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Zur Homologietheorie der Abbildungen
und Faserungen von Mannigfaltigkeiten

Von WERNER GYSIN, Ziirich

Einleitung

Mit der vorliegenden Arbeit soll ein Beitrag geliefert werden zur
Homologietheorie der Faserabbildungen von Komplexen. Unter einer
solchen verstehen wir eine stetige Abbildung f eines Komplexes K auf
einen (simplizialen) Komplex k, welche folgende Bedingungen erfiillt:

1. Das Urbild eines jeden Punktes w aus k ist einer von s unab-
héngigen Punktmenge S von K, der Faser, homéomorph.

2. Das Urbild eines jeden Simplexes |£| von k ist homoomorph dem
topologischen Produkte |&xS|, und zwar so, dafl hierin die Urbild-
menge eines beliebigen Punktes n aus | £| das Produkt | mxS§ | ist.

K heiflt dann gefasert; S ist die Faser; k ist der Faserraum?) 2) *).

Solche Faserungen treten z. B. auf bei der Zerlegung einer Gruppen-
mannigfaltigkeit G in die Nebengruppen nach einer Untergruppe U
von (¢ 3). Die von H. Whitney behandelten Sphere-spaces?), neuerdings
Sphere-bundles®) genannt, sind in Sphiren gefaserte Komplexe. Ein Bei-
spiel dieser Art ist der Raum der gerichteten Linienelemente auf einer
Mannigfaltigkeit A .

Die in der vorliegenden Arbeit betrachteten Faserungen sind nicht so
allgemein, wie die soeben definierten; wir werden ihnen zweierlei Be-
schrankungen auferlegen:

1. Der gefaserte Komplex K und der Faserraum k sind geschlossene,
orientierbare Mannigfaltigkeiten L und 4 .

2. Die Faser S ist eine (Homologie-) Sphére.

Die erste Einschrankung ist hauptsichlich in der gewahlten Darstel-
lung begriindet. Wenn auch einige der hergeleiteten Resultate auf den
Mannigfaltigkeitseigenschaften von L und 4 beruhen, so lassen sich doch
die fiir die Fasertheorie wesentlichen Sitze auch auf den Fall allgemeiner
Komplexe iibertragen. Wihrend man aber in Mannigfaltigkeiten alle
Homologiebeziehungen im Rahmen der klassischen Homologie- und
Schnittheorie ausdriicken kann, ist man bei Zugrundelegung allgemeiner

*) Solche Vermerke weisen auf das Literaturverzeichnis am Schlusse der Arbeit,
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Komplexe gezwungen, samtliche multiplikativen Relationen durch Be-
griffe der neuern Cohomologie- und Produkttheorie®) ?) zu beschreiben.
Diese neue Produkttheorie liefert fiir Mannigfaltigkeiten keine neuen
Resultate; auch fehlt ihr die geometrisch so einfache Bedeutung der
Schnittheorie. Hingegen ist ihr formaler Apparat leichter zu handhaben,
als der ProzeB der Schnittbildung. Aus diesem Grunde werden wir uns
oft der neuern Theorie bedienen, um Beziehungen herzuleiten, die klassi-
sche Theorie aber heranziehen, um diesen Beziehungen direkte geome-
trische Bedeutung zu verleihen. Deshalb werden wir uns in unsern Unter-
suchungen auf gefaserte Mannigfalitgkeiten L beschrianken. Die Forde-
rung der Orientierbarkeit von L kann fallen gelassen werden, wenn man
mod 2 rechnet. Zur Vereinheitlichung der Darstellung ist dieser Fall,
obwohl auch er von Interesse ist, iiberall weggelassen worden.

Die zweite Einschriankung, ,,S ist eine (Homologie-)Sphére*, ist sach-
lich bedingt. Die eigentlichen Satze iiber Faserungen (Kap. III) stiitzen
sich wesentlich auf diese Voraussetzung. Es ist unbekannt, wieweit diese
Satze auch auf allgemeinere Faserungen iibertragbar sind. Die betrach-
teten Mannigfaltigkeiten L sind also Sphere-spaces im Sinne von Whit-
ney*) %) 14), doch diirften sich dessen Untersuchungen kaum mit den vor-
liegenden beriibren. Da es sich in dieser Arbeit um reine Homologie-
betrachtungen handelt, mufl S nicht unbedingt eine Sphire, sondern
darf eine Homologiesphire sein. Der Fall einer Faserung in 0-dimen-
sionale Sphiren, also einer zweiblatterigen Uberlagerung, wird im folgen-
den nicht betrachtet. Doch lafit er sich leicht der allgemeinen Theorie
unterordnen, wenn man mod 2 rechnet.

Die hier angewandte Methode zur Untersuchung der Faserungen laft
sich wie folgt skizzieren: Der die Faserung erzeugenden Abbildung f wird
die Umkehrungsabbildung ¢ zur Seite gestellt, welche einem Punkte n
des Faserraumes /4 die Faser 8¢=g¢xn aus L zuordnet, welche aus allen
Punkten p besteht fiir die fp = & gilt. ¢ erhoht die Dimension um d.
Das ¢-Bild eines Zyklus ¢ aus A ist ein Zyklus ¢ = zin L. 2z berande
einen Komplex C in L. Dann bilden wir fC = Z. Weil der Rand von C,
@, bei der Abbildung f degeneriert, ist Z ein Zyklus. Wir nennen ihn A{ .

Die Beschreibung des Zusammenhanges zwischen { und A bildet den
Hauptinhalt dieser Arbeit. Sie gelingt im Falle von Faserungen in Sphéren
und liefert interessante geometrische Resultate, welche in § 15 (Kap. IV)
zusammengestellt und so formuliert sind, daf3 ihr Inhalt ohne Kenntnis
der vorangehenden Kapitel verstanden werden kann (Satze 32—43). Dort
werden wir auch einige Beispiele zu den allgemeinen Satzen besprechen.
Daran anschliefend werden in § 16, als wichtige Anwendung der allge-
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meinen Theorie, die Homologieeigenschaften des Linienelementraumes
einer Mannigfaltigkeit untersucht. Auch die dort formulierten Resultate
sind ohne weitere Vorkenntnisse verstédndlich.

Eine systematische Untersuchung der Faserabbildungen zeigt, daf3
viele ihrer Eigenschaften allgemeinerer Natur sind, daB sie namlich fiir
beliebige stetige dimensionserniedrigende Abbildungen gelten. Vor den
eigentlichen Séatzen iiber die Spharenfaserungen (Kap. IIT) werden daher
(in Kap. IT) stetige dimensionserniedrigende Abbildungen einer Mannig-
faltigkeit L in eine solche A untersucht. Hierbei werden wir in unserer
Darstellung weitgehend ausniitzen, dafl L und A Mannigfaltigkeiten sind,
obschon dies fiir die Sache selbst nicht notwendig zu sein scheint.

Auch fiir solche dimensionserniedrigende Abbildungen f 14t sich die
Umkehrungsabbildung ¢ definieren8) 12) 13). Gleich wie bei Faserungen
laBt sich mit f und ¢ die vorn skizzierte Abbildung % konstruieren. Es
zeigt sich, dafl 2 zum Teil dieselben Eigenschaften besitzt wie bei Sphéaren-
faserungen. Vor allem ergibt sich aber hier die Invarianz von A in der
Abbildungsklasse von f, welche gestattet unter Umstanden Aussagen
iiber die Wesentlichkeit, resp. Nullhomotopie von f zu machen. So folgt
aus der Existenz zweier Zyklen {? und {?in A ,deren ¢-Bilder miteinander
verschlungen sind, fiir die also gilt v(@l®, ¢l?) =y # 0: f ist nicht
nullhomotop. Insbesondere gilt: Ist hierin (? 0-dimensional, z. B. ein
Punkt aus 4, so ist f wesentlich; denn dann gilt, wie wir zeigen werden :
1. BEs ist hf? =94 #£ 0. 2. y ist invariant gegeniiber stetiger Ab-
anderung von f.

Die Theorie dieser Abbildungsinvarianten y und ihre Deutung als
Verschlingungszahl stammt (fir den Fall, dafl sowohl (7, als auch (¢
nulldimensional sind) von H. Hopf?). Mit dieser Methode hat er die
Existenz wesentlicher Abbildungen der Sphare S%-1 auf die Sphire S2*
bewiesen. Der in der vorliegenden Arbeit eingefiihrte H-ProzeBl bei
dimensionserniedrigenden Abbildungen von Mannigfaltigkeiten (Kap. II),
auf dessen Eigenschaften alle hergeleiteten Resultate beruhen, ist eine
Verallgemeinerung dieser y-Theorie; er schlieBt dieselbe als Spezialfall
in sich. Wir werden an geeigneter Stelle darauf hinweisen.

Zur Untersuchung der dimensionserniedrigenden Abbildungen, insbeson-
dere zur Definition der Umkehrungsabbildung ¢ und zur Herleitung von
Sétzen multiplikativer Natur ist es von Nutzen, sich der neuern Pro-
dukttheorie zu bedienen. In Kap, I werden wir daher einen Bericht iiber
dieselbe geben, in welchem alle spater gebrauchten Begriffe und Rela-
tionen kurz entwickelt werden. Diesem Bericht liegt eine Arbeit von
H. Whitney?) zugrunde, in welcher die Produkttheorie in groBer All-
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gemeinheit zusammenfassend begriindet wird. Wir werden uns aber auf
den Fall simplizialer Komplexe beschrinken; die Darstellung ist zum
Teil auch einer Arbeit von J. W. Alexander?), zum Teil einer solchen von
H. Freudenthal!?) entnommen.

In dieser Arbeit werden Benennungen und Satze aus ,,Alexandroff-
Hopf, Topologie 1 (Berlin 1935)‘ als bekannt vorausgesetzt; wo dies
notig erscheint, wird darauf verwiesen ; das Werk wird mit 4 H zitiert.

KAPITEL I

Bericht tiber die Produkttheorie

§ 1. Duale Homomorphismen

Wir bezeichnen mit R den Ring der rationalen Zahlen, mit % den Ring
der ganzen rationalen Zahlen und, fiir ganzes m > 2, mit ®,, den Ring
der ganzen rationalen Zahlen mod m. Unter J§ verstehen wir im folgenden
stets einen dieser Ringe. It und IR’ seien ,,Moduln iiber §” mit den end-
lichen Basen x;, %, ..., Z, Tesp. 3, X5, ..., Z.,; d. h. M und M’ seien
die Gruppen der Linearformen a,z, + a,x, + -+ + a,x, resp. a,x; -+
a,x; + - + a,z, mit Koeffizienten aus .

f sei eine homomorphe Abbildung des Moduls 9t in den Modul I’.
Dann bestehen v Gleichungen

fo,=2fnx, fuc3i=1,2,...,v. (1.1)
k
Durch f wird also eine Matrix F = (f,;) von v Zeilen und w Spalten defi-
niert. Man beachte, daBl # von den zugrunde liegenden Basen z,, ..., z,
und z|, ..., ) abhingt. Diese seien daher fest gewahlt.

Liegt umgekehrt eine solche Matrix F vor, so werden durch sie » Glei-
chungen (1.1) und somit eine wohlbestimmte homomorphe Abbildung f
von I in M’ erzeugt. Die zu F transponierte Matrix F’ gibt ebenfalls
AnlaB zu einem Homomorphismus, nimlich zu einem solchen (f) des
Moduls 9’ in den Modul 9. Er wird definiert durch die Gleichungen

f/x£=2fikxz, k=1,2,...,w-
‘
Definition : Eine homomorphe Abbildung f des Moduls I in den
Modul 9’ und eine solche f’ von I’ in M heillen dual, wenn ihnen unter

Zugrundelegung derselben Basen in 9t und IR’ transponierte Matrizen
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entsprechen. Wir bezeichnen die zu einem gegebenen Homomorphismus f
duale Abbildung immer mit f’.

Nach Definition ist f” = f. Sind f und g homomorphe Abbildungen
von P in M, so ist f + g ebenfalls eine solche, und es gilt, wie man sofort
sieht, (f + g)' = ' + g’. Es seien M, M’, M” Moduln mit fest gewiahlten
Basen. Bildet f die Gruppe It in IN’, g die Gruppe M’ in M” ab und sind
F und G die zugehorigen Matrizen, so bildet 2 = gf die Gruppe I in
IM” ab, und F - G ist die zugehorige Matrix. Die zu b duale Abbildung A’
hat daher die Matrix (F-G)’ = G’-F’. Dies bedeutet aber: Es ist
b ={fyg’, d h.

g =fg". (1.2)

Der Begriff der dualen Abbildung spielt fiir uns eine wesentliche Rolle.
In seinen nachfolgenden Anwendungen werden )t die Gruppe 531’( =P (K ))
der p-dimensionalen algebraischen Komplexe mit Koeffizienten aus
in einem endlichen Zellenkomplex K, M’ die Gruppe L’ q(= LYK’ )) der
g-dimensionalen algebraischen Komplexe mit Koeffizienten aus J in
einem endlichen Zellenkomplex K’ sein. Als feste Basen wihlen wir in
Lr die beliebig, aber fest orientierten p-dimensionalen Zellen z; von K,
in 22 die beliebig, aber fest orientierten ¢g-dimensionalen Zellen x;, von K.
Diese Abmachung, die durch alle Kapitel hindurch giiltig bleibt, werden
wir spater nicht wieder besonders erwéahnen, ebensowenig die Endlich-
keit aller zu betrachtenden Komplexe.

A = Jax;und B = X'b,x, seien zwei Komplexe aus £2. Wir definieren
ihr skalares Produkt durch die Formel

A-B=(Xazx)-  (2bx;)=2ab;. (1.3)

(Gleichungen sind stets als solche im betreffenden Koeffizientenbereich
aufzufassen.)

Hilfssatz 1: Ist f eine homomorphe Abbildung von £7 in 8¢, g eine
solche von £/¢ in £P, so gilt dann und nur dann

A-gB=fA-B (1.4)

fiir alle Komplexe 4 c €2 und alle Bc 8¢, wenn f und g dual sind.
Denn es ist

T, 'gxl: =, Xk T = Jri >

fr, - ap = 2f x,’ x, = fu -

5 Commentarii Mathematici Helvetici 65



Soll nun fiir alle z; und alle z; gelten:
gy = [, %,

80 miissen, wegen ¢,; = f,;, f und g dual sein. Diese Bedingung ist offen-
bar auch hinreichend.

§ 2. Rand und Corand

Wir machen eine erste Anwendung der soeben eingefiihrten Begriffe:
Ist K ein n-dimensionaler Zellenkomplex, A c £(K), so ist dessen Rand
rA ein (algebraischer) Komplex aus £7-1(K). Die Randbildung r ist jene
homomorphe Abbildung von £? in £#-1, welche durch die folgenden Glei-

chungen definiert ist:
ral = X b 28, ra} =0 .
k
Hierin bedeutet 7%, den Inzidenzkoeffizienten von z? und z2!. Der zu

r duale Homomorphismus wird folglich definiert durch die Gleichungen
rafl= Yyl at, rat=0.

Ist B ein Komplex aus £7-1, so ist daher r'B ein Komplex in 2. Er hei}t
der Corand von B.

Es seien 4 c &7, B c 221, Auf Grund von Hilfssatz 1 erfiillt das
durch Formel (1.3) erklarte Skalarprodukt die wichtige Relation

rd-B=A r'B. (2.1)

Wir erinnern an folgende Definitionen: der algebraische Komplex A
heiflt Zyklus, wenn r4 = 0ist. Wir nennen zwei Zyklen 4 und B homolog,
wenn 4 — B Rand eines Komplexes C ist. Wir schreiben dann 4 ~ B
oder A — B ~ 0. Analog definieren wir: der algebraische Komplex A
heiBt Cozyklus, wenn r’A = 0 ist. Wir nennen zwei Cozyklen 4 und B
cohomolog, wenn 4 — B Corand eines Komplexes C ist. Wir schreiben
dann 4 —~ B oder A — B~ 0.

Bekanntlich gilt stets 774 = 0, d. h. jeder Rand ist Zyklus. Folglich
ist auch der zu 77 duale Homomorphismus (rr)" = r’r’ die Nullabbildung,
d. h. es gilt #'r’A = 0: Jeder Corand ist Cozyklus. Man kann daher nicht
nur Homologiegruppen B? als Faktorgruppen der Zyklengruppen J3? nach
den Réndergruppen $* definieren, sondern auch Cohomologiegruppen
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B'? als Faktorgruppen der Cozyklengruppen 3'? nach den Corindergrup-
pen $H’?, also

B — 3r/57, B =37/

Die Elemente von B? und B'? sind die p-dimensionalen Homologie-,
resp. Cohomologieklassen.

Fiir das Skalarprodukt von zwei p-dimensionalen algebraischen Kom-
plexen A und B gelten folgende Sitze:

Satz 1: A sei ein Zyklus, B ein Cozyklus. Dann ist 4 - B = 0, falls
A ~0oder B-—0.

Denn ist 4 = rC, so folgt aus Formel (2.1)
AB=rC-B=C-r"B=0.
Analog schliet man, falls B — 0 ist.

Satz 2: Ist A - r'CP—1 = 0 fiir alle Corander »'CP-1, 80 ist A ein Zyklus.
— Ist rOP+ - B = 0 fiir alle Rander »C?+1, so ist B ein Cozyklus.

Beweis : Da nach (1.3) C?- 22 der Koeffizient des Simplexes 2 in C¢
ist, geniigt es zu zeigen, dafl r4 - 2P~! = 0 ist fiir alle Simplexe x?-1
von K. Dies folgt aber nach (2.1) sofort aus

0=A-r'aP-1=17rd4 . gp-1
Analog beweist man den zweiten Teil des Satzes.

Satz 3: Ist der Koeffizientenbereich § = ®,(m > 2) oder = R, und
gilt A - B = 0 fiir alle Cozyklen B, so ist A ein Rand. — Ist 3 = ®,,
(m > 2) oder =R, und gilt 4 - B = 0 fiir alle Zyklen A4, so ist B ein
Corand.

Beweis: Es sei A - B = 0 fiir alle Cozyklen B. Es wird behauptet, da8
ein Komplex CP+!' existiert, so daB rC?*1 =A = Ya,x;. Um dies zu
zeigen, konstruieren wir einen Homomorphismus y von £+ in G,,,
resp. R. Dies geschieht wie folgt: Es sei vorerst

x(r'2?) = (X it 23" = ay,
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also gleich dem Koeffizienten von #7 in 4, d.h.=4 - 2? . Fiir einen
algebraischen Komplex B = X'b,a? ist demnach

x(r'B) = Xby(r'a?) = Xba, = A - B,

also nach Voraussetzung = 0, falls B ein Cozyklus und folglich »'B = 0

ist. y ist somit ein ®,,-, resp. R-Charakter der Corandergruppe $'?+1.

Er 1aBt sich zu einem solchen von £2+! erweitern; denn

1. ist J = ®,,(m > 2), so ist £+ endlich, und die Ordnung eines jeden
seiner Elemente ist Teiler von m. Hieraus folgt unsere Behauptung

nach einem bekannten Erweiterungssatz (siehe A. H., p. 592);

2. ist J=R, so ist L+ direkte Summe von $'?+! und einer weiteren
Gruppe, woraus sich ebenfalls sofort unsere Behauptung ergibt.

