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Maximale Toroide und singulâre
Elemente in geschlossenen Lieschen Gruppen
Von Heinz Hopf, Zurich

Die nachstehenden Ausfuhrungen haben den Zweck, zu den in Nr. 6

formulierten Sâtzen, die nicht neu sind, auf einem Wege zu gelangen,
der unter Vermeidung der infinitesimalen Théorie der halb-einfachen
Gruppen ganz in dem Bereich elementarer geometrisch-algebraischer
Begriffe verlâuft, dem die Sâtze selbst angehôren. Auf einem solchen

Wege ist vor kurzem E. Stiefel in demjenigen Teil (§ 2) seiner inter-
essanten Abhandlung [1] iiber die Beziehungen zwischen geschlossenen
Lieschen Gruppen und diskontinuierlichen Bewegungsgruppen vorge-
gangen, in welchem einer gegebenen Lieschen Gruppe G eine diskonti-
nuierliche Raumgruppe F zugeordnet wird; an einer Stelle macht er
aber einen Abstecher in die infinitésimale Théorie ([1], § 2, Nr. 7); der
Wunsch, diesen Abstecher zu vermeiden, wird durch die vorliegende
Note erfûllt. Die gewunschte Darstellung gelingt, ohne daB etwas wesent-
lich Neues bewiesen wûrde, durch geeignete Anordnung bekannter Tat-
sachen, wobei es aber wichtig ist, daB man eine Arbeit von H. Samelson [2]
heranzieht (Nr. 2); dabei ergeben sich auch noch einige andere Abàn-
derungen des Gedankenganges von Stiefel, die mir vorteilhaft erscheinen.
AuBer aus den genannten Arbeiten [1], [2] werden noch aus zwei anderen
Arbeiten [3], [4] kleine Teile benutzt. Einiges aus den Arbeiten
[1]—[4] habe ich im folgenden noch einmal ausfuhrlich vorgebracht,
teils um kleiner Abânderungen in der Formulierung willen, die fur unseren
Zweck nôtig waren, teils auch darum, um eine einigermaBen in sich
geschlossene Darstellung zu erhalten, deren Lekture nicht zu unbequem
ist. Eine Grundlage fur die erwâhnten Arbeiten wie fur die vorliegende
ist der Satz, daB jede kompakte und zusammenhângende, Abelsche,
Liesche Gruppe ein Toroid ist, d. h. das direkte Produkt von endlich
vielen Kreisdrehungsgruppen. AuBer diesem Satz werden nur einige
Hauptsâtze von prinzipiellem Charakter aus der Théorie der Lieschen

Gruppen benôtigt, wie z. B.: die Existenz kanonischer Koordinaten in
der Umgebung des Eins-Elementes ; der Satz, daB jede abgeschlossene

Untergruppe einer geschlossenen Lieschen Gruppe selbst aus einer
Lieschen Gruppe und allenfalls endlich vielen Nebengruppen derselben
besteht ; der Satz von Weyl, daB jede kompakte Gruppe linearer Trans-
formationen bei Einfûhrung geeigneter Koordinaten eine orthogonale
Gruppe ist.
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Die erwàhnten Arbeiten, ans denen wir Teile benutzen werden, sind die folgenden:
[1] E. Stiefd, Ûber eine Beziehung zwischen geschlossenen Lieschen Grup-

pen und diskontinuierlichen Bewegungsgruppen euklidischer Ràume und
ihre Anwendung auf die Aufzâhlung der einfachen Lieschen Gruppen,
Comment. Math. Helvet. 14 (1942), 350—380.

[2] H. Samelson, Ûber die Sphâren, die als Gruppenrâume auftreten,
ibidem 13 (1941), 144r—155.

[3] H. Hopf, Uber den Rang geschlossener Liescher Gruppen, ibidem 13
(1941), 119—143.

[4] H. Hopf und H. Samelson, Ein Satz ùber die Wirkungsraume geschlossener

Liescher Gruppen, ibidem 13 (1941), 240—251.
Der Inhalt einer in denselben Rahmen gehôrigen Note von A. Weil, Démonstration

topologique d'un théorème fondamental de Cartan, C. R. 200 (1935), 518—520,
ist in [4] enthalten.

1. Maximale Toroide; die Gruppe 0. Es sei immer G eine geschlossene
Liesche Gruppe, n ihre Dimension. In G gibt es Toroide, nâmlich die
abgeschlossenen Hûllen der einparametrigen Untergruppen ; ein Toroid,
das in keinem hôherdimensionalen Toroid von G enthalten ist, heiBt
maximal. Es sei immer T ein festes maximales Toroid in C?, l seine Dimension.

