Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1941-1942)

Artikel: Zwei spezielle Cremona-Gruppen und die darin auftretenden

invarianten Konfigurationen, Kurven und Flächen.

Autor: Emch, Arnold

DOI: https://doi.org/10.5169/seals-14299

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zwei spezielle Cremona-Gruppen und die darin auftretenden invarianten Konfigurationen, Kurven und Flächen

Von Arnold Emch, Urbana, Illinois (U.S.A.)

1. Die invarianten Vierseitsechspunkte der ebenen quadratischen Involution

Vier in allgemeiner Lage befindlichen Geraden einer Ebene S_2 schneiden sich in drei Paaren von Gegenpunkten, die wir einen Vierseitsechspunkt nennen und mit V_6 bezeichnen wollen.

Nun betrachten wir die bekannte quadratische Involution

$$T_2$$
: $\varrho x_1' = x_2 x_3$, $\varrho x_2' = x_3 x_1$, $\varrho x_3' = x_1 x_2$; (1)

und darin die zwei Paare entsprechender Punkte $P(a_1, a_2, a_3)$; $P'(a_2a_3, a_3a_1, a_1a_2)$ und $Q(b_1, b_2, b_3)$; $Q'(b_2b_3, b_3b_1, b_1b_2)$. Die Verbindungslinien PQ' und P'Q schneiden sich in einem Punkt R, dessen Koordinaten leicht als

$$\varrho c_1 = (a_3 b_2 - a_2 b_3) (a_1 b_1 - a_2 b_2) (a_3 b_3 - a_1 b_1) ,$$

$$\varrho c_2 = (a_1 b_3 - a_3 b_1) (a_2 b_2 - a_3 b_3) (a_1 b_1 - a_2 b_2) ,$$

$$\varrho c_3 = (a_2 b_1 - a_1 b_2) (a_2 b_2 - a_3 b_3) (a_3 b_3 - a_1 b_1)$$
(2)

gefunden werden.

Ähnlich ergeben sich als Koordinaten des Schnittpunktes R^* von PQ und P'Q'

$$\sigma c_1' = (a_3 b_3 - a_2 b_2) (a_1 b_2 - a_2 b_1) (a_1 b_3 - a_3 b_1) ,
\sigma c_2' = (a_1 b_1 - a_3 b_3) (a_1 b_2 - a_2 b_1) (a_3 b_2 - a_2 b_1) ,
\sigma c_3' = (a_2 b_2 - a_1 b_1) (a_1 b_3 - a_3 b_1) (a_2 b_3 - a_3 b_2) .$$
(3)

Der entsprechende von R^* in T_2 , d. h. $R^{*'}(c'c', c'c', c'c')$ gibt für die Koordinaten Ausdrücke, welche mit Ausnahme eines konstanten Faktors $(a_1b_2-a_2b_1)$ $(a_2b_3-a_3b_2)$ $(a_3b_1-a_1b_3)$ identisch sind mit denen von R, so daß $R^* \equiv R$. So ergibt sich

Satz 1. Seien P, P'; Q, Q' zwei Paare entsprechender Punkte in einer quadratischen Involution T_2 . PQ' und P'Q schneiden sich in R; PQ und P'Q' in R', so da β R, R' ein drittes Paar in T_2 bilden. Es ist klar, da β

P, P'; Q, Q'; R, R' drei Paare eines V_6 bilden. Da die Wahl von Q, Q' unabhängig ist von demjenigen von P, P', so gibt es bei einer gegebenen T_2 in $S_2 \infty^4 V_4$. Zwei Paare P, P'; Q, Q' bestimmen ein V_6 eindeutig.

2. Invariante Kurven zweiter Art in T2

1. Es gibt zwei topologisch nicht verschiedene Klassen von in T_2 invarianten Kurven dritter Ordnung, nämlich (A) die zweifache Mannigfaltigkeit:

$$a_1 x_1 (x_2^2 - x_3^2) + a_2 x_2 (x_3^2 - x_1^2) + a_3 x_3 (x_1^2 - x_2^2) = 0$$
. (4)

Eine solche Kurve soll mit C_3 bezeichnet werden. Sie hat die Eigenschaft, daß die Verbindungslinien entsprechender Punkte auf C_3 in dem sogenannten isologen Punkte $S(a_1, a_2, a_3)$ zusammenlaufen.