Im erweiterten ,,-, resp. R-Charakter sei ya?"' = c,. Dann wird
12 exay’) = 22X ooy = 2(X g gl of
k E i ik

—Z Y E i) o = Zagl = A.
s k 3

1

Damit ist der erste Teil von Satz 3 bewiesen. Analog beweist man dessen
zweiten Teil.

Nach Satz 1 148t sich das skalare Produkt zwischen Homologieklassen
z und Cohomologieklassen Z definieren. Sein Wert wird mittels beliebiger
Repriasentanten dieser Klassen, 4 ¢ z und B ¢ Z, berechnet. Der Satz 3
besagt hierzu, falls § = ®,,(m > 2) ist: Zu jedem Element z £ 0 aus
BP gibt es ein Element Z c B'?, so daBl z-Z #£0 ist, und zu jedem
Z + 0 aus B'? gibt es ein 2 B2, so dab z - Z # 0 ist. Beide Gruppen,
B? und B'? sind iiberdies endlich, und die Ordnung eines jeden ihrer
Elemente ist Teiler von m. Folglich gilt (nach A. H., p. 590) der

Satz 4: Es ist
2K ~ B2 (K) , (m>2)

Korollar : Hieraus folgt rein gruppentheoretisch (vgl. A. H., Kap. V,
§ 2—§ 4) die Isomorphie der Gruppen B%(K) und BP(K); beide Gruppen
haben somit gleichen Rang. Dies ist die p*® Bettische Zahl des Kom-
plexes K.
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§ 3. Simpliziale Abbildungen und Unterteilungen

Es sei f eine simpliziale Abbildung eines simplizialen Komplexes K
in einen Komplex K’. Die hierdurch erzeugte homomorphe Abbildung
der Gruppe £(K) in die Gruppe £(K’) nennen wir ebenfalls f. Bekanntlich
erfiillt sie die Relation rfC = frC fiir alle Komplexe C c £(K). (r bezeich-
net die Randbildung in beiden Komplexen, K und K’.) Somit gilt nach
Formel (1.2) fiir den zu f dualen Homomorphismus f’ die Beziehung
f'r’'C’ = »'f’C’ fiir alle Komplexe C’' c &(K’). Also erfiillen f und f’
den Erhaltungssatz: f erhilt die Rander, f’ erhilt die Corander.

Folglich bewirkt f einen Homomorphismus ¥ der Homologiegruppen
Br(K) in die Homologiegruppen B?(K'); f’ erzeugt einen Homomorphis-
mus F’ der Cohomologiegruppen B'?(K’) in die Cohomologiegruppen
B'P(K).

K sei eine simpliziale Unterteilung des Simplizialkomplexes K'. Fiir
einen algebraischen Komplex C’' c K’ sei C = uC’ dessen Unterteilung
in K. s sei eine ,,pseudoidentische’ simpliziale Abbildung von K auf K’;
dies ist eine solche, welche Eckpunkte von K nur innerhalb ihrer Trager-
simplexe von K’ verschiebt. Es gelten dann die Gleichungen:

rsC = srC, CcKk, (3.1)
ruC’ = urC’, C'cK'. (3.2)

Ferner beweist man durch Induktion nach wachsenden Dimensionen die

Gleichung
suC’' = C’, C'cK'. (3.3)

Daneben besteht schlieBlich die Relation
usC ~ C, falls C = 0,Cc K . (3.4)
Sie ergibt sich sofort aus dem
Hilfssatz 2: Es- gibt eine homomorphe Abbildung ¢ von £7(K) in
Lr+Y(K) mit folgenden Eigenschaften: ta® liegt im Triger «’ — K’ des
Simplexes ¥ ¢ K, und es ist
usC = C — trC — rtC fir alle Cc K . (3.5)

Zum Beweise dieses Hilfssatzes konstruiert man {z? rekursiv nach wach-
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sendem p. Hat man dies, bei festem p, fiir alle 2? ¢ K gemacht, so ist
dadurch, da ¢ homomorph ist, tC? erklart fiir alle C? ¢ Q7(K):

Fiir jeden Eckpunkt z° c K sei tx° ein 1-dimensionaler Komplex 7'
im Tragersimplex 2’ ¢ K’ mit 7T = 2° — sz°. Dann gilt fiir ! c K:

r(usx! — z' + trat) = rusat — rat + (rat — sraxt) = 0.

usx! — ' + trat ist also Zyklus im Triagersimplex z’ von x!, somit
Rand eines 2-dimensionalen Komplexes in z’, den wir — ¢{2! nennen.
Damit wird aber fiir 2?2 c K :

r(usx? — x? + tra?) = rusx® — ra? — (usrx® — ra® + trra?) = 0.

usxz® — x? + tra? ist also Zyklus im Tragersimplex 2’ von «2, somit
Rand eines 3-dimensionalen Komplexes in z’, den wir — {x% nennen.
So weiterfahrend konstruiert man ¢ fiir alle 2? ¢ K mit den gewiinschten
Eigenschaften.

Aus den Formeln (3.1) bis (3.4) folgert man

Satz 5: w induziert eine isomorphe Abbildung U von B?(K’) auf
BP(K), s die hierzu inverse § = U-'.
Der Beweis verlauft in vier Schritten:

1. » induziert eine homomorphe Abbildung von B2(K’) in B?(K); denn
ist Z’ ein Zyklus in K’ und Z’ = rC’ ~ 0, so gilt

uZ' = wC' =rmC’' ~0 inkK.

2. Diese Abbildung ist ein Isomorphismus; denn ist uZ’ = rC ~ 0 in K,
8o wird
Z' =suZ’ =srC =rsC ~0 inK’.

3. u induziert eine Abbildung von B?(K’') auf %p(K); denn ist Z ein
Zyklus in K, so gilt mit Z’ = sZ:
ul' = usé ~% .

4. Nach (3.3) und (3.4) bewirkt s den inversen Isomorphismus.

Anmerkung : Bekanntlich gilt Formel (3.2) auch dann noch, wenn %
die Unterteilung eines Zellenkomplexes K’ in einen Zellenkomplex K
vermittelt; ebenso bleibt in diesem Falle die » betreffende Aussage von
Satz 5 richtig (vgl. AH., p. 248).
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Durch duale Ubertragung der Formeln (3.1) bis (3.5) finden wir fiir
die zu % und s dualen Homomorphismen %’ und s’ die entsprechenden
Relationen

s'r’C’ = r’s'C’, C'c K’, (3.6)
w'r’'C = r'u'C, CcKk, (3.7)
u's’C' = C', " C'c K/, (3.8)
s'u’'C < C, falls r’'C =0,Cc K. (3.9)

Hieraus ergibt sich dhnlich wie vorn Satz 5:

Satz §': u' induziert eine isomorphe Abbildung U’ von B'?(K) auf
B'P(K'), s’ die hierzu inverse 8’ = U’-1.

Damit ist die Invarianz der Homologie- und Cohomologiegruppen eines
simplizialen Komplexes gegeniiber simplizialen Unterteilungen bewiesen.
(Auch der erste Teil von Satz 5’ gilt allgemeiner; dies folgt aus Satz 4
und der Anmerkung zu Satz 5, hat fiir uns aber keine Bedeutung.) Man
beachte, daB , somit auch »’, U und U’ unabhéngig von s definiert sind.

§ 4. Die Produkte

K sei ein m-dimensionaler, simplizialer Komplex. Zu jedem Simplex
|z?| © K sei fiir dessen Eckpunkte eine feste Reihenfolge vorgeschrieben,
welche einer einzigen Bedingung zu geniigen hat: Im Durchschnitt je
zweier Simplexe |2?| und |22| von K miissen die in |[#?| und |z?| gegebenen
Eckpunktordnungen miteinander iibereinstimmen. Eine solche Anord-
nung nennen wir eine ,,Eckpunktordnung im Kleinen“. Eine solche
erhalt man z. B. dadurch, daB man alle Eckpunkte von K beliebig, aber
fest numeriert. Sind e, ,e¢; , ..., ¢;, die Ecken eines Simplexes [z?| in
der vorgeschriebenen Reihenfolge, so wahlen wir a?=(e,,¢€;, ..., €;)
als die positive Orientierung von |2?|. Fiir alle Simplexe z? = (e, ,
O 5 «wm) e,q), die uns im folgenden begegnen werden, vereinbaren wir,
daB ihre Ecken stets der Vorschrift gemafl angeordnet sein sollen.

Wir definieren zwei Produkte:

1. Das U-Produkt (lies ,,Cup-Produkt‘): Es sei

pr xq - (eio’ oo ey eip) U (ejo, oo oy ejq)

== (eio, .-.,eip, 6:,-1, . v ey e"q) - xpw,
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Falls ¢;, = ¢,, und die Eckenpe,, ..., ¢, , €in Simplex von K aufspannen.
In allen andern Fillen sei P U 22 = 0.

2. Das N-Produkt (lies ,,Cap-Produkt*‘): Es sei

an xp+q: (ejo, ey efq) n (6,-0, .. .,eip, . .,e,-qu)
— ey -+ » 1)) = P,
falls e, = Cin fir k= 0,1,2,...,¢9. In allen andern Fillen sei

2*Nax" =0, (r=1p-+ q).
Fir algebraische Komplexe A?=}' a.af, B?=) bz}, C" =} c,x;
setzen wir fest
A*U Bt = Y)Y a;b; 2% U x?,

BN Cr = XX byc,a? N .

Damit sind beide Produkte distributiv erklirt. Man beachte aber, daB
sie ganz wesentlich von der zugrundeliegenden Eckpunktordnung im
Kleinen abhingen.
Aus den Produktdefinitionen folgt leicht eine Reihe wichtiger Eigen-
schaften:
(x*Ux?) U™ = 22U (22 U 27),

(xPUx?) N o™ = 2N (220 27);
ebenso ergibt sich der Zusammenhang mit dem Skalarprodukt:
(x? U 29) - 2" = a?- (22N 27) , falls r = p 4 ¢q.

Hieraus folgen, wegen der Distributivitiat aller dieser Produkte, die ent-
sprechenden Relationen auch fiir allgemeine algebraische Komplexe
A?, B2, Cr aus K :

(4?2 U B?) U Cr = A* U (B2 U (), (4.1)

d. h. das U-Produkt ist assoziativ; ferner:

(42U BY) N O = AN (BN Cr), (4.2)

(4* U B9 - Cr = A?- (B2N C"), (4.3)
falls r = p + q.
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Bildet man neben dem Produkt A? U B? das mittels der umgekehrten
Eckpunktordnung definierte U-Produkt (wir bezeichnen es mit U’), so

findet man
A? U B? = (— 1)P2Ba U’ A*. (4.4)

Es sei f eine simpliziale Abbildung des simplizialen Komplexes K in
einen Komplex K’. Wir setzen voraus, daBl f die Eckpunktordnung im
Kleinen erhalt, d.h. sind e; und e, Eckpunkte eines Simplexes in K, gilt
ferner f(e;) = e;, f(e,) = €;, und steht in K’ der Eckpunkt e, vor ¢, so
soll in K der Eckpunkt e; vor e, kommen. (Dies kann man immer er-

reichen: Man ordnet namlich zuerst die Eckpunkte e}, €, . . ., ey von K’,
dann erst die von K, indem man zuerst diejenigen mit f(e;) = e;, dann
diejenigen mit f(e;) = e;, usw. ... numeriert.) Eine solche simpliziale

Abbildung f, resp. deren duale f’, erfiillt die Gleichungen
f'(A’UBy=fA"Uf'B’, A’',B'c K'. (4.5)
f(f'B'n C) = B'n fC, B'cK',CcK. (4.6)

Beide Relationen verifiziert man, wie die friiheren, fiir einzelne Simplexe
und beweist sie dann allgemein durch Anwendung des distributiven
Gesetzes.

§ 5. Der Homologiering

Wie die Formeln (4.5) und (4.6) lassen sich auch die folgenden zwei
Relationen beweisen, welche die Beziehungen zwischen den beiden Pro-
dukten, der Rand- und der Corandbildung ausdriicken. Sie lauten, wenn
A?, B2, Cr beliebige Komplexe in K sind:

r’(A? U B?) = r'A? U B® + (— 1)?4A* U r'B9, (5.1)
r(Ben C7) = (— )row’'Ban C" + Ban rCr. (5.2)

Aus diesen Formeln folgt: Sind 4 und B Cozyklen, C ein Zyklus, so ist
A U B ein Cozyklus, BN C ein Zyklus. Weiter gilt unter dieser Voraus-
setzung: Es ist

AUB-0, falls 4 «~ 0 oder B~ 0,
BnC~0o0, falls B~ 0 oder C ~0 .
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Die beiden Produkte erzeugen daher Produkte in den Homologie- und
Cohomologiegruppen. Sind nédmlich Z(4) und Z(B) zwei Cohomologie-
klassen von K, die Cozyklen 4 und B irgendwelche Reprisentanten der-
selben, dann ist nach dem oben Gesagten die Cohomologieklasse Z(4 U B),
welche den Cozyklus 4 U B enthalt, durch Z(4) und Z(B) eindeutig
bestimmt. Wir setzen daher

Z(4) UZ(B) = Z(A U B). (5.3)

Entsprechend gilt : Sind Z(B) eine Cohomologieklasse und z(C) eine Homo-
logieklasse von K, reprasentiert durch den Cozyklus B, bzw. durch den
Zyklus C, dann ist die Homologieklasse z(B N (), welche den Zyklus
B N C enthalt, durch Z(B) und z(C) eindeutig bestimmt. Wir setzen daher

ZB)NzC)==2(BNC0). (5.4)

Durch Formel (5.3) wird unter den Elementen aller Cohomologie-
gruppen B’? von K eine Multiplikation definiert. Diese ist assoziativ
und distributiv beziiglich der iiblichen Addition. Daher bilden alle diese
Elemente einen Ring, den Homologiering R’'(K) des Komplexes K. Seine
additive Gruppe ist die direkte Summe B’ aller Cohomologiegruppen B'?
von K. Ebenso definiert Formel (5.4) ein N-Produkt zwischen Coho-
mologie- und Homologieklassen.

Die durch (5.3) und (5.4) gegebenen Produktdefinitionen fiir Klassen
sind noch mit einer Willkiir behaftet : Sie basieren auf einer freigewahlten
Ordnung (im Kleinen) der Ecken von K. Daf§} sie aber, und damit auch
R/(K) tatsichlich davon unabhéngig sind, wird sich weiter unten ergeben.

Wir schreiben nun K’ statt K und bezeichnen mit K = uK' eine simpli-
ziale Unterteilung von K’. s sei eine pseudoidentische simpliziale Abbil-
dung von K auf K’. Erhalt sie die Eckpunktordnung im Kleinen, so
gilt der

Zusatz zu Satz 5’ : Die (nach Satz 5’) durch «’ und s induzierten Iso-
morphismen U’ von B'(K) auf B'(K’), resp. 8’ = U’ von B'(K’) auf
B'(K) erhalten die U-Produktrelationen zwischen den Cohomologie-
klassen. Mit andern Worten: Sind 4, B und A’, B’ Cozyklen in K,
resp. K’, und bezeichnen Z(4), Z(B), Z'(4'), Z/(B’), und Z(4 U B),
Z'(A’ U B') die durch sie und deren U-Produkte reprasentierten Cohomo-
logieklassen, so gilt nach (4.5) und (5.3)

S'E2'(A"Y U S'E'(B') = Z(s’A’") UZ(s'B’) = Z(s'(4" U B')) =
S'(Z2'(4)uE'(B),
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also
S'Z'(A'y U S'E'(B) = S’(Z’(A’) U Z’(B’)) . (5.5)

Hieraus folgt, wegen U’ = 8’1,
U'%4(A)u U'Z(B) = U'(£(A) U Z(B)) . (5.6)

Mit Hilfe der Satze 5 und 5 schliet man ganz dhnlich aus den Formeln
(4.6) und (5.4) den

Zusatz 2u den Sdtzen 5 und 5’ : Die durch » und %', s und s’ induzierten
Isomorphismen U und U’, resp. S und 8’ der Homologie- resp. Cohomo-
logiegruppen erhalten die N-Produktrelationen. Mit andern Worten:
Sind B und B’ Cozyklen, C'und C' Zyklen in K , resp. K’, und bezeichnen
Z(B), Z'(B"), 2(C), 2'(C’") und z(BnN C), z/(B'N C’) die durch sie und
deren N-Produkte reprisentierten Cohomologie- resp. Homologieklassen,

so gelten
Z'(B')N 82(C) = S(S'Z'(B") N 2(C)) , (5.7)

Z(B)n U'(C") = U(U'EB)n 2'(C")) . (5.8)

Es sei nun speziell K die baryzentrische Unterteilung von K’. Die
Eckpunkte von K’ ordnen wir beliebig, diejenigen von K auf folgende
,,natiirliche Weise: Sind e, und e; die Schwerpunkte von Simplexen
|2’| und |y’| von K’, und ist Dim |z’| > Dim |y’|, so kommt e, vor e,.
Im iibrigen sei die Ordnung beliebig. Damit sind die Eckpunkte eines
jeden einzelnen Simplexes |z| € K in einer Weise angeordnet, die vollig
unabhingig ist von der urspriinglichen Numerierung der Ecken von K.
Daher sind in K die zwei Produkte auf eine Art definiert, der die anfing-
liche Willkiir der Eckenordnung in K’ nicht mehr anhaftet.

Es sei s diejenige pseudoidentische simpliziale Abbildung von K auf
K’, welche jeden Eckpunkt von K in den ersten Eckpunkt seines Trager-
simplexes in K’ verschiebt. Dann erhalt s die Eckpunktordnung im
Kleinen. Folglich erfiillen die durch % und %’ induzierten Isomorphismen
U und U’ die Formeln (5.6) und (5.8). Da hierin aber U und U’, sowie die
Produkte in K nicht von der Eckenordnung in K’ abhéngen, folgt das-
selbe auch fiir die durch (5.3) und (5.4) zwischen Klassen von K’ defi-
nierten Produkte. Dies ist der Freudenthalsche Unabhéngigkeitsbeweis!?).

Folgerungen : 1. A®? und B? seien Cozyklen in einem simplizialen Kom-
plex K. Berechnet man ihr U-Produkt nach zwei verschiedenen Eck-
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punktordnungen im Kleinen, so gilt (wenn die entsprechenden Pro-
dukte mit U, und U, bezeichnet werden):

ApUIBq\"ApUZBq-
Insbesondere folgt hieraus nach Formel (4.4)
AP U B?— (— 1)*2B2 U 47 . (5.9)

2. Es sei f eine simpliziale Abbildung eines Simplizialkomplexes K in
einen Komplex K'. Die hierdurch definierten Abbildungen f von £(K)
in (K’) und f’ von £(K’) in £(K) erzeugen bekanntlich Homomorphis-
men F und F’ von B(K) in B(K'), resp. von B'(K’) in B'(K). Fiir sie
gelten nunmehr, ganz unabhéingig von speziellen Eckpunktordnungen
in K und K’, wegen (4.5) und (4.6) die Relationen

Fl(& UVZ)=F'Z,UF'Z,, £, 6%,cR K, (5.10)
FF'Z'0n2)=2'NFz, Z'cR'(K),zc B(K), (5.11)

d. h. F/ ist ein Ringhomomorphismus; er ist mit # durch Formel (5.11)
verkniipft.
SchlieBlich beweisen wir noch den

Hilfssatz 3 : R'(K) besitzt ein Einselement F ; dies ist die Cohomologie-
klasse, welche reprasentiert wird durch den nulldimensionalen Cozyklus
Eo = J)'e;, summiert iiber alle Eckpunkte von K.

