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Zur Homologietheorie der Abbildungen
und Faserungen von Mannigfaltigkeiten

Von Werner Gysin, Zurich

Einleitung

Mit der vorliegenden Arbeit soll ein Beitrag geliefert werden zur
Homologietheorie der Faserabbildungen von Komplexen. Unter einer
solchen verstehen wir eine stetige Abbildung / eines Komplexes K auf
einen (simplizialen) Komplex k, welche folgende Bedingungen erfûllt:
1. Das Urbild eines jeden Punktes n aus k ist einer von n unab-

hângigen Punktmenge S von K, der Faser, homôomorph.
2. Das Urbild eines jeden Simplexes ||| von k ist homôomorph dem

topologischen Produkte |fx$|, und zwar so, daB hierin die Urbild-
menge eines beliebigen Punktes n aus 11| das Produkt | tz*S | ist.

K heiBt dann gefasert; 8 ist die Faser; k ist der Faserraum1) 2) *).
Solche Faserungen treten z. B. auf bei der Zerlegung einer Gruppen-

mannigfaltigkeit G in die Nebengruppen nach einer Untergruppe U
von G 3). Die von H. Whitney behandelten Sphere-spaces4), neuerdings
Sphere-bundles5) genannt, sind in Sphàren gefaserte Komplexe. Ein Bei-
spiel dieser Art ist der Raum der gerichteten Linienelemente auf einer
Mannigfaltigkeit A

Die in der vorliegenden Arbeit betrachteten Faserungen sind nicht so

allgemein, wie die soeben definierten; wir werden ihnen zweierlei Be-
schrànkungen auferlegen:

1. Der gefaserte Komplex K und der Faserraum k sind geschlossene,
orientierbare Mannigfaltigkeiten L und A

2. Die Faser 8 ist eine (Homologie-) Sphâre.

Die erste Einschrânkung ist hauptsàchlich in der gewâhlten Darstel-
lung begrûndet. Wenn auch einige der hergeleiteten Resultate auf den

Mannigfaltigkeitseigenschaften von L und A beruhen, so lassen sich doch
die fur die Fasertheorie wesentlichen Sâtze auch auf den Fall allgemeiner
Komplexe iibertragen. Wàhrend man aber in Mannigfaltigkeiten aile
Homologiebeziehungen im Rahmen der klassischen Homologie- und
Schnittheorie ausdrucken kann, ist man bei Zugrundelegung allgemeiner

Solche Vermerke weisen auf das Literaturverzeichnis am Schlusse der Arbeit,
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Komplexe gezwungen, sàmtliche multiplikativen Relationen durch Be-
griffe der neuern Cohomologie- und Produkttheorie6)7) zu beschxeiben.
Dièse neue Produkttheorie liefert fur Mannigfaltigkeiten keine neuen
Resultate; auch fehlt ihr die geometrisch so einfache Bedeutung der
Schnittheorie. Hingegen ist ihr formaler Apparat leichter zu handhaben,
als der ProzeB der Schnittbildung. Aus diesem Grande werden wir uns
oft der neuern Théorie bedienen, um Beziehungen herzuleiten, die klassi-
sche Théorie aber heranziehen, um diesen Beziehungen direkte geome-
trische Bedeutung zu verleihen. Deshalb werden wir uns in unsern Unter-
suchungen auf gefaserte Mannigfaltigkeiten L beschrânken. Die Forde-

rung der Orientierbarkeit von L kann fallen gelassen werden, wenn man
mod 2 rechnet. Zur Vereinheitlichung der Darstellung ist dieser Fall,
obwohl auch er von Interesse ist, iiberall weggelassen worden.

Die zweite Einschrànkung, ,,S ist eine (Homologie-)Sphâre", ist sach-
lich bedingt. Die eigentlichen Sàtze liber Faserungen (Kap. III) stutzen
sich wesentlich auf dièse Voraussetzung. Es ist unbekannt, wieweit dièse
Sâtze auch auf allgemeinere Faserungen ûbertragbar sind. Die betrach-
teten Mannigfaltigkeiten L sind also Sphère-spaces im Sinne von Whit-
ney4) 5)14), doch diirften sich dessen Untersuchungen kaum mit den vor-
liegenden beruhren. Da es sich in dieser Arbeit um reine Homologie-
betrachtungen handelt, muB S nicht unbedingt eine Sphàre, sondern
darf eine Homologiesphâre sein. Der Fall einer Faserung in 0-dimen-
sionale Sphàren, also einer zweiblàtterigen Ûberlagerung, wird im folgen-
den nicht betrachtet. Doch làBt er sich leicht der allgemeinen Théorie
unterordnen, wenn man mod 2 rechnet.

Die hier angewandte Méthode zur Untersuchung der Faserungen lâBt
sich wie folgt skizzieren : Der die Faserung erzeugenden Abbildung / wird
die Umkehrungsabbildung <p zur Seite gestellt, welche einem Punkte n
des Faserraumes A die Faser Sd (p7t aus L zuordnet, welche aus allen
Punkten p besteht fur die fp n gilt. y erhôht die Dimension um d,
Das 99-Bild eines Zyklus £ aus A ist ein Zyklus <pÇ z in L. z berande
einen Komplex C in L. Dann bilden wir fC Z. Weil der Rand von C,
ç>C? bei der Abbildung / degeneriert, ist Z ein Zyklus. Wir nennen ihn hÇ

Die Beschreibung des Zusammenhanges zwischen C und hÇ bildet den

Hauptinhalt dieser Arbeit. Sie gelingt im Falle von Faserungen in Sphàren
und liefert intéressante geometrische Resultate, welche in § 15 (Kap. IV)
zusammengestellt und so formuliert sind, daB ihr Inhalt ohne Kenntnis
der vorangehenden Kapitel verstanden werden kann (Sâtze 32—43). Dort
werden wir auch einige Beispiele zu den allgemeinen Sàtzen besprechen.
Daran anschlieBend werden in § 16, als wichtige Anwendung der allge-
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meinen Théorie, die Homologieeigenschaften des Linienelementraumes
einer Mannigfaltigkeit tintersucht. Auch die dort formulierten Resultate
sind ohne weitere Vorkenntnisse verstandlich.

Eine systematische Untersuchung der Faserabbildungen zeigt, daB
viele ihrer Eigenschafben allgemeinerer Natur sind, daB sie namlich fur
beliebige stetige dimensionserniedrigende Abbildungen gelten. Vor den
eigentlichen Satzen uber die Spharenfaserangen (Kap. III) werden daher
(in Kap. II) stetige dimensionserniedrigende Abbildungen einer
Mannigfaltigkeit L in eine solche A untersucht. Hierbei werden wir in unserer
Darstellung weitgehend ausnutzen, daB L und A Mannigfaltigkeiten sind,
obschon dies fur die Sache selbst nicht notwendig zu sein scheint.

Auch fur solche dimensionserniedrigende Abbildungen / laBt sich die
Umkehrungsabbildung cp definieren8)12)13). Gleich wie bei Faserungen
laBt sich mit / und cp die vorn skizzierte Abbildung h konstruieren. Es
zeigt sich, daB h zum Teil dieselben Eigenschaften besitzt wie bei Spharen-
faserungen. Vor allem ergibt sich aber hier die Invarianz von h in der
Abbildungsklasse von /, welche gestattet unter Umstanden Aussagen
uber die Wesentlichkeit, resp. Nullhomotopie von / zu machen. So folgt
aus der Existenz zweier Zyklen Çp und ÇQ inA, deren ^-Bilder miteinander
verschlungen sind, fur die also gilt X)(<pÇp, <pÇQ) y =£ 0 : / ist nicht
nullhomotop. Insbesondere gilt: Ist hierin £p O-dimensional, z. B. ein
Punkt aus A, so ist / wesentlich; denn dann gilt, wie wir zeigen werden:
1. Es ist hÇQ -= yA ^ 0. 2. y ist invariant gegenuber stetiger Ab-
anderung von /.

Die Théorie dieser Abbildungsinvarianten y und ihre Deutung als
Verschlingungszahl stammt (fur den Fall, daB sowohl £?, als auch £2

nulldimensional sind) von H. Hopf9). Mit dieser Méthode hat er die
Existenz wesentlicher Abbildungen der Sphare S*1*'1 auf die Sphare 82k

bewiesen. Der in der vorliegenden Arbeit eingefuhrte #-ProzeB bei
dimensionserniedrigenden Abbildungen von Mannigfaltigkeiten (Kap. II),
auf dessen Eigenschaften aile hergeleiteten Resultate beruhen, ist eine

Verallgemeinerung dieser y-Theorie; er schlieBt dieselbe als Spezialfall
in sich. Wir werden an geeigneter Stelle darauf hroweisen.

Zur Untersuchung der dimensionserniedrigendenAbbildungen, insbesondere

zur Définition der Umkehrungsabbildung <p und zur Herleitung von
Satzen multiplikativer Natur ist es von Nutzen, sich der neuern Pro-
dukttheorie zu bedienen. In Kap. I werden wir daher einen Bericht ùber
dieselbe geben, in welchem aile spater gebrauchten Begriffe und Rela-
tionen kurz entwickelt werden. Diesem Bericht liegt eine Arbeit von
H. Whitney7) zugrunde, in welcher die Produkttheorie in groBer All-
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gemeinheit zusammenfassend begriindet wird. Wir werden uns aber auf
den Fall simplizialer Komplexe beschrànken; die Darstellung ist zum
Teil auch einer Arbeit von J. W. Alexander6), zum Teil einer solchen von
H. Freudenthal10) entnommen.

In dieser Arbeit werden Benennungen und Sâtze aus ,,Alexandroff-
Hopf, Topologie I (Berlin 1935)" als bekannt vorausgesetzt ; wo dies

nôtig erscheint, wird darauf verwiesen ; das Werk wird mit A H zitiert.

KAPITEL I

Bericht ùber die Produkttheorie

§ 1. Duale Homomorphismen
Wir bezeichnen mit 91 den Ring der rationalen Zahlen, mit © den Ring

der ganzen rationalen Zahlen und, fur ganzes m ^ 2, mit ©m den Ring
der ganzen rationalen Zahlen mod m. Unter 3 verstehen wir im folgenden
stets einen dieser Ringe. SOI und SOI' seien ,,Moduln iiber y mit den end-
lichen Basen xl9 x2i xv resp. x'x, x'2, xrw\ d. h. SR und 2R' seien
die Gruppen der Linearformen axxx + &2#2 + "' + avxv resp. axx'x +
«2^2 + '# * + awxw m^ Kœffizienten aus 3 •

/ sei eine homomorphe Abbildung des Moduls StR in den Modul SDÎ7.

Dann bestehen v Gleichungen

fx^EfiicXj, /t,c3; » 1,2, ...,». (î.i)
Je

Durch / wird also eine Matrix F (fik) von v Zeilen und w Spalten defi-
niert. Man beachte, daB F von den zugrunde liegenden Basen xl9 xv
und x[, xrw abhângt. Dièse seien daher fest gewâhlt.

Liegt umgekehrt eine solehe Matrix F vor, so werden durch sie v

Gleichungen (1.1) und somit eine wohlbestimmte homomorphe Abbildung /
von 50Î in SJl7 erzeugt. Die zu F transponierte Matrix Fr gibt ebenfalls
Anlafi zu einem Homomorphismus, nâmlich zu einem solchen (/') des

Moduls 9K; in den Modul SDÎ. Er wird definiert durch die Gleichungen

f'*i Zfi*Xi i= 1,2, ...,w.
i

Définition: Eine homomorphe Abbildung / des Moduls SOI in den
Modul SOI' und eine solehe /' von SffT in StR heifien dttal, wenn ihnen unter
Zugrundelegung derselben Basen in 2R und SOI' transponierte Matrizen
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entsprechen. Wir bezeichnen die zu einem gegebenen Homomorphismus /
duale Abbildung immer mit f.

Nach Définition ist //; /. Sind / und g homomorphe Abbildungen
von 9)1 in 9Jlr, so ist / + g ebenfalls eine solche, und es gilt, wie man sofort
sieht, (/ + g)' /' + g'. Es seien STC, 9JÏ', W Moduln mit fest gewahlten
Basen. Bildet / die Gruppe 9Jt in W, g die Grappe W in 9M" ab und sind
F und G die zugehôrigen Matrizen, so bildet h gf die Gruppe 501 in
3Jl/7 ab, und # • G ist die zugehorige Matrix. Die zu h duale Abbildung hF

hat daher die Matrix (F -G)f G' -F'. Dies bedeutet aber: Es ist
hf j'g'9 d. h.

(9fY fV- (1.2)

Der Begrifï der dualen Abbildung spielt fur uns eine wesentliche Rolle.
In seinen nachfolgendenAnwendungen werden SOI die Gruppe £?(== £P(K))
der ^-dimensionalen algebraischen Komplexe mit Koeffizienten aus 3
in einem endlichenZellenkomplex Ky 2R' die Gruppe Q/Q(= 2'q{Kr)) der
g'-dimensionalen algebraischen Komplexe mit Koeffizienten aus 3 m
einem endlichen Zellenkomplex K! sein. Als feste Basen wahlen wir in
Qp die beliebig, aber fest orientierten 2>-dimensionalen Zellen xx von K,
in £,fq die beliebig, aber fest orientierten g-dimensionalen Zellen xfh von K'.
Dièse Abmachung, die durch aile Kapitel hindurch gultig bleibt, werden
wir spater nicht wieder besonders erwahnen, ebensowenig die Endlich-
keit aller zu betrachtenden Komplexe.

A Eatxt und B Zbtx% seien zwei Komplexe aus £P. Wir definieren
ihr skalares Produkt durch die Formel

A • B (Zatxt) • (Ibtxt) Za%b%. (1.3)

(Gleichungen sind stets als solche im betreffenden Koeffizientenbereich 3
aufzufassen.)

Hilfssatz 1 : Ist / eine homomorphe Abbildung von 2p in£'fl, g eine
solche von 2fq in. £?, so gilt daim und nur dann

A-gB fA- B (1.4)

fur aile Komplexe A œ2p und aile B cz 2/q, wenn / und g dual sind.
Denn es ist

/«, • xrk Eftj x\ xrk /tfc

5 Commentarii Mathematici Helvetici



Soll nun fur aile x{ und aile xk gelten:

so miissen, wegen gkt ftk, f und g dual sein. Dièse Bedingung ist offen-
bar auch hinreichend.

§ 2. Rand und Corand

Wir machen eine erste Anwendung der soeben eingefuhrten Begriffe:
Ist K ein w-dimensionaler Zellenkomplex, A aQp(K), so ist dessen Rand
rA ein (algebraischer) Komplex aus SP~X{K). Die Randbildung r ist jene
homomorphe Abbildung von £,p in S?'1, welche durch die folgenden Glei-
chungen definiert ist:

k

Hierin bedeutet rj*k den Inzidenzkoeffizienten von x\ und xÇr1. Der zu

r duale Homomorphismus wird folglich definiert durch die Gleichungen

Ist B ein Komplex aus S^-1, so ist daher r'B ein Komplex in £?. Er heiBt
der Corand von B.

Es seien A <z £?, B a fi»"1. Auf Grand von Hilfssatz 1 erfullt das

durch Formel (1.3) erklarte Skalarprodukt die wichtige Relation

rA • B A -r'B. (2.1)

Wir erinnern an folgende Definitionen : der algebraische Komplex A
heiBt Zyklus, wenn rA 0 ist. Wir nennen zwei Zyklen A und B homolog,
wenn A — B Rand eines Komplexes C ist. Wir schreiben dann A ~ B
oder A — B ~ 0. Analog definieren wir : der algebraische Komplex A
heiBt Cozyklus, wenn rfA Q ist. Wir nennen zwei Cozyklen A und B
cohomolog, wenn A — B Corand eines Komplexes C ist. Wir schreiben
dann i^5 oder A — B ^ 0.

Bekanntlich gilt stets rrA 0, d. h. jeder Rand ist Zyklus. Folglich
ist auch der zu rr duale Homomorphismus (rr)f rV die Nullabbildung,
d. h. es gilt rlr'A 0: Jeder Corand ist Cozyklus. Man kann daher nicht
nur Homologiegruppen 95P als Faktorgruppen der Zyklengruppen 3P nach
den Randergruppen §f definieren, sondern auch Cohomologiegruppen



23/p alsFaktorgruppenderCozyklengruppen37î> nach den Corandergrup-
pen %>/p, also

93* 3*/$», »'»

Die Elemente von 23^ und 23/p sind die ^-dimensionalen Homologie-,
resp. Cohomologieklassen.

Fur das Skalarprodukt von zwei 2>dimensionalen algebraischen Kom-
plexen A und B gelten folgende Satze :

Satz 1 : A sei ein Zyklus, B ein Cozyklus. Dann ist A • B 0, falls
^4 ~ 0 oder B ^ 0

Denn ist A rC, so folgt aus Formel (2.1)

A • £ rC - B C • r'B 0

Analog schlieBt man5 falls JS v-^ 0 ist.

2 • Ist A • ^O-1 0 fur aile Corander r'O-1, so ist A ein Zyklus.
— Ist rCv+1 - B 0 fur aile Rander rC**1, so ist B ein Cozyklus.

Beweis : Da nach (1.3) (7a • x? der Koeffizient des Simplexes vfl in Ca

ist, genugt es zu zeigen, dafi rA • o;^"1 0 ist fur aile Simplexe x*"1
von K. Dies folgt aber nach (2.1) sofort aus

0 A • r'x»-1 r^L • o;^-1

Analog beweist man den zweiten Teil des Satzes.

Satz 3 : Ist der Koeffizientenbereich 3 ©w(m ^ 2) oder 9t, und
gilt ^l • JS 0 fur aile Cozyklen B, so ist A ein Rand. — Ist 3 ©w
(m > 2) oder 5R, und gilt A • JS 0 fur aile Zyklen ^4, so ist B ein
Corand.

Beweis : Es sei A • S 0 fur aile Cozyklen JB. Es wird behauptet, daB

ein Komplex Cp+1 existiert, so daB rCp+1 A Uatxt. Um dies zu
zeigen, konstruieren wir einen Homomorphismus % von £P+1 in ©w,
resp. SR. Dies geschieht wie folgt: Es sei vorerst

67



also gleich dem Koeffizienten von x\ in A, d. h. A • x\ Fur einen
algëbraischen Komplex B Hb^ ist demnach

A • 5

also nach Voraussetzung 0, falls JS ein Cozyklus und folglich r'B 0
ist. # ist somit ein (5TO-, resp. 9t-Charakter der Corândergruppe £/p+1.
Er làBt sich zu einem solchen von Q&+1 erweitern; denn

1. ist 3 ©TO(m ^ 2), so ist Q&+1 endlich, und die Ordnung eines jeden
seiner Elemente ist Teiler von m. Hieraus folgt unsere Behauptung
nach einem bekannten Erweiterungssatz (siehe A. H., p. 592);

2. ist 3 91, so ist £P+1 direkte Sumine von §/p+1 und einer weiteren
Gruppe, woraus sich ebenfalls sofort unsere Behauptung ergibt.