(B) Die dreifache Mannigfaltigkeit.

$$a_1 x_1 (x_2^2 + x_3^2) + a_2 x_2 (x_3^2 + x_1^2) + a_3 x_3 (x_1^2 + x_2^2) + a_4 x_1 x_2 x_3 = 0$$
. (5)

Für eine solche Kurve soll die Bezeichnung C_3 verwendet werden. Die Verbindungslinien entsprechender Punkte von T_2 auf ihr umhüllen eine Kurve 3. Klasse. Eine C_3 kann geometrisch dadurch erhalten werden, daß man zuerst eine Kurve dritter Klasse mit den sechs invarianten Linien von T_2 als Tangenten konstruiert. Dann ist der Ort entsprechender Punkte auf den Tangenten dieser Klassenkurve gerade eine solche C_3 .

2. Die C_3 hängt von drei effektiven Konstanten ab. Folglich bestimmen drei allgemein gewählten Punkte P,Q,R^* eine solche Kurve eindeutig. Sie geht, weil invariant, auch durch $P',Q',R^{*'}$. Zwei Punkte P,Q bestimmen einen Büschel (C_3) , der auch P',Q' enthält. Jetzt nehme man R^* als R in V_6 , § 1. Dann geht C_3 durch die sechs Punkte von V_6 , aber ist nicht eindeutig bestimmt. Man bezeichne das V_6 enthaltene Vierseit mit L_1, L_2, L_3, L_4 und die diesen Linien entsprechenden Kegelschnitte in T_2 mit L'_1, L'_2, L'_3, L'_4 . Aber die Produkte $L_1 \times L'_1$; $L_2 \times L'_2, L_3 \times L'_3$, $L_4 \times L'_4$ sind degenerierte C_3 durch alle 9 Punkte A_1, A_2, A_3 , die Fundamentalpunkte von T_2 , und P, P'; Q, Q'; R, R', so daß der Büschel (C_3) , durch P, P'; Q, Q' bestimmt, auch auf R, R' ist.

Zwei Kurven C_3' und C_3^3 bestimmen einen Büschel auf A_1 , A_2 , A_3 und drei Paare entsprechender Punkte in T_2 . Seien P, P'; Q, Q' zwei dieser Paare, und R, R' das diese zu einem V_6 ergänzende Paar, dann gehen die Kurven des Büschels, d. h., auch C_3' und C_3^2 durch V_6 . Somit

- Satz 2. In S_2 gibt es $\infty^4 V_6$ die in T_2 invariant sind. Jedes V_6 mit A_1 , A_2 , A_3 bilden die Basis für einen Büschel von C_3 . Zwei C_3 schneiden sich außerhalb des Fundamentaldreiecks in den sechs Punkten eines V_6 .
- 3. In einem Büschel von Kurven dritter Ordnung gibt es im allgemeinen 12 mit Doppelpunkt. Unter den Kurven eines Büschels von C_3 gibt es erstens vier welche durch die vier invarianten Punkte von T_2 gehen und dort je einen Doppelpunkt haben. Dann sind die $L_i \times L_i$ je vier Kurven des Büschels, welche doppelgezählt 8 weitere Doppelpunkte liefern. Man gelangt auf diese Weise zu einem weitern interessanten Beispiel der noch wenig bekannten Konfiguration Δ_{12} der zwölf Doppelpunkte der rationalen Kurven eines Büschels von Kurven dritter Ordnung 1).
- 4. Durch einen Punkt S ziehe man bei Geraden L_1 , L_2 , L_3 und bestimme auf ihnen bezüglich die drei Paare entsprechender Punkte P_1, P_1' ; P_2, P_2' ; P_3, P_3' . Sie liegen auf der C_3 deren isologer Punkt S ist. Zu P_1P_1' , P_2P_2' , die ein V_6 bestimmen, konstruiere man das dazu gehörige dritte Paar Q_3, Q_3' . In ähnlicher Weise zu P_2, P_2' , P_3, P_3' das dritte Paar Q_1, Q_1' ; zu P_3, P_3' ; P_1, P_1' das dritte Paar Q_2, Q_2' . Nach viermaliger Anwendung des Desargues'schen Dreieckssatzes folgt sehr leicht, daß Q_1, Q_1' ; Q_2, Q_2' ; Q_3, Q_3' drei Paare eines neuen V_6 bilden, den wir mit W_6 bezeichnen. Der von P_1, P_1' ; P_2, P_2' ; Q_3, Q_3' gebildete V_6 enthält einen Büschel von C_3 . Darunter gibt es eine Kurve die auch durch P_3, P_3' geht. Diese gehört aber auch zu den durch P_2, P_2' ; P_3, P_3' und P_3, P_3' ; P_1, P_1' bestimmten Büscheln und geht deshalb auch durch Q_1, Q_1' und Q_2, Q_2' . Man erhält so den
- Satz 3. Sind L_1, L_2, L_3 drei durch einen Punkt gehenden Linien und P_1, P_1' ; P_2, P_2' ; P_3, P_3' die auf denselben liegenden Paare entsprechender Punkte in T_2 , ferner Q_3, Q_3' ; Q_1, Q_1' ; Q_2, Q_2' die drei Paare des durch die P_i, P_i' bestimmten W_6 , so liegen die sechs Paare P_i, P_i' ; Q_i, Q_i' auf einer einzigen C_3 . Auf einer C_3 gibt es ∞^2 solcher W_6 .
- 5. Sei P_1 , P'_1 ein Paar entsprechender Punkte auf einer C_3 und P_2 auf C_3 in erster Nachbarschaft von P_1 (infinitesimal erster Ordnung), dann ist auch P'_2 in erster Nachbarschaft von P'_1 . In dem dadurch bestimmten V_6 ist Q_3 der gemeinschaftliche Tangentialpunkt der Tangenten in $P_1(P_2)$ und $P'_1(P'_2)$ und Q'_3 ist der Schnittpunkt von $P_1P'_1(P_2,P'_2)$ mit C_3 . Somit ist jedes Paar entsprechender Punkte auf C_3 ein Steinersches Paar, d. h. ein Punktepaar mit demselben Tangentialpunkt. Von Q_3 gehen noch

