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Sur une classe de transformations différen-
tielles dans I'espace a trois dimensions. II.

Par ALEXANDRE OSTROWSKI, Bale

CHAPITRE I1I

Transformations R et Transformations de contact

§ 7. Représentation des transformations R sans intégration,
a partir d’une correspondance de rang 1

32. Soit 7' une transformation R. En exprimant z, y,, ¥, comme fonc-
tions de p, &, 7, 7, et en éliminant g, on obtient un systéme de deux
équations entre les 6 variables &, 7, 7., @, ¥, ¥s:

QI(E: N1sNas T Yrs 92) =

0
’ (32,1)
‘92(5’771’772’5”’ Y1 ?/2) =0,

que nous appellerons équations directrices de T'. Ces équations définissent
une correspondance entre les espaces S et 2, telle que les points de 2 cor-
respondant aux différents éléments de ligne passant par un point
P(x, y,, y,) de S forment une courbe donnée par (32,1), et de méme & un
point général de 2’ correspond par (32,1) une courbe de S; une telle corres-
pondance sera appelée dans la suite une correspondance de rang 1. Or,
puisqu’il n’existe pas d’autres relations entre nos 6 variables, indépen-
dantes de (32,1), chaque relation linéaire entre les différentielles de ces
6 variables doit étre de la forme

/ / (32,2)
+ (41824, + 22825,,)dy, = 0 .

1
Mais la relation (13,5) devient, en posant u = ool

medn, — modn, — mpdé — edy, + ady, 4+ bdx =0, (32,3)

ol «, B, a, b, m peuvent étre exprimés en fonctions de &, #,, 5,3, z, y;, Y,-
On a donc en choisissant convenablement les fonctions 4, et A,
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1111 -+ }»ZQ;,, = —€ , (32,4)

1191,,3 + 2,2, =a , (32,5)
}*I‘Q{w + ng;m =b ’ (32,6)
701, + 2.0 2,71 = me , (32,7)
72, + 1,82 2,72 = —mo, (32,8)
MO + 4025 = —mB, (32,9)

33. Les 6 relations (32,4)—(32,9) permettent en général de retrouver
la transformation 7' & partir du systéme (32,1), si I’on suppose la forme ds
connue. En effet, on obtient en éliminant A, et A, des trois équations
(32,4)—(32,6), et en remplacant e, a, b par leurs expressions en 7,2, y,, ¥,:

Q=4,b+ Ad,a—A,e =0, (33,1)
ou 'on a
Q; Q. Q. Q.
- ],.112 f'yz , A2 —_ t f , A3 _ l ::.'yl fﬂl (33,2)
Q. S, 14, 254, 14, $224,

St alors (33,1), considérée comme équation en &, n,, 15, peut étre combinée
avec les équations (32,1) pour les valeurs générales des r, x, y,, y,, de sorte
que ces trots équations soient résolubles par rapport a &, n,, n,, on tirera
d’elles &, 7,, n, en fonctions de 7, z, y,, ¥,.

En substituant ces valeurs et celles des A,, 4, dans les trois équations
(32,7) — (32,9), on arrive a exprimer p en fonction de r, z, ¥;, ¥,. En
effet, si la valeur de me, obtenue de (32,7) est # 0, on aura ¢ = 1 et
P’on exprimera « et § en fonctions de 7, z, ¥, y,. Si ’expression de «,
obtenue de cette fagon, est indépendante des expressions des &, 7,,7,, on
aura évidemment x=p, et f pourra étre exprimé en fonction de g, &, 7, 7,.
do appartiendra au type 1. Et si « est exprimable par &, 7,, 7,, on aura
évidemment affaire & une forme do du type II. Alors on exprimera p = f§
en fonction de 7, z, ¥,, ¥, au moyen des relations (32,9) et (32,7). Enfin,
si la valeur de me, obtenue de (32,7) est = 0, notre do appartient au

type 111, et la valeur de o = — —(xﬂ— s’obtiendra des relations (32,8), (32,9).
— Nous avons maintenant & analyser la condition portant sur (33,1).

34. Puisque les équations (32,1) proviennent d’une transformation R
donnée, il est clair que (33,1) est compatible avec (32,1).

Nous avons donc & nous demander, s’il est possible, pour une trans-
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formation R donnée, de choisir les équations (32,1) de sorte que I’équation
(33,1) ne soit pas satisfaite pour chaque valeur de r, en vertu de (32,1).

Dans ce qui suit, nous appelons transformation singuliére chaque trans-
formation R pour laquelle, pour chaque choix de couples équivalents
d’équations 2, = 0, 2, = 0, ol £, et 2, sont supposées douées de déri-
vées continues du premier et du second ordre, I’équation (33,1) est satis-
faite en vertu de (32,1).

Or, on pourra en tous cas représenter le résultat d’élimination de r
et de o dans une forme résolue par rapport & deux des trois variables

%, Yy, Y. Nous pouvons donc supposer des le début, que le rang de la
matrice
Q, L1, Q1.
, , , (34,1)
Qou, 2oy, 2,

reste = 2 pour le point général du lieu géométrique donné par (32,1).
Alors, il est facile de voir que, si b ne se réduit pas & un polynoéme
linéaire en r (ds est alors une forme adjointe du type I):

ds = dy, —rdy, — fdx l
0% f
or?

(34,2)

# 0 , en vertu de (32,1) , [

(33,1) n’est pas satisfaite en vertu de (32,1) pour chaque valeur de . En
effet, dans le cas contraire, on aurait en dérivant (33,1) par rapport & r:
Asf, 4+ A, = 0. Mais alors, f, étant variable avec 7, on aurait 4,=4,=10
et A, reste d’aprés notre hypothése # 0 en vertu de (32,1). Alors ’équa-
tion (33,1) se réduit & 4, = 0, et, cette équation n’étant pas satisfaite
identiquement en vertu de (32,1), les expressions (14,1) des &, #,, 7, en
fonctions de =z, v,, ¥,, r seraient indépendantes de r. Notre transforma-
tion serait ponctuelle, contrairement & ’hypothése formulée au § 1.

35. Considérons maintenant la transformation R, T',, donnée par

Y1 = M1, Yz = Mo, x’—‘-—"X(Q,E,"h,?’]z), r=2g (35,1)

et correspondant aux formes adjointes

ds = dy, —rdy, , do = dn, — pdn, . (35,2)
Ici on a naturellement & supposer que
0X 0X
% 0, 0 #=0 . (35,3)

Je dis que 7', est une transformation singuliére.
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En effet, si une fonction Q(y,, %, ¥a, 72, %, &), douée de dérivées con-
tinues du premier et du second ordre, devient 0 pour y, = 7,, ¥, = 7,,
on obtient, en appliquant & chacune les deux parenthéses de droite dans

la décomposition

Q == {Q_ ‘Q(yly ?/1, y2, N2> x, E)} + {‘Q(yl’ yl’ y2’ Nas Z, E)}

le théoréme des accroissements finis, une représentation de la forme

Q= L(y, — m) + M(y, — n.) ,

ou les dérivées de L et M du premier ordre restent continues. Done, pour
notre 7',, les fonctions 2,, 2, auront en tous cas la forme

QV: v(?/l"—%) s Mv(y2—772) ’ v =1, 2,

ou L,, Ly, M,, M, possedent des dérivées continues du premier ordre.
Mais alors, en éliminant A,, 4, des (32,4) — (32,6) pour ces £, et pour
la forme adjointe ds (35,2), on obtient un déterminant, dont la derniére
ligne sera la suivante:

L:{m(yl-—_nl)—{"M{m(yz—nZ) ; L;m(yl—nl)‘l”M;m(yz_’?z) ; 03

1’équation (33,1) est donc satisfaite identiquement pour y;, = #,, ¥, = 7,.

36. Nous allons maintenant montrer que chaque transformation sin-
guliére se réduit a une transformation du type T, (35,1), correspondant aux
formes adjointes (35,2), par transformations ponctuelles dans les espaces S
et 2. Montrons d’abord, qu’une transformation singuliére conserve cette
propriété, si ’on effectue des transformations ponctuelles dans les espaces
S et 2.

Pour lespace 2, c’est évident, puisque les dérivées dans (33,2) ne se
rapportent qu’aux variables xz, y,, ¥,.

Soit de I’autre coté

y1=y;k(.X,Y1,Y2) s y2=y2*(X,Y1,Y2) ’ w=x*(X>Y1’Y2) ’ (36’1)

une transformation ponctuelle dont naturellement le Jacobien 4 est 0.
D’apreés les calculs du n? 17, la forme adjointe ds se transforme en

EdY,— AdY,— BdX = MdS , (36,2)
ol d8 est la forme adjointe transformée et
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7Y, 7Y, 7Y, ’
0y a?/z oz
Ad=—eay-te5y, to5y, (36,3)
Oy a?/z ox
B=—e X +a + b ——— <X

Mais alors le déterminant correspondant & (33,1) devient, en négligeant
un facteur £0, #£ oo :

1y, %y, —E D, D, —e
Qy, @by,  A|l=A4|2, D, al. (364
Qix B Qe 2 b

Done ce déterminant s’annule en vertu de 2, = 0, 2, = 0 pour chaque
valeur de 7, et la transformation résultante est encore singuliére.