Im erweiterten ©m-, resp. 5R-Charakter sei %x%+1 — ck. Dann wird

k i i k

S

Damit ist der erste Teil von Satz 3 bewiesen. Analog beweist man dessen

zweiten Teil.
Nach Satz 1 làBt sich das skalare Produkt zwischen Homologieklassen

z und Cohomologieklassen Z definieren. Sein Wert wird mittels beliebiger
Repràsentanten dieser Klassen, A c z und B a Z, berechnet. Der Satz 3

besagt hierzu, falls 3 ©w(m ^2) ist: Zu jedem Elément 2^0 aus
93P gibt es ein Elément Z c SB'3*, so da6 z • Z ^ 0 ist, und zu jedem
Z ^ 0 aus $5'v gibt es ein z c 2311, so dafi z • Z ^ 0 ist. Beide Gruppen,
SBP und 2?/p sind tiberdies endlich, und die Ordnung eines jeden ihrer
Elemente ist Teiler von m. Folglich gilt (nach A. H., p. 590) der

Satz 4: Es ist

& (m>2)

Korollar: Hieraus folgt rein gruppentheoretisch (vgl. A. H., Kap. V,
§ 2—§ 4) die Isomorphie der Gruppen ^(K) und 25f$(K) ; beide Gruppen
haben somit gleichen Rang. Dies ist die p** Bettische Zahl des Kom-
plexes K.



§ 3. Simpliziale Âbbildungen und Unterteilungen

Es sei / eine simpliziale Abbildung eines simplizialen Komplexes K
in einen Komplex K'. Die hierdureh erzeugte homomorphe Abbildung
der Grappe Q(K) in die Gruppe 2(K') nennen wir ebenfalls /. Bekanntlich
erfullt sie die Relation rfC frC fur aile Komplexe G c Q(K). (r bezeich-
net die Randbildung in beiden Komplexen, K und K'.) Somit gilt nach
Formel (1.2) fur den zu / dualen Homomorphismus /' die Beziehung
f'r'C ^r'f'C fur aUe Komplexe C'cz2,(K'). Also erfùUen / und /'
den Erhaltungssatz : f erhâlt die Rânder, ff erhàlt die Corànder.

Folglich bewirkt / einen Homomorphismus F der Homologiegruppen
f&p(K) in die Homologiegruppen ^8P(K;); f erzeugt einen Homomorphismus

F' der Cohomologiegruppen $8fp(Kr) in die Cohomologiegruppen
93'*(#).

if sei eine simpliziale Unterteilung des Simplizialkomplexes Kf. Fur
einen algebraischen Komplex C! c Kf sei C uCr dessen Unterteilung
in K. s sei eine 55pseudoidentische" simpliziale Abbildung von K auf Kf\
dies ist eine solche, welche Eckpunkte von K nur innerhalb ihrer Trâger-
simplexe von Kf verschiebt. Es gelten dann die Gleichungen:

OczK, (3.1)

C'cf. (3.2)

Ferner beweist man durch Induktion nach wachsenden Dimensionen die
Gleichung

auC' C, C'aKr. (3.3)

Daneben besteht schlieBlich die Relation

usC~C, fallsr(7 0,CcZ. (3.4)

Sie ergibt sich sofort aus dem

Hilfssatz 2: Es gibt eine homomorphe Abbildung t von £P(K) in
2P+1(K) mit folgenden Eigenschaften: txp liegt im Trâger xf c Kf des

Simplexes xp a K, und es ist

usC C -trC - rtC fïir aUe C c K (3.5)

Zum Beweise dièses Hilfssatzes konstruiert man txp rekursiv nach wach-
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sendem p. Hat man dies, bei festem p9 fur aile xpc K gemacht, so ist
dadurch, da t homomorph ist, tCp erklàrt fur aile Cp c %P{K) :

Fur jeden Eckpunkt x° c K sei tx° ein 1-dimensionaler Komplex T
im Tràgersimplex xr c K1 mit rT x° — sa;0. Dann gilt fur ce1 c K:

r(u8xx — x1 + tfra;1) ri^a;1 — rx1 + (ra;1 — sra;1) 0

vsx1 — x1 + Êrœ1 ist also Zyklus im Tràgersimplex #' von x1, somit
Rand eines 2-dimensionalen Komplexes in a;1, den wir — tx1 nennen.
Damit wird aber fur x2 c K :

r(u8X* — x2 + trx2) rasa;2 —- ra;2 — (usrx2 — rx2 + trrx2) 0

— x2 + ^^2 ist also Zyklus im Tràgersimplex a/ von a;2, somit
Rand eines 3-dimensionalen Komplexes in x1, den wir — fo2 nennen.
So weiterfahrend konstruiert man f fur aile xp œ K mit den gewunschten
Eigenschaften.

Aus den Formeln (3.1) bis (3.4) folgert man

8atz 5: u induziert eine isomorphe Abbildung U von 9}p(Kf) auf
ï&v(K), s die hierzu inverse 8 U~x.

Der Beweis verlàuft in vier Schritten:

1. u induziert eine homomorphe Abbildung von $}p(K') in $5P(K); denn
ist Z' ein Zyklus in Kr und Z' rC ~0, so gilt

uZr urCr ruC ~ 0 in Z

2. Dièse Abbildung ist ein Isomorphismus; denn ist v,Zr rC ~ 0 in K,
so wird

Z1 suZr srC rsC ~ 0 in Z'.

3. w induziert eine Abbildung von 9JP(Kf) auf $5P(K); denn ist Z ein
Zyklus in K, so gilt mit Z1 sZ:

uZf usZ ~Z
4. Nach (3.3) und (3.4) bewirkt s den inversen Isomorphismus.

Anmerkung: Bekanntlich gilt Formel (3.2) auch dann noch, wenn u
die Unterteilung eines Zellenkomplexes Kr in einen Zellenkomplex K
vermittelt ; ebenso bleibt in diesem Falle die u betreffende Aussage von
Satz 5 richtig (vgl. AH., p. 248).
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Durch duale Ûbertragung der Formeln (3.1) bis (3.5) finden wir fur
die zu u und s dualen Homomorphismen u* und s! die entsprechenden
Relationen

s'r'C' r's'C,
u'r'C r'u'C,

u's'C C,
s'n'C'<-» C,

C'czK',

CaK,
C'czK',

îaiïsr'C 0,C<zK.

(3.6)

(3.7)

(3.8)

(3.9)

Hieraus ergibt sich ahnlich wie vorn Satz 5 :

Satz 5f: u' induziert eine isomorphe Abbildung Ur von %5/p(K) auf
fB'*(Kf), s' die hierzu inverse 8' U'-1.

Damit ist die Invarianz der Homologie- und Cohomologiegruppen eines

simplizialen Komplexes gegenuber simplizialen Unterteilungen bewiesen.

(Auch der erste Teil von Satz 5' gilt allgemeiner ; dies folgt aus Satz 4

und der Anmerkung zu Satz 5, hat fur uns aber keine Bedeutung.) Man
beachte, daB u, somit auch u1, U und Ur unabhangig von s definiert sind.

§ 4. Die Produkte

K sei ein w-dimensionaler, simplizialer Komplex. Zu jedem Simplex
\xv\ c K sei fur dessen Eckpunkte eine feste Reihenfolge vorgeschrieben,
welche einer einzigen Bedingung zu genugen hat: Im Durchschnitt je
zweier Simplexe |a^| und \ofi\ vonK mussen die in \xp\ und \xq\ gegebenen

Eckpunktordnungen miteinander ubereinstimmen. Eine solche Anord-

nung nennen wir eine ,,Eckpunktordnung im Kleinen". Eine solche

erhalt man z. B. dadurch, daB man aile Eckpunkte von K beliebig, aber
fest numeriert. Sind etQ,e%l, ...,et die Ecken eines Simplexes \xp\ in
der vorgeschriebenen Reihenfolge, so wahlen wir xp (etQ, eH, etp

als die positive Orientierung von \xp\. Fur aile Simplexe ofi (eiQ,

e3i, ejq), die uns im folgenden begegnen werden, vereinbaren wir,
daB ihre Ecken stets der Vorschrift gemaB angeordnet sein sollen.

Wir definieren zwei Produkte:
1. Das U-Produkt (lies ,,Cup-Produktu): Es sei
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Falls etp eio und die Ecken eto, e* ein Simplex von K aufspannen.
In allen andern Fàllen sei

2. Das n-Produkt (lies ,,Cap-Produkt") : Es sei

xQ n

falls eyir et fiir k 0, 1, 2, q. In allen andern Fàllen sei

x»n xr 0, (r 2> + ^).

Fur algebraische Komplexe ^4^ i; a>txp%, B^=H btxf, Cr E ckxrk

setzen wir fest

i9U^ ZEatb3x\ U x*

jgs n Cr EEbochxq7 n x\.

Damit sind beide Produkte distributiv erklart. Man beachte aber, daB
sie ganz wesentlich von der zugrundeliegenden Eckpunktordnung im
Kleinen abhângen.

Aus den Produktdefinitionen folgt leicht eine Reihe wichtiger Eigen-
schaften:

(xp U x?) U^^^U (#« U xr),

(xp u ofl) n xr xp n (x<* n xr) ;

ebenso ergibt sich der Zusammenhang mit dem Skalarprodukt :

(xp U &)• xr xp> (x<* n xr) falls r p + q.

Hieraus folgen, wegen der Distributivitat aller dieser Produkte, die ent-
sprechenden Relationen auch fur allgemeine algebraische Komplexe
Ap,B«,Cr aus K:

(Ap U jB«) UCr Ap\J (B* U Cr), (4.1)

d. h. das U-Produkt ist assoziativ; ferner:

(A pu js«) ncr Apn (B« n cr), (4.2)

(Ap U B*) -Cr Ap- (J5« n Cr), (4.3)
falls r p + q.
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Bildet man neben dem Produkt Ap U BQ das mittels der umgekehrten
Eckpunktordnung definierte U-Produkt (wir bezeichnen es mit U')> so

findet man
A*\JB*= (- lyzB* U' A*. (4.4)

Es sei / eine simpliziale Abbildung des simplizialen Komplexes K in
einen Komplex Kr. Wir setzen voraus, daB / die Eckpunktordnung im
Kleinen erhàlt, d.h. sind e{ und ek Eckpunkte eines Simplexes in K, gilt
ferner /(et) e^, f(ek) e't, und steht in Kr der Eckpunkt e;- vor e[, so
soll in K der Eckpunkt et vor ek kommen. (Dies kann man immer er-
reichen : Man ordnet nâmlich zuerst die Eckpunkte e\, e!2, e'N von Kf,
dann erst die von K, indem man zuerst diejenigen mit /(ct) ely dann
diejenigen mit /(ct) e'2, usw. numeriert.) Eine solche simpliziale
Abbildung /, resp. deren duale /', erfullt die Gleichungen

f'{A'UB') =f'A'Uf'B', A',B'cKf. (4.5)

f(f'BfPiC) B'nfC, B'çzK^CaK. (4.6)

Beide Relationen verifiziert man, wie die fraheren, fur einzelne Simplexe
und beweist sie dann allgemein durch Anwendung des distributiven
Gesetzes.

§ 5. Der Homologiering

Wie die Pormeln (4.5) und (4.6) lassen sich auch die folgenden zwei
Relationen beweisen, welche die Beziehungen zwischen den beiden Pro-
dukten, der Rand- und der Corandbildung ausdrûcken. Sie lauten, wenn
Ap, Bq, Cr beliebige Komplexe in K sind:

r'(A» U B«) r'A* U B« + (- VfA* U r'B*, (5.1)

r(JB« fl Cr) (- VT*rfBfi Pi Cr + B* fi rCr. (5.2)

Aus diesen Formeln folgt : Sind A und B Cozyklen, C ein Zyklus, so ist
A U B ein Cozyklus, B d C ein. Zyklus. Weiter gilt unter dieser Voraus-

setzung: Es ist

A U B ~ 0, falls A ~ 0 oder B ^ 0,

B H C ~ 0, falls B ^ 0 oder C ~ 0
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Die beiden Produkte erzeugen daher Produkte in den Homologie- und
Cohomologiegruppen. Sind nàmlich Z(A) und Z(B) zwei Cohomologie-
klassen von K, die Cozyklen A und B irgendwelche Repràsentanten der-
selben, dann ist nach dem oben Gesagten die Cohomologieklasse Z(A U B),
welche den Cozyklus A U B enthàlt, durch Z(A) und Z(B) eindeutig
bestimmt. Wir setzen daher

Z{A) U Z(B) Z(A U B) (5.3)

Entsprechend gilt : Sind Z(B) eine Cohomologieklasse und z(C) eine Homo-
logieklasse von K, repràsentiert durch den Cozyklus B, bzw. durch den

Zyklus C, dann ist die Homologieklasse z(B f) G), welche den Zyklus
B fl G enthâlt, durch Z(B) und z(C) eindeutig bestimmt. Wir setzen daher

Z(B) n z(C) z(B fl G) (5.4)

Durch Formel (5.3) wird unter den Elementen aller Cohomologiegruppen

33/3> von K eine Multiplikation definiert. Dièse ist assoziativ
und distributiv bezuglich der iiblichen Addition. Daher bilden aile dièse

Elemente einen Ring, den Homologiering 3ir(K) des Komplexes K. Seine

additive Gruppe ist die direkte Summe 23 ' aller Cohomologiegruppen 95^

von K. Ebenso definiert Formel (5.4) ein H-Produkt zwischen Coho-

mologie- und Homologieklassen.
Die durch (5.3) und (5.4) gegebenen Produktdefinitionen fur Klassen

sind noch mit einer Willkiir behaftet : Sie basieren auf einer freigewàhlten
Ordnung (im Kleinen) der Ecken von K. DaB sie aber, und damit auch

$ir{K) tatsàchlich davon unabhàngig sind, wird sich weiter unten ergeben.
Wir schreiben nun Kf statt K und bezeichnen mit K uKr eine simpli-

ziale Unterteilung von K'. s sei eine pseudoidentische simpliziale Abbil-
dung von K auf K1'. Erhàlt sie die Eckpunktordnung im Kleinen, so

gilt der
Zusatz zu Satz 5r: Die (nach Satz 5') durch ur und 8r induzierten Iso-

morphismen U' von ^8f{K) auf &'(K% resp. S' U'-1 von W(Kr) auf
fB\K) erhalten die U-Produktrelationen zwischen den Cohomologie-
klassen. Mit andern Worten: Sind A, B und A', B! Cozyklen in K,
resp. K', und bezeichnen Z(A)9 Z(B), Z'(A')9 Z'(B'), und Z(A U B),
Z'{Af U Bf) die durch sie und deren U-Produkte repràsentierten Cohomo-

logieklassen, so gilt nach (4.5) und (5.3)

8rZ\A') U 8'Z\B') Z{s!A') U Z{sfBr) Z{s\A' U B'))
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also

8'Z'(A') U 8'Z\B') 8'{Z\A') U B'{B')) (5.5)

Hieraus folgt, wegen U' S'-1,

UrZ(A) U U'Z(B) tf'(z(^> u

Mit Hilfe der Satze 5 und 5; schliefit man ganz ahnlich aus den Formeln
(4.6) und (5.4) den

Zusatz zu den Satzen 5 und 5r : Die durch u und u', s und s'induzierten
Isomorphismen U und U', resp. 8 und 8' der Homologie- resp. Cohomo-
logiegruppen erhalten die fl-Produktrelationen. Mit andern Worten:
Sind B und Bf Cozyklen, C und C Zyklen in K, resp K ', und bezeichnen

Z(B), Z'{Bf), z(C), z'(C) und z(BH C), z'(Bf d C) die durch sie und
deren D-Produkte reprasentierten Cohomologie- resp. Homologieklassen,
so gelten

Z'(B') n 8z(C) S(S'Z\Br) fl z(C)) (5.7)

Z(B) fl Vz\C) U{U'Z{B) n z'(C')) (5.8)

Es sei nun speziell K die baryzentrische Unterteilung von Kf. Die
Eckpunkte von Kr ordnen wir beliebig, diejenigen von K auf folgende
,,naturliche" Weise: Sind et und e3 die Schwerpunkte von Simplexen
\xr\ und \yr\ von Kf, und ist Dim \xr\ > Dim \y'\, so kommt e4 vor ^.
Im ubrigen sei die Ordnung beliebig. Damit sind die Eckpunkte eines

jeden einzelnen Simplexes \x\ c K in einer Weise angeordnet, die vôllig
unabhangig ist von der ursprunglichen Numerierung der Ecken von Kf.
Daher sind in K die zwei Produkte auf eine Art definiert, der die anfang-
liche Willkur der Eckenordnung in Kr nicht mehx anhaftet.

Es sei s diejenige pseudoidentische simpliziale Abbildung von K auf
Kf', welche jeden Eckpunkt von K m den ersten Eckpunkt seines Trager-
simplexes in Kf verschiebt. Dann erhalt s die Eckpunktordnung im
Kleinen Folglich. erfullen die durch u und ur induzierten Isomorphismen
U und Ur die Formeln (5.6) und (5.8). Da hierin aber U und U', sowie die
Produkte in K nicht von der Eckenordnung in K' abhangen, folgt das-
selbe auch fur die durch (5.3) und (5.4) zwischen Klassen von Kf defi-
nierten Produkte. Dies ist der Freudenthalsche Unabhangigkeitsbeweis10).

Folgerungen : 1. Ap und Bq seien Cozyklen in einem simplizialen Kom-
plex K. Berechnet man ihr U-Produkt nach zwei verschiedenen Eck-
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punktordnungen im Kleinen, so gilt (wenn die entsprechenden Pro~
dukte mit l^ und U2 bezeichnet werden) :

A9 Ui J5« ~ Ap U2 B*

Insbesondere folgt hieraus nach Formel (4.4)

A* U B* v^ (— 1)^J5« UA*. (5.9)

2. Es sei / eine simpliziale Abbildung eines Simplizialkomplexes K in
einen Komplex Kr. Die hierdurch definierten Abbildungen / von Q(K)
in 2(Kf) und /' von Q(K') in fi(iT) erzeugen bekanntlich Homomorphis-
men JF und F1 von SB(Jf) in »(Jf 0> resP- von 25'(^0 in 93;(iq. Fur sie

gelten nunmehr, ganz unabhângig von speziellen Eckpunktordnungen
in K und Kf, wegen (4.5) und (4.6) die Relationen

F\Z[ U Z'2) F'Z'X UF'Z'2 Z[, Z'2 c ft^iT), (5.10)

/nz) «'nf2, z'cR^zo^c fS(K)9 (5.ii)

d. h. i17^ ist ein Ringhomomorphismus; er ist mit F durch Formel (5.11)
verknûpft.