¹) Ein anderes Beispiel für Δ_{12} veröffentlichte ich in Band 49 (1940), pp. 55—63 der Monatshefte für Mathematik und Physik.

zwei weitere Tangenten Q_3P_3 , Q_3P_4 und C_3 , so daß jetzt P_1,P_1' , P_3 , P_4 ein Steinersches Quadrupel bilden. Nun ist bekannt, daß dieses Quadrupel die invarianten Punkte und sein Diagonaldreieck einer neuen quadratischen Involution bilden, worin C_3 auch invariant und die zu Q_3 gehörige isologe Kurve ist. Zusammenfassend ergibt sich

Satz 4. Jedes Paar entsprechender Punkte auf C_3 ist ein Steinersches Paar mit einem Tangentialpunkt Q_3 . Dieser bestimmt ein zweites Steinersches Paar, also ein Steinersches Quadrupel. Seine Punkte sind die invarianten Punkte einer neuen quadratischen Involution und sein Diagonaldreieck ist das Fundamentaldreieck derselben. Darin ist jetzt C_3 die zu Q_3 gehörige isologe Kurve.

Das ist ein direkter Beweis, daß die oben erwähnten zwei Kurvenklassen (4) und (5) topologisch nicht verschieden sind.

3. Geometrische Eigenschaften einer speziellen Cremonagruppe

1. Das Produkt der symmetrischen Kollineationsgruppe G_6 und der in § 2 gebrauchten Involution T_2 in $S_2(x_1, x_2, x_3)$ ist eine Cremonagruppe einfacher Art G_{12} , deren geometrische Eigenschaften sich ohne Schwierigkeit ergeben. Die elementar symmetrischen Funktionen der drei Variabeln x_1, x_2, x_2 seien mit $\Phi_1 = \sum x_i$, $\Phi_2 = \sum x_i x_k$, $\Phi_3 = x_1 x_2 x_3$ bezeichnet. Wenn weiterhin von einem Punkt oder einer Geraden gesprochen wird, so sollen darunter solche in allgemeiner Lage, d. h. solche ohne besonders einschränkenden Bedingungen zu unterliegen, verstanden werden. Durch die sechs Kollineationen $\varrho x_i' = x_k$ von G_3 wird ein Punkt (a_1, a_2, a_3) , einschließlich diesen, in sechs Punkte (a_i, a_k, a_2) transformiert die auf einem Kegelschnitt liegen. Werden die symmetrischen Funktionen der a_i in gleicher Reihenfolge mit $\alpha_1, \alpha_2, \alpha_3$ bezeichnet, so ist die Gleichung dieses Kegelschnitts

$$K_2 = \alpha_2 \, \Phi_1^2 - \alpha_1 \, \Phi_2 = 0 \; . \tag{6}$$

Im folgenden werden die von mir schon früher vielfach gebrauchten Bezeichnungen verwendet. In S_2 : $A_1(1,0,0)$; $A_2(0,1,0)$; $A_3(0,0,1)$; $B_0(1,1,1)$; $B_1(-1,1,1)$; $B_2(1,-1,1)$; $B_3(1,1,-1)$; $E_1(0,1,1)$; $E_2(1,0,1)$; $E_3(1,1,0)$; $E_3(1,1,0)$.

