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Einseitige Polyeder nach Boy

I. TEIL
Einseitiges Hexadekaeder

Von K. MErz, Chur

Als Modell einer abstrakten Fliche dient ein im dreidimensionalen
euklidischen Raum gelegenes Bild der Flidche, das durch'eine eindeutige
stetige Abbildung geliefert wird. Dabei diirfen auch Durchdringungen
stattfinden, auf denen dann einem Punkte des Modells zwei Punkte der
Fliche entsprechen. Das Heptaeder ist ein Modell der projektiven Ebene.
Es besitzt an den durch den dreifachen Punkt O, nach Abb. 1, gehenden

Doppelstrecken AA,, BB,, CC, sechs Endpunkte. Im folgenden wird das
Heptaeder so abgeandert, daBl ein Modell der projektiven Ebene ent-
steht, in welchem keine freien Endpunkte von Doppelstrecken auftreten.

Um diese Endpunkte zu vermeiden, hat man sie zu je zweien mit-
einander zu verbinden, so daB3 drei Dreiecke entstehen 0OAC,, OCB,,
OBA ,, welche den drei Schleifen der Doppelkurve der Boyschen Fldche!)
entsprechen. Damit miissen an dem gesuchten Polyeder sechs Doppel-
strecken bestehen, ndmlich die drei Achsen des urspriinglichen Oktaeders
und noch drei zueinander windschiefe Kanten. Die beiden an diesen
Kanten AC,, BA,, CB, je zusammenstofenden Flidchen des Heptaeders

1) Boy W., Gott. Nachr. Math. phys. K1. 1901, Heft 1, S.20. Math. Ann. 57, 1903,
S. 151.
Hilbert D., Anschauliche Geometrie, S. 280. Berlin 1932.
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sind zu verldngern, wie C,4,B bis 4,B, und ABA,B, bis 4,8, und es
sind damit drei neue Scheitelzellen am Heptaeder anzufiigen. Dazu sind
zu verwenden die drei an eine Liicke in 4,B,C, anstoenden Dreiecke
des Heptaeders und die drei Quadrate seiner Achsenschnitte. Mit diesen
drei Paar verlingerten Flichen sind die drei Zellen gebildet, die hier
prismatisch angenommen sind, wie 4,4,4, BB,B,, wozu je drei neue
Flichen verwendet werden, ein Trapez und zwei Dreiecke. Zu den 7
Flidchen des Heptaeders treten also 9 neue Fliachen, so daf3 ein 16Flach

entsteht: f = 16, e = 18, k = 33, also ¢ = 1 oder k = 2, als eindeutige
stetige Abbildung der projektiven Ebene.

Das Netz Abb. 2 dieses 16Flachs wird erhalten durch Erweiterung des
Netzes?) mit den sechs halben Doppelstrecken des Heptaeders. An die in
Abb. 1 oberste Fliche A BC sind die Quadrate der Achsenschnitte mit
einem Viertelausschnitt angesetzt und daran weiter die drei verldngerten

2) Commentarii Mathematici Helvetici v. 13, p. 53, Abb. 7, 1940.

Karl Merz, Vielflache aus Scheitelzellen und Hohlzellen, 8. 91, Chur 1939.
Das Heptaeder wurde zuerst von C. Reinkard 1885 in den Leipziger Berichten S. 108
beschrieben, im AnschluB8 an einseitige Polyeder von Mdbius.
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Dreiecke mit den Trapezen und den Rechtecken, als Verlingerungen der
Quadrate. An diesen Rechtecken liegen die Wendestrecken 2, 5, 8, welche
in die neuen Doppelstrecken fallen. Die Dreiviertelsquadrate sind nach
unten zu klappen, bis die drei O zusammenfallen, und die anstoBenden
Fldchen ebenso weiter, worauf dann um die punktierten Kanten zuriick-
zuklappen ist. Die Wendestrecken 1 bis 9 schlieBen sich je aneinander
mit Oberseite o des Netzes an dessen Unterseite », in dem Schleifenzug
OAC,0C0B,0BA4,0.

Die entstehenden drei angesetzten Prismenzellen zeigen u wie auch
die in 2, 5, 8 an sie anstoBenden Dreiecke als Quadratviertel, die zu den
Ausschnitten in Scheitellage sind. Die Oberseite o des Netzes zeigt sich
an den vier Dreiecken des Heptaeders und an neun Quadratvierteln.
In Abb. 1 liegt das 16flach auf dem Kantendreiecke 4,B,C,, von dem
aus nach O eine Liicke eindringt. Die Grundflichen der Prismen wie
A, A,A4, liegen in der Ebene von 4,B,C,. Auller der Grundliicke bestehen
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Abb. 3 Abb. 4 Abb. 5

