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Zur Théorie der Klassenkôrper der Kreis-
kôrper, insbesondere der Strahlklassenkôrper
der quadratisch imaginâren Zahlkôrper
Von Max Gut, Zurich

FUETER
anlafîlich seiner 25jahrigen Lehrtatigkeit
dis Ordinarius in Zurich zugeeignet

Die vorliegende Arbeit befaBt sich mit der Bestimmung des maximalen
absolut-abelschen Korpers, der im Klassenkôrper eines beliebigen absolut-
abelschen Korpers, insbesondere auch im Strahlklassenkôrper eines

imaginar-quadratischen Zahlkorpers enthalten ist.
Mit k soll hier immer ein algebraischer Zahlkôrper von endlichem Grade

bezeichnet werden und unter ,,Idéal von k<e durchwegs ein ganzes Idéal
verstanden werden, speziell nennen wir weiter ein Idéal ungerade, wenn
es durch keinen Primidealteiler von (2) teilbar ist, gerade, wenn es vom
Einheitsideal verschieden und nur dureh Primidealteiler von (2) teilbar
ist. Ferner bedeute k0 immer den Korper der rationalen Zahlen und

c(m) ko(em) den Korper der ra-ten Einheitswurzeln. Jeder absolut-
abelsche Korper ist bei geeigneter Wahl der naturlichen Zahl m ein
Unterkôrper von c (m), und daher wollen wir jeden absolut-abelschen

Korper kurz emen Kreiskorper nennen.
Ist k ein beliebiger Kreiskorper, f ein Idéal von k, so bezeichne iT{f} den

zu k gehorigen Strahlklassenkôrper mit dem Fuhrer f und &{f} den
maximalen Unterkôrper von if{f}, der absolut-abelsch ist. Insbesondere ist
also K{1} der absolute (Hilbert'sche) Klassenkôrper, k{l} der maximale
Unterkôrper dièses Korpers, der absolut-abelsch ist.

Die vorliegende Arbeit zerfallt in zwei Teile. Im ersten kurzern Teile
wird in

1. eine neue einfache Formulierung fur die Bestimmung von k{\} ge-
geben, fails k ein beliebiger Kreiskorper ist ;

dann auf Grand dieser Formulierung in
2. der Korper k{l} auf eine neue Art bestimmt fur den Fall, daB k ein

imaginarer, ferner bestimmt fur den Fall, daB k ein reeller quadra-
tischer Zahlkôrper, endlich das Kompositum von absolut-quadra-
tischen Zahlkorpern ist;

und in
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3. der Korper k{l} bestimmt fur den Fall, daB k ein absolut-zyklischer
Korper vom ungeraden Primzahlgrad q oder das Kompositum von
solchen ist, die aile den Grad q haben.

Der zweite umfangreichere Teil der vorliegenden Arbeit befaBt sich mit
der Bestimmung von &{f}, falls k ein quadratisch-imaginarer Zahlkorper
ist, also k ko(Vm) ist, wo m eme behebige quadratfreie négative
ganze Zahl bedeutet und ebenso f beliebig ist.

Ist die Norm von f eine Primzahl oder die Potenz einer Primzahl, so
wollen wir in dieser Arbeit f als em Stammideal bezeiehnen. Benutzt man
die Formel fur die Strahlklassenzahl, so wird sich insbesondere fur ein
Stammideal f ein genauer Ûberblick uber den Aufbau von i£{f} aus K{1}
ergeben.

Im 4. Abschnitt stellen wir emige allgemeine Satze und Formeln zur
Bestimmung von &{f} zusammen. Hierauf bestimmen wir ifc{f} zunachst
fur den Fall, daB f em Stammideal ist gemaB folgender Ùbersicht :

f ist ein ungerades Stammideal :

5. Abschnitt: 1. Hauptfall: p p, n(p) p2.
6. Abschnitt: 2. Hauptfall: p p • p', p ^ p', n(p) n(pf) p.
7. Abschnitt: 3. Hauptfall: p p2, n(p) p •

f ist ein gerades Stammideal :
8. Abschnitt: m 3 (mod. 4).
9. Abschnitt: m ± 2 (mod. 8).

10. Abschnitt: m 5 (mod. 8).
11. Abschnitt: m 1 (mod. 8).

Endlich bestimmen wir im 12. Abschnitt &{f}, falls f weder das Einheits-
ideal, noch ein Stammideal ist.

Das klassische Problem, aile in bezug auf emen quadratisch-imaginaren
Zahlkorper relativ-abelschen Korper durch singulare Werte von analy-
tischen Funktionen festzulegen, ist auf mehrere Arten gelost worden.
Je nachdem man z. B. die Kreiskorper explizite adjungiert oder nicht, je
nachdem man ferner bei festgehaltenem Grundkorper nur die Wurzeln x)

der Klassengleichung oder aber die Wurzeln aller Ringklassengleichungen
der absolut-invarianten Modulfunktion adjungiert, endlich je nachdem
man die Wurzeln der Teilungsgleichungen der Jacobi'schen oder aber der
WeierstraB'schen elliptischen Funktionen adjungiert, ergibt sich eine
andere Form der Théorie. Wir wollen hier nicht auf eine Darstellung der

*) Naturhch genugt immer auch die Adjunktion je einer Wurzel, da es sich ja um relativ-
Galois'sche Gleichungen handelt'
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begangenen Wege eintreten, sondern nur die beiden grundlegenden Tat-
sachen benutzen, daB die Wurzeln der Klassengleichung der absolut-
invarianten Modulfunktion jedenfalls den (Hilbert'schen) Klassenkorper
des imaginar-quadratischen Grundkorpers liefern, und nach deren Ad-
junktion die Wurzeln der zu festem f gehorigen Teilungsgleichung der
WeierstraB'schen Funktion

S(z; œl9 œt) -2*p^- (z; œl9 œ2) falls m *—2±1,

S (z ; (d1 co2) — p2 (z; colJ co2) falls m — 1

gi\(ol9 (°2)

S (z ; col9 co2) —— f3 {z,œl9 œ2) falls m — 3
zg3{œ1, co2)

den Strahlklassenkorper zu vorgegebenem f festlegen.
DaB die Gesamtheit der so erzeugten Korper gerade vollstandig aile in

bezug auf quadratisch-imaginare Grundkorper relativ-abelschen Korper
liefern, ist von Fueter2) bewiesen worden. Fur den Beweis dieser funda-
mentalen Aussage wird noch die Funktion

und damit der i?mgrklassenkorper zum Fuhrer 4 herangezogen. Der Grund
liegt darin, daB einerseits die arithmetische Natur der Multiplikations-
formeln der Funktion ®(z; cox, a>2) zu wenig bekannt ist3), tieferliegend
aber darin, daB der zum Fuhrer 4f gehorige Strahlklassenkorper sich aus
den zu den Fuhrern 4pw gehorigen Strahlklassenkorpern rational zu-
sammensetzt, wo pw die in f enthaltenen Primidealpotenzen durchlauft,
wahrend dièse Eigenschaft i. a. nicht gilt, wenn man den Faktor 4 weg-
laBt4). Von dieser beweistechnischen Notwendigkeit soll also hier ganz
abgesehen werden.

2) Vergleiche die ausfuhrliche Darstellung in Fueter, Rudolf, Vorlesungen uber die
singularen Moduln und die komplexe Multiphkation der elhptischen
Funktionen. 1 Teil (1924), 2 Teil (1927), B G Teubner, Berlin und Leipzig. In der
vorhegenden Arbeit werden dièse beiden Bande mit fortlaufender Paginierung îmmer
kurz durch die Angabe des Autornamens zitiert

3) Vergleiche Weber, Hemnch, Lehrbuch der Algebra, 3 Band; 2. Auflage (1908);
Friedrich Vieweg und Sohn, Braunschweig; S 576

4) Vergleiche hierzu auch das 2. Alinéa un Vorwort zum 2. Telle von Fueter.
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Da die Kreiskôrper absolut-abelsch sind, sind sie a fortiori relativ-
abelsch zu jedem quadratisch-imaginaren Zahlkôrper, und daher werden
auch sie geliefert durch die Warzeln der Klassengleichungen der absolut-
invarianten Modulfunktion und durch die Wurzeln der Teihmgsgleichun-
gen der <S-Funktion. Dievorliegende Arbeit setzt sich also in anderer Form
ausgedruckt auch zum Ziele, festzustellen, wie dies geschieht. Umge-
kehrt zeigt dièse Untersuchung, welche Kreiskôrper die Galois'sche Gruppe
der Klassengleichung der absolut-invarianten Modulfunktion und einer
Teilungsgleichung der (5-Funktion reduzieren. Fur die Klassengleichung
ist das Résultat5) klassisch und wohlbekannt, fur die Teilungsgleichungen
der S-Funktion ist aber dièse Untersuchung meines Wissens noch nicht
durchgefuhrt worden.

Abgesehen von dem wichtigeren theoretischen Interesse erleichtert
dièse Kenntnis die Berechnung der Wurzeln der Teilungsgleichungen der
(5-Funktion. Fur den Korper der 3. Einheitswurzeln sind fur viele Fuhrer
die Teilungsgleichungen berechnet worden von Bindschedler, fur den
Kôrper der 4. Einheitswurzeln von Hagenbuch, der auBerdem noch die
Wurzeln der Teilungsgleichungen fur eine Reihe von Fuhrern berech-
nete6). Beide Autoren verwenden nicht die von Fueter benutzte ©-Funk-
tion, sondern Hagenbuch die Funktion

g2 (coi, a>2)

und Bindschedler die Funktion

Da sich aber die erste dieser Funktionen nur um den Faktor 4 von der von
Fueter benutzten S-Funktion unterscheidet, die zweite abgesehen vom
Faktor 2 die reziproke der von Fueter benutzten S-Funktion ist, hat die
Verschiedenheit der Normierung naturlich keinen EinfluB auf die Galois-
sche Gruppe einer Teilungsgleichung und deren Reduktion. Wenn wir
daher weiter unten Teilungsgleichungen und Wurzeln von
Teilungsgleichungen angeben, um Beispiele zur allgemeinen Théorie zu liefern,

6) Vergleiche hier Abschmtt 2
6) Vergleiche die Tabellen am Schlufi m den beiden Inaugural-Dissertationen der Zurcher

Universitat» Bmdschedler, Cari, Die Teilungskorper der elliptischen
Funktionen îm Bereich der dntten Einheitswurzel, Journal fur die reine und an-
gewandte Mathematik, Band 152, S 49 (1922) und Hagenbuch, Gustav, Ûber die
Teilungskorper der elliptischen Funktionen fur den Grundkorper k (Y—1),
Zurich 1926
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werden wir, um den Vergleich zu erleichtern, die von Bindschedler und
Hagenbuch benutzte Normierung verwenden.