Die auf K_2 gelegenen sechs Punkte a_i , a_k , a_2 seien mit 123, 132, 213, 231, 312, 321 bezeichnet. Es ist bekannt, daß diese bei perspektivischen Involutionen mit den Zentren E_1 , E_2 , E_3 angehören. Zum Beispiel die Verbindungslinien von 123 und 132, 213 und 231,

312 und 321 gehen durch E_1 . In ähnlicher Weise können die sechs Punkte in je drei Paare angeordnet werden, deren Verbindungslinien je durch E_2 und E_3 gehen.

Die durch T_2 transformierten Punkte a_i' , a_k' , $a_2' = (a_k a_2, a_2 a_i, a_i a_k) = i' k' l'$ liegen auf einem neuen Kegelschnitt K_2^* mit der Gleichung

$$\alpha_1 \alpha_3 \Phi_1 + \alpha_2 \cdot \Phi_2 = 0 , \qquad (7)$$

da ja die durch T_2 transformierten sechs Punkte eine ähnliche Gruppe von solchen sechs Punkten 1'2'3', 1'3'2', 2'1'3', 2'3'1', 3'1'2', 3'2'1' bilden, die denselben drei perspektivischen Involutionen mit den Zentren E_1 , E_2 , E_3 angehören. K'_2 die Transformierte von K_2 ist eine Kurve vierter Ordnung mit Doppelpunkten in A_1 , A_2 , A_3 und ist natürlich nicht identisch mit K_2^* . Die Konfiguration der 12 Punkte A_{12} ist invariant in der Cremonagruppe G_{12} , welche das Produkt von G_6 und T_2 ist.

Außerdem liegen die 12 Punkte, je einer auf K_2 und einer auf K_2^* sechsmal auf einer Linie durch E_1 . Die Verbindungslinien von 321, 1'2'3'; 231, 1'3'2'; 312, 2'1'3'; 213, 3'1'2'; 132, 2'3'1'; 123, 3'2'1' gehen durch E_1 . In ähnlicher Weise gibt es je solche sechs Verbindungslinien durch E_2 und E_3 . Als Resultat hat man

Satz 5. Eine Konfiguration Δ_{12} , welche in der Cremonagruppe G_{12} invariant ist, hat die Eigenschaft, daß ihre Punkte sechsmal zu je zwei auf sechs Verbindungslinien durch die Punkte des Vierseitsechspunktes $A_1A_2A_3E_1E_2E_3$ liegen.

4. Invariante Kurven in der Gruppe G₁₂

1. Die Kurve 3. Ordnung C₃.

Dieselbe hat die Gleichung

$$x_1(x_2^2 + x_3^2) + x_2(x_3^2 + x_1^2) + x_3(x_1^2 + x_2^2) - \lambda x_1 x_2 x_3 = 0 , \qquad (8)$$

oder in abgekürzter Schreibweise

$$\boldsymbol{\Phi}_1 \boldsymbol{\Phi}_2 - \mu \boldsymbol{\Phi}_3 = 0 , \qquad (9)$$

worin $\mu = \lambda + 3$. Solche C_3 bilden einen Büschel, gehen durch die Punkte E_1, E_2, E_3 und berühren sich in den Punkten A_1, A_2, A_3 mit den gemeinschaftlichen Tangenten $x_2 + x_3 = 0$, $x_3 + x_1 = 0$, $x_1 + x_2 = 0$, Unter den C_3 von (8) befindet sich eine rationale mit isoliertem Doppelpunkt in $B_0(1, 1, 1)$. Die konjugiert imaginären Tangenten an die

imaginären Zweige von C_3 durch B_0 sind $x_1 + \omega x_2 + \omega^2 x_3 = 0$, $x_1 + \omega^2 x_2 + \omega x_3 = 0$. In diesem Falle ist $\lambda = 6$. Um zu beweisen, daß B_0 Doppelpunkt und isoliert ist, schneide man C_3 mit $x_1 + \omega x_2 + \omega^2 x_3 = 0$. Zu diesem Zwecke eliminiere man x_3 zwischen dieser Gleichung und (8). Nach leichter Rechnung ergibt sich das Resultat $(x_1 - x_2)^3 = 0$, woraus hervorgeht, daß die Tangente einer der Zweige berührt und den andern schneidet. Dasselbe gilt für die zweite Tangente. Zerfallende Kurven des Büschels sind für $\lambda = \infty$ x_1 x_2 $x_3 = 0$, und für $\lambda = -2$ $(x_1 + x_2)$ $(x_2 + x_3)$ $(x_3 + x_1) = 0$, ferner für $\lambda = -3$, $\Phi_1 \Phi_2 = 0$.