37. De l'autre cOté, comme nous ’avons vu & la fin du n® 19, chaque
forme adjointe du premier type, ou b est linéaire et entier en r, est équi-
valente, par une transformation ponctuelle, & la forme adjointe dy, —rdz,
qui est de son coté équivalente & dy, — rdy,, la permutation de z et y,
étant une transformation ponctuelle. Il en résulte d’apres le résultat du
n® 34 qu’une transformation singuliere 7* se réduit par une trans-
formation ponctuelle & une transformation R singuliére 7'/, pour laquelle

la forme adjointe ds devient
dy, —rdy, . (37,1)

Soit maintenant (32,1) un couple d’équations directrices, correspondant
a T'. L’expression 4,7 — 4, s’annulant en vertu de (32,1) pour chaque

valeur de 7, on a évidemment
Age= Ay =0 (37,2)

en vertu de (32,1). Donc, si le rang de la matrice (34,1) reste 2 dans le
point général de (32,1), on a 4; 5~ 0, et les équations (32,1) peuvent étre
résolues par rapport & ¥, et y,. On peut donc écrire ces deux équations
dans la forme

Y— Ty (2, & my,me) =0, yg—Ty(2, & ny, me) = 0. (37,3)

Mais alors, il résulte de (37,2) que 7T, et T, s’annulent dans le point
général de (37,3), donc identiquement. On obtient donc
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¥ = T,(& n15 1a) » Yo = T3(& m1, M) »

o T, et T, sont naturellement deux fonctions indépendantes des
& 1, nz- En effectuant une transformation ponctuelle dans X, on peut
faire les fonctions 7T',, 7', respectivement égales & 7, , 7, . Alors les équations
(32,1) deviennent

Y1= ", Y2 = 12 - (37,4)
En exprimant x par g, &, 7,, 15, on obtient

z = X(o, & N1, M) » (37,5)

et (37,1) se transforme en d#n, — rd#,, donc on a r = p.
Mais alors X doit contenir effectivement £ et n’est certainement pas
indépendant de g, 7' n’étant pas une transformation ponctuelle. Donc on a

0X oX
_55-7%0 ; —‘é‘é—io ;

et la transformation 7'/ devient une transformation du type 7T,, con-
sidéré au n° 35.

38. Il est facile a caractériser géométriquement les correspondances
(32,1) déduites des transformations singuliéres. Généralement, aux points
de 2 correspondent oo? courbes de S. Or, pour la correspondance (37,4),
on n’obtient que oo? courbes de S, qui correspondent aux points
(&, 7y, 12), ot il en est évidemment de méme pour chaque transformée de
la correspondance (37,4) par transformations ponctuelles, c’est-a-dire pour
chaque correspondance déduite des transformations singuliéres. Sup-
posons inversement que, pour la correspondance (32,1), aux points
(&, m1, ms) ne correspondent que oo? courbes L dans 8. Alors les points
de X' auxquels correspond une courbe particuliére L, forment eux-mémes
une courbe A dans 2. Et & chaque point de 2 situé sur 4, correspond L,
en vertu de notre correspondance. Nous appellerons les correspondances
(32,1), jouissant de cette propriété, correspondance intransitives.

Or, en introduisant des nouvelles coordonnées dans S et 2, on peut
faire de sorte, que les lignes L, A deviennent des droites (y, = const.;
y; = const.); (7, = const.; 7, = const.), dés lors, en effectuant une
transformation entre les #,, 7,, on obtient y, = %, y, = n,, c’est-a-dire
(37,4).

Enfin, si les équations (32,1) possédent la forme (37,4), il résulte de
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(33,1): b = 0. Donc la forme (37,1) est la seule qui puisse étre combinée
avec (37,4).
En rassemblant les résultats de ce paragraphe, on obtient:

Théoréme V : Chaque transformation R, sauf les transformations singu-
liéres, peut étre déduste d’un couple convenable (32,1) de ses équations direc-
trices en résolvant les équations (32,4) — (32,9).

Les transformations singuliéres peuvent étre caractérisées par la propriété
qu’elles sont, par des transformations ponctuelles dans 2 et S, équivalentes a
une transformation du type (35,1) correspondant aux formes adjointes (35,2).

Pour qu’une correspondance (32,1) soit déduite d’une transformation
singuliére, il est nécessaire et suffisant qu’elle soit intransitive. Une cor-
respondance intransitive C me peut étre combinée qu’avec les formes ad-
jorntes qui proviennent de (37,1) par les transformations ponctuelles trans-
formant (37,4) en C, et ne se déduit que des transformations singuliéres dans
lesquelles se transforment les transformations (35,1) par ces transformations
ponctuelles.

§ 8. Formation des transformations B & partir d’une correspondance
de rang 1, donnée & priori

39. Le but principal de ce paragraphe est de montrer qu’en appliquant
les calculs du n® 33 & un systéme de deux équations

'Qv(x’ yl’ yz: 5’ 771: 772) =0 ’ P = 1, 2: (39:1)

et & une forme adjointe ds, données @ priori, on obtient en général une
transformation R.

Quant aux équations (39,1), nous supposons qu’elles définissent une
correspondance entre S et 2, de sorte qu’a un point général de ’un de ces
espaces corresponde une courbe dans l'autre. Plus précisément, nous
faisons les hypothéses suivantes:

1) Les équations (39,1) sont, pour un point général de 2, résolubles par
rapport a4 un couple convenable des trois variables z, y,, y,, pour la
valeur générale de la troisiéme de ces trois variables. Le méme fait sub-
siste, si 1’on interchange les espaces S et 2.

2) Les fonctions £2,, 2, sont douées de dérivées continues du premier
ordre pour le point général P de chacun de nos espaces, et pour le point
général de la courbe qui correspond & P dans 'autre.
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3) Chacune des deux matrices

Q{ﬂl Qé!ll ;-?h 'Q;%
‘Q],. Yy Q; Yy Q{ Na Qé Ny (39’2)

conserve le rang 2 pour le point général P de chacun de nos espaces, et
pour le point général de la courbe qui correspond & P dans ’autre.

40. Nous allons d’abord analyser la ,,transitivité‘‘ de la correspondance
(39,1). La définition de I'intransitivité, donnée au n°® 38, revient & ce que
les équations (39,1) peuvent étre supposées dans la forme ,,séparée*

¢v(§’ N1s 772) = Fv(x’ Y1, yz) s v=12. (40,1)

Si la correspondance (39,1) n’est pas intransitive, elle sera appelée
transitive.

Pour déduire la condition d’existence d’ume relation (40,1), résolvons
(39,1) par rapport & deux des trois variables &, #,, 7,. Supposons, pour
fixer les idées, que 1’on ait

nv::nv(é’ Z, Y15 yz)! y=1,2.

Alors une relation (40,1) représente une relation entre F, #,, 7, en fonc-
tions de z, y,, ¥,, en considérant £ comme un parameétre. Donc, le
Jacobien de #,, ,, F' par rapport & z, y,, ¥, s’annule identiquement en
& %, Y15 Ya-

Réciproquement, si cette derniere condition est satisfaite, il existe une
relation entre ¥, »,, n,, dans laquelle £ entre comme paramétre, et en
résolvant cette relation par rapport & F, on obtient une relation de la
forme (40,1).

Or, en calculant, au moyen des équations (39,1) les dérivées partielles
de #,, 7, par rapport & =z, y,, ¥y, et en introduisant ces valeurs dans

I’équation O(n,me, 1) _ 0, on obtient par un calcul immédiat la con-
d (% s Y1 ?!2)

a(.Ql,.Qz,F)

dition
o(x,¥1,Ys)

= 0, c’est-a-dire

A,F, + A, F, + A,F, =0 . (40,2)

Done, pour qu’il soit possible de déduire des (39,1) une relation de la
forme (40,1), il est nécessaire et suffisant que F' satisfasse & 1’équation
linéaire (40,2), en vertu des équations (39,1).
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41. Maintenant, pour que (39,1) soit intransitive, il est évidemment
nécessaire et suffisant que I’équation linéaire (40,2) possede deux intégrales
indépendantes F,,F, qui ne dépendent pas de &, #;, n,. Mais alors,
4,, 4,, 4, sont proportionnels, en vertu de (39,1), aux trois Jacobiens de
ces deux intégrales, donc a trois fonctions indépendantes, en &, 1, 7,.