Es ist sehr zu wunschen, da8 trotz der groBen rechnerischen Schwierig-
keiten auch fur den Fall eines vom Korper der 3. oder 4. Einheitswurzeln
verschiedenen quadratisch-imaginaren Grundkorpers Teilungsgleichungen
und deren Wurzeln berechnet wurden, um Illustrationen fur die hier all-
gemein entwickelte Théorie zu liefern7).

Fur die auch in der Theoiie wichtigen Fuhrer 2 und 4 fallt bei jedem
quadratisch-imaginaren Korper k ko(Vm) je der Strahlklassenkorper
mit dem Ringklassenkorper desselben Fuhrers zusammen8). Berueksich-
tigt man daher die Ausfuhrungen uber die singularen Werte der Funktion

auf Seite 111 u. f. in Fueter, so ergeben die Tabellen auf Seite 351—354
jenes Bûches, die ich seiner Zeit berechnete, sofort die Strahlklassenkorper

K{2} und K{4:} fur die dort aufgefuhrten Werte von m. Wir ver-
zichten daher hier auf die Angabe diesbezuglicher Beispiele.

1. Ist m 2h°li1... l^R die Primzahlpotenz — Produktdarstellung
der naturlichen Zahl m ^ 3, wo also die lr, r 1, 2, R, voneinander
verschiedene ungerade Primzahlen bedeuten, so zerfallen die Unter-
kôrper von c (m) in 2 Typen, namlich solche, die als direktes Kompositum
von Unterkorpern der Korper c(2h°), c(ï^1),..., c(l^R dargestellt werden
kônnen, und die ich in einer fruheren Arbeit9) Attsgangs-KreisJcôrper
nannte, und solche, die dièse Eigenschaft nicht haben, und die ich hier
kurz verschrànkte Kreiskôrper nennen will.

Jedem Kreiskôrper k sei dann eine Huile kH in folgender Weise zuge-
ordnet : Ist k ein Ausgangs-Kreiskôrper, so ist seine Huile kH mit k iden-
tisch: kH k. Ist k ein verschrànkter Kreiskôrper, so ist kH der kleinste,

7) Aufier emigen Teilungsgleichungen fur die %-Funktion fur den Korper ko(Y—7),
die ich auf S. 357/358 m Fueter angegeben habe, smd mir keme solchen Berechnungen
bekannt

8) Dies entmmmt man sofort der diesbezughchen Formel auf S 181, 5. Zeile von unten,
der Abhandlung: Fueter, Rudolf, Abelsche Gleichungen in quadratisch-imaginaren

Zahlkorpern, Math Ann Bd. 75, S 177 (1914). Dièse Arbeit ist îm gesamten
von Interesse fur das vorhegende Thema

•) Gut, Max, Die Zetafunktion, die Klassenzahl und die Kronecker'sche
Grenzformel eines behebigen Kreiskorpers, Comment. Math. Helvet, vol 1,
S. 160 (1929).
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d. h. am wenigsten Elemente umfassende Aiisgangskreiskôrper, der k als

Unterkôrper enthâlt.
Dann gilt der Satz : Ist k ein beliebiger Kreiskôrper, so ist k{l} gleich der

Huile von k.
In der Tat ist zunàchst gemàB dem letzten Satz, S. 220 der eben

zitierten Arbeit die Relativdifferente von der Huile kH jedes verschrânk-
ten Kreiskôrpers k in bezug auf k gleieh 1. Ferner ist die Relativdifferente
jedes Ausgangskreiskôrpers in bezug auf jeden in ihm enthaltenen echten
Unter-Ausgangskreiskôrper von 1 verschieden. Endlich ist bei sukzessiven
einfachen algebraischen Erweiterungen die Relativdifferente der gesam-
ten Erweiterung gleich dem Produkt der Relativdifferenten der einzelnen
sukzessiven Erweiterungen.

Selbstverstândlich ergibt sich dann als Korollar, daB die (absolute)
Klassenzahl h von k durch den Relativgrad von k{\} in bezug auf k teilbar
ist. Hiebei ist natûrlich die Âquivalenz der Idéale im engeren Sinne

zugrunde gelegt, was insbesondere bei den reell-quadratischen Kôrpern,
deren Grundeinheit eine positive Norm hat, im nâchsten Abschnitt zu
beachten ist10).

2. Es sei die ganze rationale Zahl m ^ 1 quadratfrei, k ko(Vm) ein
reeller oder imaginàrer quadratischer Kôrper.

Aus der in Anmerkung 9 zitierten Arbeit ergibt sich sofort, daB falls
m 1 (mod. 4) ist, die Huile kH von k aus dem Kompositum aller Aus-

(M—Er\
gangskreiskôrper k0 \ f (— 1) 2 Ij besteht, wo l die ungeraden Prim-
teiler von m durchlâuft. Palis m 3 oder 2 (mod. 4) ist, kommt dann
noch genau ein absolut quadratischer Unterkôrper des Kôrpers c(8), d.h.
entweder ko(V—1) oder ko(V2) oder ko(V—2) dazu.

Wir zeigen, daB zwei dieser Unterkôrper und damit c(8) nicht in kH
stecken kônnen. In der Tat ist in c(8) das Idéal (2) £4, wo fi ein Prim-
ideal von c(8) ist, und die absolute Différente von c(8) ist fi8. Die Différente

von ko(Vm) ist aber im Falle m 3 oder m 2 (mod. 4) gleich
2|/m. Ist I das in 2 enthaltene Primideal von k, so ist die Potenz, in
der I in der Differenten von k auftritt, gleich I2, falls m 3 (mod. 4),
und gleich I3, falls m 2 (mod. 4) ist. Mithin ist dièse Différente, als Idéal
von c(8) aufgefaBt, gleich fi4 bzw. fi6. Wegen 4 < 6 < 8 kann mithin
c(8) nicht in kH stecken.

10) Vergleiche hiezu z. B. Hilbert, David, Die Théorie der algebraischen Zahl-
kôrper, Gesammelte Abhandlungen, 1. Band, Berlin 1932, § 24, S. 112 und § 83, S. 186

und 187.
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Da Vm gewiB in kE vorkommt, ist der quadratische Unterkôrper von
c(8), der in kH steckt, falls m 3 oder m 2 (mod. 4) ist, der Kôrper

wo das Produkt uber aile ungeraden Primteiler von m zu erstrecken ist.

Wir eiiialten also in jedem Falle das Résultat :

ko\Vm

falls lr, r 1, 2, R die ungeraden Primteiler von m sind11).

Es làBt sich auch so formulieren :

1 (mod. 4) :

/ 1/ ET" 1/
ko\V— 1, H— 1) « l,,..., ] (—m=3(mod.4):

m 2(mod.8): A;{1} k\VT~ ][ (— 1)^1,,..., M—

m 6(mod.8): k {1} ko\V^2 \ (— l)^ l,,..., (/(—îfT^)

Bemerkung: Ist allgemeiner fur quadratfreies ms ^ 1, s 1, 2, S,

der Korper & ko{Vm1 Vm2, )/tos) ein Korper vom Grade 2S, und
sind ll, lz, lR die samtlichen in den ms, s 1, 2, 8 aufgehenden
voneinander verschiedenen ungeraden Primzahlen, so ist

viïr8;\(— i)Vz1,..., n—

wie man auf gleiche Weise sofort einsieht. Insbesondere ergibt sich so

&{1} fur einen Dirichlet'sehen Korper: k ko(V—1, Vm), wow^±l
und quadratfrei ist.

n) Fur quadratisch-imagmare Zahlkorper wurde dièses Résultat zum ersten Mâle mit
Hilfe der Théorie der Geschlechter und mit Hilfe der Primzahlzerfallung in den Korpern
K\\\ und c(m) fur geeignetes m bewiesen durch Weber, Heinnch, Ûber Zahlengruppen
in algebraischen Korpern; Zweite Abhandlung Math. Ann Bd. 49, S. 83 (1897),
vgl. dort S. 99. Einen weiteren Beweis auf gruppentheoretischer Grundlage gab Fueter>
siehe Fueter, S. 74 und S. 181—185.
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3. Sei k ein absolut-zykliseher Kôrper vom Grade q, wo q eine ungerade
Primzahl ist12).

Die Diskriminante d von k enthalte die voneinander verschiedenen
ungeraden Primzahlen l±, l2, ,lR, die natûrlich aile 1 (mod. q) sind,
bzw. die Primzahlen q, llfl2, -->Ir> Ist Kr eine Primitivzahl des Unter-
kôrpers vom absoluten Grade q des Kôrpers c(lr), r 1, 2, B, z. B.

eine _I gliedrige Période, ferner Ao eine Primitivzahl des Unter-

kôrpers vom absoluten Grade q des Kôrpers c (q2) — aile dièse Kôrper
sind Ausgangskreiskôrper — so ist die Huile von k:

bezw.

k{\} ko(Ao, a1? Â2, ar)

Bemerkung : Ist k das Kompositum von S absolut-zyklisehen Kôrpern,
die aile vom ungeraden Primzahlgrade q sind, und d die Diskriminante
von k, so gilt die gleiche Vorschrift wie eben.

4. Zur Bestimmung von &{f} brauchen wir allgemein die in diesem Ab-
schnitt zusammengestellten Bezeichnungen, Sâtze und Formeln.

Liegt irgend eine Galois'sche Erweiterung K eines beliebigen Grund-
kôrpers k vor, so bezeichne immer © die Galois'sche Grappe und fur ein
festgehaltenes Primideal ^J von K stets 3> ï uncl 33 bzw. die relative Zer-
legungs-, Tràgheits- und gesamte Verzweigungsgruppe von ^î.