SehlieBlich beweisen wir noch den

Hilfssatz S : 3{f(K) besitzt ein Einselement E\ dies ist die Cohomologie-
klasse, welche repràsentiert wird durch den nulldimensionalen Cozyklus
E° Uei, summiert uber aile Eckpunkte von K.

Beweis: 1. E° ist Cozyklus; denn nach Formel (2.1) gilt

r'E° - x1 E° • rx1 E° • (et — ek) 0

fiir aile ^cl}d.h. aber: r'JS0 0.

2. Ordnet man in K die Ecken beliebig und bildet dann die Produkte,
so gelten fur jeden Komplex A c K, wie sich sofort aus den Produkt-
definitionen ergibt,

E° ist folglich Einselement fur die beiden Multiplikationen von Kom-
plexen, seine Cohomologieklasse E somit insbesondere Einselement von
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§ 6. Mannigfaltigkeiten

M sei eine simpliziale geschlossene orientierbare Mannigfaltigkeit der
Dimension n, Mr ihre (erste) baryzentrische Unterteilung. Man ordnet
die Eckpunkte von M beliebig, diejenigen von M ' in der vorn erklârten
natûrlichen Weise. Jedem orientierten Simplex xp c M wird eine Dual-
zelle #* der Dualdimension n — p zugeordnet: Es sei \X*\ der Teil-
komplex von Mf, welcher aus allen (n — p)-dimensionalen Simplexen
von Mf, die den Schwerpunkt von | xp\ als letzten Eckpunkt besitzen,
und aus den Seiten dieser Simplexe besteht. Dieser Komplex \X*\ ist
— dies wollen wir in die Définition der Mannigfaltigkeit aufnehmen —

eine kombinatorische Zelle \x*\. (Vgl. A. H., p. 245.) \xp\ und \x*\ haben

nur den Schwerpunkt von \xp\ gemeinsam. Eine Orientierung von \x*\
und das orientierte Simplex xp bestimmen daher eine Orientierung von
Mr. Nun definieren wir: Die Dualzelle x* von xv sei jene Orientierung
von \x*\, welche mit xp eine vorgegebene Orientierung von M1 erzeugt.
Dièse Dualzellen x* bilden eine Zerspaltung von M '; sie wird die zu M
duale Zeïlenzerlegung M* genannt.

Den TJbergang von einem Simplex x zu seiner Dualzelle x* bezeichnen

wir mit d. Es ist also x* dx. DefinitionsgemàB ist jede Zelle #* aus
M* dual zu genau einem Simplex x c M. Wir schreiben hierfûr x
9~1o;* und nennen x das zu x* duale Simplex. Ist A Ea^ ein alge-
braischer Komplex in M, so heiBe der Zellenkomplex A* dA

Ea^Xi der Dualkomplex von A. Umgekehrt nennen wir A d~xA* den

zui* dualen Simplizialkomplex. d ist somit eine isomorphe Abbildung
der Gruppe S? (M) auf die Gruppe 2n~p(M*).

Aus der Définition von M* folgt, daB Ml gemeinsame baryzentrische
Unterteilung von M und M* ist. Die durch den Ûbergang von M zu M'
und von M* zu Mf bewirkten Abbildungen von 2(M) und Q(M*) in
2{Mr) nennen wir u und u*. s sei diejenige simpliziale Abbildung von Mf
auf M, welche jedem Eckpunkt von M1 den ersten Eckpunkt seines

Trâgersimplexes in M zuordnet. s erhâlt somit die Eckpunktordnung
im Kleinen. Die einer festen Orientierung der Mannigfaltigkeit ent-
sprechenden Basiszyklen von M, M*, M' bezeichnen wir ebenfalls mit
M, M*, M'.

Berechnet man in M1 die Produkte auf Grand der angegebenen

Eckpunktordnung, so gilt, wie man leicht verifiziert,

u*dx srx n Mf,
folglich fur aUe A c Q(M):

s'An M'. (6.1)
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Mit Hilfe dieser Gleichung kônnen wir leicht die Beziehungen zwischen
den Homomorphismen r und d angeben: Es gilt nach (3.2), (3.6) und
(5.2):

u*rdAp r(s'A*n Mf) (— l)n-ps'r'Apn M' (— l)»-*u*dr'A*,
somit

rdAp (- l)n~pdrlAp (6.2)

d bildet also (bis aufs Vorzeichen) den Corand eines Komplexes in M auf
den Rand des Dualkomplexes in M* ab; d'1 leistet das Umgekehrte.
Hieraus folgt, da8 d einen Isomorphismus D der Cohomologiegruppe
$5/p(M) auf die Homologiegruppe 23w-p(Jf*) erzeugt.

Die Abbildung d làBt sich geometrisch gut verfolgen. Fur unsere Zwecke
ist aber die naehfolgend definierte Abbildung d bequemer. Ist A c 2(M),
so ist A* — dA c £(Jf*). Bilden wir nun su*A*, so erhalten wir einen
Komplex A in M. Wir nennen ihn 11A. Es gilt also nach (6.1)

A dA ^*^4* 5(s^ fl Jf0 (6.3)

Hieraus wird unter Beniitzung der Formeln (4.6) und (3.3), wegen
M' uM:

dA=ACiM. (6.4)

Wie vorn finden wir die Formel

rdA (-l)n~pdr'A (6.5)

Dièse Abbildung 9 ist deshalb fur die Rechnung einfacher, weil ihr nur
eine feste Zerlegung M der Mannigfaltigkeit zugrunde liegt. Geometrisch
ist sie aber schlechter zu ubersehen, weil sie wesentlich von der Ecken-
ordnung in M abhàngt.

Ist Z ein Cozyklus aus M, so sind nach (6.2) und (6.5) Z* dZ und
dZ su*Z* Zyklen in Jf*, resp. M. Fiir sie gilt, wegen (3.4)

u*dZ - udZ u*Z* - usu*Z* ~ 0 in M'. (6.6)

Nach § 3 bewirken u und u* (ebenso s) Isomorphismen zwischen den
Homologiegruppen von M, Jf* und Mr. Betrachten wir Homologie-
klassen von M, M* und M ', die durch dièse Isomorphismen einander
zugeordnet werden, als nicht voneinander verschieden, so folgt aus (6.6):
9 erzeugt denselben Isomorphismus D von %$/p(M) auf 58n~p(M), wie d

von 23/p(lf) auf 9$n-p(M*). Wir bemerken: Wâhrend d von der in M
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gewàhlten Eckpunktordnung abhângt, trifft dies nicht zu fur 3, somit
auch nicht fur D. Ist Z eine Cohomologieklasse (von M), so nennen wir
z DZ die zu Z Anale Homologieklasse.

Da eine Zelle x* c M* und ein Simplex y a M sich stets in relativ
allgemeiner Lage befinden, ist ihr Schnitt x* o y definiert (vgl. A. H.,
p. 409fi\), und zwar als der geeignet orientierte Durchschnitt von x*
und y. Daher ist x* o y entweder null oder ein orientiertes Simplex
xf c MF. Man verifiziert, da8 der Schnitt x* o y auch durch folgende
Formel definiert werden kann:

x* o y srx f\ uy, x d^x*.

Fur Komplexe A* c £(Jf*) und JS c £(if gilt daher

^L*0^ 5/^n^j?j A d~1A*, (6.7)

oder nach (4.6) und (3.3)

*(4* oJB) in£, A 3-^*. (6.8)

Mit Hilfe der Formeln (5.2), (3.2), (3.6), (6.2) ergibt sich jetzt leicht die
bekannte Randrelation fur Schnitte

r(dAp o B*) - r(8'A*n uB*) (- l)*-*s'r'A* 0 uB* + s'Ap 0 urB*

(_ \)Q-pdrfAp o B* + dAp o rB*

r(dAp o B*) (— lf-^a^L^ o B* + dAp o rB*. (6.9)

Folgerung : Der Schnitt zweier Zyklen ist stets ein Zyklus, der Schnitt
eines Zyklus mit einem Rand und der eines Randes mit einem Zyklus
stets ein Rand. Somit lassen sich auf eindeutige Weise Schnitte zwischen
Homologieklassen von M* und solchen von M definieren; die Schnitte
sind Homologieklassen von M '. Die Schnittbildung von Klassen bezeieh-

nen wir ebenfalls mit ,,<>".

Es seien A und B Cozyklen in M\ dann sind dA und dB Zyklen in M*

resp. M, und wir finden mittels (6.8) (6.4) und (4.2):

s(dAodB) A n dB A n (B n M) (A U B) n M d(A U J8) (6.10)

Wir identifizieren in der vorn erwàhnten Weise entsprechende Homo-
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logieklassen von M, M* und M'. Sind dann Z1 und Z2 Cohomologie-
klassen von M, so erhalten wir auf Grund obiger Folgerung aus (6.10)
die Gleichung fur Homologieklassen

DZX o DZt Z1f] DZ2 D(Z1 U Z2) (6.11)

Wir wissen, da8 das U-Produkt die Cohomologieklasse von M zu
einem Ring, dem Homologiering ^if(M) zusammenfaBt. Nach Formel
(6.11) vereinigt ebenso die Schnittbildung die Gesamtheit der Homologieklassen

von M zu einem Ring, dem Schnittring 9i(M) von M. Nach der-
selben Formel ist die isomorphe Abbildung D von ^{'(M) auf 3i(M) sogar
produkttreu; D ist also ein Ringisomorphismus, d. h. es ist

§ 7. Umkehrungsabbildung und Umkehrungshomomorpliisinus 8) 12) 13)

Ln und Av seien simpliziale geschlossene orientierbare Mannigfaltig-
keiten, L* und yl* die zu L und /l dualen Zellenzerlegungen. Den Ûber-

gang von einem algebraischen Komplex C aus L zu seinem Dualkomplex
C* in L* bezeichnen wir mit d. Es ist also C* dC. Entsprechende
Bedeutung habe d fur Komplexe aus A. / sei eine simpliziale Abbildung
von Lin A. Den dadurch bewirkten Homomorphismus von 2(L) in £(A)
nennen wir ebenfalls /, den hierzu dualen ff.

jT* sei ein algebraischer Zellenkomplex aus A*. Durch die Gleichung

<pr* df'ô-ir* C* (7.1)

wird ihm ein Zellenkomplex (7* aus .L* zugeordnet : ç? bildet die Gruppe
£(^1*) homomorph in die Gruppe fl(2>*) ab. <p heiBt die zu / gehôrige
Umkehrungsabbildung,

Das 9?-Bild einer Zelle f* c A* wird nach (7.1) wie folgt gefunden:
Man sucht das zu f* duale Simplex | d"1!*, bestimmt den Komplex
/'(!) derjenigen gleichdimensionalen Simplexe in L, die durch / auf |
abgebildet werden, und bildet den Komplex 3/'(!) der zu diesen Sim-
plexen dualen Zellen. Folglich ist, n — v d gesetzt,

Dim (pF*p n — {v — p) (n — v) + p p + d
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Ahnlich wie / erfûllt auch <p einen Erhaltungssatz. Er lautet:

Satz 6: <p erhàlt die Rànder; genauer

<prr* (- l)dr<pr*. (7.2)

Beweis : Wir berufen uns auf die Définition von y, Formel (6.2) und
den Erhaltungssatz fur /'. Es sei Fp à'1F*. Dann wird

<prr* df'à-^rôr» (- \y-*df'rrr*,
r(pr* rdf'd^r* r3/T* (~ l)n-pdrrf'Fp

Folglich gilt, wie behauptet, wegen n — v d,

(— l)dr(pr*

Nach Satz 6 induziert <p eine homomorphe Abbildung der Grappe
23P(^1*) in die Grappe $}p+d(L*) und somit, da es bei Homologien gar
nicht auf die speziell gewàhlten Unterteilungen ankommt (vgl. § 6),
einen Homomorpbismus von 9$P(A) in %5p+d(L). Dies ist der Umkehrungs-
homomorphismus 0.

Bezeichnen wir mit Ff den durch fr erzeugten Homomorphismus der
Grappe *B/p(A) in die Grappe $}'P(L), mit D und A die durch d und à

bewirkten Isomorphismen von 3S/p(L) auf $}n~p(L), resp. von %5'P(A) auf
%5V~P(A), so gilt definitionsgemàB

&Ç DF'A~K C c 95(-4) oder

' ^). (7.3)

Die Eckpunkte in L und ^l werden beliebig geordnet. Wir kônnen
dann in L und A Produkte bilden. Aus den Formeln (7.3), (6.11) und
(5.10) folgt fur die Homologieklassen Ci AZl9 C2 àZ^ :

D(F'Z1 U F'Z2) DF/(Z1 U Z2)

fx o £2) 0(^1^! o AZ2) ^(Zx U Z2),
also

Somit gilt

/Sate 7: 0 ist ein (Schnitt-)Ringhomomorphismus.
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Nennen wir ferner F den durcli / erzeugten Homomorphismus der
Grappe 33(X) in die Grappe%5{A), sofolgt aus denFormeln (7.3), (6.11)
und (5.11) fur die Homologieklassen £ AZ a SB(A), z c fB(L) :

F(0 C Z oz) F(DF'Z o z) F(F 'Z f) z) Z Ç)Fz AZ<>Fz= Ç oFz

Also gilt
Satz 8: 0 erfullt die Funktionalgleichung.

F(0Çoz) ÇoFz. (7.5)

Genauer gilt sogar, wie wir zeigen werden, die Formel

o(?) r*o/c5 (7.6)

wenn F* und (7 Komplexe in A*, resp. £ sind und f wie folgt definiert
ist:

Wir erweitern / zu einer simplizialen Abbildung der baryzentrischen
Unterteilung Lr von L und L* in die baryzentrische Unterteilung A1

von A und A* durch folgende Vorschrift: Ist das Simplex \Çq\ c A das

geometrische Bild des Simplexes \xp\ c L, so bilde f den Schwerpunkt
von |^p| auf den Schwerpunkt von ||ff| ab.

Man ordnet die Eckpunkte von A1 und L1 in der in § 6 angegebenen
naturlichen Weise. OfEenbar ist f diejenige simpliziale Approximation
von /, welche jeden Eckpunkt e von L1 in den ersten Eckpunkt des

Tràgers von je in A1 abbildet. f erhâlt somit die Ordnung im Kleinen.
s und a seien jene pseudoidentischen simplizialen Abbildungen von

Lf auf L und von A1 auf A, welche jeden Eckpunkt von L', resp. A1 in
den ersten Eckpunkt ihres Trâgers in 2>, resp. A verschieben. Dann gilt
auf Grand der uber die Eckpunktordnung gemachten Voraussetzungen

C'aL', (7.7)

somit nach (1.2)

fVr=s7T, Fez A. (7.8)

Ferner bezeichnen wir mit u, u* und co die durch die Unterteilungen Lf
von L und L*, A' von A bewirkten Abbildungen der Gruppen £(L) und
2{L*) in£(L'), resp. der Grappe 2(A) in £(A'). Dann gilt ferner
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fuC cofC fur aile G aus L, folglich naeh (6.7), (7.1), (7.8) und (4.6)
mit r â^r*

f(s'fT n uC) o'r n œfc r* • fc,
womit Formel (7.6) bewiesen ist.

Nebenbei ergibt sich noch eine neue Form der Définition von cp: Ist
nâmlich r* c A*, jT= d"1/7*, so gilt nach (7.1), (6.1) und (7.8)

u*dfT *7T ni' f raT Ç\Lf. (7.9)

KAPITEL II
Der H-Prozess bei Abbîldungen von Mannigfaltigkeiten

§ 8. Définition des Homomorphismus H

Wir betrachten einen Zyklus f*c-4*, dessen ç?-Bild in L* einen

Komplex (7* berandet. Dessen Unterteilung ^*C* wollen wir mittels f
in Af abbilden und untersuchen, wie dièses Bild mit C* in Zusammenhang
steht. Es sei also

(pÇ* rC*, (7* ci*. (8.1a)

Dann setzen wir als Définition

hÇ* fu*C*. (8.1b)

Ist Dim C* P, so wird Dim ç?C* — p + d (Dim (7*) — 1; folglich

ist Dim ht* Dim C* p-{-d-{-l p + e, wenn d + 1 e

gesetzt wird.
Im allgemeinen ist Af* kein Zyklus; doch trifft dies immer zu unter

folgender

Voraussetzung : L sei von hôherer Dimension dis A,d.h.n — v d> 0.
Die Gultigkeit dieser Voraussetzung erstrecJce sich bis zum Schlusse dièses

Kapitels. Aus ihr folgt, wenn / und f als algebraische simpliziale Abbil-
dungen aufgefaBt werden, fL \L! 0.

Es gilt jetzt der

Hilfssatz 4: Fur jeden Komplex T7* aus A* ist fu*<pF* 0. Denn
naeh (7.9) und (4.6) ist mit r= à"1/1*

1u*<pr* f(f7(rTn L1) oTn iLr 0
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Dieser Beweis stiitzt sich zwar auf die speziell gewâhlten Eckpunkt-
ordnungen in Lf und Ar. Da aber die Abbildungen f, u* und q> frei von
jeder solcher Vorschrifb definiert wurden, gilt der Hilfssatz 4 unabhàngig
von jeder Eckpunktnumerierung. Nun folgt

Satz9: Ist <pÇ* rC*, so ist hÇ* fa*C* Zyklus.
Denn es gilt nach Hilfssatz 4

rhÇ* rfu*C* 1u*rC* fw*ç>£* 0

Nach Définition von h ist der Zyklus Af* nicht eindeutig bestimmt;
doch gilt der

Satz 10 : Sind die Zyklen f* und ff von ^l*homolog, und gilt ?>£*

r(7j, somit (nach. Satz 6) auch q>Ç* rC*, dann unterscheiden sich die

Zyklen &£j und hÇ% hôchstens um das f-Bild eines Zyklus Z aus Lr.

Beweis : Nach Voraussetzung gibt es einen Komplex P* c A*, so dafi
Cî — fî rjr* •Nach Formel (7.2) ist daher ç?£? — ç?C? (— l)dr<pr*.
Somit wird nach Hilfssatz 4:

wobei Z u* (Cf — Of — (— l)d^r*) gesetzt wird. ^ ist aber Zyklus,
womit Satz 10 bewiesen ist.