Beweis: 1. E° ist Cozyklus; denn nach Formel (2.1) gilt
r’Eo-xt = Eo-rx! = Eo-(e; —e) =0
fiir alle 2! ¢ K, d. h. aber: r’Eo = 0.

2. Ordnet man in K die Ecken beliebig und bildet dann die Produkte,
so gelten fiir jeden Komplex 4 c K, wie sich sofort aus den Produkt-
definitionen ergibt,

AUEe=EoU4d =4,

EonA=4.

Eo ist folglich Einselement fiir die beiden Multiplikationen von Kom-
plexen, seine Cohomologieklasse £ somit insbesondere Einselement von

R/(K).
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§ 6. Mannigfaltigkeiten

M sei eine simpliziale geschlossene orientierbare Mannigfaltigkeit der
Dimension n, M’ ibre (erste) baryzentrische Unterteilung. Man ordnet
die Eckpunkte von M beliebig, diejenigen von M’ in der vorn erklirten
natiirlichen Weise. Jedem orientierten Simplex x? ¢ M wird eine Dual-
zelle x* der Dualdimension » — p zugeordnet: Es sei |X*| der Teil-
komplex von M’, welcher aus allen (n — p)-dimensionalen Simplexen
von M’, die den Schwerpunkt von |2?| als letzten Eckpunkt besitzen,
und aus den Seiten dieser Simplexe besteht. Dieser Komplex |X*| ist
— dies wollen wir in die Definition der Mannigfaltigkeit aufnehmen —
eine kombinatorische Zelle |x*|. (Vgl. A. H., p. 245.) |2?| und |z*| haben
nur den Schwerpunkt von [2?| gemeinsam. Eine Orientierung von |xz*|
und das orientierte Simplex a? bestimmen daher eine Orientierung von
M’. Nun definieren wir: Die Dualzelle z* von z* sei jene Orientierung
von | z*|, welche mit x? eine vorgegebene Orientierung von M’ erzeugt.
Diese Dualzellen z* bilden eine Zerspaltung von M'; sie wird die zu M
duale Zellenzerlegung M* genannt.

Den Ubergang von einem Simplex z zu seiner Dualzelle z* bezeichnen
wir mit @. Es ist also x* = dz. Definitionsgemél ist jede Zelle x* aus
M* dual zu genau einem Simplex x < M. Wir schreiben hierfir x =
d-1z* und nennen z das zu z* duale Simplex. Ist A = Y a,x; ein alge-
braischer Komplex in M, so heile der Zellenkomplex A* = 04 =
2'a;0x; der Dualkomplex von A. Umgekehrt nennen wir 4 = 9-'4* den
zu A* dualen Simplizialkomplex. 0 ist somit eine isomorphe Abbildung
der Gruppe L7 (M) auf die Gruppe L&"-?(M*).

Aus der Definition von M* folgt, da M’ gemeinsame baryzentrische
Unterteilung von M und M* ist. Die durch den Ubergang von M zu M’
und von M* zu M’ bewirkten Abbildungen von £(M) und L(M*) in
(M) nennen wir » und u*. s sei diejenige simpliziale Abbildung von M’
auf M, welche jedem Eckpunkt von M’ den ersten Eckpunkt seines
Tragersimplexes in M zuordnet. s erhilt somit die Eckpunktordnung
im Kleinen. Die einer festen Orientierung der Mannigfaltigkeit ent-
sprechenden Basiszyklen von M, M* M’ bezeichnen wir ebenfalls mit
M, M* M.

Berechnet man in M’ die Produkte auf Grund der angegebenen Eck-
punktordnung, so gilt, wie man leicht verifiziert,

w¥or = s’z N M’',
folglich fiir alle 4 < £(M):
u*0Ad =s’'AnN M'. (6.1)
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Mit Hilfe dieser Gleichung kénnen wir leicht die Beziehungen zwischen
den Homomorphismen r und 9 angeben: Es gilt nach (3.2), (3.6) und
(5.2):
u*rdA? = r(s’A*N M) = (— 1) ?'r'A? 0N M' = (— 1)"Pu*dr'A®,
somit
rdA? = (— 1)"Por'4? . (6.2)

0 bildet also (bis aufs Vorzeichen) den Corand eines Komplexes in M auf
den Rand des Dualkomplexes in M* ab; 9! leistet das Umgekehrte.
Hieraus folgt, daBl 0 einen Isomorphismus D der Cohomologiegruppe
B'?(M) auf die Homologiegruppe B"—?(M*) erzeugt.

Die Abbildung o 148t sich geometrisch gut verfolgen. Fiir unsere Zwecke
ist aber die nachfolgend definierte Abbildung @ bequemer. Ist A ¢ (M),
so ist 4* = 94 — L(M*). Bilden wir nun su*4*, so erhalten wir einen
Komplex 4 in M. Wir nennen ihn 94 . Es gilt also nach (6.1)

A =04 = su*A* = s(s’AN M'). (6.3)

Hieraus wird unter Beniitzung der Formeln (4.6) und (3.3), wegen
M = uM :
A =ANM. (6.4)

Wie vorn finden wir die Formel

rod = (— 1) ?9r’'4 . (6.5)

Diese Abbildung 9 ist deshalb fiir die Rechnung einfacher, weil ibr nur
etne feste Zerlegung M der Mannigfaltigkeit zugrunde liegt. Geometrisch
ist sie aber schlechter zu iibersehen, weil sie wesentlich von der Ecken-
ordnung in M abhéngt.

Ist Z ein Cozyklus aus M, so sind nach (6.2) und (6.5) Z* = 0% und
0% = su*Z* Zyklen in M*, resp. M. Fiir sie gilt, wegen (3.4)

u*0% — wo = u*B* — usu*Z* ~0 in M’. (6.6)

Nach § 3 bewirken » und u* (ebenso s) Isomorphismen zwischen den
Homologiegruppen von M, M* und M’. Betrachten wir Homologie-
klassen von M, M* und M’, die durch diese Isomorphismen einander
zugeordnet werden, als nicht voneinander verschieden, so folgt aus (6.6):
0 erzeugt denselben Isomorphismus D von B'?(M) auf B ?(M), wie 9
von B'?(M) auf B*?(M*). Wir bemerken: Wihrend 9@ von der in M
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gewahlten Eckpunktordnung abhéngt, trifft dies nicht zu fiir ¢, somit
auch nicht fiir D. Ist Z eine Cohomologieklasse (von M), so nennen wir
z = DZ die zu Z duale Homologieklasse.

Da eine Zelle z* c M* und ein Simplex y ¢ M sich stets in relativ
allgemeiner Lage befinden, ist ihr Schnitt x* o y definiert (vgl. A. H.,
p- 409ff.), und zwar als der geeignet orientierte Durchschnitt von xz*
und y. Daher ist z* oy entweder null oder ein orientiertes Simplex
¢’ c M’. Man verifiziert, daBl der Schnitt z* o y auch durch folgende
Formel definiert werden kann:

x*oy = s’z N uy, # = g~lg®,
Fiir Komplexe 4* c &(M*) und B c {(M) gilt daher

A*¥o B=s'ANuB, A= 014%, (6.7)
oder nach (4.6) und (3.3)

s(A*« B)= AN B, A = 14*, (6.8)

Mit Hilfe der Formeln (5.2), (3.2), (3.6), (6.2) ergibt sich jetzt leicht die
bekannte Randrelation fiir Schnitte

7(0A% o BY) = r(s’A?N uB9) == (— 1)?s'r’A? N uB? 4 s’A? N urB?
= (— 1)229r' A% o B? 4+ 9A? o r B¢

1947 0 BY) = (— 1)"?rdA?0 BT - 9A?orBi. (6.9)

Folgerung : Der Schnitt zweier Zyklen ist stets ein Zyklus, der Schnitt
eines Zyklus mit einem Rand und der eines Randes mit einem Zyklus
stets ein Rand. Somit lassen sich auf eindeutige Weise Schnitte zwischen
Homologieklassen von M* und solchen von M definieren; die Schnitte
sind Homologieklassen von M’. Die Schnittbildung von Klassen bezeich-
nen wir ebenfalls mit ,,o.

Es seien 4 und B Cozyklen in M ; dann sind 4 und 2B Zyklen in M*
resp. M, und wir finden mittels (6.8) (6.4) und (4.2):

8(0409B)=ANéB=AnN(BNM)=(AUB)NM=3(AUB). (6.10)
Wir identifizieren in der vorn erwahnten Weise entsprechende Homo-
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logieklassen von M, M* und M’. Sind dann Z, und Z, Cohomologie-
klassen von M, so erhalten wir auf Grund obiger Folgerung aus (6.10)
die Gleichung fiir Homologieklassen

DEZ, . D%, — %, DZ, = D(&, U &,) . (6.11)

Wir wissen, dafl das U-Produkt die Cohomologieklasse von M zu
einem Ring, dem Homologiering R'(M) zusammenfaBt. Nach Formel
(6.11) vereinigt ebenso die Schnittbildung die Gesamtheit der Homologie-
klassen von M zu einem Ring, dem Schnittring R(M) von M . Nach der-
selben Formel ist die isomorphe Abbildung D von R’(M) auf R(M) sogar
produkttreu; D ist also ein Ringisomorphismus, d. h. es ist

DR (M) = R(M) .

§ 7. Umkehrungsabbildung und Umkehrungshomomeorphismus 8) 12) 13)

L" und A” seien simpliziale geschlossene orientierbare Mannigfaitig-
keiten, L* und A* die zu L und A dualen Zellenzerlegungen. Den Uber-
gang von einem algebraischen Komplex C aus L zu seinem Dualkomplex
C* in L* bezeichnen wir mit 9. Es ist also C* = 9C. Entsprechende
Bedeutung habe § fiir Komplexe aus 4. f sei eine simpliziale Abbildung
von L in A. Den dadurch bewirkten Homomorphismus von £(L) in £(A4)
nennen wir ebenfalls f, den hierzu dualen f'.

I'* sei ein algebraischer Zellenkomplex aus A*. Durch die Gleichung

oI = 3f'6-1I™* = C* (7.1)

wird ihm ein Zellenkomplex C* aus L* zugeordnet: ¢ bildet die Gruppe
2(A*) homomorph in die Gruppe L(L*) ab. ¢ heillt die zu f gehorige
Umkehrungsabbildung.

Das ¢-Bild einer Zelle {* c A* wird nach (7.1) wie folgt gefunden:
Man sucht das zu £* duale Simplex & = 6-1£*, bestimmt den Komplex
f(&) derjenigen gleichdimensionalen Simplexe in L, die durch f auf &
abgebildet werden, und bildet den Komplex df'(¢) der zu diesen Sim-
plexen dualen Zellen. Folglich ist, n — » = d gesetzt,

Dim pI*? =n — (v —p)=(n—»)+p=p+d.
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Ahnlich wie f erfiillt auch ¢ einen Erhaltungssatz. Er lautet:

Satz 6: ¢ erhalt die Rander; genauer
prI™ = (— 1)%rpl™. (7.2)

Beweis : Wir berufen uns auf die Definition von ¢, Formel (6.2) und
den Erhaltungssatz fiir f’. Es sei I'» = §-1I'*. Dann wird

orI™ = of'6~wdéI'* = (— 1)»-*of'r'I'? ,
rel™ = rof 6 \I'* = rof ' I'?* = (— 1)?or'f'I'?.

Folglich gilt, wie behauptet, wegen n — v = d,
pri™* = (— 1)erel™*.

Nach Satz 6 induziert ¢ eine homomorphe Abbildung der Gruppe
B?A*) in die Gruppe B+¢(L*) und somit, da es bei Homologien gar
nicht auf die speziell gewahlten Unterteilungen ankommt (vgl. § 6),
einen Homomorpbismus von B?(A4) in B?+4¢(L). Dies ist der Umkehrungs-
homomorphismus D.

Bezeichnen wir mit '’ den durch /' erzeugten Homomorphismus der
Gruppe B'?(4) in die Gruppe B'?(L), mit D und 4 die durch 3 und 4
bewirkten Isomorphismen von B'?(L) auf B"-?(L), resp. von B'?(A) auf
Br-?(A), so gilt definitionsgemal

&t = DF'A-1¢, {c B(A), oder
®AZ = DF'Z , Zc B'4). (7.3)
Die Eckpunkte in L und A werden beliebig geordnet. Wir kénnen
dann in L und A Produkte bilden. Aus den Formeln (7.3), (6.11) und
(5.10) folgt fiir die Homologieklassen §, = 4Z,, {, = 42, :
DLy 0o DL, = PAZ, o ®AZ, = DF’'Z,.DF’'Z,
= D(F'Z, UF'Z,) = DF'(Z, U Z,) ,

¢(Cl o 52) = CD(AZl o AZz) = ¢A(Z1 U Zz) ’
also
DLy o Pl = D810 8y) . (7.4)
Somit gilt

Satz 7: @ ist ein (Schnitt-)Ringhomomorphismus.
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Nennen. wir ferner F den durch f erzeugten Homomorphismus der
Gruppe B(L) in die Gruppe B(A4), so folgt aus den Formeln (7.3), (6.11)
und (5.11) fiir die Homologieklassen { = AZ c B(A), zc B(L):

F(®PLZoz2)=FDF'Zo2)=FF'ZN2)=ZNFz=A4ZoFz=1{0Fz.

.

Also gilt
Satz 8 : @ erfillt die Funktionalgleichung.

F(PLoz)y=(oFz. (7.5)
Genauer gilt sogar, wie wir zeigen werden, die Formel
f(pl™ o C) = I'* o fC, (7.6)

wenn [I'* und C Komplexe in A%, resp. L sind und f wie folgt definiert
ist:

Wir erweitern f zu einer simplizialen Abbildung der baryzentrischen
Unterteilung L’ von L und L* in die baryzentrische Unterteilung A’
von A und A* durch folgende Vorschrift: Ist das Simplex |£&2] < A das
geometrische Bild des Simplexes |2?| ¢ L, so bilde f den Schwerpunkt
von |z?| auf den Schwerpunkt von |&¢ ab.

Man ordnet die Eckpunkte von A’ und L’ in der in § 6 angegebenen
natiirlichen Weise. Offenbar ist f diejenige simpliziale Approximation
von f, welche jeden Eckpunkt e von L’ in den ersten Eckpunkt des
Triagers von fe in A’ abbildet. f erhilt somit die Ordnung im Kleinen.

8 und o seien jene pseudoidentischen simplizialen Abbildungen von
L’ auf L und von A’ auf A, welche jeden Eckpunkt von L', resp. A’ in
den ersten Eckpunkt ihres Tréagers in L, resp. A verschieben. Dann gilt
auf Grund der iiber die Eckpunktordnung gemachten Voraussetzungen

ofC’ = fsC’, C'cL’, (7.7)
somit nach (1.2)

fo'l'=s'f'T, I'c 4. (7.8)
Ferner bezeichnen wir mit %, «* und o die durch die Unterteilungen L’
von L und L*, A’ von A bewirkten Abbildungen der Gruppen £(L) und
L(L*) in &(L’), resp. der Gruppe L£(4) in £(A’). Dann gilt ferner
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fuC = ofC fiir alle C aus L, folglich nach (6.7), (7.1), (7.8) und (4.6)
mit "= §-1I'*

f(pI™* o« C) = #(s'f'I'NnuC) = 6'I'N wfC = I'* . fC,
womit Formel (7.6) bewiesen ist.

Nebenbei ergibt sich noch eine neue Form der Definition von ¢: Ist
namlich I'* ¢ A*, I' = §-I'*, so gilt nach (7.1), (6.1) und (7.8)

w*ol'* = u*of' I’ =s'f'I'NL' =¥o'I'n L’. (7.9)

KAPITEL II

Der H-Prozess bei Abbildungen von Mannigfaltigkeiten

§ 8. Definition des Homomorphismus H

Wir betrachten einen Zyklus (* c A*, dessen ¢-Bild in L* einen
Komplex C* berandet. Dessen Unterteilung #*C* wollen wir mittels f
in A’ abbilden und untersuchen, wie dieses Bild mit {* in Zusammenhang

steht. Es sei also
pl* = rC*, C*c L*. (8.1a)

Dann setzen wir als Definition

he* = furC* . (8.1b)

Ist Dim {* = p, so wird Dim ¢{* = p 4+ d = (Dim C*) — 1; folg-
lich ist Dim Al(*=Dim C*=p+d+1=p-+e, wenn d+1=e¢e
gesetzt wird.

Im allgemeinen ist A* kein Zyklus; doch trifft dies immer zu unter
folgender

Voraussetzung : L sei von hoherer Dimensionals A,d. h.n — v = d > 0.
Die Giultigkeit dieser Voraussetzung erstrecke sich bis zum Schlusse dieses
Kapitels. Aus ihr folgt, wenn f und f als algebraische simpliziale Abbil-
dungen aufgefalt werden, fL = fL’ = 0.

Es gilt jetzt der

Hilfssatz 4: Fir jeden Komplex I'* aus A* ist fu*el™ = 0. Denn
nach (7.9) und (4.6) ist mit I' = é1I'*

futel* = f(f'e’'"NL') =o' TNl = 0.

83



Dieser Beweis stiitzt sich zwar auf die speziell gewahlten Eckpunkt-
ordnungen in L’ und A’. Da aber die Abbildungen f, »* und ¢ frei von
jeder solcher Vorschrift definiert wurden, gilt der Hilfssatz 4 unabbhangig
von jeder Eckpunktnumerierung. Nun folgt

Satz 9: Ist @l* = rC*, so ist hl* = fu*C* Zyklus.
Denn es gilt nach Hilfssatz 4

rhi* = rfu*C* = fu*rC* = fu*pl* = 0.

Nach Definition von 5 ist der Zyklus A(* nicht eindeutig bestimmt;
doch gilt der

Satz 10 : Sind die Zyklen {f und { von A* homolog, und gilt ¢lF =
rCy , somit (nach Satz 6) auch ¢{f = rC7, dann unterscheiden sich die
Zyklen h¢y und kT hochstens um das f-Bild eines Zyklus Z aus L’.

Beweis : Nach Voraussetzung gibt es einen Komplex I'* ¢ A*, so da@
(¥ — ¥ = rI'* . Nach Formel (7.2) ist daher @l¥ — @lf = (— 1)%roI™.
Somit wird nach Hilfssatz 4:

he¥ — he¥ = fu*CF — turCF = fux(CF — OF — (—1)%I™*) =17,

wobei Z = u* (C¥ — OF — (— 1)3¢I*) gesetzt wird. Z ist aber Zyklus,
womit Satz 10 bewiesen ist.