2. Die Kurve 6. Ordnung C_6 .

Eine in G_6 invariante Kurve n. Ordnung hat die Gleichung

$$\sum \Phi_1^{n_1} \Phi_2^{n_2} \Phi_3^{n_3} = 0 , \text{ mit } n_1 + 2n_2 + 3n_3 = n .$$
 (10)

Ihre Bestimmung hängt also von der Lösung der diophantischen Gleichung $n_1 + 2n_2 + 3n_3 = n$ in positiven ganzen Zahlen ab. Damit sie auch noch in T_2 , d. h. in G_{12} invariant sei, muß sich bei der Transformation von (10) durch T_2 , der Faktor Φ_3 n Mal absondern. Das ist leicht, wenn beachtet wird, daß durch T_2 Φ_1 , Φ_2 , Φ_3 übergehen in $\Phi_1 \rightarrow \Phi_2$, $\Phi_2 \rightarrow \Phi_1 \Phi_3$ $\Phi_3 \rightarrow \Phi_3^2$. Bei einer solchen Kurve muß somit das Glied Φ^n nicht vorhanden sein, d. h., $n_1 < n - 1$. Auf diese Weise erhält man für solche C_6 die Mannigfaltigkeit dritter Ordnung.

$$\lambda_1(\Phi_1^3\Phi_3 + \Phi_2^3) + \lambda_2\Phi_1^2\Phi_2^2 + \lambda_3\Phi_1\Phi_2\Phi_3 + \lambda_4\Phi_3^2 = 0.$$
 (11)

Nach den C_3 sind die C_6 die nächsten in G_{12} invarianten Kurven, was leicht bestätigt werden kann. Ist (a_1, a_2, a_3) ein Punkt von C_6 , so werden die übrigen zu G_6 gehörigen Punkte auf C_6 von dem Kegelschnitt

$$K = \alpha_2 \Phi_1^2 - \alpha_1^2 \Phi_2 = 0 \tag{12}$$

ausgeschnitten. K schneidet C_6 überdies in 6 weitern Punkten einer G_6 , die man wie folgt erhält: Die Elimination von Φ_2 aus (11) und (12) gibt

$$(\lambda_1 \alpha_2^3 + \lambda_2 \alpha_1^2 \alpha_2^2) \Phi_1^6 + (\lambda_1 \alpha_1^6 + \lambda_3 \alpha_1^4 \alpha_2) \Phi_1^3 \Phi_3 + \lambda_4 \alpha_1^6 \Phi_3^2 = 0 , \quad (13)$$

eine Gleichung, die augenscheinlich in das Produkt

$$(C\Phi_1^3 + D\Phi_2) (E\Phi_1^3 + F\Phi_2) = 0 (14)$$

aufgelöst werden kann. Jeder dieser Faktoren gleich Null gesetzt stellt eine Kurve dritter Ordnung dar, welche C_6 in 6 Punkten einer G_6 schneidet. Zusammen sind es die 12 Punkte der G_{12} auf C_6 , die zu sechs auf K und $K^* = \alpha_1 \alpha_3 \Phi_1^2 - \alpha_2^2 \Phi_2 = 0$ liegen. Die C_6 haben als einzige Doppelpunkte A_1 , A_2 , A_3 , und sind somit vom Geschlecht 7.

Man hat jetzt den

- Satz 6. Nächst dem Büschel (in G_{12}) invarianter Kurven C_3 ist eine dreifache Mannigfaltigkeit von C_6 vom Geschlecht 7. Jede derselben trägt $\infty' \Delta_{12}$ Konfigurationen.
- 3. Eine C_n wird durch T_2 in eine C_{2n} transformiert. Damit der eigentliche Teil von C_{2n} identisch sei mit C_n , ist notwendig (d. h. in G_{12}), daß $2n-3\alpha=n$ sei, woraus folgt, daß $n=3\alpha$. Somit
- Satz 7. Nur Kurven von der Ordnung $n = 3\alpha$ können in G_{12} invariant sein. Klassen solcher Kurven mit den Ordnungen 3, 6, 9, 12, ..., können, wie für n = 3 und n = 6 gezeigt wurde, leicht aufgebaut werden.