Wir definieren: Es sei Si die Menge der Homologieklassen C c $5(A*),
fur deren Zyklen C* die Beziéhung ç>£* ~ 0 gilt. Es sei 3f die Menge der

Homologieklassen Z c ÎB(Af), welche f-Bilder von Zyklen aus Lr enthalten.
$tp und i$p seien die Mengen der p-dimensionalen Elemente von R, resp. g.
AU dies sind Untergruppen der entsprechenden Homologiegruppen.

Mit Hilfe dieser Definitionen kônnen wir unsere bisherigen Resultate
ûber h zusammenfassen in dem

Satz 11: h induziert einen Homomorphismus H der Untergruppe Rp

von %P(A*) in die Faktorgruppe S8v+e(A')ffîp+e (e d + l). Derselbe ist
unabhàngig von irgendeiner Eckpunktordnung.

Dièse erste Définition von h lâBt sich geometrisch gut ûberblicken;
formai ist sie aber, wegen der verschiedenen zu betrachtenden Unter-
teilungen der Mannigfaltigkeiten L und A, unbequem. Wir bemerken,
daB weder h, noch der hierdurch erzeugte Homomorphismus H von einer
speziell gewâhlten Eckpunktnumerierung in Lr und A' abhàngt. Wir
definieren nun nochmals denselben Homomorphismus H, aber auf eine
formai einfachere Weise.
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Zu diesem Zwecke bilden wir neue Definitionen : Ist F Komplex in A,
so setzen wir

rA f, (8.2)

Ist £ Cozyklus in A und
VÔÇ rC, CcL, (8.3a)

so definieren wir
7iôÇ fC. (8.3b)

Àhnlich wie vorn gelten

Hilfssatz 1: Es ist fîpôr 0. Denn nach (4.6) gilt

Satz 9 : hôÇ ist Zyklus. Denn es wird

^ 0.

10 : Ist <5£0 /-^ 5Ci? und <p(5C0 ^Co> somit <p<5d rC1? so gilt:
hôÇQ und A^fj unterscheiden sich hôchstens um das /-Bild eines Zyklus
Z aus i.

Beweis: Nach Voraussetzung und (6.5) ist £x — £0 r7/1, folglich
nach Formel (8.2)

^3d - yâfo /vmi r(±/Tn i)
Somit wird

d - X3f0 tcx - fc0 /(^ - c0 -
wenn Z Cx — Co — ç><5(± 71) gesetzt wird. Z ist aber Zyklus und damit
Satz 10 bewiesen.

Wir definieren: Es sei il die Menge der Homologieklassen aus 23(^4),
fur deren Zyklen der Form (5£ die Beziehung (pàÇ ~ 0 gilt. Es sei gf die
Menge der Homologieklassen aus 25(A), die /-Bilder von Zyklen aus L
enthalten. ^ und ffl seien die Teilmengen der ^-dimensionalen Klassen
aus 51, resp. g- Damit gilt

Satz 11 : h induziert einen Homomorphismus Jï der Untergruppe il
von 93(4) in die Faktorgruppe 93(4)/^.

Nach Satz 5 bestehen isomorphe Abbildungen der Gruppen SBP(A),

') und $8^(4*) aufeinander. Identifizieren wir die sich hierbei ent-
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sprechenden Elemente dieser Gruppen, so durfen wir dièse Gruppen
schlechthin als gleieh auffassen. Wir schreiben dafur kurz 33**. Entspre-
chende Bedeutung habe die Abktirzung 23, die direkte Summe aller 23*.

In diesem Sinne ist nach § 6 (insbesondere Formel (6.6)) ft il und
nach Formel (7.7) ]? g. SchlieBlich folgt aus (8.1) und (8.3), (6.3)
und (7.7), dafi hiermit auch H H ist. H ist daher, wie H, von keiner
Eckpunktnumerierung abhângig, obwohl eine solche in seiner Kon-
struktion auftritt.

Wir werden in Zukunft nur noch die zweite Définition von H verwen-
den, welche auf den Formeln (8.2) und (8.3) beruht. Daher schreiben wir
von nun an cp statt <p und h statt h.

Wir werden im folgenden oft von Zyklen aus einer der Gruppen 51,

ilp, g oder 5P sprechen. Darunter wollen wir Zyklen verstehen, deren
Homologieklassen der entsprechenden Gruppe angehôren.

§ 9. Invarianz des Homomorphismus H in der Âbbildungsklasse von f
Wir werden zeigen, da6 homotope simpliziale Abbildungen von L in A

denselben Homomorphismus H definieren. Dies ist der Inhalt von Satz 12.

Ihm schicken wir einen Hilfssatz voraus.

Hilfssatz 5 : L+ und A+ seien simpliziale Unterteilungen von L, resp. A,
die Abbildung /+ von L+ in A+ sei eine simpliziale Approximation (nach
A. H., p. 316, ,,Modification" genannt) der simplizialen Abbildung /
von Lin. A. Wir bilden die Homomorphismen <p, h und H mittels /, ent-
sprechend cp+, h+ und H+ mittels /+. Dann gilt, wenn man einander ent-
sprechende Homologiegruppen verschiedener Unterteilungen von A als
gleich betrachtet, g g+, Si R+, und fur £ c R ist HÇ H+Ç in
®/8f.

Beweis : s und a seien solche pseudoidentische simpliziale Abbildungen
von L+ auf L, resp. von A+ auf A, daB af+ fs, also /+V srf ist.
Da s und a Isomorphismen zwischen SB(L+) und 95(L), resp. zwischen
SB(A+) und 33(^1) erzeugen, folgt aus af+ fs sofort, daB g d+ ist-

Die Eckpunkte von A, A+, L und L+ werden so numeriert, daB a,
5,/ und /+ deren Ordnung im Kleinen erhalten. £+ sein beliebiger Zyklus
aus A+ ; zu ihm gibt es nach Satz 5' und § 6 einen Cozyklus C c A derart,
daB J+ ~a'C f) A+ Damit ist, o£+ o(a'Z D A+) C fl A l ge-
setzt, nach (8.2) und (4.6)

ç n i+) f
Hieraus folgt nach Satz 5: Es ist il il.
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Sei nun f+ c R, also <p+Ç+ rC+, C+<z L+. Dann wird

ç£ s<p+Ç+ srC+
und

Af /sC+ - af+C+

Damit ist Hilfssatz 5 bewiesen. Nun gilt
2 ; Der Homomorphismus H ist invariant in der Abbildungsklasse

von /. Mit andern Worten: /0 und fx seien homotope simpliziale Abbil-
dungen der simplizialen Zerlegungen Lo und Lx von Ln in die simpli-
zialen Zerlegungen Ao und Ax von Av (n — v — d > 0) ; ihnen môgen die
Abbildungen h0 und h± entsprechen. Dann sind die hierdurch bewirkten
Homomorphismen Ho und H1 einander gleich, wenn man (im Sinne von
Satz 5 einander) entspreehende Homologieklassen verschiedener Unter-
teilungen von A identifiziert.

Beweis : A! sei eine gemeinsame simpliziale Verfeinerung von Ao und At.
Dann gibt es Verfeinerungen LrQ von Lo und L[ von Lx und Modifikationen
/0 von /0 und /x von fl9 welche L'Q und L[ simplizial in A1 abbilden. Nach
dem Hilfssatz erzeugen sie dieselben Homomorphismen Ho und Ht wie
/o und /,.

Nach Voraussetzung sind /0 und fx homotop. Es gibt daher eine stetige
Abbildung / von LxT (T Einheitsstrecke [0,1]) in A', wobei

/ wird simplizial approximiert durch die Abbildung /+. Hierzu soll LxT
so in (LxT)+ unterteilt werden, dafi die hierdurch erzeugten Unter-
teilungen L£ von LxO und L\ von Lxl Verfeinerungen der Zerlegungen
L'o und L[ sind. Dann sind

/+(JDxO)+ ftLt, /+(ix 1)+ /W
Modifikationen von /0 und ^. Nach Hilfssatz 5 definieren /J und /f die

gleichen Homomorphismen jff0 und Hx wie /0 und fl9 also auch wie /0

und fx.

f 3f sei Zyklus in yl'. Setze

Hierbei wird vorausgesetzt, da6 in Ar und in (Z/xî7)^ Eckenordnungen
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gegeben sind, die dureh /+ im Kleinen erhalten bleiben. Nun wird
nach Formel (5.2)

Es sei tp^l rC0 (Co c L$). Dann ist

vil '(CW+C) - 0 in (Lx T)+,

und somit auch ç>fC ~ 0 in if. Ebenso folgt ç>Jf ~ 0 in L£ aus ç>ff ~ 0
in i+. Dies besagt : Es ist Ro 5^ ft. Offenbar ist auch 3f0 gx =-- g.

Die Projektion von LxT làngs der Strecke T auf Lo nennen wir g.
Mit andern Worten: Sind p und t Punkte aus L, resp. T, so sei g(p*t)
2?xO. Es sei nun çp^C ^î» somit 99Jf r(Ci — ç>+C). Fa8t man g als
algebraische Abbildung auf, so gilt daher

<ftl rg(Cx — <p+Ç) rC0, Co g(C1 — <p+l) c i0+

Folglich ist Cx — CQ — y+Ç ein Zyklus, der in (L*T)+ berandet. Daher
gilt nach Hilfssatz 4 fur die mit fâ und /f gebildeten Abbildungen h£
und Af :

htl-Kl /+CV - /JCO /+(O1 — CQ- cp+l) ~ 0 in il.

Damit ist Satz 12 bewiesen.

Folgerungen: Jeder stetigen dimensionserniedrigenden Abbildung /
einer Mannigfaltigkeit Xn in eine solche Av ist ein Homomorphismus H
zugeordnet. Derselbe ist konstant in der Abbildungsklasse von /. Dieser
Homomorphismus H erlaubt daher unter Umstânden verschiedene Ab-
bildungsklassen voneinander zu unterscheiden. So gilt beispielsweise:
Ist H nicht die Nullabbildung (d. h. gilt nicht HÇ 0 fur aile f c R
in sâmtlichen Dimensionen), so ist / nicht 0-homotop. Insbesondere kann
H herangezogen werden fur die Untersuchung der Wesentlichkeit der
Abbildung / ; denn gibt es in A einen Zyklus Co mi* ^to YA ^ 0),
so ist / bestimmt wesentlich. Wir nehmen an, Co existiere. Dann sind
zwei Fâlle zu unterscheiden:

1. Es gibt in Ln einen Zyklus Zv, der durch / mit einem von 0 verschie-
denen Grade auf Av abgebildet wird. Offenbar ist Zv kein Randteiler;
folglich ist dann die vie Bettische Zahl von Ln, pv(Ln) ^ 0. (Wir werden
spàter sehen, da8 in diesem Falle der Zyklus Co ein Rand sein muB.)
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2. Es gibt in Ln keinen Zyklus Zv mit fZv =- yA(y j± o). Dann kann
also Co, fur welches hÇ0 yA(y =£ 0) gilt, weder Rand, noch Randteiler
sein; folglich ist dann (wegen Dim £0 v — e) die (v — e)te Bettische
Zahl von A, nv~e ^ 0. Es muB dann also 0 < i> — e v — d — 1

2v — n — 1, somit n < 2r — 1 sein. Wir werden spâter noch eine zusâtz-
liche Bedingung finden: d muB ungerade sein.

In Kapitel III werden wir eine spezielle Klasse von Abbildungen stu-
dieren, bei denen ein Zyklus Co m^ ^Co yA (y ^ 0) stets auftritt. Es
sind dies die durch Sphârenfaserungen erzeugten Abbildungen; dièse

sind somit stets wesentlich. Wir werden sogar zeigen, daB in diesem Falle
Co stets so gewâhlt werden kann, daB y + 1 wird.

§ 10. Définition des Homomorphismus H;
Mit Hilfe der Abbildungen <p, r, f definierten wir don Homomorphismus

H fur gewisse Elemente der Homologiegruppen von A. Unser nâch-
stes Ziel ist die Konstruktion eines entsprechenden HomQmorphismus Hf
fur gewisse Elemente der Cohomologiegruppen von A. Zu diesem Zwecke
ist es naheliegend, statt cp, r, /, die hierzu dualen Abbildungen 9/, r', fr
heranzuziehen. Wir werden dies wirklich tun, wollen aber, um leichter
zum Ziele zu kommen, nur rr und f dual zu / und r erklâren (vgl. § 1),
(pr aber durch die folgende

Définition : Es sei Z ein Cozyklus in i,Z ein solcher in A, und es

gelte fl)Z <—ôZ. Dann setzen wir cprZ--=Z. Hierin ist nacb (6.4)
dZ Z fl L ôZ Z n A gesetzt. 9/ erfullt somit die Formel

(p;Zf)A~f(ZnL) (10.1)

welche in ihrem Aufbau ganz an Formel (8.2) erinnert. Dièse Analogie
ist es auch, welche unsere Définition von 9/ rechtfertigen wird. Zur Bil-
dung von ô und d, d. h. der in Formel (10.1) auftretenden Produkte
miissen die Eckpunkte von L und A im Kleinen geordnet sein. Fur
spàter setzen wir dazu voraus, daB dies so geschehen sei, daB / dièse

Ordnungen im Kleinen erhalte.
DefinitionsgemàB ist tp'Z Cozyklus in A, der aber nur bis auf Corânder

bestimmt ist. Aus Z^0 folgt cp'Z ^0. 9/ erniedrigt die Dimension
um d\ nach Formel (10.1) gilt nâmlich: Dim <p'Zp= v — (n — p)

p— (n— v) p — d. Die Abbildung 9/ besitzt somit eine Reihe von
Eigenschaften, die man von der zu 9? dualen Abbildung erwartet. Dièse

Analogie im Verhalten gegeniiber 9? fùhrt noch weiter, wie wir bald sehen

werden. Vorher aber wollen wir den Definitionsbereich von 9/ erweitern.
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<pf ist erklârt fur Cozyklen Z aus L, und zwar ist <p'Z ein Cozyklus aus
derjenigen Cohomologieklasse von A9 welche durch die Homologie (10.1)
eindeutig bestimmt ist. Damit aber dièse Formel einen Sinn hat, ist gar
nicht nôtig, dafi Z Cozyklus ist. Wichtig ist nur, daB f(Z f) L) Zyklus
ist. Wir kônnen daher cp'G erklâren fur aile Komplexe G aus L, fur die
f(G f] L) Zyklus ist, indem wir festsetzen: cp'C sei ein Cozyklus aus
derjenigen Cohomologieklasse von A, welche nach Formel (10.1) durch
f(C fl L) eindeutig bestimmt ist. Man beachte aber, dafi G fl L und damit
auch die Cohomologieklasse von y 'G von der in L gewâhlten Eckpunkt-
ordnung abhàngen, im Gegensatz zu der Cohomologieklasse von cp'Z,
falls Z Cozyklus ist.

In Analogie zu Satz 8 gilt der

Satz 8f : cpf erfullt die Relation

<p\f'Z U G) v- Z U q>'C (10.2)

falls Z Cozyklus* in A und cp!G erklârt ist.

Beweis : Nach Voraussetzung ist f(G f] L) Zyklus in A, somit nach
(4.2) und (4.6) (/ erhâlt ja die Eckenordnung im Kleinen) auch

uc)nt] f[f'z n(CnL)] zn f(C n L).

Folglich ist tp'tf'Z U G) definiert und es gilt nach (10.1)

v'ii'z u C) n a ~ f[{frz uC)ni] z
~zn (<p'CnA) (zu <p'C)nA.

Hieraus folgt die Bebauptung (§6).
Auch zu Satz 7 gibt es einen entsprechenden : Er wird durch Formel

(5.10) ausgedruckt.
Aus der vorn gemachten Voraussetzung fL 0 folgt weiter der

Hilfssatz 4r : cp'fT ist erklârt fur aile fci, und es gilt <p'fT~0.
Denn es ist /(/Tfl L) Tn fL 0 Rand in A, somit <prfT~ 0.

Es sei Cp Cozyklus in A und

Cv~x c i. (10.3a)

Dann ist (p'C*-1 erklârt; denn /(C1^1 fl i) ist Zyklus, weil nach (5.2),
(4.6) und (10.3a)
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wird. Wir setzen als Définition

h'ç» (- lyy'c*-1. (io.3b)

h'Çp ist definitionsgemâB Cozyklus. Die Wahl des Vorzeichens wird
sich spàter als geeignet erweisen. Es gilt Dim h'Çp (p — 1) — d p—e,
wenn wie fruher d + 1 e gesetzt wird. h't?ist nicht eindeutig bestimmt ;

doch gilt der

Satz 10f : Sind die Cozyklen £0 und £t von A cohomolog und /;£0
rfC0, somit frCi ~ r'Cl9 so unterscheiden sich A'£o und hfd nur um das

^'-Bild eines Cozyklus aus L.

Beweis: Nach Voraussetzung ist £x — f0 rT, also /'d — /'fo
r'f'r. Hieraus folgt nach Hilfssatz 4/

± (A'd - A'fo) Ç^^i - y'Oo - <pf(C± - O0 - /T).
<7X — Co — frr ist aber Cozyklus, womit Satz 10' bewiesen ist.

Wir bemerkten vorn, da6 cpfC von der Eckpunktnumerierung in L
abhângt; damit wàre auch unsere soeben definierte Abbildung hf hier-
von abhângig. Da6 dies aber wirklich nicht zutrifft, wird durch den fol-
genden Hilfssatz bewiesen.

Hilfssatz 6: Es sei £ ein Cozyklus aus A und /'£ r'C'. Dann ist die
Cohomologieklasse von <pfC unabhângig von der Eckpunktordnung in L.

Beweis: L, L', L* und A, A' seien die in § 7 betrachteten Unter-
teilungen von L und A ; u*, s, a, f und f seien die dort eingefûhrten Abbil-
durigen. Dann gilt mit den ebenfalls schon dort definierten Eckpunkt-
ordnungen in Ar und Lr nach (4.6) und (6.1)

CnL s(sfc n L') su*dc,

somit, wegen fs af (Formel (7.7)),

f(C n £) fsu*dC a(fu*dC)

Der Komplex fu*dC ist frei von jeder Eckpunktordnung definiert. Er
ist Zyklus; denn nach (6.2), (6.1), (7.8) und (4.6) gilt, wegen W 0 :

91



Somit ist die Homologieklasse des Zyklus

f(C n£) o{iu*dC) ~ fu*dC

unabhângig von jeder Eckpunktnumerierung bestimmt; folglich ist dies
auch die Cohomologieklasse von cprC, w.z.b.w.