Wir definieren: Es sei & die Menge der Homologieklassen { c B(A*),
far deren Zyklen (* die Beziehung ol* ~ 0 gilt. Es sei & die Menge der
Homologieklassen Z  B(A'), welche f-Bilder von Zyklen aus L’ enthalten.
K2 und F? seien die Mengen der p-dimensionalen Elemente von K, resp. § .

All dies sind Untergruppen der entsprechenden Homologiegruppen.
Mit Hilfe dieser Definitionen konnen wir unsere bisherigen Resultate
iiber A zusammenfassen in dem

Satz 11: h induziert einen Homomorphismus H der Uniergruppe K?
von B?(A*) in die Faktorgruppe B*+¢(A’)[F?+¢ (e = d + 1). Derselbe ist
unabhingig von irgendeiner Eckpunktordnung.

Diese erste Definition von & 1aBit sich geometrisch gut iiberblicken;
formal ist sie aber, wegen der verschiedenen zu betrachtenden Unter-
teilungen der Mannigfaltigkeiten L und 4, unbequem. Wir bemerken,
da3 weder A, noch der hierdurch erzeugte Homomorphismus H von einer
speziell gewahlten Eckpunktnumerierung in L’ und A’ abhingt. Wir
definieren nun nochmals denselben Homomorphismus H, aber auf eine
formal einfachere Weise.
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Zu diesem Zwecke bilden wir neue Definitionen: Ist I" Komplex in 4,
80 setzen wir

oI'nd)=4InL, (8.2)
d. h. o6 = 3f'T.
Ist ¢ Cozyklus in A und
g6, =rC, CclL, (8.3a)
so definieren wir
RéC = fC . (8.3Db)

Ahnlich wie vorn gelten
Hilfssatz 4: Es ist fpéI' = 0. Denn nach (4.6) gilt

fo8I' = {f'TNL)y=TNfL=0.

Satz 9: k¢ ist Zyklus. Denn es wird
rhd¢ = rfC = frC = fpdl = 0.

Satz 10 : Ist 8%y ~ 6¢;, und @8, = rC,, somit ¢ds, = rC;, so gilt:
k8¢, und kSC, unterscheiden sich hochstens um das f-Bild eines Zyklus
Z aus L.

Beweis : Nach Voraussetzung und (6.5) ist £, — {, = »'I", folglich
nach Formel (8.2)

98l = 98y = f'r'I'N L =r(+f'I'n L) =rpd(+ I .
Somit wird
hél, — hély = fC; — fCy = {(C, — Cy — @b(+ 1) = £,

wenn Z = O, — Cy — @&(+ I') gesetzt wird. Z ist aber Zyklus und damit
Satz 10 bewiesen.

Wir definieren: Es sei & die Menge der Homologieklassen aus B(A),
fiir deren Zyklen der Form §¢ die Beziehung 6, ~ 0 gilt. Es sei ¥ die
Menge der Homologieklassen aus B(A), die f-Bilder von Zyklen aus L
enthalten. & und J? seien die Teilmengen der p-dimensionalen Klassen
aus K, resp. §. Damit gilt

Satz 11 : % induziert einen Homomorphismus H der Untergruppe |
von B(A) in die Faktorgruppe B(A4)/F -

Nach Satz 5 bestehen isomorphe Abbildungen der Gruppen B7(A),
B?(A’) und B?(A*) aufeinander. Identifizieren wir die sich hierbei ent-
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sprechenden Elemente dieser Gruppen, so diirfen wir diese Gruppen
schlechthin als gleich auffassen. Wir schreiben dafiir kurz B?. Entspre-
chende Bedeutung habe die Abkiirzung B, die direkte Summe aller B?.
In diesem Sinne ist nach § 6 (insbesondere Formel (6.6)) & = & und
nach Formel (7.7) § = &. SchlieBlich folgt aus (8.1) und (8.3), (6.3)
und (7.7), daB hiermit auch H = H ist. H ist daher, wie H, von keiner
Eckpunktnumerierung abhéngig, obwohl eine solche in seiner Kon-
struktion auftritt.

Wir werden in Zukunft nur noch die zweite Definition von H verwen-
den, welche auf den Formeln (8.2) und (8.3) beruht. Daher schreiben wir
von nun an ¢ statt ¢ und % statt &.

Wir werden im folgenden oft von Zyklen aus einer der Gruppen R,
K2, § oder F? sprechen. Darunter wollen wir Zyklen verstehen, deren
Homologieklassen der entsprechenden Gruppe angehoren.

§ 9. Invarianz des Homomorphismus H in der Abbildungsklasse von f

Wir werden zeigen, dafl homotope simpliziale Abbildungen von L in A
denselben Homomorphismus H definieren. Dies ist der Inhalt von Satz 12.
Thm schicken wir einen Hilfssatz voraus.

Hilfssatz 5 : L+und A+ seien simpliziale Unterteilungen von L, resp. A4,
die Abbildung f+ von L* in A+ sei eine simpliziale Approximation (nach
A H., p.316, ,Modifikation“ genannt) der simplizialen Abbildung f
von L in A. Wir bilden die Homomorphismen ¢, £ und H mittels f, ent-
sprechend ¢+, A+ und H+ mittels f+. Dann gilt, wenn man einander ent-
sprechende Homologiegruppen verschiedener Unterteilungen von A als
gleich betrachtet, § = F+, & = K&*, und fir {c K ist H{ = H*{ in
B/F.

Beweis : s und o seien solche pseudoidentische simpliziale Abbildungen
von L+ auf L, resp. von A+ auf A, daB of+ = fs, also f+'o’ = s'f’ ist.
Da s und o Isomorphismen zwischen B(L+) und B(L), resp. zwischen
B(A*) und B(A) erzeugen, folgt aus of+ = fs sofort, daB F = F+ ist.

Die Eckpunkte von A4, A+, L und L+ werden so numeriert, da8} o,
8,f und f+ deren Ordnung im Kleinen erhalten. {+ sein beliebiger Zyklus
aus A+ ; zu ihm gibt es nach Satz 6’ und § 6 einen Cozyklus { ¢ A derart,
daB [+ ~o'tnA+. Damit ist, oft =olc’iNAY)=¢nA=7C ge-
setzt, nach (8.2) und (4.6)

sglt =s(f+'e’tn L) =f'tnL=gf.
Hieraus folgt nach Satz 5: Es ist & = K.
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Sei nun £+ c K, also @+(+ = rC+, C+ c L+. Dann wird

¢C = sttt = sr0+ = rsC+, sC+c L,
und
ke = fsC+ = of +C+ = oh+(+ .

Damit ist Hilfssatz 5 bewiesen. Nun gilt

Satz 12 : Der Homomorphismus H ist invariant in der Abbildungsklasse
von f. Mit andern Worten: f, und f, seien homotope simpliziale Abbil-
dungen der simplizialen Zerlegungen L, und L, von L" in die simpli-
zialen Zerlegungen A, und 4, von A* (n — v = d > 0); ihnen mogen die
Abbildungen %, und %, entsprechen. Dann sind die hierdurch bewirkten
Homomorphismen H, und H, einander gleich, wenn man (im Sinne von
Satz 5 einander) entsprechende Homologieklassen verschiedener Unter-
teilungen von A identifiziert.

Beweis : A’ sei eine gemeinsame simpliziale Verfeinerung von A, und 4,.
Dann gibt es Verfeinerungen L; von L, und L] von L, und Modifikationen
fo von f, und f, von f,, welche L, und L] simplizial in A’ abbilden. Nach
dem Hilfssatz erzeugen sie dieselben Homomorphismen H, und H, wie
fo und f;. ) )

Nach Voraussetzung sind f, und f, homotop. Es gibt daher eine stetige
Abbildung f von LxT (T = Einheitsstrecke [0,1]) in A’, wobei

f(Lx0) = foLy,  f(Lx1) = fL].

f wird simplizial approximiert durch die Abbildung f+. Hierzu soll LxT
so in (LxT)* unterteilt werden, dal die hierdurch erzeugten Unter-
teilungen L§ von Lx0 und Lj von Lx1 Verfeinerungen der Zerlegungen
L, und L; sind. Dann sind

frLx<0*r =fSL§,  frIx)* =fLf
Modifikationen von f, und f,. Nach Hilfssatz 5 definieren f& und ff die
gleichen Homomorphismen H, und H,; wie f, und f,, also auch wie f,

und f,.
§ = 8¢ sei Zyklus in A’. Setze

ot = f+'Cn (LxT)*.
Hierbei wird vorausgesetzt, daB in A’ und in (LxT')+ Eckenordnungen
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gegeben sind, die durch f* im Kleinen erhalten bleiben. Nun wird
nach Formel (5.2)

19’ ='CNr(LxT) = f'Cn (Ly —Lg) = ' n Li—f'¢ n Li=9if — oL -
Es sei ¢f ¢ = rC, (C, c L}). Dann ist
¢} =1r(Cy+etl) ~ 0 in (LxT)",

und somit auch ¢ ~ 0in Lf . Ebenso folgt ¢ ~ 0in L} aus ¢}Z ~0
in LT . Dies besagt: Es ist &, = &, = K. Offenbar ist auch F, = &, == §.

Die Projektion von LxT langs der Strecke 7' auf L, nennen wir g.
Mit andern Worten: Sind p und ¢ Punkte aus L, resp. T', so sei g(pxt) =
px0. Es sei nun ¢¢ = rC,, somit ¢ = r(C; — ¢*). FaBt man g als
algebraische Abbildung auf, so gilt daher

‘PE)*-Z = r9(C, — ‘P+Z) = r0,, Co = g(Cy, — ‘P+Z) c Lg— .

Folglich ist C, — C, — ¢+ ein Zyklus, der in (LxT)*+ berandet. Daher
gilt nach Hilfssatz 4 fiir die mit f§ und f{ gebildeten Abbildungen AF
und A7 :

hi*f"‘h(_)*f:fii-ol““fg—oo=f+(01'—00 — ‘P+Z) ~0 in 4.

Damit ist Satz 12 bewiesen.

Folgerungen : Jeder stetigen dimensionserniedrigenden Abbildung f
einer Mannigfaltigkeit L™ in eine solche A" ist ein Homomorphismus H
zugeordnet. Derselbe ist konstant in der Abbildungsklasse von f. Dieser
Homomorphismus H erlaubt daher unter Umstédnden verschiedene Ab-
bildungsklassen voneinander zu unterscheiden. So gilt beispielsweise:
Ist H nicht die Nullabbildung (d. h. gilt nicht H{ = 0 fir alle { c &
in simtlichen Dimensionen), so ist f nicht 0-homotop. Insbesondere kann
H herangezogen werden fiir die Untersuchung der Wesentlichkeit der
Abbildung f; denn gibt es in A einen Zyklus {, mit A, = yA4 (y # 0),
so ist f bestimmt wesentlich. Wir nehmen an, {, existiere. Dann sind
zwel Fille zu unterscheiden:

1. Es gibt in L" einen Zyklus £, der durch f mit einem von 0 verschie-
denen Grade auf A” abgebildet wird. Offenbar ist Z” kein Randteiler;
folglich ist dann die vte Bettische Zahl von L*, p*(L*) £ 0. (Wir werden
spater sehen, dafl in diesem Falle der Zyklus ¢, ein Rand sein muB.)
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2. Es gibt in L* keinen Zyklus £Z¥ mit {2 = ypA(y ## 0). Dann kann
also £,, fiir welches hl, = yA(y # 0) gilt, weder Rand, noch Randteiler
sein; folglich ist dann (wegen Dim (, = » — e) die (v — e)*¢ Bettische
Zahl von A, n*~¢ £ 0. Es muBl dann also 0 <v —e=v—d — 1=
2y — n — 1, somit n < 2» — 1 sein. Wir werden spéater noch eine zuséitz-
liche Bedingung finden: d muf} ungerade sein.

In Kapitel I1I werden wir eine spezielle Klasse von Abbildungen stu-
dieren, bei denen ein Zyklus , mit A, = yA4 (y 5 0) stets auftritt. Es
sind dies die durch Sphirenfaserungen erzeugten Abbildungen; diese
sind somit stets wesentlich. Wir werden sogar zeigen, daf in diesem Falle
¢, stets so gewahlt werden kann, dal y = + 1 wird.

§ 10. Definition des Homomorphismus H’

Mit Hilfe der Abbildungen ¢, r, f definierten wir den Homomorphis-
mus H fiir gewisse Elemente der Homologiegruppen von A. Unser nach-
stes Ziel ist die Konstruktion eines entsprechenden Homqmorphismus H’
fiir gewisse Elemente der Cohomologiegruppen von 4. Zu diesem Zwecke
ist es naheliegend, statt ¢, r, f, die hierzu dualen Abbildungen ¢’, r’/, f’
heranzuziehen. Wir werden dies wirklich tun, wollen aber, um leichter
zum Ziele zu kommen, nur 7’ und f’ dual zu f und r erkliren (vgl. § 1),
@’ aber durch die folgende

Definition: Es sei Z ein Cozyklus in L, Z ein solcher in A, und es
gelte f0Z ~0Z. Dann setzen wir ¢'% = Z. Hierin ist nach (6.4)
0Z =ZnNL, 6Z=2Zn A gesetzt. ¢’ erfiillt somit die Formel

e’ ZnA~fZnNnL), (10.1)

welche in ihrem Aufbau ganz an Formel (8.2) erinnert. Diese Analogie
ist es auch, welche unsere Definition von ¢’ rechtfertigen wird. Zur Bil-
dung von § und @, d.h. der in Formel (10.1) auftretenden Produkte
miissen die Eckpunkte von L und A im Kleinen geordnet sein. Fiir
spater setzen wir dazu voraus, dal dies so geschehen sei, dafl f diese
Ordnungen im Kleinen erhalte.

Definitionsgemil ist ¢’ Z Cozyklus in A, der aber nur bis auf Corédnder
bestimmt ist. Aus Z «— 0 folgt ¢’Z — 0. ¢’ erniedrigt die Dimension
um d; nach Formel (10.1) gilt ndmlich: Dim ¢'Z?=» — (n — p) =
p — (n — v) = p — d. Die Abbildung ¢’ besitzt somit eine Reihe von
Eigenschaften, die man von der zu ¢ dualen Abbildung erwartet. Diese
Analogie im Verhalten gegeniiber ¢ fiihrt noch weiter, wie wir bald sehen
werden. Vorher aber wollen wir den Definitionsbereich von ¢’ erweitern.

89



@’ ist erklart fiir Cozyklen £ aus L, und zwar ist ¢’ Z ein Cozyklus aus
derjenigen Cohomologieklasse von A, welche durch die Homologie (10.1)
eindeutig bestimmt ist. Damit aber diese Formel einen Sinn hat, ist gar
nicht notig, dafl Z Cozyklus ist. Wichtig ist nur, da f(Z n L) Zyklus
ist. Wir konnen daher ¢’C erkliren fiir alle Komplexe C' aus L, fiir die
f(C n L) Zyklus ist, indem wir festsetzen: ¢’C sei ein Cozyklus aus der-
jenigen Cohomologieklasse von A, welche nach Formel (10.1) durch
f(C n L) eindeutig bestimmt ist. Man beachte aber, daBl ¢ N L und damit
auch die Cohomologieklasse von ¢’C von der in L gewihlten Eckpunkt-
ordnung abhidngen, im Gegensatz zu der Cohomologieklasse von ¢'Z,
falls Z Cozyklus ist.

In Analogie zu Satz 8 gilt der

Satz 8': ¢’ erfiillt die Relation
p'(f'ZUC)—-Z U ¢'C, (10.2)

falls Z Cozyklus in A und ¢’C erklart ist.
Beweis : Nach Voraussetzung ist f(C N L) Zyklus in 4, somit nach
(4.2) und (4.6) (f erhalt ja die Eckenordnung im Kleinen) auch
fl'ZuC)nL]=f[f'Zn(€nL)]=2Zn{Cn L).
Folglich ist ¢'(f’Z U C) definiert und es gilt nach (10.1)

e'fZulynA~fIf'ZuC)nLl=Znf(CnL)
~Zn(@CnA)=(ZUg¢'C)n4Ad.

Hieraus folgt: die Behauptung (§ 6).
Auch zu Satz 7 gibt es einen entsprechenden: Er wird durch Formel

(5.10) ausgedriickt.
Aus der vorn gemachten Voraussetzung fL = 0 folgt weiter der

Hilfssatz 4': ¢'f'I ist erklirt fiir alle I'< 4, und es gilt ¢'f'I"—~ 0.
Denn es ist f(f'/I'N L) = I'n fL = 0 Rand in 4, somit ¢'f'I" —~ 0.
Es sei ¢? Cozyklus in 4 und

flep=4/Cr1, (O*ic L. (10.3a)

Dann ist ¢’/C?1 erklirt; denn f(C?-1n L) ist Zyklus, weil nach (5.2),
(4.6) und (10.3a)

rf(CP1NL)= +f(r'C»*NL)= +NfL=0
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wird. Wir setzen als Definition
h't? = (— 1)?¢’C?P1, (10.3b)

h'(? ist definitionsgemiB Cozyklus. Die Wahl des Vorzeichens wird
sich spater als geeignet erweisen. Es gilt Dim A'? = (p — 1) — d = p—e,
wenn wie fritherd + 1 = e gesetzt wird. h’(?ist nicht eindeutig bestimmt;
doch gilt der

Satz 10’: Sind die Cozyklen ¢, und ¢, von A cohomolog und f'¢, =
r'C,, somit f'¢; = r’C,, so unterscheiden sich %', und A, nur um das
¢’-Bild eines Cozyklus aus L.

Beweis : Nach Voraussetzung ist ¢, — ¢, =r'I", also ', — f'¢y =
r'f'I’. Hieraus folgt nach Hilfssatz 4’
+ (A8, — 2'%) = 9’0, — ¢'Co = ¢'(C, — Oy — f'T) .

C, — C, — {'T" ist aber Cozyklus, womit Satz 10’ bewiesen ist.

Wir bemerkten vorn, daBl ¢’C von der Eckpunktnumerierung in L
abhingt; damit wire auch unsere soeben definierte Abbildung %’ hier-
von abhéngig. Dall dies aber wirklich nicht zutrifft, wird durch den fol-
genden Hilfssatz bewiesen.

Hilfssatz 6 : Es sei ¢ ein Cozyklus aus A und f'¢ = r’C. Dann ist die
Cohomologieklasse von ¢’C unabhingig von der Eckpunktordnung in L.

Beweis: L, L', L* und A, A’ seien die in § 7 betrachteten Unter-
teilungen von L und 4; u*, s, o, f und f seien die dort eingefiihrten Abbil-
dungen. Dann gilt mit den ebenfalls schon dort definierten Eckpunks-.
ordnungen in A’ und L’ nach (4.6) und (6.1)

CnL=s'CnL"=su*aC,
somit, ngen fs = of (Formel (7.7)),

HO N L) = fsu*dC = o(fu*aC) .

Der Komplex fu*dC ist frei von jeder Eckpunktordnung definiert. Er
ist Zyklus; denn nach (6.2), (6.1), (7.8) und (4.6) gilt, wegen fL’ = 0:

rfu*oC = + fu*dr'C= 4 f(s'r'CnL')= +#s'f'tNL')= 4o’¢nfL'=0.
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Somit ist die Homologieklasse des Zyklus
f(C n L) = o(fu*oC) ~ fu*aC

unabhingig von jeder Eckpunktnumerierung bestimmt; folglich ist dies
auch die Cohomologieklasse von ¢’C, w.z.b.w.