1.1. Ist Tl ein (beliebiges) Toroid in G und a ein Elément von das

mit allen Elementen von Tr vertausehbar ist, so gibt es in G ein Toroid,
das sowohl Tf als auch a enthâlt.

Beweis: [3], Nr. 23. — Aus 1.1 folgt (1. c):
1.1'. Ein maximales Toroid T ist zugleich maximale Abelsche Unter-

gruppe von 6?, d. h. es ist nicht echte Untergruppe einer Abelschen Unter-
gruppe von G.

Fur die Dimensionen n und l von G und T gilt ([3], Nr. 27):

1.2. n 1 mod. 2.

Der Hilfssatz 2 in [4], Nr. 4 besagt:

1.3. Der Normalisator NT von T — also die Gruppe derjenigen a eG,
fur welche a~xTa T ist — hat die Dimension l; daher besitzt NT
eine endliche Restklassenzerlegung mod. T :

1.4. Définition: 0 sei die Gruppe derjenigen Automorphismen von T,
welche durch innere Automorphismen von G bewirkt werden,
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Die Automorphismen aus 0 werden durch diejenigen Automorphismen
x-^a^xa von G bewirkt, fur welche a eNT ist; jedem a *NT ist also
ein h(a) c 0 zugeordnet, und h ist offenbar ein Homomorphismus von
NT auf 0 ; ist a € T, so ist h(a) das Einselement von 0 ; ist umgekehrt
h(a) das Einselement, so ist a~xxa x fur aile x € T, also ist die von T
und a erzeugte Gruppe Abelsch, also ist nach 1.1/ a e T. Damit ist
gezeigt:

1.6. Die Gruppe 0 ist isomorph mit der Paktorgruppe NTjT ; sie ist
also endlich (1.3), und zwar ist ihre Ordnung gleich der Anzahl der
Komponenten von NT.1)

Es sei jetzt h eine homomorphe Abbildung von G auf eine Liesche
Gruppe Gx, und der Kern2) H von h sei in T enthalten ; dann gelten die
folgenden beiden Sàtze:

1.6. Tx — h(T) ist maximales Toroid in Gx.
1.7. Die Gruppe $l5 die fur G1 und Tx dieselbe Bedeutung hat wie 0

fur G und î7, ist mit 0 isomorph.
Beweis: Aus H c T folgt leicht: T A-^Tj), NT h-^N^). Ferner

ist klar, da8 Tx kompakt, zusammenhângend und Abelsch, also ein
Toroid ist. Um zu zeigen, daB Tx maximal ist, nehmen wir eine Um-
gebung F von T, die auBer den Elementen von T kein Elément von NT
enthâlt; nach 1.3 gibt es solche F. Aus H c T folgt, daB h(V) eine Um-
gebung der Eins von Gx ist. ax sei ein beliebiges Elément in h(V), das
mit Tx vertauschbar ist ; ist dann a ein Elément von F mit h(a) ax,
so ist a € A"1(iVTi) NT, also a c T ; folglich ist ax e Tx; das bedeutet,
daB î7! maximal ist. Da, wie schon festgestellt, h-^T^ T, h-^NpJ
NT ist, ist NTJT1 ^ NTIT also nach 1.5 0X ^ 0

1.8. Es gilt der Satz, daB je zwei maximale Toroide in G miteinander
konjugiert sind ([4], Nr. 4, Hilfssatz 4); daraus folgt, daB die Zahl l
und die Struktur der Gruppe 0 vollstàndig durch G bestimmt sind;
l heifit der Rang von G. Wir werden dièse Tatsachen aber nicht benutzen.

*) In [4], Nr. 7, wird auf einen Zusammenhang zwischen der Gruppe NtJT und topo-
logischen Eigenschaften der Wirkungsrâume von G hingewiesen. — Man kann auch
zeigen, daô der Baum G/T einfach zusammenhângend ist; daraus folgt leicht, dafi
die Fundamentalgruppe des Raumes G/Nt >

dessen tTberlagerungsraum GjT ist, mit
NtJT und nach dem obigen Satz 1.5 daher mit 0 isomorph ist. Aus unserer Bemerkung
1.8 ergibt sich, daÛ GjNt mit dem Raum aller maximalen Toroide in G homôomorph
ist. Nach [4], Nr. 7, hat G/Nt die Charakteristik + 1 ; mit Hilfe unseres spâteren Satzes
5 .4 làfit sich beweisen, dafi dièse Mannigfaltigkeit nicht-orientierbar ist.

