2. Hauptfall: m = — 2.

Es ist K{1} = k{1} = k = ko(V—2), also k(c(2™)) = c(2"), h, = 4.
In k(c(2%)) wird

p=P",
wo P vom Relativgrad 1 in bezug auf % ist. Wegen der vollen Verzwei-
gung wird:
653515%5%03$1 :)%2 o L A iB"o—':* D%m}_gEG;
r—=— ho'— 2 .
n=ng=2""2>n; =203 > =27 >, =2 >Ny =1,

Vo=—1 <v;=2-1 <p,=20—1<...< vho_3=2"°—2——l < v,,o_2=2"°“1 -1.
Da die Werte fiir die n, und die »;, j — 0, 1,2, ..., hyg— 2 = r, dieselben

sind wie im 1. Hauptfall, folgt wieder w = 2 A, — 3.
Nach oft angewandtem Schlusse wird mithin:

by = b3 (o)), wzs.

Nach unserer Herleitung gilt diese Formel zunéchst nur fiir w = 5, wegen
k{p2} = k{1} (¥—1) ist sie aber auch fiir w = 2 richtig, dagegen nichi
fir w = 1.

Wir fassen zusammen: K{p} = K{1}; K{p?} = K{p®} = K{1}(V—1),
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fiir w = 2 entsteht K{p®} aus K{p**'} durch Adjunktion eines relativ-
quadratischen Korpers, der nicht absolut-abelsch ist, K{p*/+1} aus
K{p?} durch Adjunktion von c(2%+2), welcher Korper relativ-quadratisch
in bezug auf K{p*} ist.

Anwendung auf die Teilungsgleichungen :

Beispiele fiir die Fiihrer f = (2) = p? und § = (4) = p* findet man in
Fueter, S. 352/353 fiir m = — 2, — 6 und — 10.

10. In diesem Abschnitt sei weiter p = 2, aber m =5 (mod. 8). In k
ist 2=p, n(p)=22. Nach Satz 3 von Abschnitt 4 wird, falls m+—3 ist:

Hs(p)=3 s Hs(pw)=3.22w—3 , w=2 .

Beim Ubergang von K{1} zu K{p} wird also ein relativ-zyklischer
kubischer Korper adjungiert, der gewil nicht absolut-abelsch ist, da die
Galois’sche Gruppe von ¢(2%), h, = 2, die Ordnung 2~ hat, beim Uber-
gang von K{p¥1} zu K{p*}, w = 2, je ein relativ-quadratischer Korper.

Fir m = — 3 ist:
H(p)=1, Hp¥)=2*3, w=2

Es ist folglich -
K{p} = K{1} =k = ko (V—=3) ,

dagegen wird beim Ubergang von K{p*—} zu K{p*}. w = 2, je ein relativ-
quadratischer Korper adjungiert wie im allgemeinen Falle m =5
(mod. 8).

In jedem Falle (m #= —3, m = — 3) gilt weiter:

Da die 2-Differente von k gleich 1 ist, anderseits die absolute Differente
von ko(V—1) gleich (2) ist, ist die Relativdifferente von k(V—1) in
bezug auf k gleich (2), also die Relativdiskriminante gleich (4) = p2.
Nach dem 2. Satz von Abschnitt 4 ist folglich

k{p?} = k{1} (V—1) = k{1} (c(4)) = {1} (c(2%) .

Wie wir schon zweimal benutzt haben, geniigt es daher, fiir die Erweite-
rung k(c(2")), hy=3, den zugehorigen Fiihrer im Grundkorper zu be-
stimmen. Fiir diese Erweiterung von k& wird:

p — $2ho—1 ,
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wo P ein Primideal von k(c(2%)) ist, das in bezug auf k den Relativ-
grad 1 hat. Fiir B wird in bezug auf k:

65351_‘—:%5%03%1 3%2 D”'D%ho_g D%ho_lE@;
7' —_ h/o - 1 .
. : —) (11)
n= no = 2h°—1 > n1=2 0-2>‘n2=2 0_‘3> e >nho_2=2 > nho"'1=1 .
Vo=—1 <v=2—1<0,=22-1 <. - <V, _,=2M" 21 <w, ;=211 )

GemaB Satz 1 von Abschnitt 4 wird w = k, und

k{p“} = k{1} (c(2¥)), w=1 .

Zunachst gilt diese Formel nur, falls w = 3 ist, nach den schon oben ge-
machten Bemerkungen ist sie aber auch fiir w = 1 und w = 2 richtig.