Wir definieren nun &hnlich wie vorn: Es sei {’ die Menge der Coho-
mologieklassen von B'(4) = B’, fir deren Cozyklen ¢ die Beziehung
f'¢ — 0 gilt. Es sei §’ die Menge der Cohomologieklassen von B’, welche
@’-Bilder von Cozyklen aus L enthalten. 82 und ¥’? seien die Mengen
der p-dimensionalen Elemente von K’, resp. &’. All dies sind Unter-
gruppen von B’, resp. von B'?. Wir werden im folgenden oft von Cozy-
klen aus einer dieser Gruppen sprechen. Darunter wollen wir Cozyklen
verstehen, deren Cohomologieklassen der entsprechenden Gruppe ange-
horen.

Mit Hilfe dieser Definitionen konnen wir unsere Resultate iiber A’
zusammenfassen in dem

Satz 11’ : b/ induziert einen Homomorphismus H' der Untergruppe K'?
von B'? in die Faktorgruppe B'*-¢|F'*-¢(e = d + 1). Derselbe ist von
keiner Eckpunktnumerierung abhingig.

Ein erster Zusammenhang zwischen den Homomorphismen H und H’
wird durch den folgenden Satz 13 dargelegt.

Hilfssatz 7 : Ist der Cozyklus { ¢ &', dann ist der Zyklus 6 c &, und
umgekehrt. Denn folgende vier Aussagen sind &dquivalent: ¢ c K;
6 ~0; 9ol =0fL ~0; 6{c K.

Hilfssatz 8 : Ist der Cozyklus Z c &', dann ist der Zyklus 6Z c &, und
umgekehrt. Denn folgend® vier Aussagen sind #dquivalent: Z c §’; es
gibt einen Cozyklus Z in L mit ¢'Z% — Z; es gibt einen Zyklus 0Z in L mit
foZ ~6Z; 6Z c §.

Es bezeichne A den durch § erzeugten (von der Eckenordnung in A
aber unabhéngigen) Isomorphismus von B’ auf B (§ 7). Dann gilt

Satz 13: Ist die Cohomologieklasse { < K, so ist
HAC = (— 1"14H'C . (10.4)
Beweis : {? sei Cozyklus aus { und
for =0, W= (— 1pg/0rt.
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Dann gilt nach (8.2) und (6.5): _
8P = Of'L? = Or'CP1 = (— 1)-2+14490% 1,
somit nach (10.1) und (10.3)

hoL? = (— 1)n+1—pf§0p—1 ~ (— 1)n+1—p5q,10 = (— 1)n+13h/,:p ,
w.z.b.w.

Aus diesem Satze folgt in Verbindung mit Satz 12 der

Satz 12': Der Homomorphismus H' ist invariant in der Abbildungs-
klasse von f.

Daneben besteht ein weiterer Zusammenhang zwischen H und H'.
Er folgt aus den Sitzen 1—4 von § 2 und basiert auf der Dualitat der
Homomorphismen r und 7/, f und f’, sowie einer entsprechenden Ver-
wandtschaft von ¢ und ¢’.

¢’ wurde zu Beginn dieses Paragraphen nicht dual zu ¢ erklart.
Gleichwohl gilt fiir einen Zyklus £ (= ¢ N A) aus A (¢ ist Cozyklus aus A)
und einen algebraischen Komplex C aus L, fiir welchen ¢’C erklart ist,
die Formel fiir das Skalarprodukt

C-of=+4¢C-C, (10.5)

welche bis aufs Vorzeichen iibereinstimmt mit Formel (1.4), die fir duale
Homomorphismen charakteristisch ist. Denn es ist nach (4.3) und (4.4)
fiir beliebige Komplexe A und B aus L, wenn die mit der gegebenen
Eckpunktordnung gebildeten Produkte mit U und N, die mit der inversen
berechneten mit U’ und N’ bezeichnet werden:

A-(BNL)=(AUB)-L=+(BU'4A)-L=+B-(4n’'L).

Dabei hingt das Vorzeichen nur von den Dimensionszahlen von 4 und B
ab. Entsprechendes gilt fir Komplexe aus /4. Damit folgt nach (8.2),
(1.4) und (10.1)

C-¢f=0C-9lnA)=C-(f'tnL)=£f¢-(Cn'L) =
=+ fCN'Ly=4(p'0N'A)= £ ¢'C-((nA) =1 9¢'C-{
w.z.b.w.
Weiter gilt: Ist ¢ Zyklus aus K2, Z’ Cozyklus aus §'?, also Z' « ¢'Z’
fiir einen geeigneten Cozyklus Z’ aus L, so wird
L2 =0 g8 =gl & =0, (10.6)

da @{ ~ 0 ist. Entsprechend gilt fiir einen Zyklus Z ¢ & und einen Co-
zyklus (' c &':
Z-'=0. (10.7)
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Ist = 0, (m = 2) oder =R, und erfiillt ein Zyklus { aus 4 die
Relation ¢ -Z’=0 fiir alle Cozyklen Z' ¢ §’, so ist fiir alle Cozyklen
Z' aus L

- Z'=¢-¢'8' =0,

also, nach Satz 13, ¢ Rand in L, folglich { ¢ &. Ebenso gilt die hierzu
duale Aussage.

'Diese Resultate fassen wir mit Hilfe von Satz 1 folgendermaBen zu-
sammen:

Satz 14: Fir Klassen {c & und Z'c §’ gilt {-Z'= 0. — Fir
Klassen Zc § und {'c K’ ¢gilt Z. ' = 0.

Satz 15: Es sei § = ®,,(m = 2) oder = R. Erfiillt die Homologie-
klasse ¢ aus A die Gleichung ¢ - Z’ = 0 fiir alle Klassen Z' < &', so ist
¢ c K. — Erfiillt die Cohomologieklasse ¢’ aus A die Gleichung Z - ¢’ = 0
fir alle Zc §, soist ' c K.

Wie vorn aus den Sitzen 1 und 3 fir § = G, (m = 2) oder = R die

Isomorphie der Gruppen B? und B'? folgte, ergibt sich jetzt aus den
Satzen 14 und 15

Satz 16 : Fir J = ®,,(m > 2) oder = R bestehen die Isomorphien
Br/Rr~ F'?, BPK=F .

Hieraus folgt, wegen B? ~ B'?, das

Korollar zu Satz 16 : Fir J = R gelten die Isomorphien
B?FP= K7, B Fr= K.

Noch ein weiterer Satz gehort an diese Stelle: Es sei { Zyklus aus

]2, ¢’ Cozyklus aus 89, ¢ — p=—e (= d + 1). Es sei also
ot = rC, e = {C,
IIC, — 7./0/, h’CI — (_____ 1)q¢/01.
Dann finden wir
R =fC-'=C-t/=C-r'C'=rC-0"=¢,-C''= 4+ ¢'C’
=+ A

Nach Satz 14 konnen wir Skalarprodukte zwischen Klassen aus & und

Elementen aus B’/ &’ oder zwischen Klassen aus & und Elementen aus
B/F bilden. Der Produktwert kann mittels beliebiger Reprasentanten
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der Faktorklassen berechnet werden. Damit 148t sich das oben gefun-
dene Resultat aussprechen in dem

Satz 17 : Fir Klassen {c K und {2c K, ¢ — p = e gilt
H{p- (9= 4+ {*-H'{2. (10.8)

Hierin sind H{? und H'(? Klassen aus B/ §F, resp. B’/ F'. DasVorzeichen
héngt nur von den Dimensionen ab.

§ 11. Multiplikative Eigenschaften der Homomorphismen H’ und H

Wir bemerken vorerst, daB &’ ein Ideal in R’(A) ist; denn nach (10.2)
gilt fiir Cozyklen { aus A und Z aus L

(UQ'Z—9g/(f'tUZ) T . (11.1)

Ebenso folgt aus (4.5), daB K’ ein Ideal in R’(A) ist. H' ist somit eine
additiv homomorphe Abbildung des Ideals & von R’(A) in den Rest-
klassenring R'(4)/&’. Schon aus Dimensionsgriinden kann aber H’ kein
multiplikativer Homomorphismus sein. Gleichwohl besitzt H' gewisse
multiplikative Eigenschaften. Diese folgen aus den Formeln (4.5) und
(10.2).

Auf Grund der Formeln (10.4) und (6.11) gilt mit jedem Satz iiber
H’ und das U-Produkt ein analoger Satz iiber H und die Schnittbildung.
Wir werden vorerst zwei Satze fiir H' herleiten, spiter die analogen Satze
(ohne explizite Beweise) fiir H aussprechen. Diese Anordnung ist in
folgender Tatsache begriindet: Wihrend sich die Satze iiber H’ leicht
beweisen lassen, sind die direkten Beweise fiir die entsprechenden Sitze
iiber H miihsamer, weil bei Schnittbildungen verschiedene Untertei-
lungen von L und A betrachtet werden miissen. Hierin liegt neben den
an sich interessanten Resultaten des vorigen Paragraphen der Grund zur
Einfithrung von H'.

Ist der in Formel (11.1) auftretende Cozyklus { c &', also f'{ « 0,
so folgt aus ihr { U ¢/Z « 0. Also gilt der

Hilfssatz 9/ : Sind ¢ und Z Cohomologieklassen von 4, { c &', Z < §’,
so wird { UZ = 0 in R'(A4).

Folgerung : Man kann das U-Produkt von Klassen aus & mit solchen
aus B'/F’ bilden. Das Produkt ist ein Element des Homologierings
R’(A) und wird mittels beliebiger Repriasentanten der Faktorklassen
berechnet.
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{? und (2 seien Cozyklen aus &', und es sei
f’C” —_ r’C”*l, h’&"’ = (— l)v(p’oz’—-l’
flea=r/Cet, BT = (— 1)yg/Ce1,
In A und L seien Eckpunktordnungen im Kleinen definiert, die durch f
erhalten bleiben. Den damit gebildeten Produkten geben wir die Zeichen
U und n. Offenbar erhalt f auch die inversen Eckpunktordnungen von L

und A. Den damit gebildeten Produkten geben wir die Zeichen U’ und n’.
Dann gilt nach (4.4) und (5.1)

rl(Cp—l U Cq—-l) — ¢/O?-1 Yy Q21 + (__ 1)p—10p—1 U r’/Ca-1
p— f’C” Ut 4 (— 1)(1)—1) (q—-l)f’é'q u’cr-1.

Hieraus folgt nach Satz 8’ (Formel (10.2)) und Hilfssatz 6:

0 /(27 U Co1) 4 (— 1= =) /(f/ga U/ Co)

“— {?U ¢/C21 4 (— 1)»-Da-Drg U’(p’C"’-l ,
oder
{PURLE— (— 17282 U'R'C?
somit nach (5.9)
EPURLE— (— 1)P2L2 U A'CP. (11.2)

Aus diesem Resultat ergibt sich mit Hilfssatz 9/ der
Satz 18’ : {? und (2 seien Cohomologieklassen aus K. Dann gilt

(PUHtE = (— 1)pega UH'E? . (11.3)

Hierin sind H'{? und H'{? Klassen aus R'(4)/§’, die Gleichung aber
eine solche im Homologiering R'(A4).

Z und ¢ seien Cozyklen in 4, { c K. Es sei ferner Dim Z = p, Dim
¢ = q. Dann finden wir mit f'{ = r’C und A’{ = (— 1)2¢’C nach (5.1)

r'(f'ZUC) = (= 1Pf"ZUr'C= (- 1y (ZU ),

somit nach Formel (10.2)

(— PR (Z U L) = (— 119 ('ZU C) — (— 1)*Z U ¢'C,
also
MZUL)—~ZUR'C. (11.4)
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Es gilt daher

Satz 19’: Z, Z' und ¢ seien Cohomologieklassen aus A4, { c &’; Z’
sei enthalten in der Klasse H'¢ von R'(4)/F’, also Z' ¢ H'{. Dann gilt:
ZUZ' cH(ZUY).

Die analogen Resultate fiir H lauten: §§ ist ein Ideal im Schnittring
R(A). (Dies folgt direkt aus Formel (7.5.)) Da A Einselement ist von
R(A), gilt folglich mit 4 ¢ §F auch Z < § fiir alle Z = R(A), d. h. hat 4
einen Urbildzyklus Z” in L, so besitzen samtliche Zyklen aus A4 Urbilder
in L. — K ist ein Ideal in R(A). (Dies folgt direkt aus (7.4).) H ist somit
eine additiv homomorphe Abbildung des Ideals & in den Restklassen-
ring R(A)/F, also stets die Nullabbildung, falls 4 ¢ §.

Hilfssatz 9: Sind { und Z Homologieklassen von 4, {c ], Zc &,
so wird {oZ = 0 in R(A).

Folgerung : Somit lassen sich Schnitte definieren zwischen Klassen aus
R und solchen aus R(A)/F. Diese sind selbst Elemente des Schnittrings
R(A) und lassen sich mittels beliebiger Reprasentanten der ,,miteinander
geschnittenen‘ Klassen berechnen. In diesem Sinne gilt

Satz 18 : (? und (2 seien Homologieklassen aus K. Dann ist
(PoHEY = (— 1)v-D0-0\fao H? | (11.5)

Damit ist ein Zusammenhang zwischen H-Bildern verschiedener Klas-
sen beliebiger Dimensionen aus § hergestellt. Wir werden bald wichtige
Folgerungen aus diesem Satze herleiten.

Es sei speziell p + g = v — e (e = d + 1). Dann driickt Satz 18 eine
bekannte Tatsache aus; denn sind {? und (¢ Zyklen aus K, also ¢{? =
rC?+e und @{? = r(C*¢, so ist (vgl. A. H., p. 416), wegen Dim ¢{? +
Dimgelt=p+d-+q+d=v—e+ 2d=mn—1, die Verschlingungs-
zahl p(@l?, %) der (zueinander fremd vorausgesetzten) Zyklen ¢(?
und ¢{? definiert. Sie ist gleich der Schnittzahl (vgl. A. H., p. 413) von
@l? und C2+¢ (@¢? und C9+¢ in relativ allgemeiner Lage angenommen).
Diese stimmt aber, wie man mit Hilfe von (7.6) sieht, mit der Schnitt-
zahl der Zyklen {? und h{? = fC%+t¢ iiberein. Also gilt

v(@l?, ¢l?) = Schnittzahl (£?, k(7). (11.6)

Daher ist Formel (11.5) in diesem Falle nur eine Folge der bekannten
Verschlingungszahlrelation

o(9l?, ¢f9) = + v(9l?, ¢l%).
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Nach Formel (11.6) folgt aus der Existenz von Zyklen ¢{? und @2
in L, welche miteinander verschlungen sind und von denen wenigstens
einer in L homolog 0 ist, daB H nicht die Nullabbildung ist. Folglich ist
dann f nicht nullhomotop. Es sei speziell p = 0 (also ¢ = v — ¢) und
{? c K. Dann ist h{? = yA. Folglich

-+ y = Schnittzahl (20, y4) = v(L0, p*~) .

Aus dem Nichtverschwinden dieser Verschlingungszahl folgt somit die
Existenz eines Zyklus [¥—¢ c K, fiir welchen h{¥—¢=y A(y+#£0) gilt. Nach
den Folgerungen zu Satz 12 ist dann die Abbildung f wesentlich.

Hierin ist als Spezialfall, namlich fiir » — e =0, also n = 2d + 1,
die in der Einleitung erwéahnte y-Theorie von H. Hopf®) enthalten.

Umgekehrt gibt es (wenigstens im Falle J = G,,(m > 2) oder = R)
stets Zyklen ¢(? und ¢{? ~ 0 in L, welche miteinander verschlungen
sind, falls H nicht die Nullabbildung ist. Denn ist {? ein Zyklus aus |
und A¢? # 0, so gibt es einen Zyklus (%, p = » — (¢ + e), mit

0 # Schnittzahl (¢?, h{2) = o(@l?, @L9).

Die Existenz solcher verschlungener Zyklen ¢(? und ¢{2~ 0 in L ist
somit eine notwendige und hinreichende Bedingung dafiir, da8 H nicht
die Nullabbildung ist.

Analog zu Satz 19’ gilt schlieBlich

Satz 19: Z, Z' und { seien Homologieklassen aus A4, { c &; Z’ sei
enthalten in der Klasse H von R(A)/F, also Z' « HL. Dann gilt Z « Z’ <
H(Z1?).

Von nun an werden wir der ,,Anschaulichkeit‘“ halber nur noch den
Homomorphismus H weiter untersuchen und uns merken, daf ent-
sprechende Resultate stets auch fiir H' gelten.

Wir wissen (§9): Die Existenz einer Homologieklasse {, c & mit
A c H, hat die Wesentlichkeit von f zur Folge. Es gilt aber noch mehr:
£, existiere; dann wird nach Satz 18 mit {? = {, {? = {, nach (6.11)
und (5.9)

C — (.._. 1)(v—p)eco 6 HC — (__ 1)(v-—p)e——(v—p—e)eHC " Co — (__ I)GHC p Co-
Somit gilt
Satz 20 : Existiert {,, so gilt fir { c &
= (—1)H{o{,. (11.7)
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Folgerungen : 1. Die Ordnung eines jeden { ¢ & ist Teiler der Ordnung
von [,. Ist also {, = 0, so ist | die Nullgruppe, H die Nullabbildung.
Dann ist aber, wegen A c H({,): Ac §, und damit R(A) =F.

2. Formel (11.7) liefert fiir ungerades e, also gerades d, mit = {,:
Es ist 2{, = 0. In diesem Falle wihle man § = &,. Dann lautet (11.7):

=H{o{,. (11.8)

Genau dieselbe Form erhalt (11.7) bei beliebigem J, wenn e gerade,
d also ungerade ist. Aus der zweiten Folgerung ziehen wir

Satz 21: Existiert eine Homologieklasse ¢, & mit A c HZ,, und gilt
280 # 0, 80 18t d = n — v ungerade.

Weiter besteht der

Satz 22 : Existiert £, ] mit A  H{,, so ist H eine (additiv) isomorphe
Abbildung von & auf R(A)/F .

Beweis: 1. Ist { c &, H. c §, so wird nach (11.8) und Hilfssatz 9
{=H(:l(,=0 inRA).
Folglich ist H ein Isomorphismus.
2. Nach Satz 19 gilt fiir alle Z c R(A)
Z=ZoA=ZoHlyCcH(Z-¢,).

Somit ist H eine Abbildung von & auf R(A4)/F.

Damit ist Satz 22 bewiesen. Seine Umkehrung ist trivial: Wenn H
eine Abbildung von & auf R(A)/F ist, so gibt es ein {, der genannten
Art. Die Existenz eines solchen £, ist somit dquivalent damit, da H
ein Isomorphismus von & auf R(A4)/§F ist.