*) Der Kern eines Homomorphismus ist das Urbild des Einselementes der Bildgruppe.
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2. Gruppen vom Range 1. Gx sei eine Gruppe, in der es ein maximales
Toroid Tx von der Dimension 1 gibt ; Tx ist also eine Kreisdrehungsgruppe
und mit der Kreislinie homôomorph. Die Dimension von Gx sei nx; es
sei n1> 1, also Gx nicht identisch mit Tx. Die gemâB 1.4 zu G1 und Tx
gehôrige Gruppe heiBe @x Wir behaupten :

2.1. &x hat die Ordnung 2.

2.2. nx 3.

Die nachstehenden Beweise sind bis auf kleine Ânderungen der Arbeit
[2] entnommen.

Beweis von 2.1 : t sei eine der beiden orientierten Richtungen, die
im Einselement e an Tx tangential sind. Den inneren Automorphismus
#-> axa-1 von Gx nennen wir Aa Wenn a und b derselben Nebengruppe
aTx von Tx angehôren, so ist Aa(t) Ab(t) fur aile t e Tx und daher
Aa(x) Ab(x); umgekehrt: wenn Aa(x) Ab(x) ist, so ist Aa(t) Ab(t)
fur t € Tx, also a~xb mit allen t e Tx vertauschbar und nach 1.1' daher
a-1 b e ï\, b e aTx Durch i(aTx) Aa{y) ist also eine eineindeutige und
naturlich stetige Abbildung / des Nebengruppenraumes3)6?1/Î71 in die
(nx — l)-dimensionale Sphâre S der orientierten Richtungen im Punkte
e erklârt. Da nx > 1 ist, ist 8 zusammenhângend ; S und G1/T1 sind
geschlossene Mannigfaltigkeiten der Dimension nx — 1 ; daher folgt aus
bekannten Sâtzen (z. B. uber den Abbildungsgrad), daB / eine Homôo-
morphie von G1/T1 auf die ganze Sphâre S ist. Folglich gibt es ein
solches a1€G1, daB Aai(x) ==f(axT) die zu r entgegengesetzte Richtung
ist; dann bewirkt Aa die Inversion von T19 die jedes t durch t~x ersetzt.

0t enthàlt also auBer der Identitât die Inversion ; andere Automorphismen
der Kreisdrehungsgruppe Tx gibt es nicht; mithin gilt 2.1.

Beweis von 2.2: Dem Beweis von 2.1 entnehmen wir zwei Tatsachen :

1. G1/T1 ist mit der (nx—l)-dimensionalen Sphâre 8 homôomorph;
2. wenn ein Elément a stetig von c in das oben genannte Elément ax

lâuft, so stellt, wenn man Tx als gerichteten geschlossenen Weg auffaBt,
die Schar der Wege Aa{Tx) eine Déformation von Tx in den entgegen-
gesetzt gerichteten Weg, den wir —Tx nennen, dar; hierfur wollen wir
kurz sagen: Tx wird ,,umgedreht". Drittens stellen wir noch fest: da nx
nach 1.2 ungerade ist, ist nx ^ 3

Damit ist die Behauptung 2.2 auf den folgenden topologischen Hilfs-
satz A zuruckgefuhrt : ,,Die Mannigfaltigkeit Gx, deren Dimension nx > 3

8) Wegen der Begriffe jyNebengruppenraura", ,,Wirkungsranin", ,,Faserraum" vgl.
man z. B. [4], besonders Nr. 3, und [2], Nr. 2b.
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ist, ist derart gefasert3) — in die Nebengruppen von Tx —, da8 (a) die
Fasern einfach geschlossene Linien sind, daB (6) die Faser Tx umgedreht
werden kann, und da8 (c) der Faserraum O1jT1 die (nx — l)-dimensio-
nale Sphâre 8 ist; dann ist nx 3."

P sei die Projektion von Ox auf S, die jedem x cG1 denjenigen Punkt
P(x) c S zuordnet, weleher der Faser entspricht, auf der x liegt. Wâre
% > 3, so wâre, da man die bei dem Umdrehen von Tx ûberstriehene
Punktmenge M von Ox als zweidimensionales krummes Polyeder anneh-
men darf, P(M) ein echter Teil von S, also in einer (% — l)-dimensio-
nalen (sphârischen) Vollkugel F enthalten; das Umdrehen von Tx wàre
also in einem Teil R von Gx môglich, welcher derart gefasert ist, daB der
Faserraum R/T1 eine Vollkugel ist. Damit ist der Hilfssatz A auf den
folgenden Hilfssatz B zuruckgefûhrt : ,,Ist der Raum R derart in einfach
geschlossene Linien gefasert, daB der Faserraum RjTx eine Vollkugel V
ist, so kann die Faser Tx in R nicht umgedreht werden."