Wir fassen zusammen: Fiir m = — 3 ist K{p} = K{1}, im allgemeinen
Fall dagegen entsteht K{p} aus K{1} durch Adjunktion eines relativ-
zyklischen kubischen Korpers, der nicht absolut-abelsch ist. In jedem
Falle entsteht dann K{p?} aus K{p} durch Adjunktion von ¥—1, und
fir w =3 der Korper K{p*} aus K{p*—'} durch Adjunktion von c(2¥),
welcher Korper in bezug auf K{p¥-1} relativ-quadratisch ist, und Adjunk-
tion eines weiteren relativ-quadratischen Korpers, der niché absolut-
abelsch ist.

Anwendung auf die Telungsgleichungen.
Beispiele fiir m = — 3. Nach Bindschedler wird:

f=p2=(4).

7,=6*4+108—2=0.

Die Wurzeln sind & = — 5 + 3 V3, womit K{p?} = K{4} =k(V—1) =
= k(V—3, V—1) =k, (V—3, ¥3) = ¢(12) bestatigt wird.
f=p3=(8).
Te=C8 — 104 &7 4 952 Gt — 4 124 G5 + 3430 G* — 1 544 &3 +
+7336C2 46166 —2=0.

Durch Adjunktion von V'3 zerfiallt diese Gleichung in die beiden Poly-
nome 4. Grades:

111



St —4(13—6V3) G2 —12(1—3V3)S2—2(47—9V3) S—(5—3V3)| X

o
=

Gt—4(134+6V3) S3—12(1+3V3)S2—2(47+9V3)S—(5+3V3)|.

Der zweite dieser beiden Faktoren 4. Grades zerlegt sich durch Adjunk-
tion von ¥2 in die beiden Polynome 2. Grades:
i _ R Y317
S2—| (264 12V3) — (18 4+-9V3) V2 |G+ |(1T—6V3) + 9—-‘7-5-1 X
L .1 L

362—- (26 + 12V3) + (18 +9V3) 1/'2'J S+ (7—-6V§)—9V§V"§"1 .

Der zweite dieser beiden quadratischen Faktoren hat die beiden Wurzeln:

S=43{(26+12V3) +
4 (184+9V3) V2 £ (94+6V3) V2 - V(4V3—1) 4 (3V3—1)V2)}.

Es ist mithin

K{8} =c(24) (V(4V3—1)+ (3Y3—1)V2) .

Beispiele fiir die Fiihrer { = (2) = p und { = (4) = p? findet man in
Fueter, S. 352/354 fiir m = — 11, — 19, — 35, — 43, — 51,

11. In diesem Abschnitt sei weiter p =2, aber m =1 (mod. 8). In &
ist 2=1p-p/, pEp’, n(p) =np’) — 2 . Man beachte hier generell die
Formel (7).

Nach Satz 3 von Abschnitt 4 wird:

Hs(p) =1 ’ Hs(Pw) = J2M0~3 ) w = 2 .
Es ist folglich:

K{p} = K{l},
(K{p?}: K{p})) = 2,
und fiir w = 2: (K{p¥+'}: K{p*}) = 4.

Ferner ist fiir jeden der beiden Primteiler p + p’ von (2) :

Ha(p) =1, Hs(pw) =22, w=2,
folglich:
K{p} = K{p*} = K{1} ,
(Kp=): Kip) =2, w22 .
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Weil die 2-Differente von k gleich 1 ist, anderseits die absolute Diffe-
rente von ko (V—1) gleich (2) ist, ist die Relativdifferente von k(V—1,
in bezug auf k gleich (2), also die Relativdiskriminante gleich (4) =
p2- p’2 Nach dem 2. Satz von Abschnitt 4 ist mithin:

k{p*} = k{p* - p"?} = k{1} (V—1) = k{1} (c(2%) .

Es geniigt also wieder, fiir die Erweiterung & (c(2*)), by = 3, den zuge-
horigen Fiihrer im Grundkorper zu bestimmen. Fiir diese Erweiterung

von k wird :
1

p=P" , pr=pr"

wo P und P’ den absoluten Grad 1 haben. Sowohl fiir P wie fiir P’ gilt
die Aufstellung (11) des letzten Abschnittes, und daher wird w = h, und:

By =h{pe p/) = k{1} (c(29) , w2 1.