Wir definieren nun àhnlich wie vorn: Es sei 5V die Menge der Coho-

mologieklassen von $5'(A) 23', fur deren Cozyklen £ die Beziehung
f'Ç ^ 0 gilt. Es sei g' die Menge der Cohomologieklassen von 23', welche
ç/-Bilder von Cozyklen ans L enthalten. R'p und g/J> seien die Mengen
der ^-dimensionalen Elemente von 5V, resp. g7. Ail dies sind Unter-
gruppen von 23', resp. von 23/p. Wir werden im folgenden oft von Cozyklen

aus einer dieser Gruppen sprechen. Darunter wollen wir Cozyklen
verstehen, deren Cohomologieklassen der entsprechenden Gruppe ange-
hôren.

Mit Hilfe dieser Definitionen kônnen wir unsere Resultate uber hf
zusammenfassen in dem

Satz 11r : hf induziert einen Homomorphismus Hr der Untergruppe $tfp

von 25/p in die Fahtorgruppe 93/î>~e/2f/î)~e(e d + 1). Derselbe ist von
keiner Eckpunktnumerierung abhàngig.

Ein erster Zusammenhang zwischen den Homomorphismen H und HF

wird durch den folgenden Satz 13 dargelegt.

Hilfssatz 7: Ist der Cozyklus tcil', dann ist der Zyklus <5£ c 51, und
umgekehrt. Denn folgende vier Aussagen sind âquivalent: fcft';
/7t - 0; (pôÇ df'Ç ~ 0; 3f c R

Hilfssatz 8: Ist der Cozyklus Z c %r, dann ist der Zyklus ÏZcJ, und
umgekehrt. Denn folgendft vier Aussagen sind âquivalent: Z a ^r\ es

gibt einen Cozyklus Z in L mit y'Z ^ Z\ es gibt einen Zyklus dZ in L mit
fdZ~ÔZ; ôZcg.

Es bezeichne A den durch ô erzeugten (von der Eckenordnung in A
aber unabhângigen) Isomorphismus von 23' auf 58 (§7). DanA gilt

Satz 13: Ist die Cohomologieklasse fcft', so ist

HAÇ (- îy+iAH'Ç (10.4)

Beweis : Çp sei Cozyklus aus C
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Dann gilt nach (8.2) und (6.5):

ç>à£p df'Ç* dr

somit nach (10.1) und (10.3)

w.z.b.w.
Aus diesem Satze folgt in Verbindung mit Satz 12 der
Satz 12' : Der Homomorphismus Hf ist invariant in der Abbildungs-

klasse von f.
Daneben besteht ein weiterer Zusammenhang zwischen H und Hf.

Er folgt aus den Sàtzen 1 — 4 von § 2 und basiert auf der Dualitât der
Homomorphismen r und r', f und /', sowie einer entsprechenden Ver-
wandtschaft von cp und <pl'.

y' wurde zu Beginn dièses Paragraphen nicht dual zu <p erklàrt.
Gleichwohl gilt fur einen Zyklus Ç(= £ f] A) aus A (£ ist Cozyklus aus A)
und einen algebraischen Komplex C aus £, fur welchen cp'C erklârt ist,
die Formel fur das Skalarprodukt

C-ç£= ±?/C-f (10.5)

welche bis aufs Vorzeichen ubereinstimmt mit Formel (1.4), die fur duale
Homomorphismen charakteristisch ist. Denn es ist nach (4.3) und (4.4)
fur beliebige Komplexe A und B aus L, wenn die mit der gegebenen

Eckpunktordnung gebildeten Produkte mit U und n, die mit der inversen
berechneten mit U' und n/ bezeichnet werden:

A • (B n L) (A U B) • L ± (B D'A) • L ± B • (A Ç\'L).

Dabei hàngt das Vorzeichen nur von den Dimensionszahlen von A und B
ab. Entsprechendes gilt fur Komplexe aus A. Damit folgt nach (8.2),
(1.4) und (10.1)

G • fc c • <p(çn A) G • (/;£ni) ±/'f' (On'i) -
± C • /(C n 7i) ± £ • (y'o nM) ± v'c '(ïnA)=±cp'c-ç

w.z.b.w.
Weiter gilt: Jst £ Zyklus aus 51*, Z' Cozyklus aus g'*, also Z; ~ y'Z'

fiir einen geeigneten Cozyklus Z' aus i, so wird

£ • Z1 £ • ç>'£' K • JB' - 0 (10.6)

da ç?£ /^/ 0 ist. Entsprechend gilt fur einen Zyklus Z c 5 und einen
Cozyklus £; c Rf :

Z-£'=0. (10.7)
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Ist 3 ©w(m ^ 2) oder 9Î, und erfullt ein Zyklus £ aus A die
Relation f • Zf 0 fur aile Cozyklen Z'cJJ', so ist fur aile Cozyklen
Z' aus L

also, nach Satz 13, <pÇ Rand in L, folglich f c 51. Ebenso gilt die hierzu
duale Aussage.

Dièse Resultate fassen wir mit Hilfe von Satz 1 folgendermaBen zu~

sammen :

Satz 14: Fur Klassen £ c 51 und Z'cg; gilt Ç-Z' 0. - Fur
Klassen Z c g und C' c 5*' gilt Z Ç' 0.

15; Es sei 3 ©w(m > 2) oder 91. Erfullt die Homologie-
klasse C aus ^1 die Gleichung C • Z7 0 fur aile Klassen Z7 c $r, so ist
C c 51. — Erfullt die Cohomologieklasse f ' aus /l die Gleichung Z • f' 0

fur aUe Z c g, so ist C7 c 5V.

Wie vorn aus den Sâtzen 1 und 3 fur 3 ©w(m ^ 2) oder 91 die
Isomorphie der Gruppen 33* und 23/p folgte, ergibt sich jetzt aus den
Sâtzen 14 und 15

Satz 16 : Fur 3 ©w(m ^ 2) oder 9Î bestehen die Isomorphien

Hieraus folgt, wegen S8ptt $}/p, das

Korollar zu Satz 16 : Fur 3 9t gelten die Isomorphien

23*75* « tt7*, 23/37 g'* « 51^.

Noch ein weiterer Satz gehôrt an dièse Stelle: Es sei C Zyklus aus
p, V Cozyklus aus R'«, q — p e d + 1). Es sei also

Dann finden wir
hÇ • f; /(7 • C; (7 • /7C7 C • r7(7; rC-C'= cpÇ • Cr= ± C • tp'C

Naeh Satz 14 kônnen wir Skalarprodukte zwischen Klassen aus 51 und
Elementen aus 3375' o(^er zwischen Klassen aus Rf und Elementen aus
SB/5 bilden. Der Produktwert kann mittels beliebiger Reprâsentanten
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der Faktorklassen berechnet werden. Damit lâBt sich das oben gefun-
dene Résultat aussprechen in dem

Satz 17 : Fur Klassen Çp c 5* und Cq c Si', q — p e gilt
H£p' Cq= ± ÇP'H'Ç* (10.8)

Hierin sindlï^und H'Cq Klassen aus 33/g, resp. SB'/g'- DasVorzeichen
hàngt nur von den Dimensionen ab.

§ 11. Multiplikative Eigenschaîten der Homomorphismen H' und H

Wir bemerken vorerst, daB g' ein Idéal in 3i'(A) ist; denn nach (10.2)
gilt fur Cozyklen f aus A und Z aus L

Cu^-^cu^c^ (îi.i)
Ebenso folgt aus (4.5), daB $tr ein Idéal in ^(A) ist. Hr ist somit eine
additiv homomorphe Abbildung des Ideals 51r von 9{f(A) in den Rest-
klassenring <S{f(A)l<^f. Schon aus Dimensionsgrûnden kann aber Hf kein
multiplikativer Homomorphismus sein. Gleichwohl besitzt H' gewisse
multiplikative Eigenschaften. Dièse folgen aus den Formeln (4.5) und
(10.2).

Auf Grund der Formeln (10.4) und (6.11) gilt mit jedem Satz tiber
Hr und das U-Produkt ein analoger Satz uber H und die Schnittbildung.
Wir werden vorerst zwei Sàtze fur H' herleiten, spàter die analogen Sàtze

(ohne explizite Beweise) fur H aussprechen. Dièse Anordnung ist in
folgender Tatsache begrûndet: Wàhrend sich die Sâtze uber Hr leicht
beweisen lassen, sind die direkten Beweise fur die entsprechenden Sâtze
uber H muhsamer, weil bei Schnittbildungen verschiedene Untertei-
lungen von L und A betrachtet werden mvissen. Hierin liegt neben den

an sich interessanten Resultaten des vorigen Paragraphen der Grund zur
Einfuhrung von Hf.

Ist der in Formel (11.1) auftretende Cozyklus Ce &', ako /;£ ^ 0,
so folgt aus ihr f U cprZ ^ 0. Also gilt der

Hilfssatz 9f : Sind C und Z Cohomologieklassen von A, C c Si'', Z c gf''>

so wird C U Z 0 in W

Folgerung : Man kann das U-Produit von Klassen aus Si' mit solchen
aus 93 7 3f' bilden. Das Produkt ist ein Elément des Homologierings
^{'{A) und wird mittels beliebiger Repràsentanten der Faktorklassen
berechnet.
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Cv und £<* seien Cozyklen aus R', und es sei

In A und £ seien Eekpunktordnungen im Kleinen definiert, die durch /
erhalten bleiben. Den damit gebildeten Produkten geben wir die Zeichen
U und n. Offenbar erhàlt / auch die inversen Eekpunktordnungen von L
und A. Den damit gebildeten Produkten geben wir die Zeichen U ' und n '.
Dann gilt nach (4.4) und (5.1)

+ u r'C*-1

f'Çp U C*-1 + (— l)<2>-i)(<z-D/'£a U'CP"

Hieraus folgt nach Satz 8; (Formel (10.2)) und Hilfssatz 6:

o ~ ?'(/'£* u c*-1) + \! 7

oder
Cp u A7C5 —

somit nach (5.9)
Cp U A;C« ^ (- l)««£ff y j/çp (ii #2)

Aus diesem Résultat ergibt sich mit Hilfssatz 9' der

Satz 18' : Çp und ÇQ seien Cohomologieklassen dus Rf. Dann gilt

Ç* U H'Ç* (- \YKq U H'Ç* (11.3)

Hierin sind HrÇ> und Jî'^ Klassen aus W(A)/%'', die Gleichung aber
eine solche im Homologiering 91'(/l).

Z und C seien Cozyklen in A, f c 51'. Es sei ferner Dim Z p, Dim
f g. Dann finden wir mit /'C r'C und h'Ç (— ÎJ^'C nach (5.1)

r'(/'Z U (7) (- 1)P/7Z U r'C - (- l)^7^ U C)

somit nach Formel (10.2)

)\Z U C) (- lY^y'if'Z U(?)-(
also

i;(ZUC)- ZUA7C. (11.4)
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Es gilt daher

Satz 19': Z, Z1 und f seien Cohomologieklassen aus A, £c5t'; Zr
sei enthalten in der Klasse H'Ç von 9i'{A)/%', also Z1(zHfÇ. Dann gilt:
Z{JZ'œH'(ZU C).

Die analogen Resultate fur H lauten: g ^ em Idéal im Schnittring
5R(/l). (Dies folgt direkt aus Formel (7.5.)) Da A Einselement ist von
«(4), gilt folglich mit A c $ aueh Z c g fur aile Z c «(il), d. h. hat A
einen Urbildzyklus Ev in L, so besitzen sàmtliche Zyklen aus ,4 Urbilder
in L. — 51 ist ein Idéal in %{(A). (Dies folgt direkt aus (7.4).) H ist somit
eine additiv homomorphe Abbildung des Ideals Si in den Restklassen-
ring «(4)/g, also stets die Nullabbildung, falls A c g.

Hilfssatz 9: Sind £ und Z Homologieklassen von /l, £c ft, Zc
so wird f o Z 0 in

Folgerung : Somit lassen sich Schnitte definieren zwischen Klassen aus
51 und solchen aus «(yl)/g. Dièse sind selbst Elemente des Schnittrings
«(yl) und lassen sich mittels beliebiger Reprâsentanten der ,,miteinander
geschnittenen" Klassen berechnen. In diesem Sinne gilt

Satz 18 : Çp und Çq seien Homologieklassen aus R. Dann ist

Cp o HÇ* (- l)<"-*> <"-«)£« o HÇ* (11.5)

Damit ist ein Zusammenhang zwischen iï-Bildern verschiedener Klassen

beliebiger Dimensionen aus 51 hergestellt. Wir werden bald wichtige
Folgerungen aus diesem Satze herleiten.

Es sei speziell p + q v — e (c d + 1)- Dann driickt Satz 18 eine
bekannte Tatsache aus; denn sind Çp und ÇQ Zyklen aus 51, also (pÇp —

rOp+e und cpCq rCq+e, so ist (vgl. A. H., p. 416), wegen Dim ç>£* +
Dim (pÇ* p-{-d-\-q-{-d v--e-\-2d n— 1, die Verschlingungs-
zahl ï>(<pÇp, cpÇq) der (zueinander fremd vorausgesetzten) Zyklen ç>£*

und <pÇq definiert. Sie ist gleich der Schnittzahl (vgl. A. H., p. 413) von
9?CP und Cq+e (<pÇp und Cq+e in relativ allgemeiner Lage angenommen).
Dièse stimmt aber, wie man mit Hilfe von (7.6) sieht, mit der Schnittzahl

der Zyklen fp und hÇq fCq+* uberein. Also gilt

t>(<KP, <pCq) Schnittzahl (Çp, hp) (11.6)

Daher ist Formel (11.5) in diesem Falle nur eine Folge der bekannten
VerschUngungszahlrelation

Q7
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Nach Formel (11.6) folgt aus der Existenz von Zyklen <pÇp und
in L, welche miteinander verschlungen sind und von denen wenigstens
einer in L homolog 0 ist, da8 H nicht die Nullabbildung ist. Folglich ist
dann / nicht nullhomotop. Es sei speziell p 0 (also q v — e) und
C* c 51. Dann ist hÇ* yA. Folglich

± y Schnittzahl (£°, yA) »(pt°, ?£"-«)

Aus dem Nichtverschwinden dieser Verschlingungszahl folgt somit die
Existenz einesZyklus Cv~e c 5t, fur welchen hCv"e yA(y^0) gilt. Nach
den Folgerungen zu Satz 12 ist dann die Abbildung / wesentlich.

Hierin ist als Spezialfall, nâmlich fur v — e 0, also n 2d + I,
die in der Einleitung erwàhnte y-Theorie von H. Hopf9) enthalten.

Umgekehrt gibt es (wenigstens im Falle 3 ®m(m ^ 2) oder 91)

stets Zyklen q>Çp und (p£Q ~0 in L, welche miteinander verschlungen
sind, falls H nicht die Nullabbildung ist. Denn ist Çq ein Zyklus aus il
und h£Q î£ 0, so gibt es einen Zyklus £*, p v — (q -f ^)> mit

0 9* Sclmittzahl (£*

Die Existenz solcher verschlungener Zyklen <pÇp und q>Çq ~ 0 in L ist
somit eine notwendige und hinreichende Bedingung dafûr, da8 H nicht
die Nullabbildung ist.

Analog zu Satz 19' gilt schlieBlich

Satz 19: Z, Zr und f seien Homologieklassen aus A, C c 51; Zf sei
enthalten in der Klasse HÇ von R(4)/gf, also Z'cHÇ. Dann gUt Zo^c

Von nun an werden wir der ,,Anschaulichkeit" halber nur noch den
Homomorphismus H weiter untersuchen und uns merken, daB ent-
sprechende Resultate stets auch fur Hf gelten.

Wir wissen (§9): Die Existenz einer Homologieklasse ÇQc:Si mit
A c HÇq hat die Wesentlichkeit von / zur Folge. Es gilt aber noch mehr:
Co existiere; dann wird nach Satz 18 mit Çp f, {« f0 nach (6.11)
und (5.9)

Somit gilt

Satz 20: Existiert Ço, so gilt fîir f c 51
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Folgerungen : 1. Die Ordnung eines jeden f c ft ist Teiler der Ordnung
von £0. Ist also f0 0, so ist Si die Nullgruppe, Jï die Nullabbildung.
Dann ist aber, wegen A c H(Ç0) : Acz $, und damit ${(A) 3f •

2. Formel (11.7) liefert fur ungerades e, also gerades d, mit £ £0:
Es ist 2f0 0. In diesem Falle wâhle man 3 ©2. Dann lautet (11.7):

Ç HÇoÇ0. (11.8)

Genau dieselbe Form erhâlt (11.7) bei beliebigem 3> wenn e gerade,
d also ungerade ist. Aus der zweiten Folgerung ziehen wir

8atz 21 : Existiert eine Homologieklasse f0 c R miï ^1 c i/£o> ^Tirf ^'fô
2f0 zfi 0, so ist d — n — v ungerade.

Weiter besteht der

Satz 22: Existiert f0 c il rai£ ^1 c £TCo> #° *5^ ^ e*^e (additiv) isomorphe
Abbildung von Si auf SR(-4)/g.

Beweis: 1. Ist C c ft, ifC c g, so wird nach (11.8) und Hilfssatz 9

C i?CoCo 0 in «(il).
Folglieh. ist H ein Isomorphismus.

2. Nach Satz 19 gilt fur aUe Z c «(4)

Z Z o A Z o HÇ0 c: B(Z o Ço).

Somit ist H eine Abbildung von 51 auf 5R(^l)/g.
Damit ist Satz 22 bewiesen. Seine Umkehrung ist trivial: Wenn H

eine Abbildung von 51 auf 3i(A)/^ ist, so gibt es ein £o der genannten
Art. Die Existenz eines solchen £o ist somit âquivalent damit, daB H
ein Isomorphismus von Si auf 5R(^l)/5 ist.

KAPITEL III
Der H-Prozess bei Sphàrenfaserungen

§ 12. Geometrische Bedeutung von q> im Falle von Faserabbildungen

VoraussetzuTigen: Wir ubernehmen sàmtliche Definitionen und Be-
zeichnungen aus dem vorigen Kapitel. /0 sei eine stetige Abbildung von
Ln auf Av mit folgenden Eigenschaften :

L Die Urbildmenge eines jeden Punktes n c A ist eine Spihare 8 der
Dimension d n — v > 0.
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2. Die Urbildmenge eines Simplexes \ £ | c A ist homoomorph dem topolo-
gischen Produkt |£x$|, und zwar so, dafi hierin die Urbildmenge S
eines beliebigen Punktes n aus ||| das Produkt |tzx$| ist.