Es sei nun K im folgenden insbesondere abelsch ùber k vom Relativ-
grade n, ^Jî ein Primideal von K, das im Primideal p von k und in der
Relativdifïerenten 3) von K in bezug auf k aufgeht. Um eine einfache

Formulierung der zu benutzenden Formeln zu erhalten, bézeiehne man
dann die Tràgheitsgruppe % von ty mit 33 Oî und es sei

33O 3 33i 3 332 3 d 33r_x d 33r (g

die vollstàndige Reihe der Tràgheitsgruppe und der voneinander verschiedenen

Verzweigungsgruppen von *p. Falls also % 33 ist, so ist 33 0

X 33 und 33i eine echte Untergruppe von 33 ; falls X 3 33 ist, ist 33 0 £,
dagegen 33i 33. Fiir q 0, 1, 2,.. .r sei we die Ordnung der Grappe 33e,

so da8
12 Auf Grand der Ausfûhrungen in meiner in Anmerkung 9 zitierten Arbeit ist dieser

Fall schon behandelt worden von Garlitz, L.t On abelian fields, Transactions of the
American Math. Society, vol. 35, pag. 122 (1933).
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n ^ n0 > nx > n2 > • • • > nT_x > nr 1

Man setze endlich

«. -1, a)

und fur aile q sei vQ+1 der groBte Exponent, so daB fur aile Automorphis-
men VQ aus 93

Q
und fur aile ganzen Zahlen F aus K die Kongruenz

VQT r (mod. ^e+i+i)

(im additiven Sinne) gilt. Speziell ist also vr+1 oo.

Unter diesen Voraussetzungen gilt der Satz:

1. Satz : Ist w der Exponent der Potenz, in der p im Fuhrer der zuge-
hôrigen Strahlklassengruppe auftritt, so gilt die Formel13) :

W —AnQ{vx — Vo) + ^l(^2 — Vi) + ••' +Wr-l(*V —«>r-l)|- (2)
^0 L J

Wir bezeichnen dann fp pw als den p-Fûhrer von f.
Da der Exponent W der Potenz, in der S$ in der Relativdifferenten 3)

von K in bezug auf k auftritt, gleich
W (no-l)(v1—vQ) + (n1—l)(v2—v1) + '- + (nr^~l)(vr—vr^1) (3)
ist, ergibt sich

W now — (vr+ 1) (4)
und damit

Endlich ist der Exponent der Potenz, in der p in der Relativdiskrimi-
nanten b von K in bezug auf k auftritt :

o

(6)

13) Vergleiche zu diesem Satze und den Formeln (3) und (6): Hasse, Helmut, Fuhrer,
Diskriminante und Verzweigungskorper relativ-abelscher Zahlkorper,
Journal fur die reine und angewandte Math vol. 162, pag 131 (1930); Hasse, Helmut,
Théorie des restes normiques dans les extensions galoisiennes, C. R. des
séances de l'Académie des Sciences, Paris, vol. 197, pag. 469 (1933); Hasse, Helmut,
Applications au cas abélien de la théorie des restes normiques dans les
extensions galoisiennes, C. R des séances de l'Académie des Sciences, Paris, vol 197,

pag 511 (1933); Vassihou, Ph., Bestimmung der Fuhrer der Verzweigungskorper
relativ-abelscher Zahlkorper. Beweis der Produktformel fur den

Fuhrer-Diskriminanten-Satz. Journal fur die reine und angewandte Mathematik,
vol. 169, pag 131 (1933); Hasse, Helmut, Klassenkorpertheone, Autographierte Vor-
lesung an der Universitat Marburg gehalten 1932/1933.
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Hat man insbesondere eine relativ-zyklische Erweiterung vom Prim-
zahlgrade l (wo l auch gleich 2 sein darf), so ist r 1, n ?i0 l, und
da die l—1 Elemente der Relativdifferenten 3) das Idéal ty gemàB der
Définition von vx in der {vx-\- l)-ten Potenz enthalten, und p *J3' ist,
wird gemàB (4), (3) und (1):

¦• 7 \ X • / \ / VA I / 'n0 ù

also
Iw l(v± + 1)

d. h.
w ^ -f- 1

und gemàB (4)

— W=W (l—l)w

Das liefert unter Beriicksichtigung von (6), da bekanntlich allgemein
ein Primideal p von k die Idéale b und f immer gleichzeitig teilt oder nicht
teilt, den in der Klassenkôrpertheorie wohlbekannten Satz14) :

2. Satz: Ist K relativ-zyklisch vom Primzahlgrade l uber k, und
b f lr~1 die Relativdiskriminante von K in bezug auf k, dann ist f der
Fuhrer der zugehôrigen Strahlklassengruppe vom Index l im Grund-
kôrper k.

Von hier an bis zum Schlusse dieser Arbeit sei k endlich immer ein
quadratisch-imaginàrer Zahlkôrper k ko(Vm)i wo m eine quadratfreie
négative ganze Zahl ist. Ferner soll e immer die Anzahl der Einheiten in
ko(Vm), also die Zahl 2 bzw. 4 bzw. 6 bedeuten, je nachdem m $ —2 il,
bzw. m — 1, bzw. m — 3 ist. Endlich bedeute Hstf) immer den
Quotienten aus der Anzahl der Strahlklassen, in die aile zum Fuhrer f
teilerfremden Idéale zerfallen, und der Klassenzahl von k. GemàB dem
Satze 118, Fueter S. 110, gilt der Satz:

3. Satz : Die Funktion ^(f) hat den Wert :

wo es(f die Anzahl der Strahleinheiten im Strahle mit dem Fuhrer f und
die Anzahl der zu f teilerfremden Kongruenzklassen (mod. f) in k ist.

14) Vergleiche z. B. Satz 26, S. 77 in Takagi, Teiji, Ûber eine Théorie des relativ
Abelschen Zahlkôrpers, Journal of the Collège of Science, Imp. Univ. of Tokyo,
Bd. 41, Art. 9 (1920).
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Im Falle m £ — 2 ± 1 ist also:

#,(f) JLç,(f) falls f kein Teiler von (2) ist,

Ht{\) ç>(f) falls f ein Teiler von (2) ist.

Im Falle m — 1 ist :

£Tf (f) i- ç>(f) falls f kein Teiler von (2) ist,

Hs(f) 1 falls f (1 + i) oder f (2) ist.

Im Falle m — 3 ist :

y Ç>(f) > ^lls f*(~3"*/~3) f * (2) ist

Y^(f) ' faUs f-(~3+2>""3) ist >

y f=(2) ist.

In den Fàllen m — 2 ± 1 ist iiberdies bekanntlich die Klassenzahl
des Grundkôrpers gleich 1.

Liegt im folgenden eine Différente vor, sei es eine absolute oder eine

Relativdifferente, und teilt man sie durch den zur Primzahl p bzw. zum
Primideal p teilerfremden Faktor, so wollen wir den Quotienten als die

p- bzw. p-Differente bezeichnen. Die p- bzw. p-Differente ist also immer
gleich 1 oder ein Potenzprodukt von nur in p bzw. p aufgehenden
Primidealen.

Da in der Relativdiskriminanten nnd daher auch in der Relativdiffe-
renten von K{pw}, w ^ 1, in bezug auf k nur Primideale aufgehen, die
Teiler von p sind, anderseits Jc{l} ein Ausgangskreiskôrper ist, kann
k{pw} aus Jc{l} nur entstehen durch Adjunktion eines bestimmten Unter-
kôrpers von c(ph) fiir genûgend groBes h; dabei ist naturlich p die in p
liegende rationale Primzahl. Ist insbesondere p p • p', p + p', so ist
die Relativdiskriminante irgend eines von k verschiedenen, aber k ent-
haltenden Unterkôrpers von k(c(ph)) in bezug auf k immer gleichzeitig
durch p und pf teilbar, und daher in diesem Falle

{}, w ^ 1

und, falls wx ^ 1 w2 ^ 1 ist:

k{pWlpfw*} k{pw} wo w Min. (wly w2) (7)
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Generell ist die triviale Tatsache zu beachten, daB wenn l£{f} durch
eine Reihe von Adjunktionen aus k gewonnen wird, man immer zuerst
die absolut-abelschen Bestandteile adjungieren darf.

5. In diesem Abschnitt soll p eine ungerade Primzahl sein, fur welche
in k Jco(Vm) die Gleichung p p, n(p) p2 gilt. p ist also zur Dis-
kriminanten von k teilerfremd.

GemâB Satz 3 von Abschnitt 4 ist in diesem Falle fur jede naturliche
Zahl w:

Mithin wird ftir die Kôrper-Relativgrade :

e e

Beim Ùbergang von K{1} zu ^{p} werden also nur relativ-zyklische
Kôrper adjungiert, deren Relativgrade zu p teilerfremd sind, beim Ùbergang

von K{pw} zu K{pw+1}, w^l, werden sukzessive zwei relativ-
zyklische Kôrper vom Primzahlgrade p adjungiert.

Wir bestimmen zunàchst den Fuhrer pw von k(c(ph)), h ^ 1, in bezug
auf den Grundkôrper k. In k(c(j^)) ist p typ^ip-v und ^J ein
Primideal 2. Grades von k(c(ph) und vom Relativgrad 1 in bezug auf k.
Ferner wird wegen der vollen Verzweigung :

> nh

Daher ist gemâB dem 1. Satz des 4. Abschnittes w h.

Da der Fûhrer von k{l} gleich 1 ist, folgt15)

w ^ 1

Beim Ùbergang von K{1} zu K{p} wird also c(p) adjungiert und ein
p + 1

nicht absolut-abelscher Kôrper vom Relativgrade ~
6

15) Vergleiche z. B. Satz 64, S. 71 der in Anmerkung 13 erwâhnten Vorlesungs-Autographie

von Basse.
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Beim Ûbergang von K{pw) zu K{pw+1}, w ^ 1 wird also der Kôrper
c(pw+1) vom Relativgrade p adjungiert und ein nieht absolut-abelscher
Kôrper vom Relativgrade p.

Anwendung auf die Teilungsgleichungen :

Beispiel fur m — 1 : K{1} k{l} k io(}/irï) ; e 4

Damit « Primideal 2. Grades in k wird, muB I I — 1 sein, d. h.
\ V

p 3 (mod. 4).

Sei f p (3)

Es muB fc{f} Z{f} k{l} (c(3)) io(>/—1, |/—3)
sein. Die Teilungsgleichung lautet bei Hagenbuch:

y3 3(52_6S_1 0

Ihre Wurzeln sind
3 ±2^3"

3

Sie sind in Einklang mit der Behauptung: if{f}

Beispiel fur m — 3: #{1} £{1} k io(^^3) ; c 6

Damit p ein Primideal 2. Grades in k wird, muB ^ + 3 und

1 — — i y aiso 79 2 (mod. 3) sein, mithin p 5 (mod. 6)
P /

Sei f p (5).

Es muB ifc{f} #{f} ib{l} (c(5)) fc(c(5)) c(15) sein.