Réciproquement, si 'on peut mettre, en vertu de (39,1), I’équation
(40,2) sous la forme

T(D,F, + D,F, + D,F,) =0, (41,1)

ohv D;,D,, D, ne dépendent pas de & »,,n,, '’équation linéaire
D,F, + D,F, + D,F, = 0 posséde deux intégrales indépendantes qui
ne dépendent naturellement pas de &, n;, 7,. Donec:

Une condition nécessaire et suffisante pour que la correspondance (39,1)
soit intransitive est, que les quotients des 4,, 4,, A4, deviennent, en vertu de
(39,1), trois fonctions indépendantes, en &, 1, 5.

Il résulte immédiatement du résultat obtenu:

Une condition mécessaire et suffisante pour que (39,1) soit intransitive est
qu’il existe deux relations :

P1A1+P2A2+P3A3= 0, Q141+Q242+Q3A3: 0,

ou les P, et Q, ne dépendent que de x, y,, y, et ou le rang de la matrice

( P, P, P, )
@ @ @
est = 2. — Deux relations linéaires jouissant de cette propriété seront
appelées dans la suite ,,essentiellement différentes entre elles®.

En particulier, (39,1) est intransitif, si deux des trois déterminants
4,, 4,, 4, s’annulent.

De l'autre coté, si (39,1) est transitif, il peut trés bien exister, en vertu

de (39,1), une relation
P4, + PyAy+ P34, =0, (41,2)

ou P,, P,, P, sont indépendants de &, #,, n,. La correspondance (39,1)
sera alors appelée fasblement transitive dans Uespace 8.

11 est facile d’interpréter géométriquement la relation (41,2) en termes
de la correspondance (39,1). Pour un point général (&, n,, 7,) de 2, les
cosinus directeurs «, B, y de la tangente & la courbe (39,1) dans un point
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correspondant (x, y,, ¥,) de § sont évidemment proportionnels aux déter-
minants 4,, 4,, 4,. De l'autre coté, ’équation de Pfaff

P,dx + P,dy + P,dy, =0 (41,3)

définit un élément de surface passant par (z, y,, ¥,). Et ’équation (41,2)
dit que toutes les courbes (39,1) de S passant par le point (x, y,, ¥,) sont
tangentes & ’élément de surface (41,3).

Quant aux conditions d’existence pour une relation (41,2) on peut les
déduire facilement, en éliminant au moyen de (39,1) deux des trois
variables &, 7,, nyde 4,, 4,, 4;, et en formant le Wronskien des fonctions
résultantes par rapport & la troisieme variable. Mais on n’obtient ainsi
qu’une condition relativement compliquée.

42. Pour déduire de la correspondance (39,1) une transformation R, on
écrira les équations (32,4) — (32,9) et ’on procédera comme au n® 33.
L’élimination de 4; et A, des trois équations (32,4) — (32,6) conduit &
I’équation (33,1). Supposons que la condition suivante soit satisfaite:

1) On peut tirer de (33,1) et (39,1) les valeurs de &, ,, 1, en fonctions des
T, %, Y1, Y, €t Uune au moins de ces valeurs dépend effectivement de r.

En substituant ces valeurs et celles de 4,, 4, dans les équations
(32,7) — (32,9), on pourra identifier ¢, x, f§ avec les coefficients d’une
forme adjointe do, si les deux conditions suivantes sont satisfaites avec 1) :

2) Les expressions de &, n,, n, en fonctions des r, z, y,, Y, sont indépen-
dantes.

3) Pour deux des expressions de gauche dans (32,7) — (32,9), convenable-
ment choistes, le quotient est une fonction de r, x, y,, Y5, qui ne peut pas étre
exprimée en fonction de &, n,, 1, seuls.

Si les trois conditions indiquées sont satisfaites, on parvient toujours
& une transformation R pour laquelle les équations (39,1) sont un couple
d’équations directrices.

43. Quant & la deuxiéme des trois conditions du numéro précédent, on
montre facilement qu’elle est toujours satisfaite avec la premiére.
En effet, supposons qu’il existe une relation

¢(§, 771’ n2) = O

entre les valeurs de &, %,, 5, tirées des équations (33,1) et (39,1). On peut
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alors, en introduisant des coordonnées convenables dans 1’espace 2, sup-
poser que cette relation se réduise &

=0, (43,1)

De l'autre coté, on peut supposer, d’aprés les hypothéses du n? 39, que
les équations (39,1) sont données dans la forme résolue par rapport 4 deux
des trois variables z, y,, ¥,, par exemple:

y,— 2F (z, & ny, 12) = O, v=12, (43,2)
Mais alors, puisque (43,1) et (43,2) sont compatibles, on a:
Yy, = 27 (x,0,n,, 15) y=1,2. (43,3)

Ce couple d’équations n’est assurément pas résoluble par rapport a #,, #,,
puisque dans le cas contraire 7, et 7, seraient indépendants de r. Donc,
le Jacobien de QF et 2F par rapport & 7, et 5, s’annule identiquement
en x, 7, et n,. Il en résulte une relation identique entre x, QF et QF,
donc en vertu de (43,3), entre x, y, et y,:

F(x’ Y1 yz) =0. (43;4)

Mais alors, si (43,4) est une conséquence des équations (39,1) et (33,1),
ce systéme n’est assurément résoluble par rapport a &, »,, 7, que dans
I'hypothése (43,4), ce qui est contraire & la premiére des conditions du
numéro précédent.

44. Nous allons maintenant analyser la premiére des conditions
énumérées au n° 42, 4 savoir celle qui se rapporte & I’équation (33,1).
Pour pouvoir arriver aux critéres maniables sans faire des hypotheses
trop spéciales sur la nature fonctionnelle des fonctions £2,, nous allons
poser la question sous une forme différente.

Une forme adjointe ds sera appelée réguliére relativement & la corres-
pondance (39,1), si elle possede la propriété suivante:

Exprimons au moyen des équations (39,1) deux des trovs variables
&, 1, e, choisies convenablement, en fonctions de la troisiéme de ces
variables que nous appelons n, et de x, y,, y,. Introduisons ces valeurs dans
Uexpression 2 en (33,1) et désignons respectivement par

Q% = AXb + AF¥a—Afe (44,1)
et par AF , A¥, AF ce que deviennent 2, A,, A,, 4, aprés cette substitution.
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Alors, 2* contient effectivement chacune des deux variables 7 et r et ne peut
pas étre décomposé en produit F,(n) Fy(r) des deux fonctions F,(n), Fy(r)
dont la premiére est indépendante de r et la seconde indépendante de 7.

Si une forme adjointe ds n’est pas réguliére relativement & (39,1), elle
sera appelée singuliére relativement a (39,1). On a alors la relation
identique:

A0 + AFa — Afe = F (n) Fy(r) . (44,2)
Naturellement, si ds est réguliere relativement a (39,1), il n’en résulte pas
encore dans tous les cas que la premiére condition du n° 42 soit satisfaite.
L’équation Q* = 0 pourrait trés bien ne pas posséder de racines en 7
pour les valeurs générales de r. Mais elle permet certainement d’exprimer
n en fonction de r, si par exemple les fonctions £, sont algébriques — en
admettant naturellement des solutions imaginaires. Dans le cas des fonc-
tions 2, transcendantes, la discussion ultérieure dépend déja des pro-
priétés spéciales de ces fonctions, qui doivent étre spécifiées dans chaque
cas particulier.

On peut donc dire que la condition ,,algébriquement compléte’* pour que
la premiére condition du n® 42 soit satisfaite, est que ds soit réguliére relati-
vement ¢ (39,1).

45. 11 s’agit maintenant de trouver toutes les formes adjointes singu-
lieres relativement & la correspondance (39,1).

Tout d’abord, il résulte de la relation (36,4), ol 4 est indépendant de
r, &, 1, s, que par une transformation ponctuelle dans l'espace S, les
formes singuliéres se transforment en formes singuliéres et vice versa.
De méme, il suit immédiatement de la définition des formes singuliéres
que par une transformation ponctuelle dans 1’espace 2 aussi, les formes
singuliéres se transforment en formes singuliéres et vice versa.

Il en résulte que pour une correspondance intransitive, toutes les
formes adjointes sont singuliéres. En effet, par transformations ponctuel-
les dans les espaces S et }, les équations directrices d’'une correspondance
intransitive (39,1) peuvent étre transformées en

m—yy =20, Ng— Y2 = 0.

Mais alors, ’expression £2* en (44,1) se réduit & une fonction qui ne dépend
ni de #,, ni de 7,, ni de &, quelle que soit la forme adjointe ds.

Nous admettrons donc dans la discussion suivante que (39,1) est tran-
sitive et nous allons démontrer d’abord que, si (39,1) posséde des formes
adjointes singuliéres, la correspondance (39,1) est faiblement transitive dans
S, c’est-a-dire qu’il existe une relation identique :
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P1Af + P2A; + PsA: =0, (45,1)

ou Py, P,, P, ne dépendent que de x, y,, y, et U'un au moins des coefficients
P,, P,, P, ne sannule pas identiquement.