Wir fassen zusammen: Es ist K{p} = K{1}; K{p*} = K{1} (¥—1). Fiir
w = 2 entsteht K{p¥+'} aus K{p*} durch Adjunktion von ¢ (2*+!), welcher
Korper in bezug auf K{p*} relativ-quadratisch ist, und Adjunktion eines
relativ-quadratischen Zahlkorpers, der nicht absolut-abelsch ist.

Anwendung auf die Teilungsgleichungen :

Fiir m = — 7 und die beiden Fiihrer { = (2) und = (4) findet sich
dieses Resultat bestitigt in Fueter, S. 352.

12. Wir bestimmen in diesem Abschnitt %{f} fiir den Fall, daB { weder
das Einheitsideal noch ein Stammideal ist.

Da K{f} in bezug auf k eine nur durch die Primidealteiler von { teilbare
Relativdiskriminante hat, enthalt die Relativdiskriminante von k{j} in
bezug auf k natiirlich auch nur Primideale, die in { aufgehen.

Sind f, und f, zunachst irgend zwei teilerfremde Ideale, und | = {,{,,
so enthalt K{f} das Kompositum K{f,} (K{f,}) *®), also a fortiori das
Kompositum k{f,} ({f,}), folglich enthalt k{j} gemaB seiner Definition

k{f1} (k{f2}) -
Bemerkung : Bedeutet k* den grofiten absolut-abelschen Unterkorper
von K{f,} (K{f,}), so umfaft k* nach seiner Definition das Kompositum

k{f.} (¥{f}) . Es ist aber wohl zu beachten, dal k* nicht gleich k{f,} (%{f,})
zu sein braucht, noch dal £* einen Relativgrad in bezug auf k{f,} (£{f.})

18) Fueter, Satz 215, S. 236.
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zu haben braucht, der ein Teiler von eist1®). Ist z. B. p=p-p’, p + p/,
und p ungerade, ferner f, = p®, f, = p’*, w = 1, so ist

k{fi} (B{fe}) = k{1} (k{1}) = &{1} ,

dagegen k* nach unseren Ausfithrungen in Abschnitt 4 und 6 ein Korper,
der dadurch entsteht, dafl man zu k{1} einen bestimmten Unterkorper
von c(p¥) vom absoluten Grade p*-1!. P :1 adjungiert. Da dieser

Korper auch in bezug auf k{1} diesen Grad hat, wird:

(k: B{f} ({fa) = por - 21

Da c¢(p¥) in K{f} ist, ergibt sich iiberdies, dafl K{f} in diesem Falle aus
K{f} (K{fs}) durch Adjunktion von c(p*) entsteht, welcher Korper in
bezug auf K{f,} (K{f.}) genau den Relativgrad e und iiberdies eine von 1
verschiedene p-Relativdifferente hat.

Um die Betrachtungen weiter unten nicht unterbrechen zu miissen,
schalten wir hier noch eine zweite Bemerkung ein.

Ist p eine ungerade Primzahl und w eine beliebige natiirliche Zahl oder
p =2 und dann w = 2, so bedeute c*(p*+!) den Korper c(p®+!) oder
irgend einen verschrankten Kreiskorper, der c¢(p®) enthalt und in dessen
Hiille c¢(p*t!), aber nicht c(p*t?) steckt. Da die Relativdifferente von
c(p*+!) in bezug auf c(p®) gleich p ist, ist in jedem Falle die p-Relativ-
differente von c*(p*+!) in bezug auf c¢(p¥) gleich p.

Im folgenden sei f, ein Stammideal, f, ein von (1) verschiedenes Ideal,
fiir welches die Normen von f, und f, zueinander teilerfremd sind, und

f=ff.-

Es sei zuniichst §, ungerade

Wir wollen im weiteren voraussetzen, dafl k{f,} ein Ausgangskreis-
korper ist. Falls f; auch ein Stammideal ist, ist diese Voraussetzung
gemiB den Ausfithrungen im 5. bis 11. Abschnitt gewill erfullt. Da das
Kompositum von zwei Ausgangskreiskorpern wieder ein Ausgangskreis-
korper ist, ist dann k{f,} (k{f.}) ein Ausgangskreiskorper.