Die Teilungsgleichung lautet bei Bindschedler :

T5 S4 — 25 S3 + 15 ®2 + 95 S — 5 0

Vermôge Adjunktion von V5 wird T5 ein Produkt von 2 Faktoren
2. Grades:

—(20

(S — (20 — 9^6)1
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Der erste quadratische Faktor zerlegt sich so :

25 + 9 VE 9 + 3 VI

[•-
also der zweite so:

25 — 9 VF

5+V5 X

25 5 +V5

S —
9—-3V5 X

25 9 — 3 V5 V=3 V —

Ein Vergleich mit den Werten fur die 5. Einheitswurzeln16) zeigt den
Einklang mit der Behauptung Ktf} &(c(5)).

6. In diesem Abschnitt soll p weiter eine ungerade Primzahl sein, fur
welche aber in h ko(Vm) die Gleichung p p • p/ gilt, wobei p £ p\
n(ip) n(pf) pist. p ist also zur Diskriminanten von h wieder teiler-
fremd. Man beachte hier generell die Formel (7).

GemâB Satz 3 von Abschnitt 4 ist in diesem Falle fur jede naturliche
Zahlw:

H,{&»)= — cp(pwp'w) —n{vwVfw) (l — —
6 6 \ p

Mithin wird ftir die Kôrper-Relativgrade :

{p-1)2 (p-
} : K{pw}) p\ w ^ 1

Beim Ûbergang von K{ï) zu K{p} werden also nur relativ-zyMische
Kôrper adjungiert, deren Relativgrade zu p teilerfremd sind, beim tîber-
gang von K{pw} zu K{pw+1}, w ^ 1, werden sukzessive zwei relativ-
zyklische Kôrper vom Primzahlgrade p adjungiert. Ferner ist :

H,(p») H9{V'W) \
also fur die Kôrper-Relativgrade :

~j)= P™-1 • — ; w

»•) Vergleiche z. B. S. 79 in Fueter, Rudolf, Synthetische Zahlentheorie, 1. Auf-
lage, Berlin und Leipzig 1917.
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Wir bestimmen zunâchst den Fûhrer von k (c(ph) ),h ^ 1, in bezug auf
den Grundkôrper k. In k (c(ph))ist p qp*^1 ^-^ und p' ty'p^ip-u
wo ^P und ^p; Primideale von k(c(ph)) sind, die den absoluten Grad 1

haben. Sowohl fur ^} wie flir S$f gilt die Aufstellung (8), und daher ist der
zugehôrige Fûhrer gleich ph - p/fl ph. Da der Fûhrer von k{l} trivialer-
weise gleich 1 ist, folgt analog :

k{pw} k{l} {c(pw)) w ^ 1

Beim Ûbergang von K{1} zu K{p) wird also c(p) adjungiert und ein
p 1

nicht absolut-abelscher Kôrper vom Relativgrad --
Weil K{p} das Kompositum der beiden Kôrper K{p} und K{p'} als

Unterkôrper enthâlt, wobei ûbrigens der Relativgrad von K{p) in bezug
auf dièses Kompositum nach dem 215. Satz, Fueter S. 236, hochstens

gleich e ist, ist der letztere Kôrper gerade ein beliebiger der beiden relativ-
konjugierten Kôrper K{p} oder K{p'}, von denen ja ein jeder ein nicht

absolut-abelscher Erweiterungskôrper von K{1} vom Relativgrade ~
ist.

Aus dem gleichen Grunde kann man K{p) ofiFenbar aus i?{l} gewinnen,
indem man sowohl K{p}, als auch K{pf} adjungiert. Da die beiden
Relativdifferenten dieser beiden Kôrper in bezug auf i£{l} zueinander
teilerfremd sind, ergibt die Adjunktion dièses Kompositums einen Kôr-

(P
]\2

j hat, so da8 K{p} in

bezug auf dièses Kompositum auch genau den Grad e hat. Nach Adjunktion

von K{p}, bzw. i£{p;} zu i£{l} sind dann die beiden weiteren Ad-
junktionen von K{pr}, bzw. K{p}, und in jedem Falle dièses weiteren
Kôrpers vom Relativgrade e zur Gewinnung von K{p} équivalent der

Adjunktion von c(p) zu if{p}, bzw. -K^p'}.
Beim Ubergang von K{pw) zu K{pw+1}, w ^ 1, wird jeweilen der

Kôrper c(pw+1) vom Relativgrade p in bezug auf K{pw) adjungiert und
ein nicht absolut-abelscher Kôrper, der in bezug auf K{pw} den Relativgrad

p hat. Dieser Kôrper ist gerade wieder einer der beiden relativ-
konjugierten Kôrper K{pw+1} oder K{p'w+l}, von denen jeder in bezug
auf K{pw} den Relativgrad p hat. Insbesondere ist also:

K{jfi°} K{p™} (c (0») K{p'»} (c (p™) w^l. (9)

Anwendung auf die Teilungsgleichungen :

Beispielfûrm — l: K{1} A;{1} k k^V^) ; e 4
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Damit p sich in zwei verschiedene Primideale zerlegt, muB j J

sein, d. h. p 1 (mod. 4).

+ 1

» f p (5) (2 + Q (2 — i)

Es muB Jfe{f} Z{f} k{l} (c(5)) Jc(c(5)) c(20) sein. Die Tei-
lungsgleichung lautet bei Hagenbuch:

T5 S4 — 12 ®3 — 26 S2 + 52 S + 1 0

Vermôge Adjunktion von /5 wird T5 ein Produkt von zwei Faktoren
2. Grades:

T5 [&— (6 — 4/5) S+(9 — 4/5)] [S2_(6+4/5) S+(9+4/ô)]

Der erste quadratische Faktor zerlegt sich so :

3 —2/5S —2 X

der zweite quadratische Faktor so :

+ 2/5
î —2 X

2/5 1/ 5 + /5 1/5-/5 (1
f 2 r 2 |J'

wie schon von Hagenbuch in Tabelle II angegeben. Ein Vergleich mit den
Werten fur die 5. Einheitswurzeln (siehe Anmerkung 16)) zeigt den Ein-
klang mit der Behauptung i?{f} c(20), denn i y— 1 liegt ja in le.

Beispiel fûrm ~3: K{1} Jc{l} Je kQ{V^Z) ; e 6.

Damit p sich in zwei verschiedene Primideale zerlegt, muB I 1 1

2 7TJ

d. h. p 1 (mod. 3), also p i (mod. 6) sein. Es sei immer q e 3

^ei f 2? (7) (7,^ — 2) (7, ^2 — 2).
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Es muB &{f} Z{f} k{\) (c(7)) &(c(7)) c(21) sein. Die Tei-
lungsgleichung lautet bei Bindschedler:

y? ge + 48 @5 _ 741 g4 _j_ 1924 Q* _ 363 S2 — 141 S + 1 0.

Vermôge Adjunktion von 1^21 wird T1 ein Produkt von zwei Faktoren
3. Grades. Der erste Faktor ist :

} S2_ 561 + 123^21
g _ (55 +

der zweite Faktor ist :

Ist Z e ' und bezeichnet man die beiden dreigliedrigen Perioden des

Kôrpers der 7. Einheitswnrzeln mit

ri Z + Z* + Z*

r)' Z3 + Z«+Z*
so wird wegen

V—3 =\V3\i 2Q+l
yiZï | >/7 | i 2 j; + 1 :

V2Î — (2 q + 1) (2 q + 1) (2 e + 1) (2 tj' + 1)

(2 e» + i) (2 4 + i) - (2 + i) (2 n' + i).
Der erste kubische Faktor von î1, hat die drei Wurzeln :

Si £{— 1 + 9 [2 (£ + 26) + 3 (Z» + Z») ] +
+ 3(2e + 1

S2 |{— 1 + 9 [2 (Z* + Z») + 3 (Z* + 23)] +
+ 3 (2 q + 1) [3 (Z2 —Z5) + 3 (Z —Z8) — 2 (Z4 — Z3) ] }

Ss |{— 1 + 9 [2 (Z4 + Z3) + 3 (Z + Z«)] +
+ 3(2g4- 1) [3(Z4 —Zs) + 3(Z2 — Z5) — 2(Z — Z6)]} ;

folglich hat der zweite kubische Faktor von T7 die drei Wurzeln :

— 1 + 9 [2 (Z + Z8) 4- 3 (Z2 + 25) ] 4-

4- 3 (2g« 4- 1) [3 (Z — Z6) + 3 (Z4 — Z3) — 2 (Z2 — Z6)] }
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S, - |{— 1 + 9 [2 (Z« + Z*) + 3 (Z* + Z3)] +
+ 3 (2 e2 + 1) [3 (Z2 — Z5) + 3 (Z — Z6) — 2 (Z4 -Z3) ] }

<56 £{ — 1 + 9 [2 (Z4 + Z3) + 3 (Z + Z«) ] +
+ 3(2g2+ 1)[3(Z4 — Z3) + 3(Z2 — Z5) — 2(Z — Z6)]}

und damit ist T7 in der Tat in c (21) in Linearfaktoren zerlegt.

Bemerkung : Die Formel (9) ist von grôBter Bedeutung bei der Berech-

nung konkreter numerischer Beispiele, denn sie gestattet (die Kenntnis
von K{1} naturlich vorausgesetzt), die Berechnung von K{pw), falls nur
die Teilungsgleichung TpW 0 in Linearfaktoren zerlegt werden kann,
d. h. also auch, wenn TpW 0 nicht bekannt ist oder wegen rechnerischen
Schwierigkeiten nicht in Linearfaktoren zerlegt werden kann. Denn man
beachte, daB der Grad von TvW 0 das fi*-1 (p— l)-faehe des Grades

von TpW 0 betràgt. Ferner zerfàllt TpW 0, w ^ 2, in K^^1} in

pw-2 JP Faktoren vom Grade p.

Wir geben fur den Fall w 1 je ein Beispiel fur Je ko(V—1) und
k &0(j/Zl3). Dabei ist also

K{p} K{V} (c(p)) K{p'} (c(p)) (10)

und der Grad von Tv 0 das (p — l)-fache des Grades von Tp 0

Beispiele fur die Benutzung der Formel (10) :

Beispiel fur m — 1 : K{1} k{l} k kQ{V—î) ; e 4.

£ei y 13, p (3 + 2i), pf (3 — 2i).

Die Teilungsgleichung fur den Fûhrer p lautet bei Hagenbuch:

Ihre Wurzeln sind:

5*

l/2 + 5i + 3l/3 1/
.\ _J_ 2l -f-4p|/ ; (- 4 ^ y -

F 2 (3 ~j— 2^) '
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dabei soll g e 3 sein, und die Détermination der Kubikwurzeln ist so

zu nehmen, da8 ihr Produkt

il
r

51+3^3 il 2 + 5i — 3^3
2(3 + 2i) r 2(3 + 2i) ~~ % '

Mithin wird, falls S eine beliebige der drei Wurzeln bezeichnet

i^) Jco(e£ 6)
d.h.