Supposons d’abord que F,(r) dans (44,2) s’annule identiquement.
Alors, on obtient de (44,2) pour r = r, et r = r,, 7, # r,, deux relations
de la forme (45,1), essentiellement différentes entre elles. En effet, I'une
des deux grandeurs — a, e est toujours identique & 1. De l’autre coté,
I’'une des deux grandeurs a, b est toujours identique & 7, et devient dans
nos deux relations égale & r,, r, # 7.

Mais alors, d’aprés ce que nous avons dit au n? 42, la correspondance
(39,1) est intransitive. Nous pouvons donc admettre dans la suite que
F(r) ne s’annule pas identiquement.

Ecrivons la relation (44,2) pour une valeur r, de r, telle que F,(r,) %0,
et désignons les valeurs correspondantes de a, b, F'y(r) respectivement par
@g, by, fo. On obtient

A5by + AFag— A e =Fin)fo -
En éliminant F,(7) entre cette relation et la relation (44,2), on obtient
(boF 3 (r)— bfo) A5 + (agFy(r) —afo) AF — e (Fy(r) — fo) A = 0. (45,2)

Or, §’il existe une valeur ; de r pour laquelle F,(r) # f,, I'un des deux
derniers coefficients dans (45,2) reste = 0 pour r = r,;, puisque ou bien e,
ou bien — a a la valeur 1. Si de 'autre c6té, on a pour chaque valeur de r:
Fy(r) = f,, il résulte de (45,2), en divisant par f,:

(bo — b) 45 + (@ —a) 4 =0,

et dans cette relation I'un des coefficients reste % 0 pour » = r, # 7y,
puisque ou bien a, ou bien b est identique & r.
Donec, la relation (45,2) se réduit dans tous les cas & une relation (45,1),
C.Q.F.D.
Nous allons maintenant montrer que dans une forme adjointe singuliére
correspondant & la correspondance (39,1), le coefficient b est un polynome
au plus linéaire en r, c’est-a-dire qu’une forme singuliére est toujours axiale.
11 suffit évidemment de considérer le cas d’une forme du type I, on pourra
donc faire e = 1, @ = r. Or, d’aprés ce que nous avons dit au n° 41, la
relation (45,2) ne peut, pour aucune valeur de r, étre essentiellement diffé-
rente de la relation (45,1). Il en résulte que I'on a pour un M convenable-
ment choisi:

36



boF'o(r) —bfo=MPy, 1oFy(r) —rfo=MP,, Fy(r) — fo=MP,, (45,3)

donc, en éliminant de ces trois relations Fy(r), f, et M :

b P, b,
r P, ro | =0 . (45,4)
]. P1 l

Or, I'une au moins des deux grandeurs P,, P, ne s’annule pas identique-
ment, puisque dans le cas contraire on aurait des deux derniéres équations
(45,3): r == ry. Done, on peut choisir 7, de sorte que P, — r,P; ne s’annule
pas. Mais alors on obtient de (45,4) une expression de b, qui est au plus
linéaire en 7, C. Q.F.D.

46. Nous allons maintenant démontrer que la condition nécessaire et
suffisante pour que ds soit singuliére par rapport & (39,1) est que Uaxe de ds
soit situé dans Uélément de surface

P,dx + P,dy, + P,dy, = 0

correspondant & la relation (45,1).
11 résulte d’abord de (44,2), b étant au plus linéaire en r, que F,(r) peut
étre écrit dans la forme

Fy(r) = O, y1, y2)r + D(, y1, ¥s) . (46,1)
Supposons maintenant que ds soit du type I, on a alors
a=r, e=1, b= A(z, y15y2)T+B(xs Y1, Y2)

et la relation (44,2) se réduit, en comparant les coefficients des différentes
puissances de 7, aux deux relations

AAY + AY =CF,, BAf — A} =DF, ,
dont on peut toujours déduire F,(n), si la relation
(AD—BO)A¥ + DA 4+ CAf =0,

obtenue en éliminant F',, est satisfaite. Donc, en vertu de (45,1), il existe
une fonction M(z, y,, y,), telle que

AD — BC = MP,, D=MP,, C=MP,,
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et la condition nécessaire et suffisante pour que D et C puissent étre
déduites de ces trois relations est:

P,—P,A+PB=0.

Or, eu égard aux expressions (11,7) des cosinus directeurs de I’axe de ds,
cette relation se réduit a

ooPy + ﬂoP1 + 70P2 =0, (46,2)

conformément & notre assertion.
Si ds appartient au type II, on a

b=r, a=c(x,y,ys), e=1

et la relation (44,2) conduit aux deux relations

A¥ =CF, , cAf — A} = DF, ,
donc, en éliminant F, :
DAY —cCAY + CAF =0
et, en comparant avec (45,1):

D:—cC:C=P;:P,:P,,

d’ou1 la relation cP; + P, = 0, qui se réduit en vertu de (11,7) a (46,2).
Enfin, dans le cas III:

b=—r, a=1, e=0,
on obtient de (44,2):

— A¥*=CF,, A*=DF, , DA* +CA* =0 ,

donc, en comparant avec (45,1): P, = 0, ce qui réduit en vertu de (11,7),
dans ce cas aussi, & (46,2), et notre assertion est complétement démontrée.

Relevons enfin que, dans certains cas, méme une forme adjointe
réguliére relativement & (39,1) peut conduire & une transformation R
qui ne se réduit pas complétement & une transformation ponctuelle,
mais, étant multiforme, posséde des composantes qui se réduisent aux
transformations ponctuelles. Pour cela il est nécessaire et suffisant que
I'identité suivante, analogue & l'identité (44,2), ait lieu:

A:b‘l"A;a‘—A:e:Fl(’?)Fz(ﬂ”') ) (46,3)
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ou F'(n) contient effectivement 7, mais est indépendant de r et ne divise
pas toutes les trois expressions 4¥*, tandis que Fy(n,r) contient effective-
ment les deux variables # et r, et ne possede plus de facteurs du type
F(n).

Dans ce cas on pourrait obtenir, en résolvant 1’équation F,(n) = 0,
une transformation ponctuelle, tandis que la résolution de 1’équation
Fy(n, r) = 0 conduit & une transformation R ne se réduisant pas & une
transformation ponctuelle.

On peut montrer que l'identité (46,3) est, en général, réalisable pour
chaque correspondance (39,1), méme pour celles qui ne sont pas faible-
ment transitives dans S, en choisissant convenablement la forme axiale ds
(Cf. n° 63).

47. Passons maintenant a la troisiéme des conditions énoncées au n® 42.
Supposons que cette condition ne soit pas satisfaite pour la forme adjointe
ds, c’est-a-dire que les 3 expressions de gauche dans les relations (32,7)—
(32,9) soient proportionnelles, en vertu des équations (32,1), (32,4)—
(32,6), aux trois fonctions de &, 7, 7,:

}“lgim—l— }‘29;';71: KE(f,’hﬂ?z) ’
}‘I‘Q{nz + ]'2[2;172: — x4 (5’771’772) ’ (47,1)
11915 ‘+‘}~2~Q;§ = —kB(&,7:,m,) ,

ou les fonctions £, A, B sont indépendantes des z, y,, y,, r. Alors, en
éliminant de ces trois équations A,, 4,, «:

1¢ 26 B
., %, —E|=0 (47,2)
‘Q{’ﬂz 'Q;’?z A

Désignons la relation (47,2) par
T(x, 41, Ya; & m>m2) = 0. (47,3)

Nous avons vu que cette relation est une conséquence des cinq relations
(32,1), (32,4) — (32,6), c’est-a-dire qu’elle est satisfaite pour chaque
systéme (z, ¥, ¥s; &, 71, 15), tel qu’il existe trois nombres A,, A;, r satis-
faisant & ces 5 relations. Or, on peut supposer que les relations (32,1)
soient résolues par rapport & deux des trois variables &, #,, 75, p. ex.
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par rapport & 7, , 5. Alors nos cinq relations deviennent, apreés 1’élimina-
tion des 4,, 4,, en notation du n® 44:

Ny = wv(E; T, Y15 yz) ’ v=1, 2, (47:4)
A¥b + A¥a—A4fe=0 . (47,5)

En introduisant les expressions (47,4) dans (47,3), on obtient la relation

t(f; X, Yy .’92)= O’ (47,6)

qui doit étre satisfaite en vertu de la relation (47,5).

Or, supposons que les deux premieres conditions du n°® 42 soient satis-
faites, donc en particulier que ds soit une forme adjointe réguliére relative-
ment & la correspondance (32,1).