KAPITEL III

Der H-Prozess bei Spharenfaserungen

§ 12. Geometrische Bedeutung von ¢ im Falle von Faserabbildungen

Voraussetzungen: Wir iibernehmen simtliche Definitionen und Be-
zeichnungen aus dem vorigen Kapitel. f, sei eine stetige Abbildung von
L* auf A¥ mit folgenden Eigenschaften :

1. Die Urbildmenge eines jeden Punktes ;A ist eine Sphire S der

Dimension d =n — v > 0.
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2. Die Urbildmenge eines Stmplexes |&| € A ist hombomorph dem topolo-
gischen Produkt |ExS|, und zwar so, daf} hierin die Urbildmenge S
etnes beliebigen Punktes n aus |&| das Produkt |mxS| ist.

Wir sagen dann: Es liegt eine Faserung von L" in Sphiren S¢ vor.
S heillt die Faser, f, die Faserabbildung und A¥ der Faserraum; er ent-
steht aus L™ durch Identifizieren der Punkte einer jeden Faser. Von der
Tatsache, dafl die Faser S eine Sphére ist, werden wir erst spater vollen
Gebrauch machen; vorderhand ist fiir uns nur wichtig, daB S im Sinne
der kombinatorischen Topologie als Zyklus aufgefalit werden kann.

Fiir jedes einzelne Simplex |&| © A werde der Urbildkomplex | &xS|
in (krumme) Zellen unterteilt. Fiigt man die so zerlegten Teilkomplexe
| ExS| zum Komplex L zusammen, so iiberschneiden sich gewisse dieser
Zellenunterteilungen. Wahlt man dort, wo solche Uberschneidungen auf-
treten, die Zellendurchschnitte als neue Zellen, so entsteht eine gemein-
same Verfeinerung der sich iiberdeckenden Unterteilungen. Damit ist
eine Zellenzerlegung von L gefunden, die der Faserung angepaflt ist. Wir
bezeichnen sie mit L.

L’ und A’ seien die baryzentrischen Unterteilungen von L und A.
Die dadurch erzeugten Abbildungen der Gruppen (L) auf £(L’) und
2(A) auf £(A’) nennen wir % und w. Die Eckpunkte von L’ und A’ wer-
den wie in § 5 auf natiirliche Weise angeordnet. Sodann werden beide
Ordnungen umgekehrt. Es kommt also der Schwerpunkt e; einer Zelle
|2?| © L stets dann vor dem Schwerpunkt e, einer Zelle |x?| ¢ L, wenn
p < q ist.

f sei diejenige simpliziale Approximation von f,, welche jeden Eck-
punkt ¢ von L’ auf den letzten Eckpunkt des Tragers von f,e in A’
abbildet. f erhilt dann die Ordnung im Kleinen. Geméaf3 dieser Definition
ordnet f dem Eckpunkt e © L’ dann und nur dann den Schwerpunkt
des Simplexes | £| — A zu, wenn e innerer Punkt des Urbildes | £xS| von
| &] ist.

Nunmehr ist nach (8.2) auch ¢ (seit Ende des § 8 schreiben wir ¢
statt @) erklirt, und zwar fiir alle jene Komplexe aus A’, welche sich in
der Form I'n A’ darstellen lassen. Geht man auf die Definition des
N-Produktes (§ 4) zuriick, so sicht man, dafl die so darstellbaren Kom-
plexe genau die baryzentrisch unterteilten Simplexe & von A, sowie
deren Linearverbindungen sind.

Ganz gleich ergibt sich, daB die als ¢-Bilder in L' auftretenden Kom-
plexe, welche nach (8.2) von der Form C N L' sind, Linearverbindungen
der baryzentrisch unterteilten Zellen aus L sind. Wir werden zeigen:
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Ist &% esm Simplex aus A, so 18t pw&? der geeignet orventierte Urbildkomplex
| £7x 8| von | &7|.

In der Tat. Es sei &? Seite des Simplexes | & aus 4, 72 mit g =v» — p
ein Simplex aus |w&”|, fiir welches

W& = 11N wé

gilt. Aus der Definition des N-Produktes, aus der Tatsache, dall |w&”|
baryzentrische Unterteilung von | £&¥| ist, und aus der Vorschrift iiber die
Eckenordnung folgt, dafl der erste Eckpunkt ¢, von 72 der Schwerpunkt
des Simplexes | £?| sein muB.

Nun ist nach (8.2), wegen 72N w& = n2N A/,
(pw§p — ¢(7]Q n w&v) — f’nq n Ll .

Dabei ist f'57= 2 y2, summiert iiber alle Simplexe 2 c L/, fiir die fy? =
n?. GemalB der Definition der simplizialen Approximation f von f, mufl
der erste Eckpunkt e, eines solchen Simplexes y?, wegen fe, = ¢&,, im
Urbild | £&#x8| von | é?| liegen.

Entweder ist ¥2 N L’ = 0 oder es gibt eine Zelle 27+ in L mit

y?N L' = uzr+d

Letzteres ist genau dann der Fall, wenn der Schwerpunkt von |x?+d|
der erste Eckpunkt e, von |y ist. Mit ihrem Schwerpunkt liegt aber die
ganze Zelle |z7+4| in | £"xS]|.

Damit ist gezeigt: @wé? ist ein (p + d)-dimensionaler Komplex in
| £&#xS|. Daraus folgt mit (8.2) und (5.2) (Beweis wie fiir (7.2)):

reowé? = (— 1)¥paré? c |ré?xS|, (12.1)

d. h. pw&? ist (p + d)-dimensionaler Relativzyklus in der (p 4 d)-dimen-
sionalen Mannigfaltigkeit | £#xS| bis auf deren Rand (vgl. A. H., p. 193),
somit von der Form

Q&P = au(£xS) . (12.2)
Hieraus folgt weiter
(— 1) pwré? = rowé? = rau(&?xS)
= au(ré?x9), (12.3)
d. h. der in (12.2) auftretende Koeffizient a ist fiir alle Seiten des Sim-

plexes | £?| bis aufs Vorzeichen derselbe. Insbesondere gilt fiir p = v, wie
man sofort bestatigt,
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pwé” = u(&xS) (12.4)

bei geeigneter Orientierung von § iiber |£*|. Orientiert man schlie@lich
samtliche & < 4 so, daB X' & = A gilt, und wihlt man iiber jedem &
diejenige Orientierung von S, welche (12.4) befriedigt, so wird

L' = A’ = ¢l w& = X u(&'x8)

ein Zyklus, woraus folgt, dal die Orientierungen von § iiber den Durch-
schnitten zweier & miteinander iibereinstimmen. Hieraus, aus (12.2),
(12.3) und (12.4) ergibt sich schliellich: Es ist

P& = (— 1)80-20y (E7x ) . (12.5)

Damit ist unsere Behauptung bewiesen und die geometrische Bedeutung
der Abbildung ¢ im Falle einer Faserung klargelegt.

Im néchsten Paragraphen werden wir uns folgerder abgednderten
Definition von ¢ bedienen: Es sei fiir alle Simplexe £ c A:

@& = u(£x8) (12.6a)

es sei fiir algebraische Komplexe I' = Ya,¢&, :
oI’ = Xa,pé&,; . (12.6Db)

Nach dem soeben Bewiesenen stimmt diese neue Definition bis auf das
(nur dimensionsabhingige) Vorzeichen mit der alten iiberein. Fir sie
gilt, da § Zyklus ist,

reé = r(ExS) = réx8 = ¢ré,
folglich fiir I" c £(A)
rel’= erl’. (12.7)

Hilfssatz 4, nach welchem foI" = 0 fiir alle I', ist nunmehr aus Dimen-
sionsgriinden klar. Man beachte, dafl bis anhin nur die Zykleneigenschaft
der Faser S benutzt wurde.

§ 13. Der Isomorphismus H bei einer Sphiirenfaserung

Wir erinnern an die in § 8 eingefiihrten Begriffe und Bezeichnungen:
Wir nennen §, resp. ¥? jene Untergruppe von B(A'), resp. B(A'), welche
die f-Bilder von Zyklen aus L’ enthalt. §, resp. K2 ist die Untergruppe
von B(A), resp. B¥(A), welche die Zyklen { aus A enthalt, deren ¢-Bilder
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homolog 0 sind in L’. Fiir {? ¢ K? ist also ¢l? = rC?*¢ (e =d + 1 ge-
setzt). Wir nennen fC?+e¢ = h{?,

In §8 wurde gezeigt: h(? ist ein Zyklus, der durch die Homologie-
klasse von ¢? bis auf Zyklen aus & bestimmt ist. Ferner ist A(? C §, falls
(? ~ 0. Folglich erzeugt %2 eine homomorphe Abbildung H von K? in
Br+e/ FP+e. Wir werden nunmehr diesen Homomorphismus H genauer
untersuchen, indem wir von der Tatsache Gebrauch machen, dafl f durch
eine Spharenfaserung erzeugt wird. ¢ sei eine pseudoidentische Abbildung
von A’ auf A. Wir betrachten im folgenden die Abbildung f* = of,
schreiben dafiir aber wieder f. (¢ wird beibehalten.) Nach Satz 5 wird
dadurch am Homomorphismus H nichts gedndert.

Da sich alle unsere Betrachtungen auf Homologien stiitzen, wiirde
geniigen vorauszusetzen, dafl die Faser S eine Homologiesphére ist.

Das Ziel dieses Paragraphen ist der folgende Hauptsatz iiber Sphéren-
faserungen :

Satz 23 : Ist die Faser S eine Sphire, so ist H eine isomorphe Abbildung
von K? auf Br+e/Frte(e=d + 1).

Der Beweis ergibt sich aus den nachstehenden zwei Behauptungen:

Satz 24: Ist { Zyklus aus & und hl < §, so ist L ~ 0, d. h. H st eine
tsomorphe Abbildung von K& in B/F.

Satz 25: Zu jedem Zyklus Z aus A gibt es einen Zyklus { < K, so daf
ht =Z gewdhlt werden kann, d. h. H ist eine Abbildung von K auf B/F.

Nach Satz 22 wiirde es zum Beweise von Satz 23 geniigen, die folgende,
als Spezialfall in Satz 25 enthaltene Aussage zu bestatigen : Ist die Faser S
eine Sphare, so gibt es einen Zyklus {, c &, so dafl h{, = A. Wir wollen
hier aber ganz unabhangig von multiplikativen Eigenschaften von H,
also mit der rein additiven Homologietheorie den Satz 23 beweisen. Da-
durch erhalten wir viel eher einen Einblick in die Struktur der Faserung,
als wenn wir die Produkttheorie als Hilfsmittel heranziehen.

Dem Beweise der Sitze 24 und 25 schicken wir drei Hilfssidtze voraus.

Hilfssatz 10: C*(t > 0) sei ein Komplex in | ¢&*| (s = 0) mit »C* c
| pré®| und t < s + d. Im Falle s = ¢ sei ferner fC* = 0. Dann gibt es
einen Komplex B! c | ¢r&®| derart, daf rB* = r(".

Beweis: Die Behauptung ist klar, wenn ¢ = 0: Man setze B’ = 0.
Im Falle s = 0 ist | prl®| leer; da dann aber nach Voraussetzung C°
Zyklus ist, kann B! = 0 gewihlt werden, womit die Behauptung bewiesen
ist.
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Es sei nunmehr s > 0 und ¢ > 0. Die vier Klassen einer Homologie-
basis von | r&f| = |r&*xS| werden reprasentiert durch die Zyklen

axp, wxS¢, r&xp, r&x8e,

Hierin bedeuten # und p Eckpunkte von &2, resp. S¢. zxp und mxS94
reprasentieren zugleich die zwei Klassen einer Homologiebasis von
| p&°| = |&°xS|. Nun ist aber rC"* Zyklus in | ¢pré®| und Dim 7C* =t — 1 <
8 +d — 1 = Dim(r&xS8%). Somit gilt in | préf| im
Falle s = ¢:
Firt—1=0: rCt ~ a(r&xp) + b(nxp),
,y, t—1=4d: rCt ~ a(r&xp) + b(wxS9) ,

,, t—1:£ 32 : rC% ~ a(r&xp) .

Da sowohl rC?, also auch r&xp in | p&®| beranden, muBl dies auch b (wxp),
resp. b (wxx8%) tun. Dies tritt aber nie ein, solange b # 0 ist. Folglich muf}
in den beiden ersten Fallen b6 = 0 sein. Somit bleibt

rCt ~ a(r&xp) .
Damit ist aber
frCt = ark® .

Wegen frC* == rfC* = 0 mull daher auch a verschwinden. Es ist somit
rCt ~ 0 in |r&| firs=1¢.

Einfacher geht der Schlufl im
Falle s 7 ¢: Man macht dieselben Unterscheidungen fiir £ — 1 wie oben.
Dabei tritt diesmal der Term a (r&*xp) gar nicht auf. Wieder folgt b = 0,
also rC* ~ 0 in |@ré®|, w.z.b.w.

Eine Verscharfung dieses Satzes ist der

Hilfssatz 11: C%t > 0) sei ein Komplex in |[¢é&*| (s = 0) mit »C? c
|eré®| und ¢ <s + d. Im Falle s = ¢ sei ferner fC* = 0. Dann gibt es
einen Komplex 4 = A c |p&®| derart, daBl C¢ — rA < |pré’| und
fA = 0 ist. Dann gilt also f(C* — rd) = fC°".

Beweis : Nach Hilfssatz 10 gibt es unter diesen Voraussetzungen einen
Komplex B! c |gré®|, so daBl C* — B! Zyklus ist in |@&®|. Daher gilt

fir ¢t = 0: Ot — Bt ~c(nxp) ,
,, t=4d: Ct — Bt ~c(nxS%) ,
by L#0,d: Ct— B*~0.
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In den Fallen t = 0 und ¢ =d wollen wir die Zyklen c¢(wxp), resp.
¢(nx8?) zu B hinzuschlagen; dies ist erlaubt, weil beides Zyklen aus
| pr&®| sind. In allen Fallen wird sodann C* — B ~ 0. Es gibt also einen
Komplex A = A+ c |@é&?|, der von C* — B! berandet wird, d. h. welcher
die Gleichung

Ct—rA4 = B C |gré|
erfiillt.

Aus Dimensionsgriinden wird f4 = 0, wenn ¢ > s ist. Fir ¢t < s gilt
aber im allgemeinen f4 = A £ 0. Es sei D der Komplex Axp in der
durch L’ gegebenen Unterteilung des topologischen Produktes |&#xS¢%|.

Dann gilt
D = At c [&], (t < s);
damit ist: »4 < [r£%|, und

rD = r(dxp) = rdxp c |eré|.
Damit ist
C*—r(A — D)= B*+ rD c |pré&|
und
fd —D)=0.

Dies war aber die Behauptung (in ihr steht zwar 4 statt 4 — D).
SchlieBlich gilt der

Hilfssatz 12 : C'*seiein Komplex in | &% mit rC*  |préf|und ¢t = s -+ d.
Dann ist O = a@é®.

Bewets : | @& = |£x89| ist eine t-dimensionale berandete Mannigfal-
tigkeit. In ihr ist C* Relativzyklus bis auf deren Rand, somit von der

Form
C* = apés.

Wir fithren noch folgende Abkiirzungen ein: A2 sei der Komplex der
hochstens g-dimensionalen Simplexe von A; ferner bezeichne ¢A? den-
jenigen Teilkomplex von L', welcher sich aus den ¢-Bildern aller Sim-
plexe von A¢ zusammensetzt. Ist C ein Komplex in ¢A¢, so sagen wir
kurz ,,C steht iiber A2‘. Wegen ¢A*= L’ steht jeder Komplex C aus L’
iiber A*. Sind C und D (algebraische) Komplexe in L', so wollen wir
unter C(D) denjenigen (algebraischen) Teilkomplex von C verstehen,
der in |D| liegt.
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Nun gehen wir an den

Beweis von Satz 24: Die Behauptung lautet: Ist (? Zyklus in 4,
plP=rCtt=p+e>p)und h{? = fC* =2 §F, so ist (P~ 0.

In der Tat! Nach Voraussetzung gibt es einen Zyklus Z’c L mit

fZt ~ Z*; also berandet f(C! — Z?) einen Komplex 4 in A. D c L’ sei
ein beliebiges Urbild von 4. Dann gilt mit

C! = C'— Z°' —rD:

rC{ = 10" = ¢ ?
und
fCt = f(C* — &' —1rD) = 0 .

Ersetzt man daher in A(? = fC* den Komplex C* durch Cf, so wird
htp = fCE= 0.

C¢ steht im allgemeinen iiber A”, sein Rand aber iiber A?(p < v).
Wir werden nun C§ der Reihe nach durch Komplexe Cf, C%, ..., Cf, ...,
C}_,_, ersetzen, so daf stets rC}=@{? und fC} = 0 ist, aber C{ nur noch
iiber A”—* steht. Dies geschieht nach folgender Vorschrift: Ist v — p — 1
=0, sogei C;_,_;, =0Cf. Ist v —p — 1>k >0 und C} schon kon-
struiert, so erfiillt Cf(p&i™) fir jedes Simplex & * c A die Voraus-
setzungen von Hilfssatz 11. Es gibt daher zu jedem dieser Simplexe &;
einen Komplex A4, derart, daB C}(¢é&,) — 74, in |gré,| enthalten und
fA, = 0 ist. Bilden wir die Summe aller dieser 4; und setzen

Cipn=Ci—r XA, ,
so gilt
’I'Ci_l_l — 'rO]i = (Pcp ’

fOl =fCk—r 2 fA,=fCi =0

und: Cf,, steht nur mehr iiber Av-*+1 |

Wird C¥_,_, auf diese Weise konstruiert, so erfiillt C%_,_, (¢&2+1) fiir
jedes Simplex &+ c A die Voraussetzungen von Hilfssatz 12; denn der
Rand von O _,_,, ¢¢?, steht iiber A?undesistt =p+e= (p+1) + d.
Somit ist

Cy—p-1(9&)) = a;9¢; .
Setzt man daher
I == Z ay 55 ’
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summiert iiber alle (p 4 1)-dimensionalen Simplexe &, c A, so wird,
weil C%_,_, ganz iiber A?+! steht
Oy por = Za;98; = @I,

Dann ist aber

orl’ =rol' =r0!_,_, = ¢i? ,
folglich

r['=1{"~0,

w.z.b.w.

Beweis von Satz 25: Die Behauptung lautet: Zu jedem Zyklus Z¢ c 4
gibt es einen Zyklus (? c & und einen Komplex C?2c L', so daB

ol? = 704, o = 72,

In der Tat! C¢ sei Urbild von Z¢, d. h. fC% = Z2. Im Falle ¢ = 0 ist
C? Zyklus, somit Z2 c §; {? = 0 erfiillt daher die Behauptung.
Es sei nunmehr ¢ > 0. Wir setzen ¢ — 1 = ¢ und rC{ = Z*. Dann gilt

8t = rfC8 = rZa = 0 .

Man verfahrt nun mit Z* vermoge der Hilfsséitze 11 und 12 genau gleich
wie mit; C§ im Beweise von Satz 24 : Man subtrahiert solange Réander von
Komplexen A (mit f4 = 0), bis Z¢ entweder zu 0 oder zu einem Zyklus £*
wird, welcher das ¢-Bild eines Komplexes (? c A ist. Im ersten Falle
folgt Z¢c §; man setzt wieder {? = 0. Im zweiten Falle ist, wegen
eri? = rel? = rZ* =0, {? Zyklus in A4, also Z?2 = h{?, w.z.b.w. Gleich-
zeitig ergibt sich hieraus

Satz 26 : Ist Z Zyklus in L' und fZ ~ 0, so gibt es einen Zyklus Z c A
mit oZ ~ % .

