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Maximale Toroide und singulédre
Elemente in geschlossenen Lieschen Gruppen

Von Hemnz Hopr, Ziirich

Die nachstehenden Ausfiithrungen haben den Zweck, zu den in Nr. 6
formulierten Sétzen, die nicht neu sind, auf einem Wege zu gelangen,
der unter Vermeidung der infinitesimalen Theorie der halb-einfachen
Gruppen ganz in dem Bereich elementarer geometrisch-algebraischer
Begriffe verlduft, dem die Sdtze selbst angehoren. Auf einem solchen
Wege ist vor kurzem E. Stiefel in demjenigen Teil (§ 2) seiner inter-
essanten Abhandlung [1] iiber die Beziehungen zwischen geschlossenen
Lieschen Gruppen und diskontinuierlichen Bewegungsgruppen vorge-
gangen, in welchem einer gegebenen Lieschen Gruppe G eine diskonti-
nuierliche Raumgruppe I' zugeordnet wird; an einer Stelle macht er
aber einen Abstecher in die infinitesimale Theorie ([1], § 2, Nr. 7); der
Wunsch, diesen Abstecher zu vermeiden, wird durch die vorliegende
Note erfiillt. Die gewiinschte Darstellung gelingt, ohne daf} etwas wesent-
lich Neues bewiesen wiirde, durch geeignete Anordnung bekannter Tat-
sachen, wobei es aber wichtig ist, daB man eine Arbeit von H. Samelson [2]
heranzieht (Nr. 2); dabei ergeben sich auch noch einige andere Abén-
derungen des Gedankenganges von Stiefel, die mir vorteilhaft erscheinen.
AufBler aus den genannten Arbeiten [1], [2] werden noch aus zwei anderen
Arbeiten [3], [4] kleine Teile benutzt. Kiniges aus den Arbeiten
[1]—[4] habe ich im folgenden noch einmal ausfiihrlich vorgebracht,
teils um kleiner Abénderungen in der Formulierung willen, die fiir unseren
Zweck notig waren, teils auch darum, um eine einigermaflen in sich
geschlossene Darstellung zu erhalten, deren Lektiire nicht zu unbequem
ist. Eine Grundlage fiir die erwéhnten Arbeiten wie fiir die vorliegende
ist der Satz, daBl jede kompakte und zusammenhingende, Abelsche,
Liesche Gruppe ein Toroid ist, d. h. das direkte Produkt von endlich
vielen Kreisdrehungsgruppen. Auller diesem Satz werden nur einige
Hauptsitze von prinzipiellem Charakter aus der Theorie der Lieschen
Gruppen benétigt, wie z. B.: die Existenz kanonischer Koordinaten in
der Umgebung des Eins-Elementes; der Satz, daBl jede abgeschlossene
Untergruppe einer geschlossenen Lieschen Gruppe selbst aus einer Lie-
schen Gruppe und allenfalls endlich vielen Nebengruppen derselben
besteht ; der Satz von Weyl, dal jede kompakte Gruppe linearer Trans-
formationen bei Einfiihrung geeigneter Koordinaten eine orthogonale
Gruppe ist.
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Die erwiahnten Arbeiten, aus denen wir Teile benutzen werden, sind die folgenden:

[1] E. Stiefel, Uber eine Beziehung zwischen geschlossenen Lieschen Grup-
pen und diskontinuierlichen Bewegungsgruppen euklidischer Raume und
ihre Anwendung auf die Aufzéahlung der einfachen Lieschen Gruppen,
Comment. Math. Helvet. 14 (1942), 350—380.

[2] H. Samelson, Uber die Spharen, die als Gruppenriaume auftreten,
ibidem 13 (1941), 144—155.

[3] H. Hopf, Uber den Rang geschlossener Liescher Gruppen, ibidem 13
(1941), 119—143.

{4] H. Hopf und H. Samelson, Ein Satz iiber die Wirkungsraume geschlos-
sener Liescher Gruppen, ibidem 13 (1941), 240—251.

Der Inhalt einer in denselben Rahmen gehorigen Note von 4. Weil, Démonstration
topologique d’un théoréme fondamental de Cartan, C. R, 200 (1935), 518—520,
ist in [4] enthalten.

1. Maximale Toroide ; die Gruppe @. Es sei immer G eine geschlossene
Liesche Gruppe, n ihre Dimension. In G gibt es Toroide, ndmlich die
abgeschlossenen Hiillen der einparametrigen Untergruppen; ein Toroid,
das in keinem hoéherdimensionalen Toroid von G enthalten ist, heiB3t
maximal. Es sei immer 7 ein festes maximales Toroid in @, ! seine Dimen-
sion.