Alors on a en particulier pour & une relation

&= U(?‘, T, Yy ?/2) ’

ou U dépend effectivement de r, puisque dans le cas contraire, d’apres
(47,4), 7, n, seraient aussi indépendants de 7.
Dongc, en résolvant cette relation par rapport & r:

r= R(E’ L, Y1s ?/2) 3 (47’7)

et la relation (47,6), valable en vertu de (47,7), I’est identiquement. Donc,
(47,2) est valable en vertu de (32,1) et notre correspondance est fatblement
transitive dans I'espace 2.

48. Supposons inversement que la correspondance (32,1) soit faiblement
transitive dans 2. Les expressions 4, B, £ dans la relation (47,2) sont,
a un facteur de proportionnalité prés, univoquement déterminées, la cor-
respondance (32,1) étant transitive. Or, ceci permet généralement de
déterminer les formes ds pour lesquelles la condition dont il s’agit ici, n’est
pas satisfaite. En effet, dans ce cas on peut remplacer les équations
(32,7) — (32,9) par les trois équations (47,1). En supposant les deux
équations (32,1) résolues p. ex. par rapport a 7, 7,:

M — wy(&, %, Y1, Ys) =0, v=1,2, (48,1)
les 6 équations (32,4) — (32,9) deviennent, pour m = — «:
21 (D{yl-l- 2:2 w;w:—‘—‘ e ’
Moi, + o, =—a, (48,2)
Alw{w+12wéw=—b;
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21=“—'KE,12=KA ) llw;f'}'Azw;f:"“KB, (48,3)
tandis que la relation (47,2) devient ici

B=Ew;— Awy . (48,4)

Ici, la troisiéme des relations (48,3) résulte des valeurs de 4,, 4, en vertu
de (48,4), et les 3 relations (48,2) se réduisent aux trois relations suivantes:

14 /
A wzyl"—Ewlyl —_

-

A w, y, — B oy, = (48,5)

~

/4

|

|
XIG" RIQ Rl(b

De ces trois relations il résulte que les expressions e, a, b, donc la forme ds,
conduisant & notre cas d’exception sont univoquement déterminées.

Quant a P’existence de ds, il est clair que, si I’'un des quotients des trois
expressions de gauche en (48,5) ne peut pas étre exprimé par z, ¥, ¥,
seuls, on peut toujours trouver une forme ds satisfaisant aux relations
(48,5). 11 suffit en effet de procéder comme aux nos 25 et 26.

De I'autre coté, si les trois expressions de gauche en (48,5) sont propor-
tionnelles aux trois fonctions P, P,, P, ne dépendant que de =z, y,, ¥,
il résulte la relation
w; V1 (D{ v1 P1

/ /
Wy Ve Wy Vs P2 = ’

14 /
w2w W P3

donc notre correspondance est faiblement transitive dans ’espace S.

On voit done que, si notre correspondance n’est pas faiblement transi-
tive dans S aussi, notre cas d’exception se présente pour une seule forme
adjointe ds.

Supposons enfin que la correspondance (39,1) soit faiblement transitive
relativement &4 deux espaces S et 2. Alors, d’aprés un théoréme de S. Lie?),
on peut réduire, par des transformations ponctuelles dans les espaces S
et 2’ les deux équations (39,1) & la forme

M=%, 1)2=w(x, Y15 Yo, E),

4) Cf. 8. Lie, Oeuvres complétes, T. II%, p. 809, No. 28.
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de sorte que (48,4) soit satisfait pour £ = 1, 4 = B = 0. Mais alors il
résulte de (48,5): e=1, 4—b—0.
Il n’existe donc pas dans ce cas de forme adjointe ds pour laquelle la troisiéme
condition du n® 42 ne soit pas satisfarte.

§ 9. Réduction des transformations B aux fransformations de contact
de rang 1

49. Comme nous avons vu au n° 32, & une transformation R, 7', se rat-
tache une correspondance (32,1) de rang 1 entre S et 2, qui fait cor-
respondre au point général de S une courbe de X, et vice versa. Or, cette
correspondance (32,1) définit de son c6té une transformation de contact de
rang 1 qu’on obtient des formules

Qv(x> yl’ y2; E! s 772) =0 ’ V= 1, 2 ’ (4991)
W, W
— P = ; ’ =
W;Il W"{]l W
W' W’ = 11 ‘Ql + 1292 (49,2)
— q = -———-},3— y T K == -———7—2- R
Wl’l W’h
_ dy, _dy, . ilzh _dnp (49,3)

P=% > 17y, "7 a0 T Ty,

en éliminant 4,, 4,, et en résolvant par rapport aux variables &, »,, 7,,
7, k, ainsi que par rapport aux variables z, y,, ¥,, p, ¢, Toutefois, les
fonctions 2,, 2, doivent satisfaire & la condition que cette résolution soit
possible. Cette condition se réduit d’apres S. Lie & ce que tous les éléments
de surface (z, ¥, ¥,, P, q), satisfaisant & (49,1), (49,2), apres 1’élimination
de 1,, 4,, n’appartiennent pas au méme champ d’éléments de surface,
défini par une équation différentielle aux dérivées partielles.

50. Nous allons d’abord montrer que la condition nécessaire et suf-
fisante pour que, la correspondance C (49,1) étant donnée, les équations
(49,1), (49,2) soient résolubles par rapport & &, n,, n, pour un choix con-
venable de 2,, £,, est que C soit transitive.

En effet, on peut représenter C par deux équations résolues par rapport
& deux des trois variables &, 7,, 7,, choisies convenablement. Supposons,
pour fixer les idées, que C soit donnée par les équations

N = 1y (£, %, Y, Yo) y=1,2. (50,1)
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Ces deux équations doivent étre résolubles par rapport a deux des trois
variables z, ¥,, ¥,. Donc, un des trois déterminants

7 14
nlw 772:::

!/ /
’71 Yy 772 Yy

’ ’
My, N2,

/

Ne 7Moo

’ ’
My, M2v,

43 = , 43 = , 43 =

(50,2)

/ 14
771 Yq 772 Yo

ne s’annule pas identiquement. Donc, en éliminant A, et 4, des deux pre-
miéres équations (49,2), I’équation résolvante peut étre écrite dans la forme

A3p+ 43¢ —47=0 . (50,3)

Supposons qu’il soit impossible de tirer & de cette équation en fonction
de p, g. — Dans certains cas exceptionnels, il pourrait étre possible de
tirer de I’équation (50,3) la valeur de &, en fonction de z, y,, y,. Mais
alors on obtiendrait une transformation ponctuelle, et les transformations
de cette espéce restent ici hors de considération. — On a & considérer
deux cas:

a) Supposons que I'on ait identiquement 47 = A7 = 0. Mais ceci, puis-
que 49 ne s’annule pas identiquement, n’est possible que si

Ty, = g, =0 .
On obtient alors, en résolvant (50,1) par rapport & z, y,, deux équations
de la forme

x = x*(&, N1, Ma) Ys = ?!2*(5’ N> Ma) >
et C est intransitive.

b) L'un au moins des deux déterminants 43, A? ne s’annule pas iden-
tiquement. Supposons, pour fixer les idées, que ce soit 43. Alors on obtient
entre p et q la relation

_ 4 4, _

Or, si l'expression de droite dépendait effectivement de &, on pourrait
tirer de (50,1) & en fonction de p et ¢, contrairement & notre hypothése.
Donc A4 et B ne dépendent que de z, y;, y5, et notre assertion résulte de
la condition déduite au n° 41.

On obtient donc deux équations de la forme

Vv(x: 3/1: y2) = ¢v(§’ 771’ 772) ’ V= l’ 2’ (50’5)

qui peuvent remplacer les équations (49,1).

42



51. Supposons de I'autre c6té que C soit intransitive, c’est-a-dire puisse
étre défini par deux équations de la forme (50,5). Alors chaque couple
(49,1) d’équations représentant C' peut étre écrit dans la forme

‘Qv EAV(VI——'él) —l— Mv(V2_—'¢2) ’ P = 15 2)

ou A,,4,, M, M, sont des fonctions de =z, y,, ¥,, &, 71, 3. Puisque
(50,5) est valable pour C, les équations (49,2), relatives & p, ¢, se réduisent
aux suivantes:

p=— Ky V{m + KZV;m g o= — Ky V{uz + K ;vz (51,1)
K V{ul + x Véul ’ Ky V{vl + K:aV;ul ’
en posant
MAy + Ay =Ky MM, + A M, = K, .