Nun folgt aber aus der Voraussetzung, daB R/Tx V eine Vollkugel
ist, nach einem wichtigen und leicht beweisbaren Satz von Feldbau4):
,,i? ist das topologische Produkt V X F, wobei F mit den Fasern homôo-
morph ist; und zwar entsprechen den Fasern von R die Fasern p x F
von FxJ?, wobei p die Punkte von V durchlâuft." In unserem Falle
ist F eine Kreislinie; dann kann in. V X F ein Weg p X F nicht umgedreht

werden, da er ein erzeugendes Elément der unendlich zyklischen
Fundamentalgruppe von V X F darstellt. Folglich gilt der Hilfssatz B
und mithin auch der Satz 2.2.

Der Hilfssatz B lâfit sich auch folgendermaBen ohne den Satz von Feldbau
beweisen: Kônnte Tx in R umgedreht werden, so kônnte man einen Kreisring K,
der von den gleichsinnig gerichteten Kreisen Cx und G2 berandet wird, durch eine
Abbildung / derart in den Raum R abbilden, daB f(Ct) T19 f{C2) — Tx wâre.
P sei wie oben die Projektion von R auf F; dann wâre Pf g eine Abbildung von
K in F mit g(C{) =0, wobei O der Punkt P(TX) ist (i 1, 2); da F eine Vollkugel
ist, lieBe sich das Bild g(K) unter Festhaltung von 0 auf den Punkt O zusammen-
ziehen, d. h. es gâbe eine Abbildungsschar gx, 0 ^ t ^ 1, von K in F mit g0 g,
gt(y) —0 fur y € C{ (i 1,2) und aile t, gi(y) —O fur y eK. Nach einem
grundlegenden und leicht beweisbaren Lemma aus der Théorie der stetigen Abbil-
dungen in gefaserte Râume5) gâbe es dann auch eine Abbildungsschar ft, 0 ^ T ^ 1,

von K in R mit Pft gt fiir aile t und /0 / ; dabei wâre, wenn T1 die Menge der
Punkte des gerichteten Weges Tx bezeichnet,

4) J. Feldbau, Sur la classification des espaces fibres, C. R. 208 (1939), 1621 —
1623, Théorème A.

6) B. Eckmann, Zur Homotopietheorie gefaserter Râume, Comment. Math.
Helvet. 14 (1941), 141—192; besonders 155—156.

63



(1) ./, (Ct) C 7tx fur i 1, 2 und allej, (2) fx(K) c 2\
(1) bedeutet: der Weg /0(Ot) ± 2\ ist auf Tx homotop mit dem Wege fx(Ct);
(2) bedeutet : /1((71) ist auf ~TX homotop zu fx(C2). Also wâren Tx und — Tx einander
homotop auf Tx, der Weg Tx kônnte also auf "Tx umgedreht werden. Da dies un-
môglich ist, ist die Annahme, Tx kônne in R umgedreht werden, falsch.

3. Die singularen Elemente. G sei jetzt wieder eine beliebige Gruppe
wie in Nr. 1 ; auch T, n, Z, 0 sollen dieselben Bedeutungen haben wie dort.

3.1. Définition: Das Elément t von T heiftt regular, wenn es auf keinem

von T verschiedenen maximalen Toroid von G liegt, und singulary wenn
es au/ïer auf T noch auf einem anderen maximalen Toroid liegt.

Nach [3], Nr. 25, ist dièse Définition mit der folgenden gleichwertig :

3.2. t ist regular oder singulâr, jenachdem sein Normalisator die
Dimension l oder grôBere Dimension hat.

In [1], § 2, Nr. 3, wird folgendes gezeigt: m sei die gemâB 1.2 dureh
n — l 2m bestimmte ganze Zahl; jedem t e T sind m Kreisdrehungen
êt(t), êm(t) zugeordnet; êly êm sind homomorphe Abbildungen
von T in die Kreisdrehungsgruppe D ; keine von ihnen ist die triviale
Abbildung auf das Einselement von D ; wenn das Elément t den Kernen2)
von genau v der Homomorphismen #, angehôrt, so hat sein Normalisator
die Dimension l + 2y. 6)

Aus der letzten Tatsaehe und aus 3.2 folgt, daB t daim und nur dann
singulâr ist, wenn t wenigstens einem der Kerne angehôrt. Die Kerne
môgen U1, Um heiBen; sie sind abgeschlossene Untergruppen von T ;
da D eindimensional und kein Homomorphismus #t- trivial ist, sind die