2(3+ 2i) +r 2(3 + 2t)

womit dieser Kôrper vom Grade 72 festgelegt ist, obwohl wir T13 0

nicht kennen, welche Gleichung vom Grade 36 ist.
21TJ

Beispielfilr m —S: K{1} Jc{l} Je kQ{V^H);e 6, ^ e 3

gct y 13, p (4 + Q) (3 g— 1), ?' (4 + e») (3 g2— 1).

Die Teilungsgleichung fur den Fûhrer p lautet bei Bindschedler :

TZQ_X S2 + (3 g— 1) (3 q + 2) S — (3 Q— 1) 0

Die Wurzeln dieser Gleichung sind :

— (3g—

Es ist daher
~Q) io(V=T, VT+~q)

Weil 4 + g quadratischer Nichtrest mod. p7 ist, hat die Primzahl 13

in jS^{p} die Primidealzerlegung :

13 $2 • <$' ; JV(?P) 13 ; ^(^0 132.

Da in einem absolut-galois'schen Kôrper aile Primidealteiler einer ratio-
nalen Primzahl gleichen Grad und gleiche Ordnung haben, gilt dies a
fortiori in einem absolut-abelschen Kôrper. Mithin ist K{p} nur relativ
abelsch uber K{1} h.

T$Qt^1 entsteht aus TSQ_1 durch den Automorphismus q-+ q2 und
daher wird Z{p'} h(VT+^) h(V—S> VÏ~+~Q*) •
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Nun ist
|/4 + Q • Va + q* VU

folglich erhàlt man fiir das Kompositum :

K{\}

ko(VYS) ist aber der Unterkôrper von c(13) vom absoluten Grade 2, wie
es die Théorie verlangt.

Die Teilungsgleichixng fiir p 13 ist bei Bindschedler nicht ausgerech-
net, aber wir kônnen sofort schlieBen :

h e ») K (V=
2 ni 27TÎ

c(39)

Damit ist eine einfache Festlegung fur diesen Kôrper vom absoluten
Grade 48 geliefert.

7. In diesem Abschnitt sei die Primzahl p weiter ungerade, aber Teiler
der Diskriminanten von k: p p2, n(p) p. GemàB Satz 3 von
Abschnitt 4 ist jetzt :

1 1 v— 1

3 p e

auBer im Falle m — — 3, p 3 w=l, wofûr

1
v

1
v V — 1

Der Fall m — 3 sei daher im folgenden zunâchst ausgeschlossen.

Es wird fur die Kôrper-Relativgrade :
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Beim tîbergang von K{1} zu K{p} werden also nur relativ-zyklische
Kôrper adjungiert, deren Relativgrade zu p teilerfremd sind, beim Ûber-
gang von K{pw} zu JT{p™+1}, w^l, nur ein relativ-zyklischer Kôrper
vom Primzahlgrade p adjungiert.

Wir bestimmen zunâchst wieder den Fûhrer von h{c(p^)), h ^ 1, in
bezug auf den Grundkôrper Je. Es sind zwei Hauptfaile zu unterscheiden :

1. Hauptfall. p_x
Es sei p 3 (mod. 4) und m — p (— 1) 2 p. Dann ist

(]/ pET~\
Je ko(Vm) ko\ f (—1) 2 p) ferner Jc(c(ph)) c(ph) und gemâB

Abschnitt 2 ist Je Jc{l}. In Jc(c(ph)) wird

Wegen der vollen Verzweigung wird

^ 1

v0

Nach dem 1. Satz von Abschnitt 4 ergibt sich: w 2h — 1

2. Hauptfall. p_1
Es sei nicht gleichzeitig p 3 (mod. 4) und m — p (— 1) 2 j?

Dann hat gemâB Abschnitt 2 der Kôrper Je \ j (—1) 2 p) der vom
Relativgrade 2 in bezug auf A ist, die Relativdifferente 1 in bezug auf Je.

(y et~\
Da p in Je \ j (— 1) 2 pj unverzweigt ist, gibt es zwei Unterfàlle:

1. Unterfall.

p wird in Je \ y (— 1) 2 p) ein [Primideal vom 2. Relativgrad. Dann
ist in Jc(c(ph)) :
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wo ^î ein Primideal von k (c (ph) ist, das in bezug auf k den Relativgrad
2 hat. Mithin ergibt sich fur die Adjunktion von c (ph) zu k und das Primideal

$J:

©=3z)3: 930 3 95 ^93x3 952 3 933 ^ * -3 93^3 93^93r^g ; r^h.
Hier ist die Ordnung n von © gleich n ^p7*"1 (î? — 1), aber die Werte fur
die ni und v§\ j 0, 1, 2, h r, sind die gleichen wie im 1. Haupt-
fall, und daher ergibt sich wieder w 2 h — 1.

2. Unterfall.

p zerlegt sich in k \ y (— 1) 2 p J in zwei voneinander verschiedene

Primideale vom 1. Relativgrad. Dann ist in k(c(ph)) :

wo $ und tyf zwei voneinander verschiedene Primideale von k(c(ph))
sind, die in bezug auf k den Relativgrad 1 haben. Mithin ergibt sich fur
die Adjunktion von c(ph) zu k und jedes der beiden Primideale ^} und S$':

Hier ist die Ordnung n von © gleich w phr~1{p— 1), aber die Werte
flir die ni und vô ; y 0, 1, 2, h r, sind nochmals die gleichen
wie im 1. Hauptfalle, und folglich ergibt sich wiederum w 2 A— 1.

Durch InduktionsschluB nach h ergibt sich in jedem Falle :

Beim Ûbergang von ^{1} zu K{p} wird also der Kôrper c(p) adjun-
P \

giert, der in bezug auf K{1} den Relativgrad *-—-— hat. Denn da

m 4= — 1 ist, und ebenso m — 3 ausgeschlossen wurde, ist e 2.

Beim Ûbergang von l£{p2M'-1} zu K{p2w}, w ^ 1, wird je ein nicht
absolut-zyklischer Kôrper vom Relativgrade p adjungiert; beim Ûbergang

von K{p2w} zu K{p2w+1}, w ^ 1, der Kôrper c(pw+1), der in bezug auf
X{p2w} den Relativgrad ^? hat.
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Im Falle m — 3 p 3 wird fur w I> 2 :

#, (p") 3^-2 w ^ 2

und daher wegen i/s(p) 1 :

Fur w ;> 3 bleibt die Formel

p 3 ; w; ^ 3

erhalten.

Fur A ^ 2 wird bei der Adjunktion von c(3^) zu Je:

p ^}pa"1

wo ^P ein Primideal 1. Grades von c(3h) ist. Wegen der vollen Verzwei-

gung wird :

h—1

v2 =p2-

und wie frûher wird w 2 A — 1. Mithin ist zunàchst fur w ^ 3 :

Wie man sofort sieht, bleibt dièse Formel trivialerweise auch richtig fur
w 1 und w 2, so daB dièse Formel fur jeden in diesem Abschnitt 7

betrachteten Fall richtig bleibt.
Beim Ûbergang von if{p2w>} zu i?{p2M?+1}, w ^ 1, wird mithin der

Kôrper c(3w?+1) adjungiert, der in bezug auf K{p2w} den Relativgrad
p 3 hat. Beim Ubergang von K{p2w+1} zu K{p2w+2}, w^l, wird ein
nicht absolut-zyklischer Kôrper vom Relativgrade 3 adjungiert.

Anwendung auf die Teilungsgleichungen :
ITTi 2TTJ

Sei q e 3 Z e 9 Bindschedler gibt folgende Teilungsgleichungen

an:
f p3

T{2Q+1)S=& — 3 S2 — 24 S— 1-0
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Sie ist das Produkt der 3 Linearfaktoren :

und
k(Zt + Z-*) ko(Q, Z' + Z~i) ko(Z) c(9); j - 1, 2, 4

EE S9 — 9 S8 + 684 S? — 3 972 ©• +
+ 12 033 ®5 — 19 647 S4 — 3 318 S3 — 6 111 S2 + 657 ® — 1 0

In Jco(Zi+Z~i) zerfallt T(2Q+1)* in das Produkt von 3 Faktoren
3. Grades:

T(2(?+1)4EE [S3—3 e2—3{—7S+27(Z1+Z-1) + Sl(Z2+Z-2)} S—1] X

[S3—3 S2—3{—73+27(Z2+Z-2) + 81(Z4+Z~4)} S—1] X

[S3—3 S2—3{— 73+27(Z4+Z-4)+ 81(Z1+Z~1)} S— 1],
und jede Wurzel legt den gleichen relativ-zyklischen Kôrper vom
Relativgrad 3 in bezug auf c(9) fest, der nicht absolut-abelsch ist.

8. In diesem Abschnitt sei p 2 und ms3 (mod. 4). Weil 2 in der

Diskriminanten von le ko(Vm) aufgeht, ist 2 p2, n(p) 2. Nach
Satz 3 von Abschnitt 4 wird, fails m ^ — 1 ist :

#s(p) 1, H8(V2) 2, H8{

Folglich ist :

K{V}
: K{V}) 2 ;

2, u; ^ 3

Beim Ûbergang von K{pw} zu K{pw+1}, w 1 und w ^ 3, wird also

je ein relativ-quadratischer Kôrper adjungiert.
Fur m — 1 ist p (1 + i) und

Mithin ist

und
(K{p»*1} : X{pw}) 2 w ^ 3.
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Erst von w;=3 an wird also beim Ûbergang von K{pw} zu K{pw+1}
jeweilen ein relativ-quadratischer Kôrper adjungiert.

Da k{l} den Kôrper Jco(V—1) enthâlt, anderseits jeder Unterkôrper
eines Kôrpers c(2h°), h0 ^ 3, der den Kôrper fco(i/ITî) c(4) enthàlt,
ein Kôrper c(2^), 2 ^h'0<,h0 ist, geniigt es, den Fûhrer von &(c(2A°)),
wo hier und im ganzen Abschnitt h0 2^ 3 sei, in bezug auf den Grund-
kôrper k zu bestimmen.