Or, en éliminant «,, x, de (51,1), on obtient
Vie Vie D
;,vz V;wz q | 0,
{vl V; vy 1

et cette relation n’est pas satisfaite identiquement en (z, y,, ¥s, P, 9),
V, et V, étant deux fonctions indépendantes en z, y,, ¥,.
Donc, pour que les équations (49,1), (49,2) sotent résolubles par rapport &
&, 1, Mg, 1l est nécessanre et suffisant que la correspondance C soit transitive®).
Il en résulte en particulier que, dés que les équations (49,1), (49,2) sont
résolubles par rapport & &, 7,, 7,, elles sont aussi résolubles par rapport &
x, 41, Y, Ce qui est un résultat général, valable d’apres S. Lie pour un nombre
quelconque de variables et un nombre quelconque d’équations directrices.
En particulier,d’apreés ce que nous avons dit au n® 38,4 la correspondance,
définie par une transformation R du premier ordre, se rattache toujours une
transformation de contact, si cette transformation R n’est pas singuliére.
Posons maintenant, si C est transitif, pour les expressions des &, #,, 7,,
tirées de (49,1) et (49,2):

= Z(2, Y1, Y2, P, 9) » 7?,L=H,L(x,y1,yz,2’,€1), p=12. (51,2)

52. Soit ds une forme adjointe du type I ou II, donnée par (12,4) avec
e = 1. On obtient alors les expressions de &, 7, n,, correspondant &
(32,1), en résolvant (49,1) et les trois équations (32,4) — (32,6) par rap-

port & &, 7, 1.

5) C’est un cas spécial d’un théoréme général. Cf. A. Ostrowski, Mathematische Mis-
zellen XIX, Zur integrallosen Bestimmung der Beriihrungstransformationen vom Range 1.
Verh. Nat. Ges. Basel (1941), LII, pp. 356—39.
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Pour cela, il suffit évidemment de remplacer dans les équations (49,2)
P, q respectivement par b, a. On obtient donc de (51,2)

§= E(xa yl’ y2’ b, a’): 77,1.: Ep,(x’ yl’ ’yz,b, a’)) u = 1, 2, (52,1)

oli ’on doit naturellement remplacer » par son expression en fonction de
P15 P2, tirée de la relation
Pr—ap,—b=10 (52,2)

Or, on a d’apreés (52,2) pour un élément de ligne dy, = p,dz, dy, =
padx :
dy, —ady,— bdx = 0 . (52,3)

De Pautre c6té, on a pour un élément de surface aux coordonnées p, q :
dy, — pdx —qdy, =0 . (52,4)

Dongc, I’élément de ligne satisfaisant & (52,3) pour une valeur de r, est
situé sur 1’élément de surface, donné par (52,4) pour

:b, q—_-:a, (52,5)

Les équations (52,5) définissent, si I'on varie z, y,, y,, r dans a, b, un
champ de oot éléments de surface, correspondant pour un ds du type I
a I’équation différentielle

0y, _ Y,
ox “.f("é'?};—: yl:yz»x) ’ (52,6)

et pour une forme du type II & I’équation différentielle

Y,
=c(x, Y, . 52,7
Yy (%, Y1, ¥2) ( )

On obtient donc le point &, 7, 7,, correspondant & I’élément de ligne
(x’ Y15 Y25 Pr> pz) ’ (52’8)

en déterminant dans le champ (52,5) I’élément de surface

(x’ yl: ?/2, p’ Q) H] (52’9)

dans lequel est situé (52,8), et en cherchant le point de 2, correspondant
4 (562,9) en vertu de la transformation de contact (49,2).
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53. Si la forme adjointe ds est du type III, on arrive & un résultat
analogue, en permutant y, et y,. On obtient donc dans ce cas la transfor-
mation R, en appliquant au champ d’éléments de surface, rattaché a
I’équation 2y

2 =0, 53,1
3y, (83,1)

la transformation de contact déduite de (49,1) et (49,2) en y permutant
Y1 et Yo

D’ailleurs, pour traiter tous les trois types des formes adjointes de la
méme facon, il suffirait d’utiliser, au lieu de la transformation de contact
définie par (49,1), (49,2), la transformation homogéne de contact se ratta-
chant a la correspondance (49,1).

Réciproquement, soit 7' une transformation de contact de rang 1,
déduite de la correspondance (49,1). Soit D un champ d’éléments de sur-
face dans S. A ce champ correspond une équation différentielle aux déri-
vées partielles de premier ordre d’un des trois types I, II, III du n° 11,
donc une forme adjointe ds.

En appliquant 7' au champ D, on obtient généralement un champ A
d’éléments de surface de 2’ auquel correspond une forme adjointe do.

Or, en faisant correspondre & chaque élément de ligne d¢ de S I’élément
de surface dv de D sur lequel dt est situé, et & dr le point (&, %,, 5,) de 2
qui lui correspond en vertu de 7', on obtient évidemment une correspon-
dance entre ’ensemble des éléments de ligne de S et I'espace X, qui est
en général une transformation R.

En effet, il suffit pour obtenir cette transformation R de remplacer les
équations (49,2) par les équations (32,4) — (32,6).

54. Toutefois, nous avons encore & discuter les conditions sous les-
quelles, la correspondance (49,1) définissant une transformation de con-
tact 7', on obtient, en appliquant 7' & un champ donné D d’éléments de
surface, une transformation R au sens du n° 53.

Pour cela il est nécessaire

1) qu’on obtienne par 7', des oot éléments de surface de D un ensemble 4
de oot éléments de surface dans X' ;

2) que les oco? éléments de surface de A se repartissent sur co® points de
2'de sorte que par le point général de 2 passent co! éléments de surface
de 4;

3) que la transformation obtenue ne soit pas une transformation ponc-
tuelle, c’est-a-dire qu’aux oo! éléments de surface de D passant par le
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point général de S, correspondent oco! éléments de surface de 4 qui se
repartissent sur ool points de 2.
On peut ordonner les conditions de 1), 2), 3), différemment en exigeant:

I) que les images des éléments de surface de D par 7' passent par le
point général de X;

II) que les images des éléments de surface de D passant par le point
général de S, passent par oo! points de 2.

IIT) que I’ensemble d’images des éléments de surface de D par T con-
tienne oot éléments de surface de 1’espace 2.

55. Les conditions I), II) sont respectivement équivalentes aux condi-
tions 2), 1) du n° 42. Donc, d’apres le n° 43, la condition I) est satisfaite
avec la condition IT).

Quant & la condition II), le résultat de la discussion des nos 46—48
peut étre interprété géométriquement en utilisant quelques résultats de
S. Lie®), qui se rattachent & la correspondance (32,1).

A un point général P de S correspond par (32,1) une courbe A(P) de 2.
A chaque point de A(P) — donc a chaque élément de ligne de A(P) —
correspond une courbe passant par P, donc un élément de ligne passant
par P. A la correspondance (32,1) se rattache donc une correspondance
entre deux ensembles k respectivement « des oco? éléments de ligne dans
les espaces S et 2. Les éléments de ligne de k passant par un point général
P de S y forment un ,,cone élémentaire’’. Les images de ces ool éléments
de ligne dans I’ensemble « s’ordonnent le long d’une courbe A(P) qui est
la courbe (32,1) correspondant au point P. Et cela reste vrai si ’on inter-
change les espaces S et 2. L’existence d’une relation du type (41,2),
c’est-a-dire la transitivité faible est d’aprés n® 41 équivalent avec la
dégénération des cones élémentaires dans l’espace correspondant. Dans
ce cas, le cone élémentaire appartenant & un point P de § se réduit &
I’élément de surface (41,3) passant par P.

Le résultat de la discussion des n®”® 46—48 peut étre énoncé comme
il suit:

La condition 1I1) est toujours satisfaite, sauf dans le cas ou

1) le come élémentaire appartenant au pornt général P de S dégénére en
élément de surface (41,3) et

2) la forme adjointe ds est axiale et son axe pour le point général P de S
appartient o Uensemble k.

%) Cf. S. Lie, Liniengeometrie und Beriihrungstransformationen, Qeuvres complétes,
T. II%, pp. 640 — 688.
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On peut se demander si 'on n’obtient pas de 7' une transformation
ponctuelle déja deés que 1’axe de ds appartient & ’ensemble &, méme si le
cone élémentaire ne dégénere pas. En effet, si dl est I’axe de ds, passant
par le point général P de S, les éléments de surface du champ D passant
par P tournent autour de d!. Mais alors, si d4 est ’élément de ligne de «
correspondant & dl, au faisceau d’éléments de surface tournant autour
de dl correspond par notre correspondance le faisceau d’éléments de sur-
face tournant autour de dA. Donc au point P correspond le point = de 2’
situé sur di.

Or, il est vrai qu'on obtient de cette facon une transformation ponc-
tuelle entre S et 2. Mais cette transformation n’est pas la transformation
compléte, la correspondance entre les éléments de surface de D et leurs
images dans 2 n’étant pas uniforme. En effet, chaque élément de surface
passant par dl contient, si le cone élémentaire n’est pas dégénéré, et p. ex.
algébrique, encore d’autres éléments de ligne dont les images dans « sont
différents de dA et ne passent pas par . Donc, dans ce cas la transforma-
tion ponctuelle n’est qu'une composante de la transformation R totale,
obtenue en appliquant 7' au champ D. Ceci correspond au cas de 1'identité
(46,3).