noch die drei seitlichen Liicken, in die hinein von den Doppelstrecken
als Prismenkanten aus die Dreiecke OCB,, OBA,, OAC, sich ausdehnen,
die u zeigen wie die Prismen. Das 16 Flach hat eine dreifache Symmetrie-
achse in 00,. Das hier verwendete Netz hat die besondere Eigenschaft,
daB alle Wendestrecken 1 bis 9 nach der Aufklappung zu den sechs
Doppelstrecken des 16 Flachs werden, so dal3 keine Kanten entstehen, an
denen o und % zusammenstoBen. Werden die Verlingerungen der sechs
Paar Flichen des Heptaeders grofl genommen, so werden die drei Prismen
zum Hauptteil des 16 Flachs und das zwischen ihnen liegende Heptaeder
wird zur Durchdringung von sechs verlingerten Seitenflichen der Pris-
men, zu denen noch die Deckfliche des Heptaeders einzufiigen ist als
oberer Abschluf.

In den folgenden Abbildungen sind geschlossene Streckenziige gezeich-
net, welche durch horizontale Ebenen aus dem 16Flach geschnitten wer-
den. Abb. 3 zeigt den Schnitt im obern Viertel als Neuneck mit 6 Doppel-
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punkten. Im Mittelschnitt Abb. 4 vereinigen sich die innern drei Doppel-
punkte zum dreifachen Punkt. Der Schnitt Abb. 5 im untern Viertel zeigt
wieder 6 Doppelpunkte. Der unterste Schnitt ist punktiert in Abb. 4,
er hat nur noch drei Doppelpunkte, in denen je ein innerer und duBerer
Doppelpunkt sich vereinigt haben. Diese Schnittkurven zeigen, dafl sie
und damit auch die Fldche dem 6. Grad entsprechen. Die obersten Schnitte
arten in drei getrennte Dreiecke aus und schlieBlich in drei Punkte.

(Eingegangen den 10. Januar 1941.)

II. TEIL

Polyédre sans singularités topologiques homéomorphe au plan
projectif dans I’espace &4 3 dimensions

Par Pierre HumBERT, Zurich

Un probléme posé par Hilbert consiste a trouver une surface sans sin-
gularités topologiques homéomorphe au plan projectif. Comme il est
manifestement impossible, en vertu du fait que le plan projectif n’a qu’un
seul coté, d’obtenir une telle surface sans recoupements, il faudra en-
tendre la notion de singularité topologique dans un sens un peu plus
large que le sens ordinaire. On dira qu’une surface fermée abstraite U
topologiquement réguliere, est représentée sur une surface & de I’espace
R, sans singularités, 8’il existe une correspondance bicontinue entre
A et £ univoque dans le sens de A vers L mais non, nécessairement, dans
I’autre sens, vérifiant la condition suivante:

,»91 A est un point de A, B le point correspondant sur &, il existe un
voisinage V (4) de A représenté d’une fagon bicontinue et biunivoque
sur un voisinage de B.

Ainsi il pourra y avoir sur £ des recoupements, mais les feuillets qui
se coupent doivent toujours étre séparés. Pour parler d’une fagon plus
intuitive mais moins précise, on dira que £ représente A dans R, sans
singularités topologiques s’il existe entre ces 2 surfaces une correspon-
dance qui est biunivoque en petit et bicontinue en grand. Dans ces
conditions il est possible de résoudre le probleme de Hilbert. Une pre-
miére solution a été donnée par Boy dans sa these publiée en 1901 dont
on trouvera un résumé dans les Math. Annalen 57 (1903)!). Sa solution

1) Cf. aussi Hilbert und Cohn-Vossen, Anschauliche Geometrie (Berlin 1932),
P. 280—283.
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consiste & employer la formule de géométrie différentielle (formule de
Kronecker-Dyck)
m—mn=e

ou m, n représentent le nombre des points & plans tangents horizontaux,
m étant le nombre des points ou la surface présente soit un maximum
soit un minimum (points elliptiques), n étant le nombre de ceux ou la
surface est en forme de selle (points hyperboliques), et ou e est la caracté-
ristique d’Euler de la surface. Boy congoit sa surface coupée par des
plans horizontaux et se demande comment les courbes d’intersections
varient quand on passe par un point elliptique ou un point selle. Il
réalisa ainsi 2 modeles de surfaces, I'un pour lequel m = 2, n = 1, I'autre
pour lequel m = 4, n = 3. Nous n’entrerons pas dans plus de détails sur
la méthode de Boy; nous remarquerons que la solution pour laquelle
m = 4, n = 3 admet un axe de symétrie d’ordre 3.