1.1. Ist T’ ein (beliebiges) Toroid in G und a ein Element von @, das
mit allen Elementen von 7'’/ vertauschbar ist, so gibt es in G ein Toroid,
das sowohl 7'’ als auch a enthilt.

Beweis: [3], Nr. 23. — Aus 1.1 folgt (1. ¢.):

1.1’. Ein maximales Toroid 7' ist zugleich maximale Abelsche Unter-
gruppe von @, d. h. es ist nicht echte Untergruppe einer Abelschen Unter-
gruppe von G.

Fiir die Dimensionen n und ! von G und 7T gilt ([3], Nr. 27):
1.2. » =1 mod. 2.

Der Hilfssatz 2 in [4], Nr. 4 besagt:

1.3. Der Normalisator NV, von 7' — also die Gruppe derjenigen a G,
fir welche a-1Ta = T ist — hat die Dimension I; daher besitzt N,
eine endliche Restklassenzerlegung mod. 7' :

Ny=T+a,T+-+:0a,,T.

1.4. Definition : @ sei die Gruppe derjenigen Automorphismen von T,
welche durch innere Automorphismen von G bewirkt werden.
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Die Automorphismen aus @ werden durch diejenigen Automorphismen
x— a-lza von G bewirkt, fiir welche a ¢ N, ist; jedem a ¢ N, ist also
ein h(a) e P zugeordnet, und A ist offenbar ein Homomorphismus von
N, auf @; ist a € T, so ist h(a) das Einselement von @ ; ist umgekehrt
h(a) das Einselement, so ist a-lxa = z fiir alle x ¢ 7', also ist die von 7'
und a erzeugte Gruppe Abelsch, also ist nach 1.1’ a ¢ 7. Damit ist
gezeigt:

1.5. Die Gruppe @ ist isomorph mit der Faktorgruppe N ,/T ; sie ist
also endlich (1.3), und zwar ist ihre Ordnung gleich der Anzahl der
Komponenten von N, .1)

Es sei jetzt h eine homomorphe Abbildung von G auf eine Liesche
Gruppe G,, und der Kern?) H von & sei in T enthalten; dann gelten die
folgenden beiden Sitze:

1.6. T, = h(T) ist maximales Toroid in G, .

1.7. Die Gruppe @,, die firr G, und 7T, dieselbe Bedeutung hat wie @
fir @ und 7', ist mit @ isomorph.

Beweis: Aus H c T folgt leicht: T = »-XT,), Ny = h-(Np ). Ferner
ist klar, dafl 7', kompakt, zusammenhingend und Abelsch, also ein
Toroid ist. Um zu zeigen, daBl 7', maximal ist, nehmen wir eine Um-
gebung V von T, die auller den Elementen von 7' kein Element von N,
enthilt; nach 1.3 gibt es solche V. Aus H c T folgt, dal A(V) eine Um-
gebung der Eins von G, ist. a, sei ein beliebiges Element in h(V), das
mit 7', vertauschbar ist; ist dann a ein Element von V mit A(a) = a,,
so ist @ e h-Y(N ) = Ny, also a € T'; folglich ist a, ¢ T';; das bedeutet,
dafl T'; maximal ist. Da, wie schon festgestellt, 2-(7;) = T', - (N ) =
Ny ist, ist Ny [Ty = N,/T, also nach 1.5 &, =0.

1.8. Es gilt der Satz, daB je zwei maximale Toroide in G' miteinander
konjugiert sind ([4], Nr. 4, Hilfssatz 4); daraus folgt, daBl die Zahl I
und die Struktur der Gruppe @ vollstindig durch G' bestimmt sind;
! heifit der Rang von G. Wir werden diese Tatsachen aber nicht benutzen.

1) In [4], Nr. 7, wird auf einen Zusammenhang zwischen der Gruppe N 7/T und topo-
logischen Eigenschaften der Wirkungsrdume von G hingewiesen. — Man kann auch
zeigen, daB der Raum @/T einfach zusammenhéngend ist; daraus folgt leicht, daB
die Fundamentalgruppe des Raumes G/Nr7, dessen Uberlagerungsraum G/T ist, mit
N7/T und nach dem obigen Satz 1.5 daher mit @ isomorph ist. Aus unserer Bemerkung
1.8 ergibt sich, da8 G/Nr mit demm Raum aller maximalen Toroide in G homéomorph
ist. Nach [4], Nr. 7, hat G/N 7 die Charakteristik + 1 ; mit Hilfe unseres spiteren Satzes
5 .4 laBt sich beweisen, daB diese Mannigfaltigkeit nicht-orientierbar ist.