Es sind 2 Hauptfàlle zu unterscheiden :

1. Hauptfall : m t — 1

Dann hat gemàB Abschnitt 2 der Kôrper k(V—1), der vom Relativ-
grade 2 in bezug auf k ist, die Relativdifferente 1 in bezug auf k. Da p in
k(V—1) also unverzweigt ist, gibt es 2 Unterfâlle:

1. Unterfall: m 3 (mod. 8).

p wird in k(V—1) ein Primideal vom 2. Relativgrad. Dann ist in
k(c(2h°)) :

p ^2^°-2

wo ^3 ein Primideal von k(c(2h°)) ist, das in bezug auf k den Relativgrad

2 hat. Mithin ergibt sich fur die Adjunktion von c(2h°) zu k und das
Primideal ^jî:

r h0— 2,

nhQ_z 2

v0 — 1 <v1=22-l<v2= 23-

Nach dem 1. Satz von Abschnitt 4 ergibt sich w 2 (h0 — 1).

2. Unterfall: m l (mod. 8); ((m * — 1))

p zerlegt sich in k(V—1) in zwei voneinander verschiedene Prim-
idéale vom 1. Relativgrad. Dann ist in k(c(2hQ)) :

p

wo ^} und ^3; zwei voneinander verschiedene Primideale von k(c(2h°) sind,
die in bezug auf k den Relativgrad 1 haben. Folglich ergibt sich fur die

Adjunktion von c(2h°) zu k und jedes der beiden Primideale S$ und S$f:
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r Ao— 2,

2 > nh^2 1

Da die Werte fur die nj und vjf j 0, 1, 2, h0 — 2 r, die gleichen
sind wie im 1. Unterfall, ergibt sich wieder w 2 (h0 — 1).

2. Hauptfall : m — 1

Es ist k k0 (V1^!), femer k(c(2h°)) c(2A°). In c(2A°) wird:

p (1 + i) ^hQ'2

wo SÇ ein Primideal von c(2h°) vom absoluten Grade 1 ist. Wegen der
vollen Verzweigung wird:

r=h0 — 2

v0 — 1 <v1=2*—I<v2 23—1<

Aus dem gleichen Grande wie eben wird wieder w 2 (h0 — 1).

Folglich wird in jedem Falle :
rw+21

Denn zunâchst ist dièse Formel bewiesen fur w ^ 4, da aber c(4) in k{l}
steckt, gilt sie trivialerweise auch fur w 1, 2 und 3.

Ist daher m £ — 1, so wird beim Ûbergang von iC{p} zu K{p2} ein
relativ-quadratischer Kôrper adjungiert, der nicht absolut-abelsch ist.

Fur beliebiges m 3 (mod. 4), also inklusive m — 1 wird beim
Ubergang von Kffî™-1} zu K{^w}, w ^ 2, der Kôrper c(21c+1) adjungiert,
der in bezug auf jR^p21^1} relativ-quadratisch ist, beim Ûbergang von
K{p2w} zu K{p2w+1}, w ^ 2, ein relativ-quadratischer Kôrper, der
absolut-abelsch ist.
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Anwendung auf die Teilungsgleichungen :

Beispiele fur m — 1. Nach Hagenbuch wird:

Dièse Gleichung hat die Wurzeln 3 ± 2 ]/2 womit
stâtigt wird.

f P5 (1 + if ¦

c(8) be-

^ S4 + 20 S3 — 26 S2 + 20 S + 1 0

Dièse Gleichung hat die Wurzeln:

3>4 _ 5

und

so daB

f - P6 (1 + i)B.

r(1+i)i S8 — 88 S7 + 92 ©• — 872 S5 +
+ 1 990 S4 — 872 ®3 + 92 ®2 — 88 S + 1 0

Dièse Gleichung hat die Wurzeln:

21/2) -(1 + 2 V2) VY+VÎ]

<S7,8= 11 - 8 V2- (8 - 4 ^2) Vl-V2 ± 2 [ (3 - 2 V2) - (1 - 2 V2) V\ - V2]

Wegen ko{i,V2 + V2) c(16) wird also JT{p6} c(16) (^ +
Weitere Beispiele fur die Fuhrer f (2) p2 und f (4) p4 findet

man in Fueter, S. 352/353 fûr m — 5 und m — 13.

9, In diesem Abschnitt sei weiter p 2, aber m ± 2 (mod. 8). Da
wieder 2 p2, n(p) 2 ist, gelten die gleichen Werte fur H8(pw), w ^ 1,

wie im letzten Abschnitt fur m s 3 (mod. 4), m 4= — 1
» und mithin

auch fur die Relativgrade (i^p™} : -^{p^-1}
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Weil V—1 nicht in k{ï) enthalten ist, gilt im relativ-quadratischen
Erweiterungskôrper k(V—1) die Primidealzerlegung

und da die ganze Zahl die Relativdifferente — i Vm in bezug auf

k hat, ist die Relativdifferente von k(V—1) in bezug auf k gleich p* oder
p*2, also die Relativdiskriminante gleich p oder p2. Nach Satz 2 von Ab-
schnitt 4 wird der Fùhrer fur die Untergruppe vom Index 2 im Grund-
kôrper k resp. gleich p oder p2. Nach wiederholt angewandtem Schlusse
ist daher entweder k{p} k{\) (V'::=:ï) oder &{p2} k{\} (V^). Das
erstere ist aber auszuschlieBen, da K{p} K{1}, also auch k{p}
ist, und folglich V—1 in k{l} wâre, was nicht der Fall ist. Da
ebenfalls in k{l} liegt, kann man schreiben:

Nach einer schon gemachten Bemerkung genûgt es daher, fiir die Er-
weiterung k(c(2h°)), h0 ^ 4, den zugehôrigen Fùhrer im Grundkôrper zu
bestimmen.

Es sind wieder zwei Hauptfaile zu unterscheiden :

1. Hauptfall : m$ — 2

mDer Kôrper k (V±2) k(VjLt), wo fi=—— hat die Relativdifferente 1

± ^
in bezug auf k und man sieht sofort17), daB zwei Unterfâlle zu
unterscheiden sind:

1. Unterfall: m 8 ± 2 (mod. 16).

In diesem Falle erhôht p in k(V± 2) seinen Grad von 1 auf 2. Ist daher
$P der Primidealteiler von (2) in k(c(2h°)) h0 ^ 4 so wird

p g}2
° 2

und fur dièses ^5 in bezug auf k :

r hQ — 2,

2° >w2 2 ° >• -

GemâB Satz 1 von Abschnitt 4 wird w 2h0 — 3.

17) z. B. nach Satz 8, S. 377/378 in Hilbert, David, Ûber die Théorie des relativ-
quadratischen Zahlkôrpers, Gesammelte Abhandlungen, 1. Band, Berlin 1932,
S. 370/482.
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2. Unterfall: m =±2 (mod. 16). ((m * — 2))
In diesem Falle zerfàllt p in k(V±2) k(Vfi) in zwei voneinander

verschiedene Primideale vom 1. Relativgrad. In k(c(2h°)), h0 ^ 4, wird

und fur das Primideal *p in bezug auf le :

=zh0 — 2.

Da die Werte fur die ns und ^ ; j 0, 1, 2, h0 — 2 r, die gleichen
sind wie im 1. Unterfalle, wird wieder w 2 hQ — 3.

2. Hauptfall : m — 2.

Es ist K{1} k{l} k kQ{V~^2), also ife(c(2*«)) c(2*«), Ao ^ 4.
In Jfc(c(2A<>))wird

wo S$ vom Relativgrad 1 in bezug auf k ist. Wegen der vollen Verzwei-

gung wird :

3sï^33 ^93O 3 »! 3 932 d • • -3 »*,_, 3 93,O_2^(£ ;

r=h0 — 2.

n no=2^ x

2 -

Da die Werte fur die ni und die vi, y — 0, 1^ 2, hQ — 2 r, dieselben
sind wie im 1. Hauptfall, folgt wieder w 2h0 — 3.

Nach oft angewandtem Schlusse wird mithin:

ol 2 J\ -> o
/ / .—

Nach unserer Herleitung gilt dièse Formel zunâchst nur fur w ^ 5, wegen
k{p2} k{l} (V—1) ist sie aber auch fiir w ^ 2 richtig, dagegen nic
fur w 1.

Wir fassen zusammen: {p} {} ; {p} {p} {}(
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fûr w ^ 2 entsteht K{p2w} aus K{p2w-X} durch Adjunktion eines relativ-
quadratischen Kôrpers, der nicht absolut-abelsch ist, K{p2w+1} aus
i^p2™} durch Adjunktion von c(2w+2)9 welcher Kôrper relativ-quadratisch
in bezug auf K{p2w} ist.

Anwendung auf die Teilungsgleichungen :

Beispiele fur die Fiihrer f (2) p2 und f (4) p4 findet man in
Fueter, S. 352/353 fûr m — 2, — 6 und —-10.

10. In diesem Abschnitt sei weiter p 2, aber m 5 (mod. 8). In k

ist 2=p, n(p) 22. Naeh Satz 3 von Abschnitt 4 wird, falls m + — 3 ist:

Hs(v) 3 Hs(pw) 3 • 22w~s t6? ^ 2

Beim Ûbergang von K{1} zu K{ip} wird also ein relativ-zyklischer
kubischer Kôrper adjungiert, der gewiB nicht absolut-abelsch ist, da die
Galois'sche Gruppe von c(2*°), h0 ^ 2, die Ordnung 2A°"1 hat, beim Ûbergang

von Kty™"1} zu K{pw}, w ^ 2, je ein relativ-quadratischer Kôrper.

Fur m —3 ist:
Hs(p) 1 Hs(p™) 22^ w ^ 2

Es ist folglich
iT{p} Z{1} k k0 (V=3)

dagegen wird beim Ûbergang von ^{p™-1} zu K{pw} w ^ 2, je ein relativ-
quadratischer Kôrper adjungiert wie im allgemeinen Falle m 5

(mod. 8).

In jedem Falle (m ^ — 3, m — 3) gilt weiter:

Da die 2-Difïerente von k gleich 1 ist, anderseits die absolute Différente
von ko(V—1) gleich (2) ist, ist die Relativdifferente von k(V—1) in
bezug auf k gleich (2), also die Relativdiskriminante gleich (4) p2.

Nach dem 2. Satz von Abschnitt 4 ist folglich

*{P2}

Wie wir schon zweimal benutzt haben, genûgt es daher, fur die Erweite-

rung k(c(2h°)), A0^3, den zugehôrigen Fiihrer im Grundkôrper zu be-
stimmen. Fur dièse Erweiterung von k wird:
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wo ^J ein Primideal von k(c(2h°)) ist, das in bezug auf k den Relativ-
grad 1 hat. Fiir <P wird in bezug auf k :

3 93,

'
(H)

GemàB Satz 1 von Abschnitt 4 wird w h0 und

(c(2w)) w ^ 1

Zunâchst gilt dièse Formel nur, falls w ^ 3 ist, nach den schon oben ge-
machten Bemerkungen ist sie aber aueh fiir w 1 und w 2 richtig.