Um némlich obigen Beweis anwenden zu koénnen, braucht man nur
zu beachten, daBl es einen zu Z homologen Zyklus gibt (siehe im ersten
Teil des Beweises von Satz 24), dessen f-Bild verschwindet. Dieser spielt
dann die Rolle von Z* in obigem Beweise.

KAPITEL IV
Anwendungen

Wir fassen nunmehr die Resultate der Kapitel 11 und III zusammen.
Wir setzen daber voraus: Die geschlossene orientierbare Mannigfaltigkeit
L» sei in Sphéiren S¢(d > 0) gefasert (vgl. § 12); A*(v = n — d) sei der
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Faserraum. Im folgenden werden wir eine Reihe geometrischer Eigen-
schaften einer solchen Sphirenfaserung aufzihlen (§§ 15 und 16). Dazu
bediirfen wir noch einer letzten Vorbereitung (§ 14).

§ 14. H-Ketten

Nach Satz 23 existiert eine Homologieklasse {, in A4 mit 4 < H¢,.
Da K ein Ideal ist in R(A), sind simtliche Homologieklassen der Form
Z o £y in & enthalten. Ist umgekehrt { — K, so gilt nach Satz 20, Formel
(11.8): £ = H{ o ;. Folglich ist K das durch. £, erzeugte Ideal von R(A).

Ebenso 1a8t sich das Ideal & von R(A) durch f, charakterisieren: Nach
Satz 19 gilt fiir eine Homologieklasse Z aus A: Z < H(Z - {,). Hieraus
folgt, da H eine homomorphe Abbildung von K in R(A)/F ist (Satz 11):
Verschwindet Z o {,, so ist Z < §. Nach Hilfssatz 9 gilt hiervon die
Umkehrung. Folglich ist dann und nur dann Z c §, wenn Zo {, = 0.

Wir betrachten nun die Potenzen von ¢,,

C8=A; Ca=é’o> C§=CO°CO3 ngcg°Co, "°’Cgla"' (14'1)

und nehmen an, daB ¥ deren letzte sei, die nicht Null ist. Dies bedeutet
(M. Weil Dim y=» — e, ist Dim (f=» — ke, e =d + 1. Folg-

lich ist £k = [ die hochste fiir M in Frage kommende Zahl. Es gibt
daher eine wohlbestimmte Zahl M, 0 < M < [ . ] derart, daB

ko firk<< M, k=0firk>M .

Wir nennen die Folge A, &,, 2, ..., (¥, die H-Kette von A; M heiBe
ihre Linge. M = 0 bedeutet also {,= 0, d.h. 4 c §.
Es sei Z ¢ ]. Wir betrachten die in der Dimension absteigende Folge

Z,ZOCO,ZOC'%,...,ZOC?,... (14.2)

und nehmen an, daB hierin Z o }' das letzte nicht verschwindende Glied
ist. Dies bedeutet, Z o {3 — §. Wir nennen die Folge Z,Z 0 ,, ..., Z o (¥
die H-Kette von Z (¢ &); m heille ihre Lange. Es gilt stets m << M;
denn mit (¥ verschwindet auch Z o 5.

Aus der vorn gegebenen Charakterisierung von & und & durch ¢,
ergibt sich: Samtliche Glieder einer solchen H-Kette mit Ausnahme des
ersten sind Klassen aus & ; nur das letzte Glied ist in & enthalten. Weiter
gilt: jede Klasse { c R(A) gehort der H-Kette einer Klasse Z(q K) an.
Denn dies ist nach Definition der Fall, wenn ¢ ¢ &; andernfalls bildet
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man eine in der Dimension aufsteigende Folge Z, c H{ ,Z,c HZ,, ...,
bis man ein Z, findet, welches nicht mehr in ! enthalten ist. Dies tritt
spatestens dann ein, wenn Dim Z, > » — d. Dann folgt durch mehrmalige
Anwendung von (11.8): { = Z, o C’;, d. h. ¢ ist in der H-Kette von Z,
enthalten. Zusammenfassend gilt der

Satz 27 : Jede Klasse Z & & und keine andere ist Anfang, jede Klasse
¢ c & und keine andere ist Ende einer H-Kette. Jede Homologieklasse
aus / gehort einer H-Kette an.

Nach Definition ist ¥ c&. Es gibt daher eine Homologieklasse z, % 0
in L mit Fzy= (Y. (F ist die durch die Faserabbildung f (§ 12) induzierte
(additiv) homomorphe Abbildung von R(L) in R(A).) Fz, ist also gleich
dem Ende der H-Kette von A. Insbesondere gilt fiir M = 0: Fz, = A.
Die Dimension von z, betragt:

Dimzy=Dim ¥ =y —Me, (v =n—d, e=d +1). (14.3)

Wir betrachten den folgenden Spezialfall: Alle H-Keiten von A besitzen
dieselbe Linge M > 0, d. h. fiir jede Klasse Z &= & sei Z o ¥ # 0, aber
in § enthalten. Beispiele, in denen diese Voraussetzung erfiillt ist, werden
wir in den §§ 15 und 16 kennen lernen.

Es sei I{ diejenige Untergruppe von B¢, fiir deren Elemente Z gilt:
Z ot = 0. Dann wird

cc...cYPcTl ,c-.- Ty T, - (14.4)

Hierin sind insbesondere I = 0, Tf = §? und, da alle H-Ketten die
Léange M haben, %, = K2, Ty, = BT.
Nach Definition der Gruppen I ist fir Z c I} (0 <k < M)

TkZZZO Cg —_ 0 5
fir Z c T, somit
TkZ =Z0 C{;C %q_ke .

Kern*) dieser homomorphen Abbildung 7, von ., in Fo*e ist Y.
Nach Voraussetzung gibt es zu jedem Element { c F?*¢ eine in { endi-
gende H-Kette der Linge M ; diese enthalt aber ein Element von Tf_,.
Somit ist 7', eine Abbildung auf F2—*¢. T', vermittelt daher die Isomorphie

T [ TR T (14.5)

*) Kern eines Homomorphismus ist die Untergruppe derjenigen Elemente, die auf
die Null abgebildet werden.
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Insbesondere gilt, wegen T, , = B¢ und T = K2:

Satz 28 : Haben alle H-Ketten von A die Lange von M, so gilt
B/R ~ F+M¢. (Dieser Isomorphismus wird durch 7',, vermittelt.)

Aus (14.4) und (14.5) folgt weiter, wegen T}, ;= B2 und IT{=0:

Satz 29: Ist J =R, und haben alle H-Ketten von A die Linge M,
so gilt
B T2+ Foo+ Foe+ ...+ FO (14.6)

Nunmehr beweisen wir den

Satz 30: Haben alle H-Ketten von A die Liange M, so laBt sich jede
Homologieklasse z — R(L) darstellen in der Form

2=0Z oz, + PZ* , (Fzo=C¥). (14.7)

Hierin sind die Klassen Z und Z* bis auf Elemente aus & bestimmt.
(zo sei beliebig, aber fest gewahlt.)

Beweis : 1. Die Darstellung ist moglich! Es ist Fz ¢ §. Somit gibt es
ein Z ¢ R(A) mit Fz = Z o {¥. Folglich gilt nach Formel (7.5):

F(z— ®Zoz)) =Fz —ZoFz, =0,
also nach Satz 26
2= DL oz, + OZ*.

2. Die Darstellung ist bis auf Klassen aus & eindeutig; denn ist z = 0,
so ergeben sich bei der unter 1. beschriebenen Bestimmung von Z und Z*
nacheinander die Bedingungen Z c &, Z* c K.

Es sei Dim z2=¢q und 2z = &®Z oz, 4 ®Z*. Beachtet man, dal
Dim @Z = Dim Z + d, ebenso Dim ®Z* = Dim Z* 4+ d, und daf
nach (14.3) Dim 2z = n — d — Me, so findet man: Es ist

Dim Z* = ¢ — d,
DimZ =q + Me.

Nach Satz 30 wird also jeder Klasse 22 aus L eineindeutig und isomorph
eine Klasse (enthaltend Z) aus B+¥°/K2+M¢ und eine solche (enthaltend
Z*) aus B4/ K{79 zugeordnet. Auf Grund von Satz 28 gilt aber

Bet+Me /Rq+Me ~ gq , Bad /Rq—d ~ g.q—df—-Me .
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Hieraus folgt

Satz 31: Haben alle H-Ketten von A die Lange M, so besteht die
Isomorphie

BUL)~FL+Fr U2 (e=d+1). (14.8)

Damit 148t sich die additive Struktur von R(L) ganz durch diejenige
von R(A) beschreiben, wenn man ¢, und damit § kennt. Man wird sich
nun fragen: Gilt Entsprechendes fiir die multiplikative Struktur?

z, und 2z, seien zwei Elemente von R(L). Um ihren Schnitt zu berechnen,
verfahrt man wie folgt: Man stellt z, und 2, in der Form (14.7) dar (mit
festem z,) und multipliziert nun nach den in Schnittringen iiblichen
Rechenregeln aus, beachtet aber dabei, dafl @ ein Schnittringhomomor-
phismus ist (§ 7), und daB sich auch z, ¢ z, = 2} in der Form (14.7) dar-
stellen 1af3t:

B=DPZyoz, + PZS .

Dadurch erhilt man wieder eine Darstellung der Form (14.7) fiir den
Schnitt 2z, o 2,. Hieraus folgt: Die multiplikative Struktur von R(L) ist
durch diejenige von R(A) bestimmt, sobald das Produkt 23, resp. dessen
Darstellung @Z, o 2, + D®Z; bekannt ist.

Es gibt gewisse, allein durch die Groflen », d und M bestimmte Fille,
in denen man sagen kann, daBl 22 = 0 sein muBl. Hieriiber gibt die fol-
gende Aufstellung Auskunft. Wir bemerken: Wegen Dim 2y = v — Me =
n — (d + Me), ist Dim 22 = n — 2(d 4+ Me); somit gilt

n

2

2. Ist d ungerade, so ist dies auch Me -+ d. Dann gilt aber nach (6.11)
und (5.9): 223 = 0.

2*, Ist also d ungerade und § =R oder = ®,,, m ungerade, so ist 2§ = 0.

Ist d gerade, so ist nach Satz 21: 2, = 0. Wihlt man J = R oder
= ®,,, m ungerade, so ist auch schon {, = 0, folglich M = 0 und
Dim 2, = ¥ = n — d, somit n — (Dim z,) = d gerade. Hieraus folgt
nach (6.11) und (5.9) fiir alle Z c R(L): £ ozy=12% o Z. Ist nun

nach (14.7) 22 =& Z o 2z, + D Z*, so wird mit zg =2, — @—g— : Fzf =
Z

Z\2 2
z:2=z§—¢2o20+¢(—§) =¢(Z*+(-§)) .

1. Ist Me + d > —, so ist Dim 23 < 0, also z; = 0.
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3. Ist also d gerade und J = R oder = (,,, m ungerade, so kann z, so
gewihlt werden, daB z, = @Z; fiir ein geeignet gewihltes Element
Zy © R(A). Alsdann ist (Dim Z;) + d = Dim 22 = n — 2d, somit:

n

3

z, 80 gewahlt werden, dal 22 = 0.

3*. Ist d gerade, d>— und J =R oder = ®,,, m ungerade, so kann

Auf die Bedeutung von 2 = 0 werden wir noch zu sprechen kommen.

§ 156. Geometrische Eigenschaften von Sphiirenfaserungen
1. Eigenschaften, die fir alle Sphdrenfaserungen gelten.

Satz 32: Die durch eine Sphdirenfaserung erzeugte Abbildung der gefa-
serten Mannigfaltigkeit L auf den Faserraum A ist wesentlich.

Beweis : Fir den durch die Faserabbildung f erzeugten Homomorphis-
mus H gilt (Satz 25): Es gibt eine Homologieklasse {, in A derart, daf3
A < H¢,. Wir haben aber friiher (§ 9) festgestellt, dafl hieraus die Wesent-
lichkeit von f folgt.

Satz 33: Notwendig fir die Faserbarkeit der Mannigfaltigkeit L wn
Sphiren der Dimension d ist das Nichtverschwinden einer der Bettischen

Zahlen p?, p¥+1 p%+2 . von L.

Dieser Satz ist enthalten in

Satz 34 : Ist die Mannigfaltigkeit L in d-dimensionale Sphdren gefasert
und ist die qte Beitische Zahl des Faserraumes A, n%, von 0 verschieden,
80 muf mindestens eine der Bettischen Zahlen p?+e, pa+2d+1 pa+3d+2
von L positiv sein.

Beweis : Es sei § = R. Nach Satz 27 ist jede Homologieklasse (¢ 7 0
aus A Glied einer H-Kette, deren Anfang eine Klasse Z - & bildet. Fiir
diese gilt aber ®Z # 0 und Dim Z=gq + k(d + 1), k ganz. Daher ist
Dm®Z=q+kd+1)+d=q+ (+1)d+ k, w.z.b.w.

Satz 35 : Zwischen den Bettischen Zahlen p? der in Sphdren 8¢ gefaserten
Mannigfaltigkeit L und den Bettischen Zahlen n? des Faserraumes A besteht
die Ungleichung

Pt < 7t + 799, (15.1)

d. h. die Bettischen Zahlen von L sind nie grofer als die entsprechenden
des topologischen Produktes AxS4.
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Beweis: Es sei § = R. F bildet die Homologiegruppe B2(L) homo-
morph auf F? ab. Kern dieses Homomorphismus ist nach Satz 26 die
Gruppe N? der g-dimensionalen @-Bilder, welche gemaf3 Definition von
K isomorph ist der Restklassengruppe B2-4(A4)/K2-¢. Ferner gilt nach
Satz 23: K¢ ~ BYA)/F?. Bezeichnen wir mit k2 den Rang von K9,
so gilt auf Grund der Addivitdt der Gruppenringe:

p? = (n? — k2°) + (n?7¢ — k279),

| 15.2
pl=a + a?% — (k¢ + k), (e=d + 1) . te-

Hieraus folgt Satz 35.
Berechnet man die Charakteristik 2'(— 1)%p? von L, so folgt aus
(15.2), wegen k> = 0:

Satz 36 : Die in d-dimensionale Sphdren S gefaserte Mannigfaltigkeit L
und das topologische Produkt AxS des Faserraumes A mit der Faser S
besitzen gleiche Charakteristiken.

Dieser Satz gilt auch dann, wenn die Faser keine Sphére ist, wie man
leicht durch direkte Berechnung der KEulerschen Charakteristik als
Wechselsumme der Zellenanzahlen von L feststellen kann.

Folgerungen : Mannigfaltigkeiten mit ungerader Charakteristik lassen
.sich nicht in Sphéren fasern. Mannigfaltigkeiten mit nicht verschwinden-
der Charakteristik lassen sich hochstens in Sphéaren gerader Dimension
fasern.

2. Eigenschaften, die davon abhingen, ob die Faser S im gefaserten Raum
L berandet oder nicht.

Satz 37: Der Koeffizientenbereich 5§ sei beliebig, aber fest (=R, = ®
oder = G, m > 2). Gibt es in der gefaserten Mannigfaltigkeit L einen
Zyklus z,, welcher durch die Faserabbildung f auf den einfach gezihlten,
orientierten Faserraum A projiziert wird (fzg = A), so kann weder die
Faser 8, noch ein von 0 verschiedenes Vielfaches derselben in L beranden.
Hiervon gilt die Umkehrung fir I = R oder = ®,,, m = 2; sie st auch
far § = ® richiig, falls A in der Dimension v — d — 1 keine Torsion
besitzt.

Beweis : Nach Satz 16 und Hilfssatz 8 gilt fir J =R oder = §,,,
m = 2:

BO(A) /KR~ F* € B¥(A4) . (15.3)

Ferner ist Bo(A) ~ B*(A) ~ J. Wahlt man also J =R oder = G,,,
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m =2, und gilt aS +* 0 fir a 0, d.h. K = 0, so wird F = B>,
somit 4 c & ; mit andern Worten: A ist Projektion eines Zyklus z, aus L.

Ist umgekehrt K¢ = 0, so folgt aus (15.3) : §* ist echte Untergruppe
von B? (im Falle J = R sogar die Nullgruppe); also ist 4, das erzeugende
Element von B, nicht in " enthalten. Damit ist Satz 37 bewiesen fiir
S=Roder =G,,,m=>2.

Ist K° £ 0 fir § = ®, dann ist auch K° £ 0 fir § = R; es gibt dann
keinen rationalzahligen, also erst recht keinen ganzzahligen Zyklus z, mit
fzo = A. Ist K0 = 0 fiir § = ®, dann ist auch K° = 0 fir J = R; es
gibt dann einen rationalzahligen Zyklus z, mit fz, = A, also eine ganze
Zahl m und einen ganzzahligen Zyklus z) mit fzy = mA. Nach Satz 25
gibt es aber eine Klasse {, der Dimension » — d — 1 mit A ¢ H,. Nach
Satz 24 folgt aber aus mA < § : Esist m{, = 0. Da aber A in der Dimen-
sion v — d — 1 torsionsfrei vorausgesetzt wurde, mul m = 1,also 4 c §
sein. Damit ist die Umkehrung auch fiir § = ® bewiesen.

Satz 38 : Der Koeffizientenbereich § sei beliebig, aber fest. Gibt es in L
einen Zyklus z, mit fzo = A, so sind die Homologieringe R(L) und R(AxS)
additiv und dimensionstreu .somorph, und umgekehrt, wenn (wie in Satz 37)
tm Falle 3 = ® der Faserraum A keine (v — d — 1)-dimensionale Torsion
besitzt.

Beweis : Es gebe einen Zyklus z, mit fzy = A4, d. h. es sei 4 = §. Nun
gilt aber: § ist ein Ideal in R(A); A ist Einselement von R(A). Aus 4 c §F
folgt daher § = R(A). Nach Satz 23 gilt dann & ~ R(A)/F =~ 0. Der
Homomorphismus A ist somit die Nullabbildung, d. h. alle H-Ketten
von A haben dieselbe Lange 0. Hieraus ergibt sich nach Satz 31 (mit
M = 0):

BYL) ~ F? + F ¢ = BYA) + B HA) =~ BYAxS). (15.4)

Zum Beweise der Umkehrung stiitzen wir uns auf folgende, sich aus
Satz 25 ergebende Tatsache: Die Gruppe N¢ der ¢g-dimensionalen @-Bilder
ist Kern des Homomorphismus F von B4(L) auf §? c BA). Ferner ist
K2-2 Kern des Homomorphismus @ von B2-¢(A) auf N2. Somit gilt

BYL) /M =~ F2 < BYA) , BTUA) /K= N BYL). (15.5)
Es sei nun A ¢ §, also §” eine echte Untergruppe von B¥(A4). Im Falle
3 = R ist dann F = 0, ebenso (auf Grund der Torsionsfreiheit von 4
in der Dimension » — d — 1) im Falle J = ®. Bei beliebigem J besitzt
daher " kleinere Ordnung als $B*(4). Aus den Isomorphien (15.5), fiir
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q = v, folgt daher, daB B*(L) und B*(AxS) ~ B¥(A) 4+ B*-4A) nicht
isomorph sein koénnen, also auch nicht R(L) und R(AxS).