1) Der Kern eines Homomorphismus ist das Urbild des Einselementes der Bildgruppe.
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2. Gruppen vom Range 1. G, sei eine Gruppe, in der es ein maximales
Toroid 7', von der Dimension 1 gibt; 7', ist also eine Kreisdrehungsgruppe
und mit der Kreislinie homéomorph. Die Dimension von G, sei n,; es
sei »; > 1, also G nicht identisch mit 7', . Die gemi8 1.4 zu G, und T,
gehorige Gruppe heile @, . Wir behaupten:

2.1. @, hat die Ordnung 2.
2.2. n, =3.

Die nachstehenden Beweise sind bis auf kleine Anderungen der Arbeit
[2] entnommen.

Beweis von 2.1: t sei eine der beiden orientierten Richtungen, die
im Einselement e an 7', tangential sind. Den inneren Automorphismus
x — axa-! von G, nennen wir 4, . Wenn a und b derselben Nebengruppe
aT, von T, angehdren, so ist A,(t) = A4,(¢) fir alle t ¢ 7, und daher
A, (xr) = A,(r); umgekehrt: wenn A,(r) = 4,(x) ist, so ist A, (t) = A4,(¢)
fir ¢t € T,, also a-'b mit allen ¢ € 7', vertauschbar und nach 1.1’ daher
a-'beT,,beal,. Durch f(aT,) = A4,(x) ist also eine eineindeutige und
natiirlich stetige Abbildung f des Nebengruppenraumes?)G,/7T, in die
(n, — 1)-dimensionale Sphire S der orientierten Richtungen im Punkte
e erklirt. Da m, > 1 ist, ist § zusammenhingend; 8 und G,/7, sind
geschlossene Mannigfaltigkeiten der Dimension 7, — 1; daher folgt aus
bekannten Sitzen (z. B. iiber den Abbildungsgrad), dal f eine Homoo-
morphie von @,/T, auf die ganze Sphére § ist. Folglich gibt es ein
solches a, €@, , daBl 4, (vr) =f(a,T) die zu r entgegengesetzte Richtung
ist; dann bewirkt 4, die Inversion von 7', die jedes ¢ durch - ersetzt.
@, enthilt also auBler der Identitéit die Inversion ; andere Automorphismen
der Kreisdrehungsgruppe 7', gibt es nicht; mithin gilt 2.1.

Beweis von 2.2: Dem Beweis von 2.1 entnehmen wir zwei Tatsachen :
1. G,/T, ist mit der (m, — 1)-dimensionalen Sphidre § homdéomorph;
2. wenn ein Element a stetig von e in das oben genannte Element a,
lauft, so stellt, wenn man 7', als gerichteten geschlossenen Weg auffalit,
die Schar der Wege A,(7,) eine Deformation von 7', in den entgegen-
gesetzt gerichteten Weg, den wir — 7', nennen, dar; hierfiir wollen wir
kurz sagen: T, wird ,,umgedreht‘‘. Drittens stellen wir noch fest: da n,
nach 1.2 ungerade ist, ist n, > 3 .

Damit ist die Behauptung 2.2 auf den folgenden topologischen Hilfs-
satz A zuriickgefiihrt: ,,Die Mannigfaltigkeit G, , deren Dimension n, > 3

3) Wegen der Begriffe ,,Nebengruppenraum*, ,,Wirkungsraum®, ,,Faserraum‘ vgl.
man z. B. [4], besonders Nr. 3, und [2], Nr. 2b.
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ist, ist derart gefasert®) — in die Nebengruppen von 7', —, daB} (a) die
Fasern einfach geschlossene Linien sind, daB (b) die Faser 7', umgedreht
werden kann, und daB8 (c) der Faserraum G,/T; die (n, — 1)-dimensio-
nale Sphére S ist; dann ist n, = 3.“

P sei die Projektion von @, auf 8, die jedem x ¢ G, denjenigen Punkt
P(x) € S zuordnet, welcher der Faser entspricht, auf der = liegt. Wire
n, > 3, so wire, da man die bei dem Umdrehen von T, iiberstrichene
Punktmenge M von @, als zweidimensionales krummes Polyeder anneh-
men darf, P(M) ein echter Teil von S, also in einer (n, — 1)-dimensio-
nalen (sphérischen) Vollkugel ¥ enthalten; das Umdrehen von 7', wire
also in einem Teil R von G, moglich, welcher derart gefasert ist, daf der
Faserraum R/T, eine Vollkugel ist. Damit ist der Hilfssatz A auf den
folgenden Hilfssatz B zuriickgefiihrt: ,,Ist der Raum R derart in einfach
geschlossene Linien gefasert, daf3 der Faserraum R/T, eine Vollkugel V
ist, so kann die Faser 7'; in R nicht umgedreht werden.*