Wir fassen zusammen: Fiir m — 3 ist i£{p} iT{l}, im allgemeinen
Fall dagegen entsteht K{p} aus ^{1} durch Adjunktion eines relativ-
zyklischen kubischen Kôrpers, der nicht absolut-abelsch ist. In jedem
Falle entsteht dann K{p2} aus K{p} durch Adjunktion von V—1, und
fur w ^3 der Kôrper ^{p^} aus i^p^-1} durch Adjunktion von c(2w),
welcher Kôrper in bezug auf i^p1^1} relativ-quadratisch ist, und Adjunktion

eines weiteren relativ-quadratischen Kôrpers, der nicht absolut-
abelsch ist.

Anwendung auf die Teilungsgleichungen.

Beispiele fiir m — 3. Nach Bindschedler wird:

f P2 W

T4-S2 + 10S —2 0

Die Wurzeln sind S — 5 ± 3 VU womit Z{p2} i?{4} k(V^Î)
ko{V—3 V^-î) ko(V^H VU) c(12) bestàtigt wird.

f - P3 (8)

T8 s g8 _ 104 37 + 952 g6 _ 4 124 ©5 + 3 430 ®4 — 1 544 S3 +
+ 7 336 S2 + 616 (S — 2 0

Durch Adjunktion von VU zerfàllt dièse Gleichung in die beiden
Polynôme 4. Grades:
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|<S4 — 4(13 — 6^3) S3 —12(1— 3V3)S2—2(47—9>/3)S—(5 — 3V

S4 —4(13+ 6^) S3 —12(1+31^3) 62—2(47+9 F^) S—(5 + 3^3)

Der zweite dieser beiden Faktoren 4. Grades zerlegt sich durch Adjunk-
tion von V2 in die beiden Polynôme 2. Grades:

S« — |(26+121^3) — (18+9^3) V2 S + | (7 — 6 VI) + 9 ~*

S2 —I (26 + 12 ^3) + (18 + 9 ^3) VI S + (7 — 6 VI) —9 3~1

Der zweite dieser beiden quadratischen Faktoren hat die beiden Wurzeln :

S=!{(26+121

+ (18 + 9^3) V~2 ± (9 + 6VI) V~2 • V(±V$ — \) + (ZVH —

Es ist mithin
jf{8} c(24) (1/(4^3— 1) + (3^3 — 1) V2)

Beispiele fiir die Fûhrer f (2) p und f (4) p2 findet man in
Fueter, S. 352/354 fur m — 11, — 19, — 35, — 43, — 51.

11. In diesem Abschnitt sei weiter p 2, aber m 1 (mod. 8). In k

ist 2 p • p7, p + p7s tfc(p) ji(p') 2 Man beachte hier generell die
Formel (7).

Nach Satz 3 von Abschnitt 4 wird:

H8(p) 1 H8lp°) 22^3 w ^ 2

Es ist folglich:
K{p} K{1}9

(K{p2} : iT{p}) 2

und fur t# ^ 2 : (^{p^4"1} : K{pw}) 4

Ferner ist fiir jeden der beiden Primteiler p 4= p; von (2) :

H8(p) 1 H8(pw) 2W-2 w ^ 2

folglich :

2 w ^ 2
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Weil die 2-Differente von Je gleich 1 ist, anderseits die absolute Différente

von ko(V—1) gleich (2) ist, ist die Relativdifferente von k(V—1}
in bezug auf k gleich (2), also die Relativdiskriminante gleich (4)
p2 • p'2. Nach dem 2. Satz von Abschnitt 4 ist mithin:

• p'2} H1) (V-l) - *{1} (c(22))

Es genûgt also wieder, fur die Erweiterung k(c(2ho)), h0 ^ 3, den zuge-
hôrigen Fuhrer im Grundkôrper zu bestimmen. Fur dièse Erweiterung
von k wird :

p «p.»-1 p' vp'^"1

wo *J} und S$f den absoluten Grad 1 haben. Sowohl fur ty wie fur S$r gilt
die Aufstellung (11) des letzten Abschnittes, und daher wird w h0 und:

k{pw} k{vw • p'w} k{l} (c{2w)) w à 1

Wir fassen zusammen: Es ist K{p} K{1}; K{p2} K{1} (V^). Fur
w ^ 2 entsteht J?^™*1} aus ii{^} durch Adjunktion von c(2w+1), welcher
Kôrper in bezug auf K{pw} relativ-quadratisch ist, und Adjunktion eines

relativ-quadratischen Zahlkôrpers, der nicht absolut-abelsch ist.

Anwendung auf die Teilungsgleichungen :

Fur m — 7 und die beiden Fuhrer f (2) und f (4) findet sich
dièses Résultat bestâtigt in Fueter, S. 352.

12. Wir bestimmen in diesem Abschnitt &{f} fur den Fall, daB f weder
das Einheitsideal noch ein Stammideal ist.

Da j£{f} in bezug auf k eine nur durch die Primidealteiler von f teilbare
Relativdiskriminante hat, enthâlt die Relativdiskriminante von &{f} in
bezug auf k natûrlich auch nur Primideale, die in f aufgehen.

Sind fx und f2 zunâchst irgend zwei teilerfremde Idéale, und f fifg,
so enthâlt Ktf} das Kompositum X{fx} (i£{f2}) 18)> also a fortiori das

Kompositum ktf^ (&{f2}), folglich enthâlt i{|} gemâB seiner Définition

Bemerkung : Bedeutet k* den grôfiten absolut-abelschen Unterkôrper
von if{fj} (^{fg}), so umfaBt k* nach seiner Définition das Kompositum
&{fi} (&{f2}) • Es ist aber wohl zu beachten, daB k* nicht gleich fc{fJ (&{f2})
zu sein braucht, noch daB fc* einen Relativgrad in bezug auf &{fi}

18) Fueter, Satz 215, S. 236.

îiq8 Commentarii Mathematici Helvetici LLO



zu haben braucht, der ein Teiler von e ist19). Ist z. B. p p*p', p + p'>
und p ungerade, ferner fx pw, f2 p/M>, w ^ 1, so ist

dagegen fc* nach unseren Ausfûhrungen in Abschnitt 4 und 6 ein Kôrper,
der dadurch entsteht, daB man zu k{l} einen bestimmten Unterkôrper

von c(pw) vom absoluten Grade p™"1 • — adjungiert. Da dieser

Kôrper auch in bezug auf Jc{l} diesen Grad hat, wird:

Da c(pw) in i£{f} ist, ergibt sich uberdies, daB i?{f} in diesem Falle aus

Ktfi} (i£{f2}) durch Adjunktion von c (pw) entsteht, welcher Kôrper in
bezug auf KtfJ (JST{f2}) genau den Relativgrad e und uberdies eine von 1

verschiedene ^-Relativdifferente hat.
Um die Betrachtungen weiter unten nicht unterbrechen zu mûssen,

schalten wir hier noch eine zweite Bemerkung ein.
Ist p eine ungerade Primzahl und w eine beliebige natiirliche Zahl oder

p 2 und dann w ^ 2, so bedeute c*(pw+1) den Kôrper c(pw+1) oder
irgend einen verschrânkten Kreiskôrper, der c (pw) enthàlt und in dessen

Huile c(pw+1), aber nicht c(pw+2) steckt. Da die Relativdifïerente von
c(pw+1) in bezug auf c(pw) gleich p ist, ist in jedem Falle die p-Relativ-
différente von c*(pw+1) in bezug auf c(pw) gleich p.

Im folgenden sei f2 ein Stammideal, fx ein von (1) verschiedenes Idéal,
fur welches die Normen von ^ und f2 zueinander teilerfremd sind, und
f fif«-

Es sei zunaclist f2 ungerade

Wir wollen im weiteren voraussetzen, daB Jctfi} ein Ausgangskreis-
kôrper ist. Falls ft auch ein Stammideal ist, ist dièse Voraussetzung
gemaB den Ausfiihrungen im 5. bis 11. Abschnitt gewiB erfûllt. Da das

Kompositum von zwei Ausgangskreiskôrpern wieder ein Ausgangskreis-
kôrper ist, ist dann k^^} (&{f2}) ein Ausgangskreiskôrper.

Fur das Stammideal f2 gibt es folgende Môglichkeiten :

a) f2 pw, w ^ 1, wo p p ist. Dann ist gemàB dem 5. Abschnitt
&{f2} h{\} (c(pw)), also der Kôrper c(pw) in kfa} (&{f2}). Wir wollen
annehmen, daB

") Vergleiche den eben zitierten Satz 215, Fueter, S. 236.
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und versuchen, von fc{fj} (&{f2}) zu &{f} aufzusteigen, indem wir einen
Kôrper c*(pw+1) vom Relativgrade p adjungieren. Ist *P* ein Primideal
des Erweiterungskôrpers, welches das Primideal S$ von &{fi} (&{f2}) und
das Primideal p von k teilt, so ist ^3 S$*p. Sind w, n0, W, r und vr die
Werte der Formel (5) fur das Primideal *JJ und die Erweiterung von k zu
Mfi) (^W) un(i w*> no> W*, r* und v** die Werte derselben Formel fur
das Primideal ^}* und die Erweiterung von k zu &{fx} (&{f2}) (c*(pw+1)),
so ist n0 der Exponent der Potenz, in der ty in p aufgeht, und n* pn0 ;

r* r + 1, v** + 1 v*+1 + 1 p(vr+ 1), ferner gemàB der oben ge-
machten Bemerkung und nach. dem Satz der Zusammensetzung der
Relativdifferenten bei sukzessivenKôrpererweiterungen : W*= pW-\- pnOi
also :

W* + tâ + l) (pW + pno) + p(vr+l) WjfK+1)
n* pn0 n0

Mithin mu8 f durch pw+1 teilbar sein, was einen Widerspruch liefert. Die
Galois'sehe Gruppe der Erweiterung von &{fJ (i{f2}) zu i{f} kann also
nicht dadurch reduziert werden, daB man einen Kôrper c*(pw+1) vom
Relativgrade p adjungiert.

b) f2 pw • pfw', w ^ 1, wr ^ 1, wo p p • p;, p 4: p' ist. Wir dûrfen
immer annehmen, daB wir die Bezeichnung so gewàhlt haben, daB

w^wr ist. Dann ist nach Abschnitt 4 und 6 der Kôrper &{f2}=&{l} (c(pw)
und es gilt der gleiche SchluB und dieselbe Aussage wie bei a).