Wir sagen dann: Es liegt eine Faserung von Ln in Sphâren Sd vor.
Sd heiBt die Faser, f0 die Faserabbildung und Av der Faserraum; er ent-
steht aus Ln durch Identifizieren der Punkte einer jeden Faser. Von der
Tatsache, da6 die Faser S eine Sphàre ist, werden wir erst spâter vollen
Gebrauch machen ; vorderhand ist fur uns nur wichtig, daB S im Sinne
der kombinatorischen Topologie als Zyklus aufgefaBt werden kann.

Fur jedes einzelne Simplex 11| c A werde der Urbildkomplex \Ç*S\
in (krumme) Zellen unterteilt. Fligt man die so zerlegten Teilkomplexe
||x$| zum Komplex L zusammen, so uberschneiden sich gewisse dieser

Zellenunterteilungen. Wàhlt man dort, wo solche Ûberschneidungen auf-
treten, die Zellendurchschnitte als neue Zellen, so entsteht eine gemein-
same Verfeinerung der sich uberdeckenden Unterteilungen. Damit ist
eine Zellenzerlegung von L gefunden, die der Faserung angepaBt ist. Wir
bezeichnen sie mit L.

Lr und Ar seien die baryzentrischen Unterteilungen von L und A.
Die dadurch erzeugten Abbildungen der Gruppen Q(L) auf £,(Lf) und
Q(A) auf 2(A') nennen wir u und co. Die Eckpunkte von L' und A1 werden

wie in § 5 auf natiirliche Weise angeordnet. Sodann werden beide

Ordnungen umgekehrt. Es kommt also der Schwerpunkt e{ einer Zelle
\xp\ c L stets dann vor dem Schwerpunkt ek einer Zelle |a^| c L, wenn

p< q ist.

/ sei diejenige simpliziale Approximation von /0, welche jeden Eck-
punkt e von Lr auf den letzten Eckpunkt des Trâgers von foe in A1

abbildet. / erhâlt dann die Ordnung im Kleinen. GemâB dieser Définition
ordnet / dem Eckpunkt ec L' dann und nur dann den Schwerpunkt
des Simplexes 11| c A zu, wenn e innerer Punkt des Urbildes | ^x^| von
III ist.

Nunmehr ist nach (8.2) auch <p (seit Ende des § 8 schreiben wir <p

statt ^) erklàrt, und zwar fur aile jene Komplexe aus A;, welche sich in
der Form F n A' darstellen lassen. Geht man auf die Définition des

fl-Produktes (§ 4) zuriick, so sieht man, daB die so darstellbaren Komplexe

genau die baryzentrisch unterteilten Simplexe | von A, sowie
deren Linearverbindungen sind.

Ganz gleich ergibt sich, daB die als ç?-Bilder in Lr auftretenden
Komplexe, welche nach (8.2) von der Form C f] Lr sind, Linearverbindungen
der baryzentrisch unterteilten Zellen aus L sind. Wir werden zeigen:
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Ist |* ein Simplex aus A, so ist cpœè9 der geeignet orientierte Urbildkomplex
|<Px/S| von II*].

In der Tat. Es sei |* Seite des Simplexes | |v| aus A, rf mit q v — p
ein Simplex aus |co|v|, fur welches

co|* rjq n co£v

gilt. Ans der Définition des n-Produktes, aus der Tatsache, daB |co|v|

baryzentrische Unterteilung von | |v| ist, und aus der Vorschrift liber die
Eckenordnung folgt, daB der erste Eckpunkt e0 von rjq der Schwerpunkt
des Simplexes 1|*| sein muB.

Nun ist nach (8.2), wegen r\q n a)£v rjq f) A',
<pcoè» cp{nz n col1') /V H V

Dabei ist f'r)q £yq, summiert ùber aile Simplexe ^cL', fur die fy*1

r)q. GemàB der Définition der simplizialen Approximation / von /0 muB
der erste Eckpunkt e0 eines solchen Simplexes y^, wegen fe0 e0, im
Urbild | px8\ von | &>\ liegen.

Entweder ist yq n Lr 0 oder es gibt eine Zelle xVJrd in L mit

Letzteres ist genau dann der Fall, wenn der Schwerpunkt von |a;p+<l|

der erste Eckpunkt e0 von |^| ist. Mit ihrem Schwerpunkt liegt aber die

ganze Zelle \xp+d\ in If^xiSI-
Damit ist gezeigt: q>coi;p ist ein (p + d)-dimensionaler Komplex in

|fpx/8|. Daraus folgt mit (8.2) und (5.2) (Beweis wie fur (7.2)):

r<p(Dèp= (- l)d(pœrÇ*cz \r£*xS\, (12.1)

d. h. (pco£p ist (p + d)-dimensionaler Relativzyklus in der (p + d!)-dimen-
sionalen Mannigfaltigkeit | £*x8\ bis auf deren Rand (vgl. A. H., p. 193),
somit von der Form

<pa)p au(£*x8) (12.2)
Hieraus folgt weiter

(— l)dcpcorèp rcp^p rau(ÇpxS)

au(rÇpxS), (12.3)

d. h. der in (12.2) auftretende Koeffizient a ist fur aile Seiten des

Simplexes 11*| bis aufs Vorzeichen derselbe. Insbesondere gilt fur p v, wie

man sofort bestàtigt,
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(12.4)

bei geeigneter Orientierung von 8 uber | |v|. Orientiert man schlieBlich
sàmtliche |v c A so, da6 27f yl gilt, und wâhlt man ûber jedem £v

diejenige Orientierung von 8, welche (12.4) befriedigt, so wird

L' <pA' cpZcop 2u(?x8)
ein Zyklus, woraus folgt, da8 die Orientierungen von /S ûber den Dureh-
schnitten zweier £v miteinander ubereinstimmen. Hieraus, aus (12.2),
(12.3) und (12.4) ergibt sich schlieBlich: Es ist

<pœp> (- iyK*-*>u(£*x8) (12.5)

Damit ist unsere Behauptung bewiesen und die geometrische Bedeutung
der Abbildung <p im Falle einer Faserung klargelegt.

Im nàchsten Paragraphen werden wir uns folgender abgeânderten
Définition von <p bedienen : Es sei fur aile Simplexe f c A :

ç>£ m(!xjS) (12.6a)

es sei fur algebraische Komplexe F Ua^i :

Z. (12.6b)

Nach dem soeben Bewiesenen stimmt dièse neue Définition bis auf das

(nur dimensionsabhàngige) Vorzeichen mit der alten uberein. Fur sie

gilt, da 8 Zyklus ist,

folglich fur r c 2{A)
(12.7)

Hilfssatz 4, nach welchem fyF 0 fur aile F, ist nunmehr aus Dimen-
sionsgrûnden klar. Man beachte, daB bis anhin nur die Zykleneigenschaft
der Faser 8 benutzt wurde.

§ 13. Der Isomorphismus H bei einer SpMrenîaserung

Wir erinnern an die in § 8 eingefûhrten Begriffe und Bezeichnungen :

Wir nennen g, resp. g* jeneUntergruppe von ÎB{Af), resp. 23%d/), welche
die /-Bilder von Zyklen aus Lr enthàlt. 51, resp. $tp ist die Untergruppe
von fB(A), resp. ÏBP(A), welche die Zyklen £ aus A enthàlt, deren ç>-Bilder
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homolog 0 sind in L'. Fur Çp c $iv ist also <pÇp rCp+e (e d + 1 ge-

setzt). Wir nennen fCv+e hÇp.

In § 8 wurde gezeigt : hÇp ist ein Zyklus, der durch die Homologie-
klasse von Çp bis auf Zyklen aus3r bestimmt ist. Ferner ist hÇp c g, falls
Cp ~ 0. Folglich erzeugt A eine homomorphe Abbildung H von 5lp in
iBp+e/3rp+e- Wir werden nunmehr diesen Homomorphismus H genauer
untersuchen, indem wir von der Tatsache Gebrauch machen, daB / durch
eine Sphàrenfaserung erzeugt wird. a sei eine pseudoidentische Abbildung
von A1 auf A. Wir betrachten im folgenden die Abbildung /* =of,
schreiben dafûr aber wieder /. (cp wird beibehalten.) Nach Satz 5 wird
dadurch am Homomorphismus H nichts geândert.

Da sich aile unsere Betrachtungen auf Homologien stlitzen, wiïrde
geniigen vorauszusetzen, daB die Faser 8 eine Homologiesphàre ist.

Das Ziel dièses Paragraphen ist der folgende Hauptsatz tiber Sphâren-
faserungen :

Satz 23 : Ist die Faser 8 eine Sphare, so ist H eine isomorphe Abbildung
von $tp auf fBp+e/^p+e (e d + 1).

Der Beweis ergibt sich aus den nachstehenden zwei Behauptungen :

Satz 24 : Ist C Zyklus aus R und hÇ c: % > so ist Ç ~ 0, d. h. H ist eine

isomorphe Abbildung von Si in 35/8f«

Satz 25: Zu jedem Zyklus Z aus A gibt es einen Zyklus Ç c: ${, so daji
hÇ Z gewâhlt werden kann, d. h. H ist eine Abbildung von R auf 23/5-

Nach Satz 22 wiirde es zum Beweise von Satz 23 genûgen, die folgende,
als Spezialfall in Satz 25 enthaltene Aussage zu bestâtigen: Ist die Faser S
eine Sphare, so gibt es einen Zyklus £0 c Si, so daB hÇ0 A. Wir wollen
hier aber ganz unabhàngig von multiplikativen Eigenschaften von H,
also mit der rein additiven Homologietheorie den Satz 23 beweisen.
Dadurch erhalten wir viel eher einen Einblick in die Struktur der Faserung,
als wenn wir die Produkttheorie als Hilfsmittel heranziehen.

Dem Beweise der Sâtze 24 und 25 schicken wir drei Hilfssâtze voraus.

Hilfssatz 10: C*(t > 0) sei ein Komplex in | <p£9\ (s ^ 0) mit rC* c
| <pr£8\ und t < s + d. Im Falle s t sei ferner fC* 0. Daim gibt es

einen Komplex jB* c | cprÇ*\ derart, daB rBl rC".

Beweis: Die Behauptung ist klar, wenn t 0: Man setze J5* 0.
Im Falle s 0 ist | <prÇ8\ leer; da dann aber nach Voraussetzung (7*

Zyklus ist, kann JB* 0 gewâhlt werden, womit die Behauptung bewiesen
ist.

103



Es sei nunmehr s > 0 und t > 0. Die vier Klassen einer Homologie-
basis von j (pr£8\ |r|sx$| werden reprâsentiert durch die Zyklen

Hierin bedeuten n und p Eckpunkte von fs, resp. Sd. nxp und nx8d
repràsentieren zugleich die zwei Klassen einer Homologiebasis von
| ç>£«| \Ç8xS\. Nun ist aber rC1 Zyklus in | (pr£8\ und Dim rC* t — 1 <
s + d — 1 T>im(r£8x8d). Somit gilt in | (prgs\ im
Falle s t:

Fur ^ — 1 0 : rC* ~a(rÇsxp) + b(nxp)

„ « — 1 d : rC* ^a(rfsx29) + b(nx8d)

?J
^ — 1 ^ J

_ : rC* ^a(r|sx2>)(a

Da sowohl rC*, also auch r|sx^ in \(p£8\ beranden, mu8 dies auch b(nxp),
resp. b(7tx8d) tun. Dies tritt aber nie ein, Solange 6^0 ist. Folglich muB
in den beiden ersten Fâllen 6 0 sein. Somit bleibt

Damit ist aber
frC* ar£s.

Wegen frC* r/C" 0 muB daher auch a verschwinden. Es ist somit
rG1 ~ 0 m | ç?r|s| fur « *.

Einfacher geht der SchluB im
Falle s ^t: Man macht dieselben Unterscheidungen fur ^ — 1 wie oben.
Dabei tritt diesmal der Term a(ri;8xp) gar nicht auf. Wieder folgt 6 0,
also rC1 r^j 0 in \q>r£8\, w.z.b.w.

Eine Verschàrfung dièses Satzes ist der

Hilfssatz 11 : C*{t > 0) sei ein Komplex in | <pÇ8\ (s > 0) mit rC1 c
| (prÇ8\ und t < s + d. Im Falle s £ sei ferner /(7* 0. Dann gibt es

einen Komplex A At+1 c \<p£8\ derart, dafi C* — rA c \(pr$8\ und
fA 0 ist. Dann gilt also f(C* — rA) fCK

Beweis : Nach Hilfssatz 10 gibt es unter diesen Voraussetzungen einen
Komplex B* c \<pr£8\, so da6 C* — B* Zyklus ist in |ç>|s|. Daher gilt

fur t

t

t

0:

d:

0, d:

C —

C*-
c*-

B*

B*

JS'
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In den Fâllen t 0 und t — d wollen wir die Zyklen c(n;xp), resp.
c(7txSd) zu B* hinzuschlagen; dies ist erlaubt, weil beides Zyklen aus
| (pr£8\ sind. In allen Fâllen wird sodann C* — Bt ~ 0. Es gibt also einen
Komplex A At+1 c | ç?|s|, der von G* — B* berandet wird, d. h. welcher
die Gleichung

C' — rA - jB'c \cpri8\

erfullt.

Aus Dimensionsgriinden wird fA 0, wenn £ > 5 ist. Fur t <s gilt
aber im allgemeinen fA A ^ 0. Es sei D der Komplex Axp in der
durch Z/ gegebenen Unterteilung des topologischen Produktes |f*x/S^|.

Dann gilt

damit ist : rJ c |r|s|, und

rD r(Axp) rAxp c. \(pr£s\.
Damit ist

Qt _ r(^ — D) B* + rDa \<prÇs\

und
— 2)) 0.

Dies war aber die Behauptung (in ihr steht zwar A statt A — D).

SchlieBlich gilt der

Hïlfssatz 12 : Cf sei einKomplex in | ç?|s| mit rC1 c | (pr£8\ und t s -\- d.

Dann ist C* aq>£*.

Beweis: |ç?|s| |f8x^Sd| ist eine ^-dimensionale berandete Mannigfal-
tigkeit. In ihr ist C* Relativzyklus bis auf deren Rand, somit von der
Form

C" acpÇ*.

Wir fïïhren noch folgende Abkurzungen ein: AQ sei der Komplex der
hôchstens g-dimensionalen Simplexe von A; ferner bezeichne q?Aq den-
jenigen Teilkomplex von Lr, welcher sieh aus den ç>-Bildern aller
Simplexe von Aa zusammensetzt. Ist G ein Komplex in cpAq, so sagen wir
kurz ,,C steht iïbeT AQ". Wegen (pAv Lf steht jeder Komplex C aus V
uber Av. Sind C und D (algebraische) Komplexe in Lr, so wollen wir
unter C(D) denjenigen (algebraischen) Teilkomplex von C verstehen,
der in \D\ liegt.
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Nun gehen wir an den

Beweis von Satz 24: Die Behauptung lautet: Ist Ç& Zyklus in A,
rCt(t p + e>p) und K*> fC* Z* c g, so ist f* ~ 0

In der Tat! Nach Voraussetzung gibt es einen Zyklus Z* c L mit
fZ* ~Z*; also berandet f(C* — £*) einen Komplex A in 4. D c V sei
ein beliebiges Urbild von J. Dann gilt mit

und
fCl^f{Ct — Zt — rD) 0

Ersetzt man daher in ht? /C* den Komplex C* dureh Cl, so wird

Cl steht im allgemeinen liber Av, sein Rand aber tiber Ap(p< v).
Wir werden nun Cl der Reihe nach durch Komplexe C[, C\, C|,
Cy-p-i ersetzen, so daB stets rC%= cpt? und fC{ 0 ist, aber Cl nur noch
liber Av~k steht. Dies geschieht nach folgender Vorschrift : Ist v — p — 1

0, so sei Ctv__p_1 Cl. Ist v — p — 1> Je ^ 0 und Cl schon kon-
struiert, so erfullt C^(^lï"~*) fur jedes Simplex ivfkczA die Voraus-
setzungen von Hilfssatz IL Es gibt daher zu jedem dieser Simplexe ^
einen Komplex A{ derart, daB C^cp^) — rAt in |ç?rft| enthalten und
jAi 0 ist. Bilden wir die Summe aller dieser A{ und setzen

so gilt

und: Cl+1 steht nur mehr liber Av~{k+1)

Wird CJLjh-i au^ dièse Weise konstruiert, so erfullt C£_p_1(ç>!J+1) fur
jedes Simplex ^+1 ci die Voraussetzungen von Hilfssatz 12; denn der
Rand von Ctv^.P^1, ^C3*» steht liber A9 und es ist £ p + e (p + 1) + d.
Somit ist

Setzt man daher
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summiert iiber aile (p + l)-dimensionalen Simplexe ÇjCiA, so wird,
weil Cy^^i ganz iiber Av+1 steht

Dann ist aber

cprr r<pr rCtv^ml
folglich

rr cp ~ o,
w.z.b.w.

Beweis von Satz 25 : Die Behauptung lautet : Zu jedem Zyklus Zq c A
gibt es einen Zyklus £* c Si und einen Komplex C9 c L'9 so daû

In der Tat! C* sei Urbild von Z«, d. h. fC% Z*. Im Falle g 0 ist
C% Zyklus, somit Z« c g; £* 0 erfûllt daher die Behauptung.

Es sei nunmehr q > 0. Wir setzen g —- 1 t und rCg Z*. Dann gilt

fZ* r/Cg rZ« 0

Man verfàhrt nun mit Z* vermôge der Hilfssàtze 11 und 12 genau gleich
wie mit Cl im Beweise von Satz 24 : Man subtrahiert solange Rànder von
Komplexen A (mit fA 0), bis Z* entweder zu 0 oder zu einem Zyklus Z*
wird, welcher das ç?-Bild eines Komplexes Çv c A ist. Im ersten Falle
folgt ZqŒ<^; man setzt wieder fp=0. Im zweiten Falle ist, wegen
<prÇp r<pÇp rZ* 0, £* Zyklus in A, also Z« AJ», w.z.b.w. Gleich-

zeitig ergibt sich hieraus

Satz 26 : Ist Z Zyklus in L1 und fZ ~ 0, so gibt es einen Zyklus Zci
mit q>Z im^ Z

Um nàmlich obigen Beweis anwenden zu kônnen, braucht man nur
zu beachten, da6 es einen zu Z homologen Zyklus gibt (siehe im ersten
Teil des Beweises von Satz 24), dessen /-Bild verschwindet. Dieser spielt
dann die Rolle von Zt in obigem Beweise.