Quant & la condition III), elle est évidemment équivalente a la troi-
siéme condition du n® 42. On obtient donc de la discussion des n® 47 et 48
le résultat suivant:

Supposons que les conditions 1) et 11) sotent satisfaites. Alors :

) st le cone élémentaire dans le point général de 2 n’est pas dégénéré, la
condition I11) est toujours satisfaite ;

B) si les cones élémentaires dans les points généraux de S et de 2 sont
dégénérés, la condition I111) est toujours satisfaite ;

y) 8t le cone élémentaire est dégénéré dans le point général de X' et ne Vest

pas dans le point général de S, il existe exactement un champ D d’éléments
de surface pour lequel la condition 111) n’est pas satisfaite.

§ 10. Transformations E et transformations de contact du rang 2.
Le théoréme fondamental

56. Rappelons qu’il existe dans I’espace & trois dimensions deux classes
de transformations de contact, sans compter celles dérivées des trans-
formations ponctuelles:

a) les transformations de contact dites de rang 1, engendrées d’aprés les
formules (49,1) — (49,3) par une correspondance de rang 1 faisant cor-
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respondre & chaque point de l'un des deux espaces une courbe de
I’autre; et

b) les transformations de contact, dites de rang 2, engendrées par une
correspondance (de rang 2)

Q(x, y1, ¥a, & N1s Na) = 0 (56,1)

faisant correspondre & un point de S une surface de X et & un point de X

une surface de S.
On obtient la transformation de contact engendrée par (56,1) moyen-

nant les formules

ol 2
A A
(56,2)
2, 2,
q=— 912 ’ Kz—'b'/_%' ’
. Y1 N
ol
__ 0y, _ cos (n,x) _ 0y, _ cos (n,y,)
P= % T Teos (n,y) 0 1T Ty T Toos (m,9)

sont les coordonnées de direction d’un élément de surface dans S passant
par (z, ¥;, ¥,), s’exprimant comme il est indiqué par les cosinus directeurs
de la normale, et m, « jouent le role analogue dans 2. (Pour les éléments
de surface paralléles & ’axe des x, resp. & ’axe des £, on permutera les
variables dans les formules (56,1), (56,2), ou bien I'on introduira des
coordonnées homogénes de direction.)

Toutefois, pour que la correspondance (56,1) puisse conduire & une
transformation de contact, cette correspondance doit satisfaire, outre les
conditions immédiates de continuité et de dérivabilité, & la condition que
les équations (56,1) et (56,2) permettent d’exprimer &, #,, 7, en fonctions
de =z, ¥, ¥,, p, q et, de méme, =z, y,, y, en fonctions de &, %, 5,, 7, .
Cette condition se réduit d’aprés S. Lie?) & ce que la fonction 2 ne satis-
fait pas & une certaine équation différentielle.

57. Les résultats des §§ 7—9 permettent de pressentir le théoreme
fondamental suivant:

VI. A) Soit T, une transformation de contact entre S et 2 par laquelle un
champ D d’éléments de surface de S se transforme dans un champ A d’éléments
de surface de 2. Soient ds respectivement do les formes adjointes dans S, 2,
correspondant aux champs D, A. Faisons correspondre a un élément de ligne

7) Cf. 8. Lie, Oeuvres complétes, T. II%, pp. 704 — 705.
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général dl de S Uélément de surface de D dans lequel dl est situé, et & cet
élément de surface le point correspondant de 2. On obtient de cette facon une
transformation R, T,, entre S et X, aux formes adjointes ds et do.

B) Réciproquement, soit T, une transformation R entre S et 2 correspon-
dant aux formes adjointes ds, do. Sovent D, A les champs d’éléments de sur-
face dans S, 2, correspondant respectivement & ds, de. Alors, il existe une
transformation de contact T, entre S et X transformant D en A, qui conduit
a la transformation T, d’aprés la régle contenue dans la premiére partie
de ce théoréme.

La partie A) de ce théoreme a déja été démontrée aux §§ 8, 9 pour les
transformations de contact de rang 1. Quant & la partie B), sa démons-
tration est contenue dans les résultats des §§ 7, 9 pour le cas ol 7', n’est
pas une transformation singuliére. Et nous avons méme vu que dans ce
cas 7T, peut étre choisie comme une transformation de contact du rang 1.

I1 nous reste encore & traiter les transformations de contact de rang 2.
Dans cette discussion il ne sera plus nécessaire de traiter en détail les cas
d’exception dont nous avons eu & nous occuper dans les §§ 8, 9.

58. Supposons que les hypotheses de la partie A) du théoréeme VI
soient satisfaites pour une transformation 7', de rang 2, donnée par les
formules (56,1), (56,2). En permutant convenablement les variables, on
pourra supposer que les formes adjointes ds, do soient toutes les deux
du type I:

ds = dy, —rdy, —fdx ; [ =} 2 9, 9),
do = dny — edns —@dé 5 @ = ¢(2 & 7, 72) -
On exprime les coordonnées de direction p, ¢ pour les éléments de surface
de D au moyen du parameétre r par les formules
g=r, P=[r2 4, 9)

et, de méme, pour les éléments de surface de 4 en introduisant le para-

\t .
metre g k=0, n=(p(g,§,7]1,"72).

Donc, les équations
/ / / /
A Qf = —f —%—“—=-—-e Qf
/ ’ ’ ’
.le 'Q!h ‘Q’h Q’h

= —¢ , (58,1)

combinées avec (56,1) permettent d’exprimer g, &, 7,, 7, en fonctions des
r, x, Y;, Y, et vice versa. On en obtient pour ds et do;
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Q Q
Q! oy
do = 95: dn, + -Q:h ¢ + dy, ,

et, d’aprés (56,1) ’ ,
Q, ds +Q, do =dQ2 =0,

Q’
do = — Q”l ds . (58,2)

/
M1

A notre transformation de contact 7', correspond donc en effet une trans-
formation entre les espaces aux 4 dimensions (z, ¥, ¥s, 7), (&, %1, 72, 0)s
satisfaisant & la relation (58,2) et engendrant d’apres le théoréme I, une
transformation R, 7',. Soit maintenant

dl = (dz, dyy, dys)

un élément de ligne passant par (z, ¥,, ¥,). La condition que dl soit situé
dans 1’élément de surface aux coordonnées de direction p, ¢, est: dy, —
pdx — qdy, = 0, donc, si cet élément de surface appartient au champ D:

ds = dy, —rdy, — f(r, z, y;, y;)dx = 0 . (58,3)

Or, si r est déterminé par la relation (58,3), on a un élément de surface ¢ de
D auquel correspond I'élément de surface de 4 passant par (&, n,, 7).
Pour la valeur du parametre ¢ correspondant & 7, on a d’apres (58,2)

do = 0.

Dong, les valeurs de &, #,, 7, obtenues par la regle de la partie A) du
théoréeme VI sont en effet celles données par 7., et la partie A) du
théoreme VI est démontrée.

59. Pour démontrer la partie B) du théoréme VI, il suffit, d’apres les
n® 35—37, de supposer que la transformation 7', soit la transformation
singuliére donnée par

Y1 = N> Y2 = 72> r = X(Q: & Ny Ma), r=o, (59,1)
et correspondant aux formes adjointes

ds = dy,—rdy,, do=dn — edn,, (59,2)

0X o0X
—ﬁ-ﬁo ; ”‘%“io :
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Tirons p de la troisiéme des équations (59,1):

o = R(x, & ny, 13) , R;—%'O,
et posons

— Yi— N 1
& _ _ —_— . 5
0= (pp—m—LFM) 3 =0 (59,3
On a, en appliquant la transformation de contact engendrée par (59,3)
au champ d’éléments de surface correspondant & notre ds, pour f = 0,
d’apres les deux premieres des équations (58,1):

14 /
'Q:ljz = —7 ‘Q,z =0 5
‘Q?/l ‘th
1
R, R; Yyp— M
% Tz
— : = —1r, — R; 0 -+ T2 = 0,
RE

donc, d’apres (59,3):
r=R=p, Y1—m=20, Yo— 13 =0,

c’est-a-dire, exactement la transformation (59,1). Il résulte maintenant
évidemment de la partie A) du théoréme VI que les deux derniéres équa-
tions (58,1) sont satisfaites pour ¢ = 0, c’est-a-dire pour do, puisque ds
se transforme en do par 7,, et la démonstration du théoreme VI est
terminée.