Ui (l — l)-dimensional. Es gelten somit die folgenden beiden Sâtze:

3.3. Die Menge der singularen Elemente von T ist die Vereinigungs-
menge der Elemente von m abgeschlossenen Untergruppen C7X, Um

von T ; jede Gruppe Ut hat die Dimension l — 1 ; es ist 2m n — l.
3.4. Wenn das Elément t genau v der Gruppen Î7t angehôrt (v ^ 0),

so hat sein Normalisator die Dimension l -\- 2v.
Zu 3.3 ist zu bemerken: es ist noch nicht bewiesen, daB die Gruppen

6) In [1], 1. c, werden nicht die homomorphen Abbildungen mit &i bezeichnet, sondern
unter #t(J) wird die durch 2tt dividierte Winkelkoordinate der Drehung verstanden, die
durch den betreffenden Homomorphismus dem Elément t zugeordnet ist; dafi keine der
Abbildungen trivial ist, bedeutet dann : kein #t- verschwindet identisch mod. 1 ; und der
Kern des Homomorphismus ist dann die Menge derjenigen t, fur welche #f mod. 1

verschwindet.
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U1, Um sâmtlich voneinander verschieden sind; dies wird erst iii
Nr. 5 gezeigt werden. In [1] ist der betreffende Beweis die eingangs
erwâhnte Stelle, an welcher die infinitésimale Théorie der halb-einfachen
Gruppen herangezogen wird.

Da die Transformationen aus 0 dureh Automorphismen von 0 bewirkt
werden, ergibt sich aus der Définition 3.1:

3.5. Die Menge der singulâren Elemente, also die Vereinigung der
Gruppen U{, wird dureh jede Transformation aus 0 auf sich abgebildet.

In bezug auf kanonische Koordinaten, die in einer Umgebung des

Einselementes e gelten, ist T eine Z-dimensionale Ebene, die e enthâlt,
und die TJt sind (l— l)-dimensionale Ebenen in T, die e enthalten; die
Ebenen J7t zerlegen T — in der Umgebung von e — in endlich viele
Gebiete Bx, B2, Die inneren Automorphismen von 0 sind in bezug
auf die kanonisehen Koordinaten affine Abbildungen, die e festhalten;
diejenigen Automorphismen, welche zu 0 gehôren, transformieren T in
sich; da sie nach 3.5 die Ebenen Ui permutieren, permutieren sie auch
die Gebiete J3,. Es gilt nun folgender Satz ([1], § 2, Satz 11):

3.6. Dureh eine Transformation q>€0, die nicht die Identitat ist,
wird kein Gebiet Bi auf sich abgebildet.

Beweis ([1], 1. c, sowie Satz 6): Bs werde dureh <p €0 auf sich
abgebildet. Als Elément der endlichen Gruppe 0 hat y endliche Ordnung.
t sei ein Punkt von JB,, seine Bilder bei den endlich vielen Potenzen von
cp seien thi und der Schwerpunkt der th sei s ; aile dièse Punkte liegen in
Bit' (t wird in hinreichender Nâhe von e angenommen). Da das System
der th dureh q> auf sich abgebildet wird, ist s Fixpunkt der affinen Ab-
bildung ç? ; daher ist auch jeder Punkt der Strecke S, die e mit s ver-
bindet, Fixpunkt von <p. Die Strecke 8 erzeugt eine einparametrige
Untergruppe von 0 ; deren abgeschlossene Huile ist ein Toroid T '\ Die
Abbildung <p werde dureh den inneren Automorphismus x-^a^xa von
0 bewirkt; da6 die Elemente von S Fixpunkte von y sind, bedeutet:
a ist mit jedem Elément von 8 vertauschbar ; folglich ist a auch mit
jedem Elément von T ' vertauschbar. Nach 1.1 gibt es daher ein Toroid
Trr, das a und Tf, also auch s, enthâlt. Nun ist aber das Elément s, da
es in Bj, und daher auf keinem Ï7* liegt, regulâres Elément ; nach 3.1
ist daher Tff c T, da andernfalls s sowohl auf T als auch auf einem

von T verschiedenenmaximalenToroide, das Tn enthâlt, lâge. Da T" c T
ist, ist a € T; das bedeutet: <p ist die identische Abbildung von T.
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4. Hilfssâtze. Wir schalten hier drei einfache allgemeine Hilfssàtze
liber Toroide ein ; die Gruppe G kommt dabei nicht vor.