Nun folgt aber aus der Voraussetzung, da R/T, = V eine Vollkugel
ist, nach einem wichtigen und leicht beweisbaren Satz von Feldbau?):
,,R ist das topologische Produkt V x F, wobei F' mit den Fasern homéo-
morph ist; und zwar entsprechen den Fasern von R die Fasern p X F
von V X F, wobei p die Punkte von V durchlduft. In unserem Falle
ist F' eine Kreislinie; dann kann in ¥V X F ein Weg p X F nicht umge-
dreht werden, da er ein erzeugendes Element der unendlich zyklischen
Fundamentalgruppe von V X F darstellt. Folglich gilt der Hilfssatz B
und mithin auch der Satz 2.2.

Der Hilfssatz B 148t sich auch folgendermaflen ohne den Satz von Feldbau
beweisen: Konnte 7'; in R umgedreht werden, so kénnte man einen Kreisring K,
der von den gleichsinnig gerichteten Kreisen C; und C, berandet wird, durch eine
Abbildung f derart in den Raum R abbilden, da3 f(C,) = T, f(C,) = — T, ware.
P sei wie oben die Projektion von R auf V; dann wire Pf = g eine Abbildung von
K in V mit g(C,;) =0, wobei O der Punkt P(T,)ist (¢ = 1, 2); da V eine Vollkugel
ist, liefe sich das Bild g (K) unter Festhaltung von O auf den PunktO zusammen-
ziehen, d. h. es géibe eine Abbildungsschar g;, 0 v <1, von K in V mit g, = ¢,
g (y) =0 fir yeC, (¢t =1,2) und alle 7, ¢g,(y) =0 fir ye K. Nach einem
grundlegenden und leicht beweisbaren Lemma aus der Theorie der stetigen Abbil-
dungen in gefaserte Riaume®) gibe es dann auch eine Abbildungsschar f,, 0 < 7 < 1,
von K in R mit Pf, = g, fiir alle 7 und f, = f ; dabei ware, wenn 7', die Menge der
Punkte des gerichteten Weges T'; bezeichnet,

4) J. Feldbau, Sur la classification des espaces fibrés, C. R. 208 (1939), 1621 —
1623, Théoréme A.

8) B. Eckmann, Zur Homotopietheorie gefaserter Rédume, Comment. Math.
Helvet. 14 (1941), 141—192; besonders 1565—156.
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(1) £(C,)c T, fiiri=1,2und alle 7, (2 HEK)CT,.
(1) bedeutet: der Weg f,(C,) = 4 T, ist auf T, homotop mit dem Wege f,(C;);
(2) bedeutet : f,(C,) ist auf T, homotop zu f,(C,). Also wiren 7', und — 7', einander
homotop auf 7T,, der Weg T, konnte also auf 7', umgedreht werden. Da dies un-
moglich ist, ist die Annahme, 7T'; kénne in R umgedreht werden, falsch.

3. Die singuldren Elemente. G sei jetzt wieder eine beliebige Gruppe
wie in Nr. 1; auch 7', n, , @ sollen dieselben Bedeutungen haben wie dort.

3.1. Definition : Das Element t von T heifit requlir, wenn es auf ketnem
von T verschiedenen maximalen Toroid von G liegt, und singuldr, wenn
es aufer auf T noch auf etnem anderen maximalen Toroid liegt.

Nach [3], Nr. 25, ist diese Definition mit der folgenden gleichwertig:

3.2. t ist regulir oder singulir, jendchdem sein Normalisator die
Dimension ! oder gréflere Dimension hat.

In 1], § 2, Nr. 3, wird folgendes gezeigt: m sei die gemafl 1.2 durch
n — 1 = 2m bestimmte ganze Zahl; jedem ¢ ¢ 7' sind m Kreisdrehungen
(@), ..., 7, () zugeordnet; 9,, ..., #,, sind homomorphe Abbildungen
von 7T in die Kreisdrehungsgruppe D ; keine von ihnen ist die triviale
Abbildung auf das Einselement von D ; wenn das Element ¢ den Kernen?)
von genau v der Homomorphismen #; angehort, so hat sein Normalisator
die Dimension [ 4+ 2». 9) ‘

Aus der letzten Tatsache und aus 3.2 folgt, dal £ dann und nur dann
singuldr ist, wenn ¢ wenigstens einem der Kerne angehort. Die Kerne
mogen U,, . .., U, heiBlen; sie sind abgeschlossene Untergruppen von 7' ;
da D eindimensional und kein Homomorphismus ¥; trivial ist, sind die
U, (I — 1)-dimensional. Es gelten somit die folgenden beiden Sétze:

3.3. Die Menge der singuliren Elemente von 7' ist die Vereinigungs-
menge der Elemente von m abgeschlossenen Untergruppen U,,..., U,
von T ; jede Gruppe U, hat die Dimension ] —1; es ist 2m =n —1.