KAPITEL IV
Anwendungen

Wir fassen nunmehr die Resultate der Kapitel II und III zusammen.
Wir setzen daher voraus : Die geschlossene orientierbare Mannigfaltigkeit
Ln sei in Sphâren Sd(d > 0) gefasert (vgl. § 12); Av(v n-d) sei der
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Faserraum. Im folgenden werden wir eine Reihe geometrischer Eigen-
schaften einer solchen Sphârenfaserung aufzàhlen (§§ 15 und 16). Dazu
bedurfen wir noch einer letzten Vorbereitung (§ 14).

§ 14. H-Ketten
Nach Satz 23 existiert eine Homologieklasse £0 m A mit ic5f0.

Da R ein Idéal ist in 91(^1), sind sàmtliche Homologieklassen der Forra
Z o f0 in R enthalten. Ist umgekehrt f cz R, so gilt nach Satz 20, Formel
(11.8) : C HÇ o f0. Folglich ist 51 das durch f0 erzeugte Idéal von Vl(A).

Ebenso làBt sich das Idéal 3f von ${(A) durch f0 charakterisieren : Nach
Satz 19 gilt fur eine Homologieklasse Z aus A: Z cz H(Z o £0). Hieraus
folgt, da H eine homomorphe Abbildung von R in 9î(/l)/3f ist (Satz 11):
Verschwindet Z o f0, so ist Z c 5. Nach Hilfssatz 9 gilt hiervon die

Umkehrung. Folglich ist dann und nur dann Z c $, wenn Zof0 0.
Wir betrachten nun die Potenzen von f0,

ÇQ A Co Co > fo f o ° C o > fo ~ ?o ° Co • • • > £o î • • • (^* ^)

und nehmen an, daB f^ deren letzte sei, die nichtNull ist. Diesbedeutet

ff c g. Weil Dim f0 ^ — e, ist Dim Cj= v — ke, e d + l. Folglich

ist k \ — die hôehste fur M in Frage kommende Zahl. Es gibt
r v idaher eine wohlbestimmte Zahl M, 0 ^ M < — derart, daB

Cî ^ 0 fur h < if, Cj 0 fur fc > if
Wir nennen die Folge A, fo> Co? • • •> C^, die -ff-Kette von yl; if heiBe

ihre Lange, if 0 bedeutet also £o 0, d. h. A cz g.
Es sei Z et 51. Wir betrachten die in der Dimension absteigende Folge

Z,Z.f0,Zo{5, ...,Zotf,... (14.2)

und nehmen an, daB hierin Z o fJ* das letzte nicht verschwindende Glied
ist. Dies bedeutet, Z o f« c g• Wir nennen die FolgeZ, Z o f0, Z o Jg1

die £f-Kette von Z(ctR); m heiBe ihre Lange. Es gilt stets m ^M;
denn mit Cj verschwindet auch Z o f*.

Aus der vorn gegebenen Charakterisierung von ft und g durch ^"0

ergibt sich: Sàmtliche Glieder einer solchen i7-Kette mit Ausnahme des

ersten sind Klassen aus 51 ; nur das letzte Glied ist in 5 enthalten. Weiter
gilt: jede Klasse C c 9l(A) gehôrt der £?-Kette einer Klasse Z((£$t) an.
Denn dies ist nach Définition der Fall, wenn ÇtizSt; andernfalls bildet
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man eine in der Dimension aufsteigende Folge Zx c HÇ Z2 c HZ1,
bis man ein Zk findet, welches nicht mehr in R enthalten ist. Dies tritt
spâtestens dann ein, wenn Dim Zk > v — d. Dann folgt durch mehrmalige
Anwendung von (11.8): £ Zk o £j, d. h. C ist in der i7-Kette von Zk
enthalten. Zusammenfassend gilt der

Satz 27 : Jede Klasse Zç£& und keine andere ist Anfang, jede Klasse
£ c gf und keine andere ist Ende einer 17-Kette. Jede Homologieklasse
aus A gehôrt einer iï-Kette an.

Nach Définition ist £^ cg. Es gibt daher eine Homologieklasse zQ ^ 0

in L mit J^z0 £%*. (F ist die durch die Faserabbildung / (§12) induzierte
(additiv) homomorphe Abbildung von 5R(L) in $l(A).) Fz0 ist also gleich
dem Ende der .ff-Kette von A. Insbesondere gilt fur M 0 : Fz0 A.
Die Dimension von z0 betràgt:

Dimz0 Dim Cf v — Me, (v n-d, e d + 1). (14.3)

Wir betrachten den folgenden Spezialfall: Aile H-Kelten von A besitzen

dieselbe Lange M ^ 0, d. h. fur jede Klasse Z a Si sei Z o ^ ^0, aber
in 5 enthalten. Beispiele, in denen dièse Voraussetzung erfullt ist, werden
wir in den §§15 und 16 kennen lernen.

Es sei %l diejenige Untergruppe von 93«, fur deren Elemente Z gilt:
Z o fj 0. Dann wird

%l c 33 c •.. c XI ci Zl+1 c.c^c X«M+1 (14.4)

Hierin sind insbesondere %% 0, ïf g3 und, da aile i?-Ketten die

Lange M haben, 2^ 5l5, XqM+1 »«.
Nach Définition der Gruppen î| ist fur Z c 2$ (0 < * < M)

ftir Z c %Qk+1 somit

Kern*) dieser homomorphen Abbildung Tk von X9k+1 in g«-fec ist ï|.
Nach Voraussetzung gibt es zu jedem Elément C c g«-fce eine in C endi-
gende H-Kette der Lange M; dièse enthâlt aber ein Elément von 3J+1.
Somit ist î7^ eine Abbildung auf g«-*e. Tk vermittelt daher die Isomorphie

*) Kern eines Homomorphismus ist die Untergruppe derjenigen Elemente, die auf
die Null abgebildet werden.
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Insbesondere gilt, wegen 3^+1 33* und %qM Siq :

Satz 28: Haben aile I?-Ketten von A die Lange von M, so gilt
Q/Rq œ %Q-Me. (Dieser Isomorphismus wird durch TM vermittelt.)

Ans (14.4) und (14.5) folgt weiter, wegen X9M+1 9$q und Xq0 0:

Satz 29 : Ist 3 $R> und haben aile iï-Ketten von A die Lange M,
so gilt

33* « 5* + g*~e + S***5 + + 3ô~~Me. (14.6)

Nunmehr beweisen wir den

Satz 30: Haben aile JET-Ketten von A die Lange M, so làBt sich jede
Homologieklasse z c 5R(L) darstellen in der Form

z=0Zozo+&Z* (F«o=ff). (14.7)

Hierin sind die Klassen Z und Z* bis auf Elemente aus Si bestimmt.
(z0 sei beliebig, aber fest gewâhlt.)

Beweis: 1. Die Darstellung ist môglich! Es ist Fz c Qf. Somit gibt es

ein Z c SR(^l) mit Fz Z o ffî Folglieh gilt naeh Formel (7.5):

F(z — 0Zozo) ^Fz —ZoFz0 0,
also nacb Satz 26

Z= 0ZoZo+ &Z*.

2. Die Darstellung ist bis auf Klassen aus il eindeutig; denn ist z 0,
so ergeben sich bei der unter 1. beschriebenen Bestimmung von Z und Z*
nacheinander die Bedingungen Z c 51, Z* c 51.

Es sei Dim z q und z &Z <>zo + &Z*. Beachtet man, daB
Dim 0Z Dim Z + d, ebenso Dim 0Z* Dim Z* + d, und daB
naeh (14.3) Dim z0 ti — d — jfcfe, so findet man: Es ist

— d,

g +Jfe.
Naeh Satz 30 wird also jeder Klasse & aus L eineindeutig und isomorph
eine Klasse (enthaltend Z) aus W+Me/'Rq+M' und eine solche (enthaltend
Z*) aus ^-àjSt*-* zugeordnet. Auf Grand von Satz 28 gilt aber
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Hieraus folgt

Batz 31: Haben aile fl-Ketten von A die Lange M, so besteht die
Isomorphie

(e d + 1) (14.8)

Damit làBt sich die additive Struktur von 3i(L) ganz durch diejenige
von 9l(A) beschreiben, wenn man f0 und damit g kennt. Man wird sich

nun fragen: Gilt Entsprechendes fur die multiplikative Struktur?

z1 und z2 seien zwei Elemente von %(L). Um ihren Schnitt zu berechnen,
verfâhrt man wie folgt: Man stellt zx und z2 in der Form (14.7) dar (mit
festem z0) und multipliziert nun nach den in Sehnittringen ûblichen
Rechenregeln aus, beachtet aber dabei, daB 0 ein Sehnittringhomomor-
phismus ist (§ 7), und daB sich auch z0 o z0 z\ in der Form (14.7) dar-
stellen làBt :

zo + 0Z*

Dadureh erhàlt man wieder eine Darstellung der Form (14.7) fur den
Schnitt zj oz2, Hieraus folgt: Die multiplikative Struktur von 9t(£) ist
durch diejenige von $i(A) bestimmt, sobald das Produkt z\, resp. dessen

Darstellung 0ZO <>z0 + 0Z* bekannt ist.
Es gibt gewisse, allein durch die GrôBen n, d und M bestimmte Fàlle,

in denen man sagen kann, daB 2J 0 sein muB. Hierûber gibt die fol-
gende Aufstellung Auskunft. Wir bemerken: Wegen Dim z0 v — Me
n — (d + Me), ist Dimz2Q n — 2(d + Me); somit gilt

1. Ist Me + d > -^, so ist Dim z\ < 0, also z% 0

2. Ist d ungerade, so ist dies auch Me + d. Dann gilt aber nach (6.11)
und (5.9): 2^ 0.

2*. Ist also d ungerade und 3 91 oder ©m, m ungerade, so ist z\ 0.

Ist d gerade, so ist nach Satz 21: 2f0 0. Wâhlt man 3 91 oder

(5W, m ungerade, so ist auch schon £o 0, folglich M 0 und
Dim z0 v n — d, somit n — (Dim z0) d gerade. Hieraus folgt
nach (6.11) und (5.9) fur aile Zc9i(L): Zoz0 z0oZ. Ist nun

nach (14.7) z% 0Z o z0 + 0Z*, so wird mit z0* z0 — 0— : Fz*

Fz0 A und

111



3. Ist also d gerade und 3 9î oder — ©m, m ungerade, so kann z0 so

gewàhlt werden, daB z0 &Z* fur ein geeignet gewàhltes Elément
Alsdann ist (Dim Z*) + d Dim z\ 71 — 2d, somit :

9?

3*. Ist d gerade, d> — und 3 " 5R oder ©w, m ungerade, so kann
o

z0 so gewâhlt werden, daB z\ 0

Auf die Bedeutung von z\ 0 werden wir noch zu sprechen kommen.

§ 15. Geometrische Eigenschaften von Sphârenîaserungen

1. Eigenschaften, die fur aile Spharenfaserungen gelten.

Satz 32: Die durch eine Spharenfaserung erzeugte Abbildung der gefa-
serten Mannigfaltiglceit L auf den Faserraum A ist wesentlich.

Beweis : Fur den durch die Faserabbildung / erzeugten Homomorphis-
mus H gilt (Satz 25): Es gibt eine Homologieklasse fo in A derart, daB

A c Hf0. Wir haben aber frûher (§ 9) festgestellt, daB hieraus die Wesent-
lichkeit von / folgt.

Satz 33: Notwendig fur die Faserbarkeit der Mannigfaltiglceit L in
Sphâren der Dimension d ist dos Nichtverschwinden einer der Bettischen
Zahlen pd, p2d+x, p****, von i.

Dieser Satz ist enthalten in

Satz 34 : Ist die Mannigfaltiglceit L in d-dimensionale Sphâren gefasert
und ist die qte Bettische Zahl des Faserraumes A, tz?, von 0 verschieden,

so mu/S mindestens eine der Bettischen Zahlen pq+d, ^a+2d+1, ^+3d+2,

von L positiv sein.

Beweis : Es sei 3 9Î. Nach Satz 27 ist jede Homologieklasse f« ^ 0

aus A Glied einer 17-Kette, deren Anfang eine Klasse Z et Si bildet. Fur
dièse gilt aber &Z ¦=£ 0 und DimZ= q + k(d + 1), k ganz. Daher ist
Dim 0Z q + k(d + 1) + d q + (k + 1) d + k, w.z.b.w.

Satz 35 : Zwischen den Bettischen Zahlen pQ der in Sphâren Sd gefaserten

Mannigfaltigkeit L und den Bettischen Zahlen wé1 des Faserraumes A besteht

die Ungleichung
p* ^71?+ 7!?-*, (15.1)

d. h. die Bettischen Zahlen von L sind nie grôfler als die entsprechenden
des topohgischen Produktes Ax8d.
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Beweis: Es sei 3 9Î. F bildet die Homologiegruppe %5q(L) homo-
morph auf ffi ab. Kern dièses Homomorphismus ist nach Satz 26 die
Gruppe yiq der ^-dimensionalen (P-Bilder, welche gemâB Définition von
51 isomorph ist der Restklassengruppe ^Bq~d(A)/SiQ~d. Ferner gilt nach
Satz 23: Stq~e « ©«(4)/3f«. Bezeichnen wir mit kq den Rang von Rq,
so gilt auf Grand der Addivitât der Gruppenrànge :

-j- (p

(15.2)
rfi -f fià (Jze + &«<*) d+l)

Hieraus folgt Satz 35.

Bereehnet man die Charakteristik Z(— l)Qpq von i, so folgt aus

(15.2), wegen kv 0:

/Safe 56 ; Die in d-dimensionale Spharen S gefaserte Mannigfaltigkeit L
und das topologische Produkt A*8 des Faserraumes A mit der Faser S
besitzen gleiche Charakteristiken.

Dieser Satz gilt auch dann, wenn die Faser keine Sphâre ist, wie man
leicht durch direkte Berechnung der Eulerschen Charakteristik als
Wechselsumme der Zellenanzahlen von L feststellen kann.

Folgerungen: Mannigfaltigkeiten mit ungerader Charakteristik lassen
sich nicht in Spharen fasern. Mannigfaltigkeiten mit nicht verschwinden-
der Charakteristik lassen sich hôchstens in Spharen gerader Dimension
fasern.

2. Eigenschaften, die davon abhàngen, ob die Faser S im gefaserten Raum
L berandet oder nicht.

Satz 37 : Der Koeffizientenbereich 3 sei beliebig, aber fest 5R, ©
oder ©WJ m > 2). Gibt es in der gefaserten Mannigfaltigkeit L einen

Zyklus z0, welcher durch die Faserabbildung f auf den einfach gezâhlten,
orientierten Faserraum A projiziert wird (fz0 A), so kann weder die
Faser 8, noch ein von 0 verschiedenes Vielfaches derselben in L beranden.

Hiervon gilt die Umkehrung fur 3 91 oder ©m, m > 2; sie ist auch

fUr 3 © richtig, falls Av in der Dimension v — d — 1 keine Torsion
besitzt.

Beweis: Nach Satz 16 und Hilfssatz 8 gilt fur 3 91 oder ©w,
m ^ 2:

« dv <= %V(A). (15.3)

Ferner ist f&°(A) « ©"(il) « 3. Wàhlt man also 3 91 oder <g
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m > 2, und gilt aS ^ 0 fur a ^ 0, d. h. il0 0, so wird gv SB1',

somit /l c g ; mit andern Worten : A ist Projektion eines Zyklus z0 aus L.
Ist umgekehrt 51° ^ 0, so folgt aus (15.3) : %v ist echte Untergruppe

von 33" (im Falle 3 5R sogar die Nullgruppe) ; also ist A, das erzeugende
Elément von 33V, nicht in g" enthalten. Damit ist Satz 37 bewiesen fur
3 91 oder ©w,m >2.

Ist il0 ^ 0 fur 3 ©, dann ist auch ft° ^ 0 fur 3 91; es gibt dann
keinen rationalzahligen, also erst recht keinen ganzzahligen Zyklus z0 mit
fz0 A. Ist R° 0 flir 3 ©, dann ist auch R° 0 fur 3 9t; es

gibt dann einen rationalzahligen Zyklus zQ mit fz0 A, also eine ganze
Zahl m und einen ganzzahligen Zyklus z* mit fz* mA. Nach Satz 25

gibt es aber eine Klasse f0 der Dimension v — d — l mit /l c fiTCo • Nach
Satz 24 folgt aber aus mA c gf : Es ist m£0 0. Da aber A in der Dimension

v — d — 1 torsionsfrei vorausgesetzt wurde, mu6 m 1, also A c 5
sein. Damit ist die Umkehrung auch fur 3 © bewiesen.

Satz 38 : Der Koeffizientenbereich 3 $ei beliebig, aber fest. Gibt es in L
einen Zyklus z0 mit fzo A, so sind die Homologieringe 9î(L) und 3i(Ax8)
additiv und dimensionstreu isomorph, und umgekehrt, wenn (wie in Satz 37)
im Falle 3 © der Faserraum A keine (v — d — l)-dimensionale Torsion
besitzt.

Beweis : Es gebe einen Zyklus z0 mit fz0 A, d. h. es sei A c gf. Nun
gilt aber : 5 ist ein Idéal in ${(A) ; A ist Einselement von 5R(/l). Aus 4cg
folgt daher gf 91{A). Nach Satz 23 gilt dann R « 9t(A)/% « 0. Der
Homomorphismus H ist somit die Nullabbildung, d. h. aile jff-Ketten
von A haben dieselbe Lange 0. Hieraus ergibt sich nach Satz 31 (mit
M 0):

f). (15.4)

Zum Beweise der Umkehrung stûtzen wir uns auf folgende, sich aus
Satz 25 ergebende Tatsache : Die Grappe Sft3 der g-dimensionalen 0-Bilder
ist Kern des Homomorphismus F von 33«(L) auf g3 c ÏBq(A). Ferner ist
8?~d Kern des Homomorphismus 0 von $5q-d(A) auf 9l«. Somit gilt

%*{L)/W « g« c JB«(-4) ©«^(^J/iïM « JR« c ©«(£). (15.5)

Es sei nun A et g, also 5y eine édite Untergruppe von $Bv(yl). Im Falle
3 9Î ist dann gv 0, ebenso (auf Grand der Torsionsfreiheit von A
in der Dimension v — d — 1) im Falle 3 © • Bei beliebigem 3 besitzt
daher 5V kleinere Ordnung als %5V(A). Aus den Isomorphien (15.5), fur
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q= v, folgt daher, daB %V(L) und &v(Ax8) « $B"(4) + %v-d{A) nicht
isomorph sein kônnen, also auch nicht 5R(L) und ${(Ax8).