5. Eine Cremonagruppe G_{48} und ihre Konfiguration Δ_{48}

1. Die kubische Involution T_3 in S_3 .

 $T_3(\varrho\,x_i'=1/x_i,\ i=1,2,3,4)$ ist wohlbekannt und gestattet viele interessante Anwendungen²). Zuerst soll gezeigt werden, wie dieselbe auf rein geometrische Weise erhalten werden kann. Man lege durch einen Punkt $P(x_1,x_2,x_3,x_4)$ und die Seiten A_1A_2,A_2A_3,A_3A_1 des Koordinatentetraeders $A_1A_2A_3A_4$ die Ebenen $y_4x_3-y_3x_4=0,\ y_4x_1-y_1x_4=0,\ y_4x_2-y_2x_4=0,$ worin die y laufende Koordinaten sind. Durch T_3 werden diese in die drei Ebenen $y_4x_4-y_3x_3=0,\ y_4x_4-y_1x_1=0,\ y_4x_4-y_2x_2=0$ transformiert, die sich in dem Punkte $P'(x_2x_3x_4,\ x_1x_3x_4,\ x_1x_2x_4,\ x_1x_2x_3),$ d. h. dem in T_3 entsprechenden Punkt P' schneiden. Nun betrachte man die durch A_1A_2 gehenden vier Ebenen $y_3-y_4=0,\ y_3+y_4=0,\ y_4x_3-y_3x_4=0,\ y_4x_4-y_3x_3=0$ eines Büschels. Als Parameter derselben kann man $1,-1,\ \frac{x_3}{x_4},\ \frac{x_4}{x_4}$ nehmen, deren Doppelverhältnis leicht als -1 gefunden wird. Ähnliches wiederholt sich für die Axen $A_2A_3,\ A_3A_1,\ A_4A_1,\ A_4A_2,\ A_4A_3$. Somit

Satz 8. Verbindet man einen Punkt P in S_3 mit den sechs Seiten A_iA_k durch Ebenen α_{ik} und konstruiert man zu diesen vierten harmonischen α'_{ik}

²) Siehe z. B. des Verfassers Arbeit On Surfaces and Curves which are Invariant under Involutary Cremona Transformations. American Journal of Mathematics Vol. XLVIII (1926), pp. 21—44.

in bezug auf $y_i - y_k = 0$ und $y_i + y_k = 0$, so gehen die sechs Ebenen α'_{ik} alle durch P.

Eine weitere neue Konstruktion für T_3 wird auf folgende Weise erhalten: Die Verbindungslinie $P(x_1, x_2, x_3, x_4) A_4(0, 0, 0, 1)$ kann parametrisch durch

$$\overline{PA}_4 = (x_1, x_2, x_3, x_4 + \lambda) ext{ darstellen.} ext{ Durch } T_3 ext{ wird diese in }$$
 $\overline{PA}_4' = \left[(x_2 x_3 (x_4 + \lambda), x_3 x_1 (x_4 + \lambda), x_1 x_2 (x_4 + \lambda), x_1 x_2 x_3 \right],$

also wieder in eine Gerade transformiert, welche für $\lambda=0$ selbstverständlich durch P' geht. Dividiert man durch λ und läßt dann $\lambda\to\infty$, so erhält man den Durchschnitt von \overline{PA}' mit $x_4=0$, $S'=(x_2x_3,x_3x_1,x_1x_2)$. Der Durchschnitt von \overline{PA}_4 mit $x_4=0$ ist $S(x_1,x_2,x_3)$. Somit ist S' der entsprechende von S in der quadratischen Involution T_2 in $S_2(x_1,x_2,x_3)$. Das führt zu

Satz 9. Gegeben sei ein Punkt P in S_3 . Die Verbindungsgeraden PA_i sollen die gegenüber Seitenflächen $\alpha_j = A_i A_k A_l$ in den Punkten P_j , j = 1, 2, 3, 4 treffen. Dann konstruiere man die zu P_j entsprechenden P'_j in den quadratischen Involutionen mit $A_i A_k A_l$ als Fundamentaldreiecken. Dann gehen die Verbindungsgeraden $P'_1 A_1$, $P'_2 A_2$, $P'_3 A_3$, $P'_4 A_4$ alle durch P', den P in T_3 entsprechenden in S_3 . Umgekehrt schneiden die Verbindungsgeraden von P und P' mit A_j die gegenüberliegende Seitenfläche in zwei Punkten P_j , P'_j die ein Paar in der quadratischen Involution mit $A_i A_k A_l$ als Pundamentaldreieck.