3.4. Wenn das Element ¢ genau » der Gruppen U, angehért (v > 0),
s0 hat sein Normalisator die Dimension I + 2».

Zu 3.3 ist zu bemerken: es ist noch nicht bewiesen, daf die Gruppen

®) In [1], 1. c., werden nicht die homomorphen Abbildungen mit 1}; bezeichnet, sondern
unter ;(t) wird die durch 27 dividierte Winkelkoordinate der Drehung verstanden, die
durch den betreffenden Homomorphismus dem Element ¢ zugeordnet ist; daf keine der
Abbildungen trivial ist, bedeutet dann: kein 1}; verschwindet identisch mod. 1; und der
Kern des Homomorphismus ist dann die Menge derjenigen ¢, fiir welche ¢; mod. 1 ver-
schwindet.
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U,,..., U, simtlich voneinander verschieden sind; dies wird erst in
Nr. 5 gezeigt werden. In [1] ist der betreffende Beweis die eingangs
erwihnte Stelle, an welcher die infinitesimale Theorie der halb-einfachen
Gruppen herangezogen wird.

Da die Transformationen aus @ durch Automorphismen von @ bewirkt
werden, ergibt sich aus der Definition 3.1:

3.5. Die Menge der singuliren Elemente, also die Vereinigung der
Gruppen U,;, wird durch jede Transformation aus @ auf sich abgebildet.

In bezug auf kanonische Koordinaten, die in einer Umgebung des
Einselementes e gelten, ist 7' eine Il-dimensionale Ebene, die e enthilt,
und die U, sind (I — 1)-dimensionale Ebenen in 7', die e enthalten; die
Ebenen U, zerlegen T' — in der Umgebung von ¢ — in endlich viele
Gebiete B,, B,, ... . Die inneren Automorphismen von @ sind in bezug
auf die kanonischen Koordinaten affine Abbildungen, die e festhalten;
diejenigen Automorphismen, welche zu @ gehoéren, transformieren 7' in
sich; da sie nach 3.5 die Ebenen U, permutieren, permutieren sie auch
die Gebiete B, . Es gilt nun folgender Satz ([1], § 2, Satz 11):

3.6. Durch eine Transformation ¢ ¢®, die nicht die Identitdt ist,
wird kein Gebiet B; auf sich abgebildet.

Beweis ([1], 1. c., sowie Satz 6): B, werde durch ¢ ¢® auf sich abge-
bildet. Als Element der endlichen Gruppe @ hat ¢ endliche Ordnung.
t sei ein Punkt von B;, seine Bilder bei den endlich vielen Potenzen von
@ seien t¢,, und der Schwerpunkt der ¢, sei s, alle diese Punkte liegen in
B;; (t wird in hinreichender Nihe von e angenommen). Da das System
der ¢, durch ¢ auf sich abgebildet wird, ist s Fixpunkt der affinen Ab-
bildung ¢ ; daher ist auch jeder Punkt der Strecke S, die ¢ mit s ver-
bindet, Fixpunkt von ¢. Die Strecke § erzeugt eine einparametrige
Untergruppe von G ; deren abgeschlossene Hiille ist ein Toroid 7'/. Die
Abbildung ¢ werde durch den inneren Automorphismus x> a-'ra von
G bewirkt; daB die Elemente von S Fixpunkte von ¢ sind, bedeutet:
a ist mit jedem Element von S vertauschbar; folglich ist a auch mit
jedem Element von 7'’/ vertauschbar. Nach 1.1 gibt es daher ein Toroid
T” das a und T, also auch s, enthiilt. Nun ist aber das Element s, da
es in B;, und daher auf keinem U, liegt, regulires Element; nach 3.1
ist daher 77 c T', da andernfalls s sowohl auf 7' als auch auf einem
von T verschiedenen maximalen Toroide, das 7'” enthilt, lige. Da 7" < T
ist, ist a € T'; das bedeutet: ¢ ist die identische Abbildung von 7'.
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4. Hilfssitze. Wir schalten hier drei einfache allgemeine Hilfssiitze
iiber Toroide ein; die Gruppe G kommt dabei nicht vor.