T sei ein ï-dimensionales Toroid, U eine abgeschlossene (l — l)-dimen-
sionale Untergruppe von T ; die Eins-Komponente von U — d. h. die
Komponente, die das Einselement enthâlt — heiBe Uf; sie ist ein (l — 1)-
dimensionales Toroid; die Faktorgruppe U/Uf ist infolge der Abgeschlos-
senheit von U endlich; ihre Ordnung, also die Anzahl der Komponenten
von U, heiBe p.

4.1. Die Faktorgruppe U/Uf ist zyklisch.
Denn U/U' ist Untergruppe der Gruppe T/U', die eindimensional,

kompakt und zusammenhàngend, also die Kreisdrehungsgruppe ist.

Jedes Toroid enthâlt nach dem Kroneckerschen Approximationssatz
erzeugende Elemente, d. h. solche, deren Potenzen uberall dicht in dem
Toroid liegen. Es sei a ein erzeugendesElément von Uf; ferner sei die
Nebengruppe Ï7* von V ein (im gewôhnlichen Sinne) erzeugendes
Elément der nach 4.1 zyklischen endlichen Gruppe U/Uf und 6 ein
Elément aus U*. Dann ist ab~p € Uf; aus den bekannten Rechenregeln
in Toroiden geht hervor, daB es in Ur ein Elément c mit cp=ab~p gibt
(cf. [3], Nr. 19). Dann ist fur jeden Exponenten k, wenn wir ihn in der
Form k pq + r, 0 ^ r< p, darstellen und wenn wir bc d setzen :

dk aqdr; die Potenzen aQ liegen uberall dicht in U\ und die p Potenzen
dr liegen in den p Nebengruppen von U mod. Uf ; daher liegen die Potenzen

des Elementes d uberall dicht in U. Damit ist gezeigt :

4.2. U enthâlt ein erzeugendes Elément, d. h. ein solches, dessen

Potenzen uberall dicht in U liegen.

Ferner behaupten wir:

4.3. Wenn es einen Automorphismus von T gibt, der die Ordnung 2

hat und jedes Elément von U festlâBt, so ist p 1 oder p 2.

Beweis : Der Automorphismus <p erfûlle die Voraussetzungen. Da jede
Matrix der Ordnung 2 den Eigenwert — 1 hat, gibt es im Punkt e, dem
Einselement von T, eine Richtung, die durch (p in die ihr entgegengesetzte
Riehtung transformiert wird; die einparametrige Gruppe (7, die dièse

Tangentialrichtung hat, erleidet daher bei <p die Inversion, d. h. es ist
çj(c) c-1 fur c € C. Da <p die Elemente von Uf festhâlt, ist C nicht in
U ' enthalten ; folgHch ist die von Ur und G erzeugte Gruppe ï-dimensional,
also mit T identisch ; insbesondere lâBt sich daher jedes Elément u e U
in der Form u uoc9 uQ€Uf, c e (7, darstellen; aus c uUq1 e U folgt
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ç>(c) c; da andererseits ç?(c) c-1 ist, ist c2 c; daher ist u2 u^,
also u2 e Ur fur jedes w e £7. Dies bedeutet: die (zyklische) Faktorgruppe
U jU' hat die Ordnung 1 oder die Ordnung 2, w.z.b.w.

5. Fortsetzung der Untersuchung der Menge der singularen Elemente
und der Gruppe 0. Es sei wieder T ein maximales, Z-dimensionales Toroid
in G ; seine Untergruppen U€ sind wie in Nr. 3 erklârt ; das (l — l)-dimen-
sionale Toroid, das die Eins-Komponente von U{ ist, heiBe U^.

a sei, beifestem i, erzeugendesElément desToroids U'{; seinNormalisa-
tor sei Na, und dessen Eins-Komponente sei N'a ; die Dimension von Na,
die zugleich die Dimension von N'a ist, sei n '. Nach 3.2 ist n ' > L Es ist
T c N'a ; T ist also auch maximales Toroid in N'a. Das Elément a und
daher aueh das ganze Toroid U^ gehôren zum Zentrum von Na\ da somit
U'i Normalteiler von Nfa ist, existiert die Gruppe Gx N^/U^, und es

liegt eine homomorphe Abbildung h von N'a auf Gx mit dem Kern U^

vor. Die Dimension von Gt ist nx — n' — (l — 1)>1; naeh 1.6 ist
Tx TjU'i maximales Toroid in Gx ; seine Dimension ist ï — (l — 1) 1 ;

nach 2.2 ist daher nx 3, also nT l -f 2. Dies bedeutet nach 3.4,
daÔ a keinem TJi mit j ^ i angehôrt. Damit ist gezeigt :

6.1. Fur j ^ i ist Uj # Vi und U^ # U^.

Die Tangentialebenen von Uj und [7t. im Punkte e sind (i — l)-dimen-
sional und nach 5.1 voneinander verschieden ; ihr Durchschnitt ist daher
(l — 2)-dimensional ; mithin gilt folgende Verschârfung von 5.1:

5.1;, Fur j =fi i ist der Durchschnitt von Uj und Ut eine (l — 2)-dimen-
sionale Gruppe.