2. Das Produkt G_{48} der symmetrischen Gruppe G_{24} und der Involution T_3 in S_3 .

Die symmetrische Kollineationsgruppe G_{24} wurde auf ihre geometrischen Eigenschaften der Hauptsache nach von J. Veronese untersucht³). Ist $P(a_1, a_2, a_3, a_4)$ ein Punkt, so führen die Kollineationen der Gruppe P in eine Konfiguration von 24 Punkten = Δ_{24} über die auf der Fläche 2. Ordnung $F_2 = \alpha_2 \Phi_1^2 - \alpha_1^2 \Phi_2 = 0$

liegt. $\Phi_1, \Phi_2, \Phi_3, \Phi_4$ sind die elementar symmetrischen Funktionen der

³⁾ Interprétation géométrique de la théorie des substitutions de n lettres, particulièrement pour n=3,4,5,6, en relation avec les groupes de l'Hexagramme mystique. Annali di Matematica, vol. XI, ser. II, pp. 93—236 (1882). Man sehe auch Arnold Emch, Some geometric applications of symmetric substitution groups. American Journal of Mathematics, vol. XLV (1923), pp. 192 bis 207.

vier Variabeln x_1, x_2, x_3, x_4 . Durch T_3 wird Δ_{24} in eine Gruppe von 24 Punkten transformiert, die eine neue Δ'_{24} bilden, wie nach ähnlichen Überlegungen, wie sie für die G_6 und $G_{12} = G_6 x T_2$ angewandt wurden, sofort bestätigt werden kann. $\Delta_{24} + \Delta'_{24} = \Delta_{48}$ bilden eine Konfiguration die in der Cremonagruppe $G_{48} = G_{24} \times T_3$ invariant ist. Δ'_{24} liegt auf der Fläche $F_2^* = \alpha_2 \alpha_4 \Phi_1^2 - \alpha_3^2 \Phi_2$. Zwischen den Punkten von Δ_{24} und Δ'_{24} kann man folgende Zusammenhänge feststellen: Mit j, i, k, l bezeichne man 1, 2, 3, 4 in irgend einer Ordnung. Durch $P = P_{1234}(a_1, a_2, a_3, a_4)$ ziehe man die beide $A_i A_k$ und $A_j A_l$ schneidende Transversale $t_{ik.jl.}$. Dann wird diese auch durch einen Punkt von Δ'_{24} gehen. Um das einzusehen, nehme man z. B. $t_{12.34}$ welche $A_1 A_2$ in $S_{12}(a_1, a_2, 0, 0)$ und $A_3 A_4$ in $(0, 0, a_3, a_4)$ schneidet. Werden die Koordinaten von S_{12} und S_{34} bezüglich mit $a_3 a_4$ und $a_1 a_2$ multipliziert, so kommt

$$S_{12} = (a_1 a_3 a_4, a_2 a_3 a_4, 0, 0),$$

 $S_{34} = (0, 0, a_1 a_2 a_3, a_1 a_2 a_4).$

Die Verbindungslinie $\overline{S_{1\,2}\,S_{3\,4}}$ geht augenscheinlich durch den Punkt $P'_{1\,2\,.\,3\,4}=(a_1a_3a_4\,,\,a_2a_3a_4\,,\,a_1a_2a_3\,,\,a_1a_2a_4)$ welcher der in T_3 entsprechende von P ist.

Durch P gehen drei Bisekanten $t_{12.34}$, $t_{13.24}$, $t_{14.23}$, die nach vorigem der Reihe nach auch durch $P'_{12.34}$, $P'_{13.24}$, $P'_{14.23}$ gehen. Infolge der Symmetrie von G_{24} und G'_{24} und des involutarischen Charakters von T_3 folgt nach Obigem

Satz 10. Durch jeden Punkt von Δ_{24} und Δ'_{24} gehen drei Bisekanten, eine für jedes Seitenpaar A_1A_2 , A_3A_4 ; A_2A_3 , A_1A_4 ; A_3A_1 , A_2A_4 , von welchen jede noch einen Punkt bezüglich von Δ'_{24} und Δ_{24} enthält. Die 48 Punkte von Δ_{48} liegen somit zu Paaren auf 72 Bisekanten der drei Paare von gegenüberliegenden Seiten des Koordinatentetraeders.

6. Die G_{48} invarianten Flächen

1. Die Fläche 4. Ordnung F₄.

Eine in G_{48} invariante Fläche F_n n^{ter} Ordnung muß eine gewisse Anzahl α Mal durch jeden der Punkte A_i gehen, so daß $\Phi_4 \alpha$ Mal sich von F_{3n} abtrennt und $3n-4\alpha=n$ ist. Daraus folgt für n der Wert $n=2\alpha$ und für F_n die Möglichkeiten F_4,F_6,F_8,\ldots .