Fiir das Stammideal f, gibt es folgende Moglichkeiten:

a) fo=p¥, w =1, wo p = p ist. Dann ist geméBl dem 5. Abschnitt
k{f:} = k{1} (c(p¥)), also der Korper c(p®) in k{f,} (k{f.}). Wir wollen

annehmen, daf3
k{f} o k{f.} (B{f:}) ,

19) Vergleiche den eben zitierten Satz 215, Fueter, S. 236.
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und versuchen, von k{f,} (¥{f,}) zu k{f} aufzusteigen, indem wir einen
Korper c*(p¥+') vom Relativgrade p adjungieren. Ist P* ein Primideal
des Erweiterungskorpers, welches das Primideal P von {f,} (¥{f,}) und
das Primideal p von k teilt, so ist P = P*P. Sind w, ny, W, r und v, die
Werte der Formel (5) fiir das Primideal f und die Erweiterung von % zu
E{f.} (k{f,}) und w*, ny’, W*, r* und v} die Werte derselben Formel fiir
das Primideal * und die Erweiterung von k zu k{f,} (k{f,}) (c* (p»+)),
s0 ist 7, der Exponent der Potenz, in der B in p aufgeht, und ny = pn,;
r¥=r+1, vh +1=0,+ 1= p,,+1), ferner gemaB der oben ge-
machten Bemerkung und nach dem Satz der Zusammensetzung der
Relativdifferenten bei sukzessiven Korpererweiterungen: W*= pW 4 pn,,
also:

i @41 (pW+pne) +p(0,+1) _ Wt(et1)

*
"y y (T Ny

+1=w-1.

Mithin mu8 § durch p¥+! teilbar sein, was einen Widerspruch liefert. Die
Galois’sche Gruppe der Erweiterung von k{f} (k{f.}) zu £{j} kann also
nicht dadurch reduziert werden, dafl man einen Korper c*(p*+!) vom
Relativgrade p adjungiert.

b)fo=p?-p'*,w=1,w =1, wop=p-p/,p+p’ ist. Wir diirfen
immer annehmen, dafl wir die Bezeichnung so gewiahlt haben, daf3
w=<w' ist. Dann ist nach Abschnitt 4 und 6 der Korper k{f,}=k{1} (c(p*))
und es gilt der gleiche Schlufl und dieselbe Aussage wie bei a).

c) fo=1p% w=1 wop=p-p,p#%p’ ist. GemaB Abschnitt 4 ist
E{f,} = k{1} und daher k{f,} (k{f.}) = k{f,}. Versucht man, von k{f,} zu
k{f} aufzusteigen, indem man irgend einen Unterkorper von c(p?) vom
Primzahlgrad ¢, wo ¢ ein Teiler von p(p — 1) ist, oder einen verschrank-
ten Kreiskorper, in dessen Hiille ein solcher Korper steckt, zu adjun-
gieren, so ist die p’-Relativdifferente gewifl von 1 verschieden, mithin
miiBte f durch p’ teilbar sein, was einen Widerspruch ergibt.

d) f, = p¥, w = 1, wobei p = p? ist. Ist m £ — 3 oder m = — 3,
dann aber w = 3, so ist nach Abschnitt 7:

k{fa} = k{1} (c(p[g-;:l]))-

Eine analoge Uberlegung wie unter a) zeigt, dafl die Galois’sche Gruppe
der Erweiterung von k{f,} (k{f,}) zu k{f} nicht dadurch reduziert werden
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sl
kann, dal man einen Korper c* ( pl 2 ]+ 1) vom Relativgrade p ad-
jungiert. Ist m = — 3 und w=1 oder w= 2, so ist nach Abschnitt 7:

K{p*} = K{p} = K{1} = k = ko (V—3) .

Wie man mit Hilfe der Ausfiihrungen am Ende des 7. Abschnittes er-
kennt, bewirkt die Adjunktion eines Korpers c*(32%) zu k{f,} (k¥{f,}) =
k{f,}, daB § durch p? teilbar sein miilte gegen Annahme.

Nimmt man jetzt spezieller an, daBl auch f, ein ungerades Stammideal
ist, und vertauscht man die Rollen von f{, und {,, so erkennt man, da(}

k{f} = k{flfz} - k{fl} (% {fz}) .

Mithin ist k{f} in diesem Falle ein Kreisausgangskorper.