Die gemâfi 1.4 zu der Gruppe Gx und ihrem maximalen Toroid Tx
gehôrige Gruppe <PX hat nach 2.1 die Ordnung 2 ; nach 1.7 hat daher alich
die Gruppe <2>;, die in analoger Weise zu der Gruppe Nra und ihrem
maximalen Toroid T gehôrt, die Ordnung 2 ; es sei <p{ das Elément der Ordnung
2 in*'.

Wir behaupten : y{ làfit jedes Elément von U4 fest. Da <p{ durch einen
inneren Automorphismus x-^b~xxb mit beNfa bewirkt wird, ist dies
bewiesen, sobald gezeigt ist: Ut gehôrt zum Zentrum von N'a. Es sei c

erzeugendes Elément von U{, wie es nach 4.2 existiert, und Nfe die Eins-
Komponente des Normalisators ^c von c; nach 3.4 ist die Dimension
von JVC und Nrc mindestens l + 2 ; da Potenzen von c in U^ ûberall dicht
liegen, ist jedes mit c vertauschbare Elément auch mit a vertauschbar,
und daher ist Nc c Na und Nrc<zNfa\ da N'a die Dimension l + 2 hat,
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ist mithin Nre N'a. Nun gehôren c und daher auch die von c erzeugte
Grappe Ui zum Zentrum von Ne ; femer ist Î7i c T c JV^ ; folglich
gehôrt Î7t- zum Zentrum von N'c Nra

Aus T cN'ac:G und der Définition 1.4 folgt unmittelbar, daB 0 '

Untergruppe von 0 ist ; es ist also <Pi€0. Damit ist folgendes bewiesen :

5.2. Die Grappe 0 enthàlt m solche Involutionen <plf q>m, daB (pt

aile Elemente von U€ festlâBt (i 1, m).

Aus 5.2 und 4.3 folgt:

5.3. Jede Grappe U€ besteht aus hôchstens zwei Komponenten.

Wir betrachten jetzt — in engem AnsehluB an [1], § 2 — die Trans-
formationen aus der Grappe 0 noch nâher. Zu diesem Zwecke fuhren wir
wie bei der Behandlung von 3.6 in der Umgebung des Punktes e kano-
nische Koordinaten ein; dièse kônnen wir nach einem bekannten Satz

von Weyl so wâhlen, daB in bezug auf sie die inneren Automorphismen
von G nicht nur affin, sondern sogar orthogonal, also eigentliche oder
uneigentliche Bewegungen sind; ein solches Koordinatensystem soll im
folgenden kurz ein orthogonales kanonisches System heiBen. Daraus,
daB q>i die Ebene T auf sich abbildet, aile Punkte von Ui festlàBt, aber
nicht die Identitât ist, folgt:

5.4. In bezug auf ein orthogonales kanonisches Koordinatensystem
in der Umgebung von e sind die Involutionen q>{ die Spiegelungen der
Z-dimensionalen Ebene T an den in T gelegenen (l — l)-dimensionalen
Ebenen U€.

Weiter betrachten wir wie bei 3.6 die Gebiete Bj, in welche der Z-dimen-
sionale Raum T durch die Ebenen V4 zerlegt wird (in der Umgebung
von e); sind B, Bf zwei dieser Gebiete, so kann man in ihnen Punkte t
bzw. t ' so wâhlen, daB deren Verbindungsstrecke keinen der (l — 2)-
dimensionalen Durchschnitte irgend zweier Ebenen Uh und U{ trifft;
bei Durchlaufung dieser Strecke von t bis tr môgen der Reihe nach die
Ebenen Ulf U2, Ur durchschritten werden; nimmt man der Reihe
nach die Spiegelungen q>x, ç?2, q>r vor, so entsteht eine Transformation