Mit 3 5R ergibt sich aus den Sàtzen 37 und 38 der

Zusatz zu Satz 35 : Zwischen den Bettischen Zahlen von L und A besteht

dann und nur dann die Gleichung

wenn die Faser S in L nicht rational homolog 0 ist.

Die Sâtze 37 und 38 zeigen deutlich, wie wichtig es ist, zu wissen, ob
bei einer vorgelegten Sphârenfaserung die Faser 8 im gefaserten Raum L
berandet. Die folgenden zwei Sâtze geben Fàlle an, in denen nie 8 ~ 0

sein kann.

Satz 39 : Besteht zwischen der Dimension n des gefaserten Baumes L und

der Dimension d der Faser S die TJngleichung d > — so gibt es in L einen

Zyklus z0 mit fz0 A; dann ist also a8 ^6 0 in L fur a ^ 0.

Beweis : Ist A et 5 » so ist die nach Satz 25 in A existierende Homologie-
klasse £0, welche die Relation AcHÇ0 erfullt, nicht die Nullklasse.
Hieraus folgt, wegen 0 < Dim f0 v — d—l n — 2d — 1, die Be-
hauptung.

Satz 40 : Ist d gerade und 3 5R oder ®m, m ungeradey so gibt es

in L einen Zyklus z0 mit fz0 — A.

Nach Satz 37 folgt hieraus das

Korollar : Ist bei einer Sphârenfaserung die Faser Sd rational homolog 0,
so ist d ungerade.

Beweis von Satz 40 : Nach der Folgerung 2 zu Satz 20 gilt bei geradem d
stets 2£0 0. Fur 3 5R oder ©m, m ungerade, ist dann schon £0 0,
also A c g> w.z.b.w.

Folgerungen : Nach Satz 39 lâBt die additive Homologietheorie keinen
Unterschied zwischen L und A*8 erkennen, Solange die Dimension der
Faser grôBer oder gleich der halben Dimension von L, also auch grôBer
oder gleich der Dimension des Faserraumes ist. Wir werden aber sehen,

daB fur d — v die Homologieringe 5R(i) und $i(Ax8) multiplikativ
verschieden sein kônnen (Beispiel 2 zum Fall S ^ 0).

Nach Satz 40 kann eine Sphâre gerader Dimension nie als rational
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O-homologe Faser auftreten. DaB dies aber jede Sphâre ungerader Dimension

d kann, zeigt das Beispiel des Raumes der gerichteten Linienelemente
auf der Sphàre 8d+1. (Vgl. hierzu § 16.)

3. Der Fall 8 rt* 0 :

Wir nehmen an, die Faser S sei weder Rand, noch Randteiler in L;
im Falle 3 ® besitze der Faserraum A keine (v — d — l)-dimensionale
Torsion. Dann gibt es naeh Satz 37 einen Zyklus z0 in L mit fz0 A,
und naeh Satz 38 sind dann die Homologieringe 5R(£) und ${(AxS) additiv
und dimensionstreu isomorph. Wir kônnen leicht eine Abbildung von
9i(L) auf ${(AxS) angeben, welche dièse Isomorphie bewirkt : Naeh Satz 30
wird bei fest gewâhlter Klasse z0 mit Fz0 A, wegen Si 0

dureh Formel (14.7)
Z 0Z o Zo + &Z*

die direkte Summe 95q(A) + f8q~d(A) isomorph auf die Gruppe
abgebildet. Ferner vermittelt die Formel

z Zxp + Z*xS,

in welcher p die 0-dimensionale, 8 die d-dimensionale Basisklasse von
9î(/S) bedeuten, einen Isomorphismus von 95q(A) + ^Bq~d(A) auf 95q(Ax8).
Die Isomorphie zwischen 5R(i) und ${(Ax8) Iâ6t sieh somit durch folgende
Zuordnung herstellen:

in L: in A*8 :

0Zozo + &Z* < > Zxp + Z**S (15.6)

Wann wird hierdurch auch multiplikative Isomorphie erzeugt? Zur
Untersuchung dieser Frage bilden wir die folgenden Sehnitte

in L :

0{ZX o Z2)

^ 0(Z1oZ2)oZo,

(0Z1oZo)o(0Z2oZo) ± 0(Z1oZ2)oZ2Q>

in

(Zxxp) o (Z2xp) 0

Dièse Zusammenstellung zeigt : Im Falle 8 n/* 0 wird durch die Zuordnung
(15.6) dann und nur dann neben der additiven auch multiplikative
Isomorphie zwischen $l(L) und ${(AxS) hergestellt, wenn 2J 0 ist. Es gilt
also der
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Satz 41: Damit dimensionstreue Ringisomorphie zwischen 3{(L) und
8) (in der durch (15.6) angegebenen Weise) hergestellt werden kann,

ist notwendig und hinreichend : Es gibt in L einen Zylclus z0 mit fz0 A
(f ist die Faserabbildung) und der Eigenschaft: Der Schnitt von z0 mit
einem zu ihmhomologen Zyklus z* berandet inL (d. h. z0 -^ z* und z0 o z* ^0).

Dies tritt nach den Sàtzen 39 und 40 und der Aufstellung am Schlusse

von § 14 stets ein in folgenden Fàllen:

1. d>— Denn nach Satz 39 existiertz0; ferner ist z% 0 nach

Fall 1 von § 14. Fur d > — ist es daher unmôglich, durch Homo-

logiebetrachtungen L und A*8 voneinander zu unterscheiden.

2. d ungerade, 3 5R und 8^0, oder 3 ©w,m ungerade, und
aS oc 0 fur a ^ 0. Denn dies ist Fall 2* von § 14.

3. d gerade, d > —, 3 91 °&eT ©m> m ungerade. Denn dies ist

Satz 40 und Fall 3* von § 14.

Beispiele : Man kennt folgende Faserungen in Sphàren :

1. L P3 3-dimensionaler projektiver Raum), S S1 projek-
tive Gerade), A #2. Fiir 3 5R oder ©m, m ungerade, ist S1 ~ 0,
somit nach den Sàtzen 37 und 38: ^(P3) qb 3i{82x81)] und in der Tat ist
pi(ps) ^l pi^xS1), Fur 3 ©2 ist S1 * 0; P3 hat in der Tat, wie die
Sàtze 37 und 38 verlangen, dieselben Bettischen Zahlen mod 2 wie S2*S1.
Satz 41, resp. die daran anschlieBende Aufstellung sagen nichts aus ûber
multiplikative Eigenschaften von 3Î(P3) ; und in der Tat ist 9t(P3) gb

^(/S^x/S1) mod 2.

2. L K* komplexer projektiver Raum), >Sr >S'2,yl /S4;d 2,
7i — 3rf. Es besteht additiver, aber nicht multiplikativer Isomorphismus
zwischen 5R(Z6) und 5R(/S4xaS2).

Eine weitere Anwendung des Falles 8 ^u 0 ist der im nàchsten § behan-
delte Linienelementraum einer Mannigfaltigkeit.

4. Der Fall £~0.
Der Koeffizientenbereich 3 sei beliebig und aS ~ 0 fiir ein a ^ 0.

Dann ist nach Satz 37 der Zyklus A et g ; also existiert ein Zyklus £0 ^ 0

mit A ^Co- ^ sei eui einfach, gezâhlter Punkt aus A, also yn ~8.
Unter diesen Voraussetzungen gilt nach Formel (11.6) fur die Ver-
schhngungszahl der Zyklen 8 und ç?Co:

v(8, (pCo) v(f7t, (pÇ0) Schnittzahl (n, hÇ0) 1
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Es besteht somit der

Satz 42: Wenn bei einer 8phdrenfaserung der Mannigfaltigkeit L die
Faser 8 oder ein von 0 verschiedenes Vielfaches derselben in L berandet, so

gibt es im Faserraum A einen Zyklus f0, dessen <p-Bild mit der Faser
einfach verschlungen ist, fur welchen also gilt : x>(S, (pÇ0) 1.

Wir spezialisieren Satz 42 : Zwischen der Dimension n von L und der-
jenigen d von 8 bestehe die Beziehung n 2d + 1 ; dann ist f0 null-
dimensional, also an, wenn nunmehr a die Ordnung von S bezeichnet.
In diesem Falle gilt daher q>Ç0 aS und v(8, a8) 1. Ist hierin ins-
besondere a 1, berandet also die einfach gezâhlte Faser 8 in L, so

besagt Satz 42, daB je zwei Fasern miteinander einfach verschlungen
sind. Diesem Spezialfall werden wir weiter unten begegnen.

S. Sphàrenfaserungen von SpMren.

Wir setzen voraus: Die Sphàre 8n sei in Sphàren 8d gefasert (0 < d < n).
Den Faserraum bezeichnen wir wieder mit Av(v — n — d) ; n sei die
Homologieklasse des einfach gezàhlten Punktes aus A.

Offenbar ist (bei beliebigem Koeffizientenbereich 3) 8d~0 in 8n,
also d ungerade (Korollar zu Satz 40). Ferner ist $ fB°{A) {an},
und 0Z 0, falls nicht Z aA, a ^ 0. Es gibt daher auf Grund von
Satz 27 im wesentlichen nur eine I7-Kette in A, nâmlich diejenige von A,
welche in ± ^ endigen muB :

(15.7)

(aile andern iï-Ketten in A sind die Vielfachen hiervon). Die Glieder
dieser Kette bilden, da aus Dimensionsgrunden keine lineare Abhàngig-
keit unter ihnen bestehen kann, eine Homologiebasis von A. Mit ffî ± jt
hat jedes Glied aus (15.7) die Ordnung 0: A besitzt also keine Torsion.
Somit gilt

Satz 43 : Ist die Sphàre Sn in Spharen 8d(0 <d<n) gefasert, so sind
die Homologieeigenschaften des Faserraums A durch die Dimensionszahlen
n und d vollstândig bestimmt : A besitzt keine Torsion. Eine Homologiebasis
von A wird gebildet durch die Potenzen A £ÏJ, f0J Cl, C^ derjenigen
Klasse £0 c $l(A), welche HÇ0 A erfullt. Hierbei muB d ungerade und

M ganz sein; also ist d+I/n-\-l, folglich auch n ungerade.

Bekannt sind folgende Beispiele hierzu:
1. Faserung einer $2m+1 in 8x*A*m ist der komplexe projektive Raum
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2. Faserung einer S*m+Z in S3-A*m ist der quaternionale projektive Raum

3. Faserung der S15 in S7-A* ist die S8 9).

Man kennt also Faserungen der $4&-x in S2^-1 fur Je 1, 2 und 4, bei
denen als Faserraum A die Sphàre $2fc auftritt. In allen diesen Beispielen
istn 2d-\-l und 8 ~ 0; die vorn gegebene Spezialisierung von Satz 42

besagt, daB dann je zwei Fasern miteinander einfach verschlungen sein
mûssen, was sich leicht an den Beispielen direkt verifizieren làBt.

Obige Beispiele treten auf bei der Klassifikation der Abbildungen der
$4fc-i auf (jie g2k nach der in der Einleitung erwàhnten y-Theorie von
H. Hopf. Sie liefçrn nâmlich die bisher einzigen bekannten Falle, fur
welche in Hn y82k die Zahl y den Wert i 1 besitzt. Die Frage, fur
welche Je Abbildungen der S^-1 auf die 82k mit y ± 1 existieren,
kônnen wir hier nicht béantworten, sondern nur von einer andern Seite
beleuchten: Nach Satz 25 ist stets dann y ± 1, wenn die Abbildung
durch eine Faserung der S*1**1 in fif2A;~1 erzeugt wird. Hierzu sind aber nur
die oben erwàhnten drei Beispiele mit Je 1, 2 und 4 bekannt.

§ 16. Der Linienelementraum einer Mannigfaltigkeit

Ln sei der Raum der gerichteten Linienelemente auf einer geschlossenen
orientierbaren Mannigfaltigkeit Av (v ^ 2). Der Raum der in einem Punkte
n c Av angebrachten Tangentialrichtungen ist eine Sphàre 8V~X. Somit
ist Ln in Sphàren 8 der Dimension d v — 1 > 0 gefasert. Faserraum
ist Av. Es gilt daher n=v-\-d 2d+l. Die Faserabbildung heiBe /.
Sie ist dadurch gegeben, daB sie jeder im Punkte n a A angebrachten
Richtung den Punkt n zuordnet.

Es sei x d&e Charakteristik von A und F ein Vektorfeld auf A, uberall
stetig mit hôchstens einer Ausnahme in einem festen Punkte n. Nur im
Falle x 0 ist F auch in n stetig und làBt sich dann als Zyklus auffassen,

Im Falle x ^ 0 besitzt F in n eine Singularitàt vom Index #. Ergànzt
man dann F durch Hinzufugen des #-fach gezàhlten Bûschels S*-1 <pn
aller Tangentialrichtungen in n, so wird F zu einer abgeschlossenen

Punktmenge des Linienelementraumes L und kann als Komplex auf-
gefaBt werden, dessen Rand gegeben ist durch

rV X&-1 V(xn) # ° • l16-1)

Es gilt daher: Der algebraische Komplex F ist dann und nur dann ein
Zyklus, wenn x — 0 ist im zugrundeliegenden Koeffizientenbereich 3 •
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Nun ist aber fV A. Hieraus und ans (16.1) folgt (vgl. § 13): Es gilt

H%n) A

Nach Formel (16.1) berandet die #-fach gezàhlte Faser S"*1 in L;
es folgt daher aus den Sâtzen 37 und 38 (wegen v — d — 1 0 besitzt A
keine (v — d — l)-dimensionale Torsion) der

Satz 44: Dann und nur dann ist der Homologiering 5R(£) des Baumes
der Linienelemente auf der Mannigfaltiglceit Av(v ^ 2) additiv und dimen-
sionstreu isomorph dem Ringe <>R(Avy.8v-1), wenn die Charakteristik % von A
gleich 0 ist im zugrundeliegenden Koeffizientenbereich 3«

Zusatz : Fur 3 ~ 5R oder © besteht dann und nur dann additive Iso-
morphie zwischen 9l(£) und 9i(AxS)9 wenn %{A) 0, d. h, wenn auf A
ein stetiges Richtungsfeld V existiert.

Es sei ^ 0 in 3» Dann ist der Zyklus V, wegen fV A, Reprâsen-
tant der in §15 betrachteten Homologieklasse z0. Wir stellten dort fest:
Multiplikative Isomorphie zwischen 9i(L) und *}{(AxS) besteht (fur %¦= 0)
dann und nur dann, wenn z\ — 0. Nach der anschlieBend an Satz 41

gegebenen Aufstellung tritt dies stets dann ein, wenn 3 5R oder ©m,
m ungerade ; denn fur ungerades d ist dies Fall 2, fur gerades d (also d > 2)
ist dies, wegen n 2d + 1 < 3d, Fall 3. Also:

Satz 45: Ist 3 91 oder ©TO, m ungerade, und % 0 in 3> so
die Ringe 9î(L) und 9l(/lx$) dimensionstreu isomorph.

Es sei x 0. Die geometrische Bedeutung von z\ ist folgende: Es seien
V und F* zwei stetige Vektorfelder auf A, also Zyklen aus z0. Die zu F
und F* gehôrigen, im Punkte n c A angebrachten Vektoren nennen wir
t)(^r) und t)*(^). Wir wollen annehmen, dafi beide Vektoren in jedem
Punkte n c A die Lange 1 besitzen. (Zu diesem Zwecke môge in A eine
Riemannsche Metrik vorausgesetzt sein.) Nach Stiefel11) Ià8t sich der
Komplex der Punkte n, in denen v(tz) und v*(tz) linear abhângig sind,
als eindimensionaler Zyklus Z auffassen, dessen Homologieklasse durch A
(bei geradem d nur mod 2) eindeutig bestimmt ist und von Stiefel die
zweite charakteristische Klasse von A genannt wird. Wir behaupten:

/(Fo F) /F2~Z. (16.2)

Vorerst bemerken wir: Fur gerades d ist /F2 durch A ebenfalls nur
mod 2 bestimmt; denn ist V* ~ V — 0Z*, Z* c 9t(/L), so wird

F*2 ~ F2 — 20Z* o F + &Z*2.
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Einerseits ist dann /F* fV A, anderseits aber

/F*2 /F2 - 2Z*

Hieraus ergibt sich unsere Bemerkung.
Zum Beweise von (16.2) bilden wir das zu F homotope, also homologe

Vektorfeld F7, welches aufgespannt wird durch die Vektoren v'fa)
v(n) + ^t>*(7r). In keinem Punkte ne A sind to(tz) und ior(n) einander
entgegengesetzt. Der Zyklus Z der Punkte linearer Abhângigkeit von F
und F* fâllt daher zusammen mit dem Ort der Punkte, in denen F und
F; gleichgerichtet sind, d. h. mit dem /-Bild des Schnittes von F und V'.
Dies ist aber unsere Behauptung.

Z làBt sich auch noch auf eine andere Weise charakterisieren : Es sei
F das zu F entgegengesetzte Vektorfeld. Dann ist fV /F A, also
nach Satz 26 : V — V ~ q?Z fur einen geeigneten eindimensionalen
Zyklus Z aus A. Ferner ist F o F 0, da F und F zueinander fremd sind.
Somit gelten:

(F-F)oF=F2-^oF,
F)~;z

Also gilt : Der Zyklus F — F ist homolog dem <p-Bilde der zweiten Stiefel-
schen Klasse Z (bei geradem d nur mod 2) ; es ist V ~V dann und nur
dann, wenn Z 0

Aus (16.2) und (16.3) mit Z statt Î5 folgt : Dann und nur dann kann F
so gewâhlt werden, daB F2 ~ 0, wenn die zweite Stiefelsche Klasse Z
von A verschwindet. Zusammenfassend gilt

Satz 46 : Dann und nur dann ist $i(L) « 9i(Ax8)9 wenn %(A) 0 und
wenn die zweite Stiefelsche Klasse Z von A verschwindet (ailes in bezug
auf 3).

Nach Stiefel ist (neben % 0) das Verschwinden von Z eine notwendige
Bedingung dafïir, daB es auf A zwei stetige, ûberall linear unabhàngige
Vektorfelder, d. h. ein ,,Zweifeldu gibt. Somit gilt:

Korollar: Gibt es auf A ein Zweifeld, so ist 9l(L) « $l(AxS).
Es lâBt sich, im wesentlichenmit den hier schonangewandtenMethoden,

zeigen: Auch im Falle % •=£ 0 ist die Struktur des Homologierings 9i(L)
ganz durch 9t(A) und das Verhalten der zweiten Stiefelschen Klasse
bestimmt. Dabei spielt die zweite Stiefelsche Klasse nur fur die multi-
plikative Struktur eine Rolle.

(Eingegangen den 12. Juni 1941.)
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