Von diesen sollen hier der Kürze halber nur F_4 und F_6 behandelt werden. Man beachte, daß die folgenden Transformationen durch T_3

stattfinden: $\Phi_1 \rightarrow \Phi_3$, $\Phi_2 \rightarrow \Phi_2 \Phi_4$, $\Phi_3 \rightarrow \Phi_1 \cdot \Phi_4^2$, $\Phi_4 \rightarrow \Phi_4^3$. Für invariante F_4 ergibt sich demgemäß das Netz:

$$\Phi_1 \Phi_3 + \lambda \Phi_2^2 + \mu \Phi_4 = 0 , \qquad (14)$$

dessen Kurven A_1 , A_2 , A_3 , A_4 als Doppelpunkte haben. Dieselben enthalten auch den Punkt E(1, 1, 1, 1) der in G_{44} invariant ist, wenn $16 + 36\lambda + \mu = 0$, oder $\mu = -16 - 36\lambda$ ist. Sie bilden den Büschel

$$F_4 = \Phi_1 \Phi_3 - 16\Phi_4 + \lambda(\Phi_2^2 - 36\Phi_4) = 0. \tag{15}$$

Um zu zeigen, daß E ein Doppelpunkt für alle F_4 von (15) ist, verbinde man E mit einem Punkte $A(a_1, a_2, a_3, a_4)$. Die elementar symmetrischen Funktionen der a sollen mit $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ bezeichnet werden. Dann ist die parametrische Darstellung von $\overline{EA}(p+a_1, p+a_2, p+a_3, p+a_4)$. Der Punkt mit dem Parameter p liegt auf F_4 , wenn die mit diesen Koordinaten $p+a_i$ gebildeten Φ_i (15) befriedigen. Man hat

$$egin{align} arPhi_1 &= 4\,p + lpha_1 \ arPhi_2 &= 6\,p^2 + 3lpha_1 p + lpha_2 \ arPhi_3 &= 4\,p^3 + 3lpha_1 p^2 + 2lpha_2 p + lpha_3 \ arPhi_4 &= p^4 + lpha_1 p^3 + lpha_2 p^2 + lpha_3 p + lpha_4 \ . \end{array}$$

Werden diese in (15) eingesetzt, so bekommt man nach Vereinfachung die Gleichung

$$(3\alpha_1^2 - 8\alpha_2)(\lambda + 1) p^2 + 2(\alpha_1\alpha_2 - 6\alpha_3)$$

$$(3\lambda + 1) p + \alpha_1\alpha_3 + \lambda\alpha_2^2 - (36\lambda + 16)\alpha_4 = 0, \qquad (16)$$

woraus hervorgeht, $da\beta$ E ein Doppelpunkt von allen F_4 ist. Es fällt noch ein weiterer Punkt von \overline{EA} mit E zusammen, wenn der Koeffizient von p^2 verschwindet, d. h. wenn entweder $3\alpha_1^2 - 8\alpha_2 = 0$, oder $\lambda = -1$ ist. Im ersten Fall wird $3\alpha_1^2 - 8\alpha_2$ mit a_1, a_2, a_3, a_4 jetzt als laufenden Koordinaten den allen F_4 gemeinsamen Oskulationskegel im Doppelpunkt E. In expliziter Form wird die Gleichung desselben

$$3(a_1^2 + a_2^2 + a_3^2 + a_4^2) - 2(a_1a_2 + a_2a_3 + a_3a_1 + a_1a_4 + a_2a_4 + a_3a_4) = 0$$
(17)

eine Form die positiv definit ist, also durch reelle Werte nicht erfüllt werden kann. Für solche F_4 ist also E ein isolierter Doppelpunkt. Für $\lambda = -1$ geht jede Gerade \overline{EA} dreimal durch E, d. h. E wird dreifacher Punkt für diese spezielle F_4 .

2. Die invariante F_6 .

Nach den oben angewandten Regeln ergibt sich

$$F_6 = \lambda_1 (\Phi_1^2 \Phi_4 + \Phi_3^2) + \lambda_2 \Phi_1 \Phi_2 \Phi_3 + \lambda_3 \Phi_2^3 + \lambda_4 \Phi_2 \Phi_4 = 0 \quad (18)$$

und aus der Betrachtung der Form der Gleichung sofort

Satz 11. Die in der G_{48} invarianten Flächen 6. Ordnung bilden eine dreifache Mannigfaltigkeit und haben alle dreifache Punkte in A_1 , A_2 , A_3 , A_4 . Ferner gehen sie alle durch dieselbe Raumkurve 12. Ordnung, den Schnitt von $\Phi_2 = 0$ und $\Phi_1^2 \Phi_4 + \Phi_3^2 = 0$, mit dreifachen Punkten in A_1 , A_2 , A_3 , A_4 .

(Eingegangen den 20. März 1941.)