<p ' aus 0 mit ç? r(B) Bf. Es sei nun q> eine beliebige Transformation
aus 0 und B eines der Gebiete B^, wir setzen q>(B) Br\ wie wir eben

gesehen haben, gibt es ein Produkt <pr von Spiegelungen <p{, so daB

(p\B) Bf ist; durch 9/9?-1 wird B also auf sich abgebildet; nach 3.6
ist daher ç/ç?-1 die Identitât, also <p <pr. Damit haben wir (wie in [1],
§ 2, Nr. 10) folgendes bewiesen:
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5,5. Die Gruppe 0 wird von den Involutionen <p1, cpm erzeugt.
6. Zusammenfassung der Ergebnisse. Es seien wie bisher: G eine ge-

schlossene Liesche Gruppe ; T ein maximales Toroid in G ; n die Dimension

von G, l die Dimension von T, m die durch n — l 2m bestimmte
ganze Zahl (cf. 1.2). Die singulàren Elemente sind wie in 3.1, die Gruppe
0 ist wie in 1.4 definiert.

Satz I. Die Menge der singulàren Elemente von T ist die Vereinigungs-
menge der Elemente von m abgeschlossenen Untergruppen Ul9 Um
von T. Jede Gruppe V\ ist (l — l)-dimensional ; sie ist entweder ein Toroid
Ui oder sie besteht aus einem Toroid U[ und noch einer Nebengruppe von
U'i. Fur j t^ i ist Us ^ U{, und der Durchschnitt von Uj und U{ ist eine
(l — 2)-dimensionale Gruppe.

Satz II. Die Gruppe 0 ist endlich. Sie transformiert die Vereinigungs-
menge der Gruppen V\ in sich. Sie wird von m Involutionen <px, q?m

erzeugt. (pt lafit jedes Elément von Ut fest ; in bezug auf orthogonale kanonische
Koordinaten in der Umgebung des Einselementes e ist ç^ die Spiegelung
von T an der Ebene C74.

Zu dem Satz I sei noch ein Zusatz gemacht. Aus 1.1 folgt, dafi das
Zentrum Z von G in T enthalten ist. Ein Elément t € G gehôrt dann und
nur dann zu Z, wenn sein Normalisator Nt die ganze Gruppe G oder, was
dasselbe ist, wenn Nt n-dimensional ist; nach 3.4 bedeutet das, daB t
allen m Gruppen U{ angehôrt. Somit gilt folgender

Zusatz zu Satz I. Der Durchschnitt der Gruppen Ul9 Um ist das

Zentrum Z von G. Da/i die Gruppe G halb-einfach, d. h. dafi Z diskret ist,
ist also gleichbedeutend damit, da/i der Durchschnitt der U4 nur aus endlich
vielen Punkten besteht.

Von diesen Ergebnissen gelangt man zu denen des § 2 in [1], indem
man die universelle Ùberlagerungsgruppe B von T heranzieht ; sie ist der
Z-dimensionale euklidische Raum B mit der Vektoraddition als Gruppen-
operation ; die euklidische Metrik in B ist durch die orthogonalen kano-
nischen Koordinaten gegeben, die wir auf T nur in der Umgebung von e

verwenden konnten, die sich aber uber ganz B erstrecken lassen. Die tJber-

lagerungsgruppen der U{ werden in B durch (l — l)-dimensionale Ebenen

dargestellt; das System dieser Ebenen ist das Stiefelsche ,,Diagramm"
von G. Die Spiegelungen an den Ebenen des Diagramms erzeugen
eine Gruppe F9 welche bei der natûrlichen homomorphen Abbildung
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von R auf T in die Gruppe d> iibergeht; dies ist die diskontinuierliche
Bewegungsgruppe, die Stiefel der Gruppe G zuordnet. Die Eigenschaften
des Diagramms und der Gruppe F, die in [1], § 2, festgestellt werden,
lassen sich leieht aus unseren Sàtzen I und II ableiten.

Umgekehrt sind unsere Sâtze in den Ergebnissen der Arbeit von
Stiefel enthalten.

Ein weiterer Satz aus der Arbeit von Stiefel ([1], Satz 18) besagt, da8
eine einfach zusammenhângende geschlossene Gruppe G durch ihre
Gruppe 0 — dièse nicht als abstrakte Gruppe, sondern als Automorphis-
mengruppen eines Toroids aufgefaBt — vollstândig bestimmt ist. Die
Aufgabe, auch diesen Satz sowie âhnliche Sâtze, die in [1], § 4, formu-
liert sind, unter môglichster Vermeidung der infinitesimalen Théorie
dureh globale geometrisehe Betrachtungen zu beweisen oder wenigstens
die jetzt bekannten Beweise durch derartige Betrachtungen zu verein-
fachen, ist noch offen.

(Eingegangen den 6. April 1942.)
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