Fig. 1

On peut aborder le probleme autrement. Considérons un octaédre
régulier et faisons lui subir les transformations suivantes: menons les
trois plans diagonaux passant par le centre, qui sont trois carrés, et
supprimons la moitié des 8 faces triangulaires de sorte que chacune des
arétes de l'octaédre ne limite qu’une des deux faces triangulaires qu’il
limitait précédemment. On obtient de cette facon un nouveau polyedre
fermé, non convexe et qui n’a qu’un seul c6té, comme on peut le vérifier
aisément. Ce polyeédre a 1 face de moins que I'octaeédre régulier, c’est un
heptaédre?). Il a le méme nombre de sommets et d’arétes que 1’octaédre.

?) L’Hepta¢dre apparait comme transformation du second ordre de la surface de
Steiner dans un travail de M. Merz, Parallelflachen und Centralfliache ...
(Chur 1914). Cf. aussi Hilbert et Cohn-Vossen, 1. c., p. 266—268.
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Sa caractéristique d’Euler est 1, il est donc homéomorphe au plan projectif.
Mzais il a 6 points topologiquement singuliers, ainsi que cela ressort de
plus haut: ce sont ses 6 sommets. Pour le voir, on peut utiliser la re-
présentation suivante du plan projectif : un cercle dans lequel on identifie
2 points diamétralement opposés sur la circonférence. Divisons la cir-
conférence en 6 parties que nous joignons par des arcs de cercles régu-
liérement ainsi que le montre la figure 1. On peut considérer cette figure
comme topologiquement équivalente au plan projectif divisé en 7 do-
maines dont 3 carrés et 4 triangles par 4 droites formant un quadrilatéere
complet. C’est en réunissant les parties équivalentes de la circonférence
sur la figure 1 que ’on obtient I’heptaédre. Cela ne peut pas se faire sans
qu’il y ait des pénétrations de faces les unes dans les autres; ce sont,
comme dans I’heptaédre ol les 3 carrés diagonaux se coupent, les faces
quadrangulaires qui se croisent suivant leurs diagonales. Ces diagonales
sont des lieux de points ou la représentation du plan projectif sur le

Fig. 2

polyédre n’est pas biunivoque; mais les points de ces diagonales sont tous
topologiquement réguliers sauf les sommets, comme on peut s’en assurer.
Le probléme se pose alors de transformer le polyédre de fagon & ce que
tous les points sans exception soient réguliers.

On fait d’abord la transformation suivante proposée par M. Merz3):
on prend 3 arétes de 'octaédre dont les extrémités constituent les 6
sommets de l'octaédre, par exemple les arétes qui correspondent aux
arcs ad, bf, ce, dans la figure 1; chacune de ces arétes limite un triangle
et un quadrilatére, que 1’on prolonge & travers cette aréte; on prend un
. point sur le prolongement du triangle et un point sur le prolongement du
quadrilatére; ces deux points déterminent, avec les 2 extrémités de

3) Cette construction nous a été communiquée par M. Merz. Elle fournit une petite
simplification de la construction d’un polyédre & 16 faces que M. Merz a publiée dans
la premidre partie de ce travail.
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I’aréte un tétraédre extérieurement & l’'octaédre, ayant ’aréte considérée
comme aréte. Cette aréte, dans le polyédre ainsi obtenu, ne compte plus
comme telle, mais comme nouvelle ligne de croisement de 2 faces. Ce
polyedre a 13 faces, 12 sommets et 24 arétes.

Ce nouveau modéle du plan projectif admet de nouveau les 6 sommets
de 'octaédre primitif comme points singuliers. Examinons de plus pres
ces sommets; ils sont tous semblables, il suffit d’en considérer un seul.
En un de ces sommets S, 1’angle polyedre qui limite le polyedre a la forme
représentée dans la figure 2. La base est un pentagone A BCDEA a
2 points de croisements F', G et SF, SG sont deux arétes de croisements.
Pour rendre le polyédre topologiquement régulier, on peut procéder en
chacun des 6 sommets S de la fagon suivante: Prenons sur SC un point
¢ que nous joignons & 2 points b et d pris sur S B et S.D respectivement
(fig. 2). Les droites cb et cd coupent les arétes de croisement SF et SG
en f et g. Supprimons les triangles Sbc et Scd et remplagons-les par les
triangles cbd et bdS. On obtient ainsi, cette opération étant faite pour
chacun des 6 sommets, un nouveau polyédre ayant 25 faces, 30 sommets
et 54 arétes, qui est homéomorphe au plan projectif et dont les singularités
topologiques ont disparu. En effet la ligne de croisement des faces ne
passe plus par §; & chacun des points P de cette ligne F fgG correspond
sur le plan projectif un point tel qu'un de ses voisinages soit en corres-
pondance bicontinue et biunivoque avec un voisinage de P.

En simplifiant encore quelque peu cette surface on peut faire en sorte
qu’elle n’ait que 16 faces, 24 sommets et 39 arétes. On obtient ainsi une
surface qui présente une symétrie d’ordre 3 autour d’un axe et que 'on
peut considérer comme une représentation polyédrale de la 2¢ surface
de Boy.

(Regu le 20 septembre 1941)
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