T sei ein l-dimensionales Toroid, U eine abgeschlossene (I — 1)-dimen-
sionale Untergruppe von 7T'; die Eins-Komponente von U — d. h. die
Komponente, die das Einselement enthilt — heifle U’; sie ist ein (I — 1)-
dimensionales Toroid ; die Faktorgruppe U /U’ ist infolge der Abgeschlos-
senheit von U endlich; ihre Ordnung, also die Anzahl der Komponenten
von U, heifle p.

4.1. Die Faktorgruppe U /U’ ist zyklisch.

Denn U/U’ ist Untergruppe der Gruppe T/U’, die eindimensional,
kompakt und zusammenhingend, also die Kreisdrehungsgruppe ist.

Jedes Toroid enthélt nach dem Kroneckerschen Approximationssatz
erzeugende Elemente, d. h. solche, deren Potenzen iiberall dicht in dem
Toroid liegen. Es sei a ein erzeugendes Element von U’; ferner sei die
Nebengruppe U* von U’ ein (im gewdohnlichen Sinne) erzeugendes
Element der nach 4.1 zyklischen endlichen Gruppe U/U’ und b ein
Element aus U*. Dann ist ab-? e U’; aus den bekannten Rechenregeln
in Toroiden geht hervor, da8l es in U’ ein Element ¢ mit ¢?=a b-P gibt
(cf. [3], Nr. 19). Dann ist fiir jeden Exponenten k, wenn wir ihn in der
Form k = pg 4+ r, 0 < r< p, darstellen und wenn wir bc = d setzen:
d¥ = a2dr; die Potenzen a? liegen iiberall dicht in U’, und die p Potenzen
dr liegen in den p Nebengruppen von U mod. U’; daher liegen die Poten-
zen des Elementes d iiberall dicht in U. Damit ist gezeigt:

4.2. U enthilt ein erzeugendes Element, d.h. ein solches, dessen
Potenzen iiberall dicht in U liegen.

Ferner behaupten wir:

4.3. Wenn es einen Automorphismus von 7' gibt, der die Ordnung 2
hat und jedes Element von U festliBit, soist p =1 oder p = 2.

Beweis: Der Automorphismus ¢ erfiille die Voraussetzungen. Da jede
Matrix der Ordnung 2 den Eigenwert —1 hat, gibt es im Punkt ¢, dem
Einselement von 7', eine Richtung, die durch ¢ in die ihr entgegengesetzte
Richtung transformiert wird; die einparametrige Gruppe C, die diese
Tangentialrichtung hat, erleidet daher bei ¢ die Inversion, d. h. es ist
@(c) = ¢-1 fiir ¢c e . Da ¢ die Elemente von U’ festhilt, ist C' nicht in
U’ enthalten ; folglich ist die von U’ und C erzeugte Gruppe l-dimensional,
also mit 7' identisch; insbesondere lif3t sich daher jedes Element u ¢ U
in der Form u = wuyc, uy € U/, ¢ € C, darstellen; aus ¢ = uuy' e U folgt
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@(c) = ¢; da andererseits g(c) = c-! ist, ist ¢? = e; daher ist u? = u?,
also u? e U’ fiir jedes u e U. Dies bedeutet: die (zyklische) Faktorgruppe
U/U' hat die Ordnung 1 oder die Ordnung 2, w.z.b.w.

5. Fortsetzung der Untersuchung der Menge der singuliren Elemente
und der Gruppe . Es sei wieder T ein maximales, I-dimensionales Toroid
in (¢ ; seine Untergruppen U, sind wie in Nr. 3 erklirt; das ([ — 1)-dimen-
sionale Toroid, das die Eins-Komponente von U; ist, heife Uj.

a sei, bei festem ¢, erzeugendes Element des Toroids U’}; sein Normalisa-
tor sei N,, und dessen Eins-Komponente sei N' ; die Dimension von N,
die zugleich die Dimension von N, ist, sei n’. Nach 3.2 ist n’ > I. Es ist
T c N,; T ist also auch maximales Toroid in N’. Das Element ¢ und
daher auch das ganze Toroid U; gehéren zum Zentrum von N, ; da somit
U; Normalteiler von N, ist, existiert die Gruppe G; = N./U’, und es
liegt eine homomorphe Abbildung » von N, auf G, mit dem Kern U]
vor. Die Dimension von @, ist n, =n’'— (I —1)>1; nach 1.6 ist
T, = T/U’; maximales Toroid in G, ; seine Dimension ist ] — (I — 1) = 1;
nach 2.2 ist daher n, = 3, also n’ =1 4 2. Dies bedeutet nach 3.4,
daf a keinem U; mit j # ¢ angehort. Damit ist gezeigt:

5.1. Fiir j s£ ¢ ist U; % U, und U; # U;.

Die Tangentialebenen von U; und U, im Punkte e sind (I — 1)-dimen-
sional und nach 5.1 voneinander verschieden ; ihr Durchschnitt ist daher
(I — 2)-dimensional; mithin gilt folgende Verschirfung von 5.1:

b.1’. Fiir § 5 ¢ ist der Durchschnitt von U, und U, eine (I — 2)-dimen-
sionale Gruppe.