Durch Iteration unserer SchluBweise sieht man ein, daf} falls man
ein vom Einheitsideal verschiedenes ungerades Ideal { als Produkt von
Stammidealen darstellt, deren Normen paarweise zueinander teilerfremd
sind :

T
fznft ’ (n(fs)rn(ft)):: 1 ’ 8 #t ’

t=1

k{f} das Kompositum der Korper k{f,}, ¢ = 1, 2, ..., T' ist. Da die K(‘jrpér
k{f,} in Abschnitt 4—7 bestimmt wurden, ist damit k{f} fiir ein beliebiges
ungerades Ideal bestimmt, und k{j} ist ein Ausgangskreiskorper.

Es sei §, gerade

Dann ist {, ungerade und £{f,}, wie wir eben sahen, ein Ausgangskreis-
korper, ebenso k{f,} gemafl Abschnitt 8—11, mithin auch k{f,} (k{f.}).
Ferner kann die Galois’sche Gruppe von k{f} in bezug auf k{f,} (¥{f.})
nach dem eben bewiesenen hochstens noch durch Unterkorper von ¢ (2%)
fiir geniigend grofles %, reduziert werden. Wir behaupten:

k{f} = k{f.} (k{fa}) (12)
Wir unterscheiden folgende Fille:
a) m =3 (mod. 4), 2 =p? f=p¥, w =1 GemaB Abschnitt 2 ist
V—1 in k{1} und gem&B Abschnitt 8 :

vty — k(e lY))

Es sei zunéchst w = 2. Dann erkennt man mit Hilfe der Ausfithrungen
in Abschnitt 8 sofort, daB die Galois’sche Gruppe von k{f} in bezug auf
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w+2
E{f.} (k{f,}) nicht dadurch reduziert werden kann, daBl man ¢ ( [ ] )
adjungiert, denn sonst wire, falls w ungerade ist, {f genau durch p¥+, falls
w gerade ist, { genau durch p¥+? teilbar. In jedem Falle wére {f durch
pwtl teilbar, was einen Widerspruch ergibt. Ist w = 1 und adjungiert
man c¢(22), so wiirde f durch p* teilbar, was ebenfalls einen Widerspruch
ergibt. Es gilt mithin im Falle a) die Formel (12).

b) m = + 2 (mod. 8), 2 = p?, f, = p¥, w = 1. Gemil den Ausfiih-
rungen in Abschnitt 2 und 9 ist V42 in k{1}; K{p} = K{1} und fir

W 2 w+3
via = kol 7))

Es sei zundchst w = 3. Dann kann man die Galois’sche Gruppe von %{f}

w43
in bezug auf k{f,} (£{f.}) nicht dadurch reduzieren, dal man c( [ )
adjungiert, da sonst §f mindestens durch p*+! teilbar ware. Fiir w = 2 ist
¢(2?) in k{f,} und die Adjunktion von c¢(2%) wiirde bedingen, dafl f durch
p® teilbar ware. Sei w = 1. Dann ist ¥—1 nicht in k{p}. Die Adjunktion

¢ (23), wiirde bedlngen, dafB f durch p? teilbar ware. Ist m=— 2 (mod. 8),
so ist (12) bewiesen. Ist m = 2 (mod. 8), so konnte noch einer der beiden

Kreiskorper k, (Vm) adjungiert werden. Ist P* ein Primideal

von k{f,} (k{p}, V' -2+ V2 ), welches p teilt, so haben fiir das Prim-

ideal B* und die Erweiterung von &k zu k{f,} (¥{p}, Vm =

E{f} (V' £2+V2) die GroBen der Formel (5) folgende Werte:

ng=2, W¥=5, r*=1, vi+ 1 =5, denn die Relativdifferente von

ko(V 42+ V2) in bezug auf ky(V2) ist gleich 2 VL2+V2. Es folgt
o WrH(vi4+1)  5+5

w* = == = § .
ny 2

f miufte also durch p® teilbar sein. Mithin ist auch im Falle m = 2
(mod. 8) die Formel (12) bewiesen.

c) m =5 (mod. 8). Es sei f,=p¥, w =1, wo p =2, n(p) = 22 ist.