Mit J = R ergibt sich aus den Satzen 37 und 38 der

Zusatz zu Satz 35 : Zurschen den Bettischen Zahlen von L und A besteht
dann und nur dann die Qleichung

p? = a2 + m2¢ far alle q,
wenn die Faser 8 in L micht rational homolog 0 ist.

Die Satze 37 und 38 zeigen deutlich, wie wichtig es ist, zu wissen, ob
bei einer vorgelegten Sphirenfaserung die Faser § im gefaserten Raum L
berandet. Die folgenden zwei Satze geben Fille an, in denen nie S ~ 0
sein kann.

Satz 39 : Besteht zwischen der Dimension n des gefaserten Raumes L und
der Dimension d der Faser S die Ungleichung d > —g— , 80 qibt es in L einen
Zyklus z, mit fzy = A; dann ist also aS ~ 0 1n L fira # 0.

Beweis : Ist A ¢ §, so ist die nach Satz 25 in A existierende Homologie-
klasse {,, welche die Relation A c H{, erfiillt, nicht die Nullklasse.
Hieraus folgt, wegen 0 < Dim{y=v» —d —1=n— 2d — 1, die Be-
hauptung.

Satz 40: Ist d gerade und J = R oder = ®,,, m ungerade, so gibt es
wm L eimen Zyklus zy mit fzg = A.

Nach Satz 37 folgt hieraus das

Korollar : 1st bei einer Sphirenfaserung die Faser S rational homolog 0,
80 18t d ungerade.

Beweis von Satz 40 : Nach der Folgerung 2 zu Satz 20 gilt bei geradem &
stets 2{, = 0. Fir J = R oder = &,,, m ungerade, ist dann schon {, = 0,
also A c &, w.z.b.w.

Folgerungen : Nach Satz 39 1aBt die additive Homologietheorie keinen
Unterschied zwischen L und AxS erkennen, solange die Dimension der
Faser groBer oder gleich der halben Dimension von L, also auch grofer
oder gleich der Dimension des Faserraumes ist. Wir werden aber sehen,

daB fiir d = —?;— = » die Homologieringe R(L) und R(AxS) multiplikativ
verschieden sein kénnen (Beispiel 2 zum Fall § ~ 0).

Nach Satz 40 kann eine Sphire gerader Dimension nie als rational
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0-homologe Faser auftreten. DaB3 dies aber jede Sphéare ungerader Dimen-
sion d kann, zeigt das Beispiel des Raumes der gerichteten Linienelemente
auf der Sphare Sé+1, (Vgl. hierzu § 16.)

3. Der Fall S+~ 0:

Wir nehmen an, die Faser S sei weder Rand, noch Randteiler in L;
im Falle § = ® besitze der Faserraum A keine (v — d — 1)-dimensionale
Torsion. Dann gibt es nach Satz 37 einen Zyklus z, in L mit fz, = 4,
und nach Satz 38 sind dann die Homologieringe R(L) und R(AxS) additiv
und dimensionstreu isomorph. Wir kénnen leicht eine Abbildung von
R(L) auf R(AxS) angeben, welche diese Isomorphie bewirkt : Nach Satz 30
wird bei fest gewahlter Klasse z, mit Fz, = 4, wegen & = 0 (=~ R(4)/F),
durch Formel (14.7)

z2= QL ozy + PI*

die direkte Summe BLA) + B2-4(A) isomorph auf die Gruppe B(L)
abgebildet. Ferner vermittelt die Formel

2= Zxp + Z*x8,

in welcher p die 0-dimensionale, S die d-dimensionale Basisklasse von
R(S) bedeuten, einen Isomorphismus von BI(A) + B4 A) auf BAxS).
Die Isomorphie zwischen R(L) und R(Ax.8) 1466 sich somit durch folgende
Zuordnung herstellen:

in L: in AxS:
DL ozy + PL* <« Zxp + Z*x8 . (15.6)

Wann wird hierdurch auch multiplikative Isomorphie erzeugt? Zur
Untersuchung dieser Frage bilden wir die folgenden Schnitte
in L: in AxS:
DL, 0 DPZy, = D(Z,02Z,), (Z1x8) o (Zyx8) = (Z, 0 Z3)x8S ,
DZ, o (PZy 0 29) = D(Z10Z) 02, (Z1%8) o (Zyxp) = (Z10Z3)x D,
(PZy0z9)0(PZyozy) = &= D(Z10Zy)02, | (Z1xP) o (Zyxp) = O .

Diese Zusammenstellung zeigt : Im Falle § #~ 0 wird durch die Zuordnung
(15.6) dann und nur dann neben der additiven auch multiplikative Iso-
morphie zwischen R(L) und R(AxS) hergestellt, wenn z3 = 0 ist. Es gilt
also der
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Satz 41: Damit dimensionstreue Ringisomorphie zwischen R(L) und
R(Ax8) (in der durch (15.6) angegebenen Weise) hergestellt werden kann,
st notwendig und hinreichend : Es gibt in L einen Zyklus z, mit fzyg = A
(f ist die Faserabbildung) und der Higenschaft: Der Schwitt von z, mit
esnem zu thm homologen Zyklus 2y berandet in L(d. h. 2y ~z2) und zgoz) ~0).

Dies tritt nach den Sétzen 39 und 40 und der Aufstellung am Schlusse
von § 14 stets ein in folgenden Fallen:

1. d> —72?'— . Denn nach Satz 39 existiert z,; ferner ist 2j = 0 nach
Fall 1 von § 14. Fir d > %

logiebetrachtungen L und /AxS voneinander zu unterscheiden.

ist es daher unmoglich, durch Homo-

2. d ungerade, J =R und S+ 0, oder J = ®,,, » ungerade, und
a8 ~ 0 fiir a = 0. Denn dies ist Fall 2* von § 14.

3. d gerade, d > —g—, 3 =R oder = &,,, m ungerade. Denn dies ist

Satz 40 und Fall 3* von § 14.

Beispiele: Man kennt folgende Faserungen in Sphéaren :

1. L = P? (= 3-dimensionaler projektiver Raum), § = §! (= projek-
tive Gerade), 4 = §2. Fiir J = R oder = ®,,, m ungerade, ist §* ~ 0,
somit nach den Satzen 37 und 38: R(P3) % R(S*x8?); und in der Tat ist
P P?) # p*(S2x81). Fir J = G, ist S* « 0; P2 hat in der Tat, wie die
Satze 37 und 38 verlangen, dieselben Bettischen Zahlen mod 2 wie 8%x8*.
Satz 41, resp. die daran anschlieBende Aufstellung sagen nichts aus iiber
multiplikative Eigenschaften von R(FP%); und in der Tat ist R(P?) %
R(S2xS') mod 2.

2. L = K* (= komplexer projektiver Raum), § = 8%, 4 = §%;d = 2,
n = 3d. Es besteht additiver, aber nicht multiplikativer Isomorphismus
zwischen R(K®) und R(S*xS2).

Eine weitere Anwendung des Falles S8 ~ 0 ist der im nachsten § behan-
delte Linienelementraum einer Mannigfaltigkeit.

4. Der Fall 8 ~ 0.

Der Koeffizientenbereich  sei beliebig und a8 ~ 0 fiir ein a 7 0.
Dann ist nach Satz 37 der Zyklus A ¢ § ; also existiert ein Zyklus £, # 0
mit A = h{,. 7 sei ein einfach gezahlter Punkt aus 4, also ¢n ~S§.
Unter diesen Voraussetzungen gilt nach Formel (11.6) fiir die Ver-
schlingungszahl der Zyklen S und ¢{,:

(S, ¢lo) = v(gn, pl,) = Schnittzahl (z, hly) =1 .
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Es besteht somit der

Satz 42: Wenn ber einer Sphirenfaserung der Mannigfaltighkeit L die
Faser S oder ein von 0 verschiedenes Vielfaches derselben in L berandet, so
gibt es im Faserraum A einen Zyklus {,, dessen @-Bild mit der Faser ein-
fach verschlungen ist, fiir welchen also gilt : v(S, ¢C,) = 1.

Wair spezialisieren Satz 42 : Zwischen der Dimension #» von L und der-
jenigen d von 8 bestehe die Beziehung n = 2d -+ 1; dann ist £, null-
dimensional, also = @ 7, wenn nunmehr a die Ordnung von 8 bezeichnet.
In diesem Falle gilt daher ¢, = a8 und v(S, aS) = 1. Ist hierin ins-
besondere @ = 1, berandet also die einfach gezihlte Faser § in L, so
besagt Satz 42, dal je zwei Fasern miteinander einfach verschlungen
sind. Diesem Spezialfall werden wir weiter unten begegnen.

§. Sphdarenfaserungen von Sphdiren.

Wir setzen voraus: Die Sphare 8" sei in Sphéren 8¢ gefasert (0 < d < n).
Den Faserraum bezeichnen wir wieder mit A'(v = n — d); = sei die
Homologieklasse des einfach gezahlten Punktes aus 4.

Offenbar ist (bei beliebigem Koeffizientenbereich J) 8¢ ~ 0 in S»,
also d ungerade (Korollar zu Satz 40). Ferner ist § = BY(4) = { ax},
und @Z = 0, falls nicht Z = aAd,a # 0. Es gibt daher auf Grund von
Satz 27 im wesentlichen nur eine H-Kette in /4, namlich diejenige von 4,
welche in -+ z endigen muf:

n—d
d+1

(alle andern H-Ketten in A sind die Vielfachen hiervon). Die Glieder
dieser Kette bilden, da aus Dimensionsgriinden keine lineare Abhangig-
- keit unter ihnen bestehen kann, eine Homologiebasis von 4. Mit (¥= +xz
hat jedes Glied aus (15.7) die Ordnung 0: A besitzt also keine Torsion.
Somit gilt

Satz 43 : Ist die Sphire S™ in Sphiren S0 < d < n) gefasert, so sind
die Homologieeigenschaften des Faserraums A durch die Dimensionszahlen
n und d vollstindig bestimmi : A besitzt keine Torsion. Eine Homologiebasis
von A wird gebildet durch die Potenzen A = {3, Ly, 82, ..., C¥ derjenigen

Klasse {, = R(A), welche HLy = A erfillt. Hierbei mufl d ungerade und

M= ?;—_;(i ganz sein; also ist d+1/n+1, folglich auch n ungerade.
Bekannt sind folgende Beispiele hierzu:

1. Faserung einer S2m+l in S1./42m jst der komplexe projektive Raum

Km
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2. Faserung einer §*™+3 in §%. %™ ist der quaternionale projektive Raum
Q4m.
3. Faserung der S5 in 87-A48 ist die S8 9).

Man kennt also Faserungen der S%-1 in §2¢-1 fiir k = 1, 2 und 4, bei
denen als Faserraum A die Sphére 8% auftritt. In allen diesen Beispielen
ist n = 2d 4+ 1und § ~ 0; die vorn gegebene Spezialisierung von Satz 42
besagt, dall dann je zwei Fasern miteinander einfach verschlungen sein
miissen, was sich leicht an den Beispielen direkt verifizieren 146t.

Obige Beispiele treten auf bei der Klassifikation der Abbildungen der
S4%-1 guf die S8%¢ nach der in der Einleitung erwihnten y-Theorie von
H. Hopf. Sie liefern namlich die bisher einzigen bekannten Falle, fiir
welche in H 7w = yS8% die Zahl y den Wert + 1 besitzt. Die Frage, fiir
welche k& Abbildungen der S*-1 auf die S%*¢ mit y = 4 1 existieren,
konnen wir hier nicht beantworten, sondern nur von einer andern Seite
beleuchten: Nach Satz 25 ist stets dann y = 4 1, wenn die Abbildung
durch eine Faserung der §*-1 in 8§21 erzeugt wird. Hierzu sind aber nur
die oben erwéhnten drei Beispiele mit £ = 1, 2 und 4 bekannt.

§ 16. Der Linienelementraum einer Mannigtaltigkeit

L” sei der Raum der gerichteten Linienelemente auf einer geschlossenen
orientierbaren Mannigfaltigkeit A4” (v > 2). Der Raum der in einem Punkte
n € Av angebrachten Tangentialrichtungen ist eine Sphéare §*—!. Somit
ist L™ in Sphéren S der Dimension d = v —1 > 0 gefasert. Faserraum
ist Av. Es gilt daher n = » + d = 2d + 1. Die Faserabbildung heifle f.
Sie ist dadurch gegeben, dafl sie jeder im Punkte # — A angebrachten
Richtung den Punkt z zuordnet.

Es sei y die Charakteristik von 4 und V ein Vektorfeld auf A, iiberall
stetig mit hochstens einer Ausnahme in einem festen Punkte . Nur im
Falle y = 0ist V auch in z stetig und 148t sich dann als Zyklus auffassen.
Im Falle y # O besitzt V in z eine Singularitit vom Index y. Erginzt
man dann V durch Hinzufiigen des y-fach gezéhlten Biischels §*1 = ¢x
aller Tangentialrichtungen in =, so wird V zu einer abgeschlossenen
Punktmenge des Linienelementraumes L und kann als Komplex auf-
gefallt werden, dessen Rand gegeben ist durch

rV = 481 = @(yn) # 0. (16.1)

Es gilt daher: Der algebraische Komplex V ist dann und nur dann ein
Zyklus, wenn y = 0 ist im zugrundeliegenden Koeffizientenbereich J.
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Nun ist aber fV = A. Hieraus und aus (16.1) folgt (vgl. § 13): Es gilt
h(xm) =4 .

Nach Formel (16.1) berandet die y-fach gezidhlte Faser Sv-1 in L;
es folgt daher aus den Sitzen 37 und 38 (wegen » — d — 1 = 0 besitzt A
keine (v — d — 1)-dimensionale Torsion) der

Satz 44: Dann und nur dann ist der Homologiering R(L) des Raumes
der Linienelemente auf der Mannigfaltigheit A*(v > 2) additiv und dimen-
stonstreu isomorph dem Ringe R(A?xSY-1), wenn die Charakteristik y von A
gleich 0 ist im zugrundeliegenden Koeffizientenbereich .

Zusatz: Fir J = R oder = ® besteht dann und nur dann additive Iso-
morphie zwischen R(L) und R(AxS), wenn y(A) = 0, d. h. wenn auf A
ein stetiges Richtungsfeld V existiert.

Es sei y = 0 in . Dann ist der Zyklus V, wegen fV = A, Reprisen-
tant der in §15 betrachteten Homologieklasse z,. Wir stellten dort fest:
Multiplikative Isomorphie zwischen R(L) und R(4Ax8) besteht (fiir y = 0)
dann und nur dann, wenn 22 = 0. Nach der anschlieBend an Satz 41
gegebenen Aufstellung tritt dies stets dann ein, wenn J = R oder =
m ungerade; denn fiir ungerades d ist dies Fall 2, fiir gerades d (also d > 2)
ist dies, wegen n = 2d 4 1 < 3d, Fall 3. Also: .

Satz 45: Ist § = R oder = &,,, m ungerade, und y = 0 in J§, so sind
die Ringe R(L) und R(AxS) dimensionstreu isomorph.

Es sei x = 0. Die geometrische Bedeutung von 2{ ist folgende: Es seien
V und V* zwei stetige Vektorfelder auf A, also Zyklen aus z,. Die zu V
und V* gehorigen, im Punkte = c A angebrachten Vektoren nennen wir
v(n) und v*(x). Wir wollen annehmen, dafl beide Vektoren in jedem
Punkte n — A die Lange 1 besitzen. (Zu diesem Zwecke moge in /A eine
Riemannsche Metrik vorausgesetzt sein.) Nach Stiefel'l) laBt sich der
Komplex der Punkte n, in denen v(x) und v*(zn) linear abhingig sind,
als eindimensionaler Zyklus Z auffassen, dessen Homologieklasse durch A
(bei geradem d nur mod 2) eindeutig bestimmt ist und von Stiefel die
zweite charakteristische Klasse von A genannt wird. Wir behaupten:

(VoV)=fVt~2Z. (16.2)

Vorerst bemerken wir: Fiir gerades d ist fV? durch A ebenfalls nur
mod 2 bestimmt; denn ist V* ~ V — @Z*, Z* c R(A), so wird

V¥~ V2 —202%o V 4 ®Z*2,
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Einerseits ist dann fV* = fV = A, anderseits aber
fV* = fVz — 22*%,

Hieraus ergibt sich unsere Bemerkung.

Zum Beweise von (16.2) bilden wir das zu ¥ homotope, also homologe
Vektorfeld V', welches aufgespannt wird durch die Vektoren v'(n) =
v(w) + 4v*(x). In keinem Punkte = c A sind v(x) und b’(w) einander
entgegengesetzt. Der Zyklus Z der Punkte linearer Abhingigkeit von V
und V* fallt daher zusammen mit dem Ort der Punkte, in denen V und
V' gleichgerichtet sind, d. h. mit dem f-Bild des Schnittes von ¥ und V’.
Dies ist aber unsere Behauptung.

Z 1aBt sich auch noch auf eine andere Weise charakterisieren: Es sei
V das zu V entgegengesetzte Vektorfeld. Dann ist fV = fV = A, also
nach Satz 26: V — 7V ~ ¢Z fiir einen geeigneten eindimensionalen
Zyklus Z aus A. Fernerist V o V = 0,da ¥V und V zueinander fremd sind.
Somit gelten:

(V—7)0V= V2N¢Zo V,

_ _ (16.3)
Z~fVr~f(9ZoV)~Z .

Also gilt: Der Zyklus ¥V — V ist homolog dem ¢-Bilde der zweiten Stiefel-
schen Klasse Z (bei geradem d nur mod 2); es ist V ~ V dann und nur
dann, wenn Z = 0.

Aus (16.2) und (16.3) mit Z statt Z folgt: Dann und nur dann kann V
so gewahlt werden, daBl V2 ~ 0, wenn die zweite Stiefelsche Klasse Z
von A verschwindet. Zusammenfassend gilt

Satz 46 : Dann und nur dann ist R(L) =~ R(AxS), wenn y(A) = 0 und
wenn die zweite Stiefelsche Klasse Z von A verschwindet (alles in bezug
auf J).

Nach Stiefel ist (neben y = 0) das Verschwinden von Z eine notwendige
Bedingung dafiir, da8 es auf /A zwei stetige, iiberall linear unabhéngige
Vektorfelder, d. h. ein ,,Zweifeld“ gibt. Somit gilt:

Korollar : Qibt es auf A esn Zweifeld, so ist R(L) =~ R(AxS).

Es 148t sich, im wesentlichen mit den hier schon angewandten Methoden,
zeigen: Auch im Falle y = 0 ist die Struktur des Homologierings R(L)
ganz durch R(A) und das Verhalten der zweiten Stiefelschen Klasse
bestimmt. Dabei spielt die zweite Stiefelsche Klasse nur fir die multi-
plikative Struktur eine Rolle.

(Eingegangen den 12. Juni 1941.)
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