Die gemafl 1.4 zu der Gruppe G, und ihrem maximalen Toroid 7',
gehorige Gruppe @, hat nach 2.1 die Ordnung 2; nach 1.7 hat daher auch
die Gruppe @', die in analoger Weise zu der Gruppe N/, und ihrem maxi-
malen Toroid 7' gehort, die Ordnung 2; es sei ¢; das Element der Ordnung
2in @'

Wir behaupten: ¢, 1it jedes Element von U, fest. Da ¢, durch einen
inneren Automorphismus x->b-1xzb mit b ¢ N, bewirkt wird, ist dies
bewiesen, sobald gezeigt ist: U, gehért zum Zentrum von N.. Es sei ¢
erzeugendes Element von U,, wie es nach 4.2 existiert, und N : die Eins-
Komponente des Normalisators N, von ¢; nach 3.4 ist die Dimension
von N, und N’ mindestens ! + 2; da Potenzen von ¢ in U; iiberall dicht
liegen, ist jedes mit ¢ vertauschbare Element auch mit a vertauschbar,
und daher ist N,c N, und N, c N.; da N, die Dimension I + 2 hat,
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ist mithin N, = N.. Nun gehéren ¢ und daher auch die von ¢ erzeugte
Gruppe U; zum Zentrum von N,; ferner ist U,c T c N’; folglich
gehort U, zum Zentrum von N, = N, .

Aus T c N, c @ und der Definition 1.4 folgt unmittelbar, daB &’
Untergruppe von @ ist; es ist also ¢; e @. Damit ist folgendes bewiesen :

5.2. Die Gruppe @ enthilt m solche Involutionen ¢,, . .., ¢,, da ¢,
alle Elemente von U, festlilit t =1, ..., m).

Aus 5.2 und 4.3 folgt:
5.3. Jede Gruppe U, besteht aus hochstens zwei Komponenten.

Wir betrachten jetzt — in engem AnschluBl an [1], § 2 — die Trans-
formationen aus der Gruppe @ noch niher. Zu diesem Zwecke fiithren wir
wie bei der Behandlung von 3.6 in der Umgebung des Punktes e¢ kano-
nische Koordinaten ein; diese konnen wir nach einem bekannten Satz
von Weyl so wihlen, daB in bezug auf sie die inneren Automorphismen
von G nicht nur affin, sondern sogar orthogonal, also eigentliche oder
uneigentliche Bewegungen sind; ein solches Koordinatensystem soll im
folgenden kurz ein orthogonales kanonisches System heilen. Daraus,
daB8 ¢; die Ebene 7' auf sich abbildet, alle Punkte von U, festlifit, aber
nicht die Identitit ist, folgt:

5.4. In bezug auf ein orthogonales kanonisches Koordinatensystem
in der Umgebung von e sind die Involutionen ¢, die Spiegelungen der
l-dimensionalen Ebene 7' an den in 7' gelegenen (I — 1)-dimensionalen
Ebenen U, .

Weiter betrachten wir wie bei 3. 6 die Gebiete B;, in welche der I-dimen-
sionale Raum 7' durch die Ebenen U, zerlegt wird (in der Umgebung
von ¢); sind B, B’ zwei dieser Gebiete, so kann man in ihnen Punkte ¢
bzw. t’ so wihlen, daB deren Verbindungsstrecke keinen der (I — 2)-
dimensionalen Durchschnitte irgend zweier Ebenen U, und U, trifit;
bei Durchlaufung dieser Strecke von ¢ bis ¢’ moégen der Reihe nach die
Ebenen U,, U,, ..., U, durchschritten werden; nimmt man der Reihe
nach die Spiegelungen ¢,, @,, . .., ¢, vor, so entsteht eine Transforma-
tion ¢’ aus @ mit ¢'(B) = B’. Es sei nun ¢ eine beliebige Transformation
aus @ und B eines der Gebiete B,; wir setzen ¢(B)= B’; wie wir eben
gesehen haben, gibt es ein Produkt ¢’ von Spiegelungen ¢,, so daB
@'(B) = B’ ist; durch ¢’p-! wird B also auf sich abgebildet; nach 3.6
ist daher ¢’p-! die Identitit, also ¢ = ¢’. Damit haben wir (wie in [1],
§ 2, Nr. 10) folgendes bewiesen:
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5.5. Die Gruppe @ wird von den Involutionen ¢, ..., ¢, erzeugt.