c) f2 pw, w ^ 1, wo p p • p', p t£ p' ist. GemâB Abschnitt 4 ist
&{f2} A;{1} und daher kfa} (i{f2}) ^{fi}- Versucht man, von ^{f!} zu
&{f} aufzusteigen, indem man irgend einen Unterkôrper von c(p2) vom
Primzahlgrad q, wo g ein Teiler von p(p — 1) ist, oder einen verschrànk-
ten Kreiskôrper, in dessen Huile ein solcher Kôrper steckt, zu
adjungieren, so ist die p '-Relativdifferente gewiB von 1 verschieden, mithin
miiBte f durch p; teilbar sein, was einen Widerspruch ergibt.

d) f2 pw, w ^ 1, wobei p p2 ist. Ist m ^= — 3 oder m — 3,

dann aber w ^ 3, so ist nach Abschnitt 7:

Eine analoge Ùberlegung wie unter a) zeigt, daB die Galois'sehe Gruppe
der Erweiterung von &{fj (&{f2}) zu &{f} nicht dadurch reduziert werden
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kann, da6 man einen Kôrper c* \ ^ / vom Relativgrade p ad»

jungiert. Ist m — 3 und w 1 oder w 2, so ist nach Abschnitt 7 :

K{V*} Z{p} Z{1} k 4,(^=3) •

Wie man mit Hilfe der Ausfuhrungen am Ende des 7. Abschnittes er-
kennt, bewirkt die Adjunktion eines Kôrpers c*(32) zu i{fx} (&{f2})
&{fi}> daB f durch p3 teilbar sein mtiBte gegen Annahme.

Nimmt man jetzt spezieller an, daB auch fx ein ungerades Stammideal
ist, und vertauscht man die Rollen von fj und f2, so erkennt man, daB

Mithin ist i{f} in diesem Falle ein Kreisausgangskôrper.
Durch Itération unserer SchluBweise sieht man ein, daB falls man

ein vom Einheitsideal verschiedenes ungerades Idéal f als Produkt von
Stammidealen darstellt, deren Normen paarweise zueinander teilerfremd
sind : T

(n(f.),n(f#))=l s^t
t=i

Jctf} das Kompositum der Kôrper &{fJ, t 1, 2, T ist. Da die Kôrper
&{ft} in Abschnitt 4—7 bestimmt wurden, ist damit Jfc{f} fur ein beliebiges
ungerades Idéal bestimmt, und &{f} ist ein Ausgangskreiskôrper.

Es sei f2 gerade

Dann ist fx ungerade und Jctfi}, wie wir eben sahen, ein Ausgangskreiskôrper,

ebenso &{f2} gemâB Abschnitt 8—11, mithin auch k{^x} (A;{f2}).

Ferner kann die Galois'sche Gruppe von &{f} in bezug auf Jctfy} (&{f2})
nach dem eben bewiesenen hôchstens noch durch Unterkôrper von c(2h°)

fur geniigend groBes h0 reduziert werden. Wir behaupten:

(12)

Wir unterscheiden folgende Fàlle:

a) m 3 (mod. 4), 2 p2, f pw, w ^ 1. GemàB Abschnitt 2 ist

V—1 in h{\) und gemâB Abschnitt 8 :

Es sei zunàchst w ^ 2. Dann erkennt man mit Hilfe der Ausfuhrungen
in Abschnitt 8 sofort, daB die Galois'sche Gruppe von &{f} in bezug auf
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p
(fc{f2})nichtdadurchreduziertwerdenkann, daBman 2* 2 *

adjungiert, denn sonst wâre, falls w ungerade ist, f genau durch pw+1, falls
w gerade ist, f genau durch pw+2 teilbar. In jedem Falle wâre f durch
pw+i teilbar, was einen Widerspruch ergibt. Ist w 1 und adjungiert
man c(23), so wiirde f durch p4 teilbar, was ebenfalls einen Widerspruch
ergibt. Es gilt mithin im Falle a) die Formel (12).

b) m ± 2 (mod. 8), 2 p2, f2 p", w ^ 1. GemâB den Ausfûh-

rungen in Abschnitt 2 und 9 ist V±2 in &{1}; K{p} K{1} und fur
w ^ 2 :

—

Es sei zunâchst w ^ 3. Dann kann man die Galois'sche Grappe von

in bezug auf i{fi} (^{f2}) nicht dadurch reduzieren, dafi man c \2L 2 J J

adjungiert, da sonst f mindestens durch pw+1 teilbar wâre. Fur w 2 ist
c(23) in &{f2} und die Adjunktion von c(24) wiirde bedingen, da6 f durch
p5 teilbar wâre. Sei w 1. Dann ist Y—1 nicht in Jc{p}. Die Adjunktion
von V— 1 oder, was auf dasselbe herauskommt, von Vzf2, also von
c(23), wiirde bedingen, daB f durch p2 teilbar wâre. Ist m — 2 (mod. 8),

so ist (12) bewiesen. Ist m 2 (mod. 8), so kônnte noch einer der beiden

Kreiskôrper Jc0 (!/-(-2 + V2 adjungiert werden. Ist ^3* ein Primideal

von &{fi}(&{p}, l//=j=2 + 1^2 welches p teilt, so haben fur das Primideal

^3* und die Erweiterung von Je zu

+ V2 die GrôBen der Formel (5) folgende Werte:
n*= 2, Tf* 5, r* 1, t?*+ 1 5, denn die Relativdifferente von

in bezug auf ^(V^) ist gleich 2 V± 2 + V~2 • Es folgt

f miiBte also durch p6 teilbar sein. Mithin ist auch im Falle m 2

(mod. 8) die Formel (12) bewiesen.

c) m 5 (mod. 8). Es sei f2 pw, w ^ 1, wo p 2, w(p) 22 ist.

Nach Abschnitt 2 ist der Durchschnitt von k{l} und c(23) der Kôrper der
rationalen Zahlen und nach Abschnitt 10 ist
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Versucht man, von A^fj} (&{f2}) zu &{f} aufzusteigen, indem man c(2w+1)

adjungiert, so wird f durch pw+1 teilbar, was einen Widerspruch ergibt.
Da &{p2} den Kôrper kQ(V—1) enthàlt, ist nur noch der Fall zu unter-
suchen, daB w 1 ist und einer der Kôrper kQ(V^z2) adjungiert wird.
Ist ^5* ein Primideal von &{fJ (k{p}, V± 2), welches p teilt, so haben fur
das Primideal *p* und die Erweiterung von k zu k{\^ (&{p}, V±2) die
GrôBen der Formel (5) folgende Werte: n* 2, W* 3, r* 1,

v* + 1 3, denn die Différente von £0(/3T2) ist gleich 2 V~±2. Es
folgt

»
W* + {v* + l) 3 + 3

3

Mithin miiBte f dureh p3 teilbar sein. Es gilt daher auch im Falle c) die
Gleiehung (12).

d) m 1 (mod. 8). In k ist 2 p • p', p ^ p7, ?i(p) w(pO 2, und

nach Abschnitt 2 ist der Durchschnitt von k{\} und c(23) wie im Falle c)
der Kôrper der rationalen Zahlen. Geht nur einer der beiden Primideal-
teiler von 2 in f 2 auf, so kann ieh die Wahl der Bezeichnungen immer so

treffen, daB es p ist. Sei also zunâchst f2 pw, w ^ 1. GemâB Abschnitt 4

ist in diesem Unterfalle &{f2} k{l}. Die Adjunktion irgend eines Unter-
kôrpers von c(23) vom Grade 2 wurde bedingen, daB die p7-Relativ-
differente von &{f} zu k^^} (i{f2}) von 1 versehieden wâre, mithin f durch
p; teilbar wàre, was einen Widerspruch liefert. Mithin haben wir nur noch
den Unterfall zu betrachten, daB f2 yw - p/M" ist, wo w ^ 1, wf ^ 1 ist.
Wir durfen annehmen, daB wir die Bezeichnungen so gewâhlt haben, daB

w ^ w1 ist. Dann ist nach Abschnitt 4 und 11:

Versucht man, von &{fi} (&{f2}) zu &{f} aufzusteigen, indem man c(2W7+1)

adjungiert, so wird f2 durch pw+1 teilbar, was einen Widerspruch ergibt.
Da k{p2p/w'} den Kôrper fco(>/^ï) enthâlt, ist nur noch der Fall zu
untersuchen, daB w 1 ist, und einer der Kôrper ko(V±:2) adjungiert
wird. Ist ^J}* ein Primideal von k^d} (&{pp/w"}, V^z2), welches p teilt,
so haben fur das Primideal ^f}* und die Erweiterung von k zu
*{fi}(*{PP/W#}> yi£2) die GrôBen der Formel (5), wie im Unterfall ra 5

(mod. 8) die Werte n* 2, TF* 3, r* 1, v% + 1 3, und f muBte
durch p3 teilbar sein. Es gilt daher auch in diesem Falle die Gleiehung (12).
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Zusammenfassend ergibt sich der

Hauptsatz : Ist f ein beliebiges vom Einheitsideal verschiedenes Idéal
von k, so stelle man f als Produkt von Stammidealen dar, deren Normen
zueinander teilerfremd sind:

f i7f, (n(f.) n(f«))=l s^t
Dann ist &{f} ein Ausgangskreiskôrper, und zwar das Kompositum
der in den Abschnitten 4—11 bestimmten (Ausgangs-Kreis-) Kôrper

t= 1,2, ...,T.
Ferner ergibt sich folgende Verschârfung des Satzes 215, Fueter,

Seite 236:
Sind fx ^zé: 1 und f2 ^ 1 zwei zueinander teilerfremde Idéale von Je, so

ist -K^fi} (i?{f2}) Unterkôrper von Z{f1f2}, und der Relativgrad ist ein
Teiler von e20). Ist dieser Relativgrad grôBer als 1 und sind die Normen
von fj und f2 zueinander teilerfremd, so wird die Galois'sche Gruppe von
KtfiU} in bezug auf if{fi} (i?{f2}) durch keinen Kreiskôrper reduziert,
sind dagegen die Normen von fx und f2 Potenzen der gleichen Primzahl
pn), so entsteht jKT{fif2} a^s jfiT{fi} (^{f2}) durch Adjunktion eines ge-
eigneten Kreiskôrpers, dessen Diskriminante nur durch p teilbar ist.

20) Dieser Relativgrad kann vermoge des 3. Satzes in Abschnitt 4 immer sofort an-
gegeben werden.

21 Dabei gilt p als 1. Potenz von p.

(Eingegangen den 12. Juni 1942.)
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