Nach Abschnitt 2 ist der Durchschnitt von {1} und ¢ (2?) der Korper der
rationalen Zahlen und nach Abschnitt 10 ist

E{fa} = k{1} (c(2¥)) .
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Versucht man, von k{f,} (k¥{f,}) zu k{f} aufzusteigen, indem man ¢ (2v+?)
adjungiert, so wird { durch p*+! teilbar, was einen Widerspruch ergibt.
Da k{p?} den Korper ko(V—1) enthilt, ist nur noch der Fall zu unter-
suchen, daB w = 1 ist und einer der Korper k,(V -+ 2) adjungiert wird.
Ist P* ein Primideal von k{f,} (£{p}, V&= 2), welches p teilt, so haben fiir
das Primideal P3* und die Erweiterung von k zu k{f,} (k{p}, V +2) die
GroBen der Formel (5) folgende Werte: n) = 2, W* =3, r* =1,
vh+ 1 =3, denn die Differente von k,(V £2) ist gleich 2V 2. Es
folgt

W* 4 (vh41) 343

= =3 .
ng 2

Mithin miite f durch p? teilbar sein. Es gilt daher auch im Falle ¢) die
Gleichung (12).

d)m =1 (mod. 8). Inkist 2=p-p’,p #p’,n(p) =n(p’) = 2,und

nach Abschnitt 2 ist der Durchschnitt von {1} und ¢(2%) wie im Falle c)
der Korper der rationalen Zahlen. Geht nur einer der beiden Primideal-
teiler von 2 in {, auf, so kann ich die Wahl der Bezeichnungen immer so
treffen, daf} es p ist. Sei also zunéchst f, = p¥, w = 1. GemaB Abschnitt 4
ist in diesem Unterfalle k{f,} = k{1}. Die Adjunktion irgend eines Unter-
korpers von ¢(2%) vom Grade 2 wiirde bedingen, dafl die p’-Relativ-
differente von k{f} zu k{f,} (k{f.}) von 1 verschieden wére, mithin f durch
p’ teilbar wire, was einen Widerspruch liefert. Mithin haben wir nur noch
den Unterfall zu betrachten, daB f,=p» - p'™" ist, wo w = 1, w’ = 1 ist.
Wir diirfen annehmen, da wir die Bezeichnungen so gewahlt haben, da@i
w < w’ ist. Dann ist nach Abschnitt 4 und 11:

k{fo} = k{1} (c(2¥)) .

Versucht man, von k{f,} (k{f.}) zu k{f} aufzusteigen, indem man c(2%+!)
adjungiert, so wird f, durch p¥+! teilbar, was einen Widerspruch ergibt.
Da k{p2p’'} den Korper ko(V—1) enthilt, ist nur noch der Fall zu
untersuchen, da w = 1 ist, und einer der Korper k,(V -+ 2) adjungiert
wird. Ist P* ein Primideal von k{f,} (k{pp'*'}, ¥V +2), welches p teilt,
so haben fiir das Primideal f* und die Erweiterung von k zu
E{f.} (k{pp"*”}, V£ 2) die GroBen der Formel (5), wie im Unterfall m=5
(mod. 8) die Werte ny = 2, W* =3, r* =1, vX 4+ 1 = 3, und { miifte
durch p? teilbar sein. Es gilt daher auch in diesem Falle die Gleichung (12).
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Zusammenfassend ergibt sich der

Hauptsatz : Ist | ein beliebiges vom Einheitsideal verschiedenes Ideal
von k, so stelle man f als Produkt von Stammidealen dar, deren Normen
zueinander teilerfremd sind:

T
f=1f, @f),nf))=1, s#t.
t=1
Dann ist k{f} ein Ausgangskreiskorper, und zwar das Kompositum
der in den Abschnitten 4—11 bestimmten (Ausgangs-Kreis-) Korper
k{fg, t=1,2,...,T.

Ferner ergibt sich folgende Verschiarfung des Satzes 215, Fueter,
Seite 236:

Sind f,; £ 1 und {, # 1 zwei zueinander teilerfremde Ideale von %k, so
ist K{f,} (K{fs}) Unterkérper von K{f,f,}, und der Relativgrad ist ein
Teiler von e29). Ist dieser Relativgrad groBer als 1 und sind die Normen
von f, und f, zueinander teilerfremd, so wird die Galois’sche Gruppe von
K{f,{s} in bezug auf K{j,} (K{f,}) durch keinen Kreiskorper reduziert,
sind dagegen die Normen von f, und f, Potenzen der gleichen Primzahl
p?'), so entsteht K{f,f,} aus K{f,} (K{f;}) durch Adjunktion eines ge-
eigneten Kreiskorpers, dessen Diskriminante nur durch p teilbar ist.

20) Dieser Relativgrad kann vermoge des 3. Satzes in Abschnitt 4 immer sofort an-
gegeben werden.
#1) Dabei gilt p als 1. Potenz von p.

(Eingegangen den 12. Juni 1942.)
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