6. Zusammenfassung der Ergebnisse. Es seien wie bisher: G eine ge-
schlossene Liesche Gruppe; 7' ein maximales Toroid in G'; n die Dimen-
sion von G, | die Dimension von 7', m die durch n — I = 2m bestimmte
ganze Zahl (cf. 1.2). Die singulidren Elemente sind wie in 3.1, die Gruppe
@ ist wie in 1.4 definiert.

Satz I. Die Menge der singuliren Elemente von T ist die Vereinigungs-
menge der Elemente von m abgeschlossenen Untergruppen U,, ..., U,
von T. Jede Gruppe U, ist (I — 1)-dimensional ; sie ist entweder exn Toroid
U; oder sie besteht aus einem Toroid U und noch einer Nebengruppe von
U;. Fur j # i ist U; # U,, und der Durchschnitt von U, und U, ist eine
(I — 2)-dimensionale Gruppe.

Satz II. Die Gruppe @ ist endlich. Ste transformiert die Veretnigungs-
menge der Gruppen U; in sich. Sie wird von m Involutionen ¢,, ..., @,
erzeugt. @, lift jedes Element von U, fest ; in bezug auf orthogonale kanonische
Koordinaten in der Umgebung des Einselementes e ist ¢, die Spiegelung
von T an der Ebene U,.

Zu dem Satz I sei noch ein Zusatz gemacht. Aus 1.1 folgt, daB das
Zentrum Z von G in T enthalten ist. Ein Element ¢ € G gehort dann und
nur dann zu Z, wenn sein Normalisator N, die ganze Gruppe @ oder, was
dasselbe ist, wenn N, n-dimensional ist; nach 3.4 bedeutet das, daB ¢
allen m Gruppen U, angehort. Somit gilt folgender

Zusatz zu Satz I. Der Durchschnitt der Gruppen U,, ..., U, ist das
Zentrum Z von Q. Daf die Gruppe G halb-einfach, d. h. daf Z diskret ist,
ist also gleichbedeutend damat, daf der Durchschnitt der U, nur aus endlich
vielen Punkten besteht.

Von diesen Ergebnissen gelangt man zu denen des § 2 in [1], indem
man die universelle Uberlagerungsgruppe R von 7' heranzieht; sie ist der
I-dimensionale euklidische Raum R mit der Vektoraddition als Gruppen-
operation; die euklidische Metrik in R ist durch die orthogonalen kano-
nischen Koordinaten gegeben, die wir auf 7' nur in der Umgebung von e
verwenden konnten, die sich aber iiber ganz R erstrecken lassen. Die Uber-
lagerungsgruppen der U, werden in R durch (I — 1)-dimensionale Ebenen
dargestellt; das System dieser Ebenen ist das Stiefelsche ,,Diagramm‘
von G@. Die Spiegelungen an den Ebenen des Diagramms erzeugen
eine Gruppe I', welche bei der natiirlichen homomorphen Abbildung
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von R auf 7 in die Gruppe @ iibergeht; dies ist die diskontinuierliche
Bewegungsgruppe, die Stiefel der Gruppe G zuordnet. Die Eigenschaften
des Diagramms und der Gruppe I, die in [1], § 2, festgestellt werden,
lassen sich leicht aus unseren Sidtzen I und II ableiten.

Umgekehrt sind unsere Sitze in den Ergebnissen der Arbeit von
Stiefel enthalten.

Ein weiterer Satz aus der Arbeit von Stiefel ([1], Satz 18) besagt, dal
eine einfach zusammenhingende geschlossene Gruppe G durch ihre
Gruppe @ — diese nicht als abstrakte Gruppe, sondern als Automorphis-
mengruppen eines Toroids aufgefalBt — vollstindig bestimmt ist. Die
Aufgabe, auch diesen Satz sowie dhnliche Sitze, die in [1], § 4, formu-
liert sind, unter moglichster Vermeidung der infinitesimalen Theorie
durch globale geometrische Betrachtungen zu beweisen oder wenigstens
die jetzt bekannten Beweise durch derartige Betrachtungen zu verein-
fachen, ist noch offen.

(Eingegangen den 6. April 1942.)
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