60. Il est facile, pour une transformation R, 7T',, déduite d’une trans-
formation de contact de rang 2, d’obtenir les équations (32,1) de la cor-
respondance de rang 1 qui lui est adjointe. En effet, on peut supposer que
ds soit du type I. Mais alors, en éliminant » des deux premiéres équations
(58,1), on a évidemment

Q, Q,
Q:O; - “I",f(_" ”2,x,y1’y2)=0’ (60:1)
2, 2,

et aucune de ces deux équations ne peut étre une conséquence de I’autre,
puisque dans le cas contraire, il serait impossible d’exprimer &, #,, 1, en
fonctions de r, z, y,, y,. —

De l'autre c6té, nous avons vu que chaque transformation R, sauf les
transformations singuliéres, peut étre obtenue au moyen d’une trans-
formation de contact de rang 1. Il est donc naturel de se demander, si 'on
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peut obtenir chaque transformation R, 7',, au moyen d’une transforma-
tion de contact de rang 2. Supposons, ce qui est permis, que le ds corres-
pondant soit du type I et que 7', ne soit pas singuliére. Alors, il suffit de
trouver une fonction Q(x, ¥,, ¥,, & 171, 12), telle que les deux équations
(60,1) soient équivalentes aux deux équations (32,1) appartenant a 7',.

En posant pour Q:
Q= Ql + /"'-Qz ’ (60,2)

ou u est & choisir convenablement comme une fonction de =z, ¥,, ¥,, &, 7,
75, on obtient pour la deuxiéme équation (60,1):

F(H,x:yl,yz,f,m,nz) =

D14, + 1y,
‘Q;yl 'I' F‘Q;ul

(o + e, (60,3

- Q],.’yl + ﬂgéyl

+f('—' ’x’ylay2)20'

11 suffit donc de trouver une constante z % 0 de sorte que 1’équation

F(lu” x’ 91’ ?/2, E’ 771’ 772) + TQ2 = O (60)4)

puisse étre résolue par rapport a u.

61. Or, en formant la dérivée de I’expression de gauche en (60,4) par
rapport & u, on a aprés multiplication par (27, + ©£;,)%:

(20 210, — 220, 21.) —

Q1 + u; (61,1)
/ / / / ’ 1v Miday
- (‘{22?/2‘{')'1111 —92111 Ql?lz) fr (—-— Q{yi +‘ugéyj ’ x9y1’y2)
c’est-a-dire, la dérivée par rapport & r du déterminant
Q{vl Q;vl —é
T Q{'Ug ‘Q;% r ’ (61’2)

e %e
!

1"/2 + MQ;yz
Q{ul + N'Q;vl

dans laquelle on a remplacé r par —

Si la transformation 7', n’est ni singuliére, ni ponctuelle, la dérivée
de (61,2) par rapport & r ne s’annule pas, d’aprés le n® 34, au point
général de (32,1). Donc, si

'Q;vz ‘Q{vl - 'Q;vl Q{v, (6153)
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ne s’annule pas en vertu de (32,1), I’expression (61,1) ne s’annule pas
identiquement en u, , ¥,, ¥,, &, 1, 12.
De l'autre coté, si (61,3) s’annule en vertu de (32,1), (61,1) se réduit a

/ ! ! /
szglvl - -QMI le ’

ce qui ne s’annule pas dans le point général de (32,1), puisque dans le cas
contraire, (61,2) serait indépendant de r.
Soient u, et
(@, o7, 98, EO 7, 7i?) (61,4)

choisis de sorte que Q,, F, FL restent % 0. Pour ces valeurs 1’équation
(60,4) peut étre résolue par rapport & 7. La valeur résultante de la cons-
tante 7 £ 0, # oo étant une fois fixée, ’équation (60,4) peut étre alors
résolue par rapport & x4 dans le voisinage total du point (61,4). Les équa-
tions (58,1) correspondant & notre choix de £2, peuvent évidemment étre
résolues, combinées avec 2 = 0, puisque ces équations sont équivalentes
aux équations correspondantes du n? 32.

Nous pouvons donc énoncer comme complément au théoréme fonda-
mental :

Chagque transformation R peut étre engendrée par une transformation de
contact de rang 2. Chaque transformation R, sauf les transformations singu-
liéres, peut étre engendrée par une transformation de contact de rang 1.

62. Nous avons vu qu’aux transformations R transformant ds en do,
correspondent des transformations de contact transformant le champ D
correspondant & ds en le champ 4 correspondant & do, done aussi trans-
formant les équations différentielles aux dérivées partielles du premier
ordre attachée & ds et do, 'une dans 'autre. Le théoréme III se réduit
donc maintenant au théoréme que, deux équations différentielles aux
dérivées partielles du premier ordre étant données, il existe toujours une
transformation de contact transformant 1'une dans I’autre. C’est le fait
qu’exprime S. Lie en disant que les équations différentielles aux dérivées
partielles du premier ordre ne possédent pas des invariants pour le groupe
de toutes les transformations de contact. De ce résultat de S. Lie résulte
donc une nouvelle démonstration du théoreme III.

En particulier, en réduisant une équation différentielle aux dérivées
partielles du premier ordre en deux variables indépendantes, T' = 0, &

I'équation aagil = 0, on obtient évidemment une solution générale de

I'équation 7' = 0. Notre procédé de démonstration du théoréme III,
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développé aux nos 20—23, contient donc une méthode de résolution de
I’équation générale 7' = 0.

Quant au résultat déduit aux nos. 60, 61, il permet évidemment de
préciser un peu le résultat de S. Lie, mentionné plus haut. En effet, il en
résulte que, si 7', = 0 et 7', = 0 sont deux équations aux dérivées par-
tielles du premier ordre en deux variables indépendantes, on peut tou-
jours transformer 7, = 0 en 7', = 0, aussi bien par une transformation
de contact du rang 1 que par une transformation de contact de rang 2.

I1 est vrai que dans ’énoncé du n® 61 les transformations singuliéres
forment un cas exceptionnel. Mais dans ce cas, il s’agit des équations

0y, ony
ow 0 g 0
et ’on vérifie aisément que ces deux équations se transforment 'une dans

Pautre par les transformations de contact de rang 1 dont les deux fonc-
tions directrices, 2, 2,, satisfont, en vertu de (32,1), & la condition

a(gl s 'Q2)
d(x, §)

=0 .

§ 11. Exemples
63. Exemple I. Nous partons de la correspondance suivante
Q=m—yp=0, 2y =n—y+25=0. (63,1)

Les équations (49,2) de la transformation de contact qui correspond &
(63,1), deviennent ici

___12 . }‘2 . }‘2 — ﬁ
p—zlfi q— 11 b T = }:lx s K = }v]_ ’
donec:
52—%,771=y1,772=y2+x"qp-,7!= xq , k=4¢q .
(63,2)
4 JT
X = 7,?/1=771,?/2="72+§";;p=—‘§'<,q='f-

La correspondance (63,1) est transitive et en particulier faiblement tran-
sitive dans chacun des espaces S, 2.

On obtient donc de (63,1), d’aprés la théorie générale du § 8, pour
chaque ds non-axiale une transformation R. Ce résultat se vérifie immé-
diatement dans notre cas. Les valeurs des déterminants 4,, 4,, 4, étant
respectivement 0, &, 1, I'équation (33,1) devient ici

b+ £a=0. (63,3)
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Donc, pour qu’on puisse tirer de cette équation £ en fonction de 7, variable
avec r, il est nécessaire et suffisant que

1. a0, 2. (-g—):$0 . (63,4)

Dans le cas ot @ == 0, mais % = — f(x, ¥,, ¥5) est indépendant de 7,

on tire de nos relations une transformation ponctuelle entre S et 2':

‘f:f(x,yp?/z), 771=y1, 772:?/2""33):(2:’?/1’?/2)’ (6375)

si toutefois le Jacobien de cette transformation reste = 0.
Or, ce Jacobien est ff ;2 + fr. Si cette expression s’annule, on a évi-
demment le long d’une ligne de niveau de la fonction f dans le plan des
f,
Ty Ya o — ,a:
fh |
angulaire f. Il en résulte qu’on obtient l'intégrale générale de ’équation
différentielle aux dérivées partielles ff, -+ f, = 0 en résolvant par rapport
a f l’équation

= f. Ces lignes de niveau sont des droites au coefficient

yz‘—fsz(yl’f), (63,6)

oll F' est une fonction arbitraire de ses deux arguments.
Donc, on obtient une transformation ponctuelle si ds est une forme

dyl— Td?/z + rf(x, Y15 yz)dx ’ ff;/a + f:; 7(: 0. (63:7)

On obtient alors par un calcul facile ¢ = — 7 et
do = dn, — pdny — oxdé& .

De ’autre coté, la relation (45,1) entre 4,, 4,, A, correspond ici aux va-
leurs P, = 1, P, = P, = 0, donc, d’apres le n° 46, ’'axe d’une forme ds
singuliére doit étre situé dans I’élément de surface dy, = 0, c’est-a-dire
étre orthogonal & I’axe des y,. Or, d’aprés (11,7)%), ceci se réduit & a =0

pour une forme singuliére du type II et % = —f—;—: Az, ¥y, ys) pour les
formes singuliéres du type I, conformément aux conditions (63,4).

64. Exemple 11. La correspondance

Q=n—yp+22E=0, Q=n—y,+ 22 =0 (64,1)

8) Notonsune fauted’impression danslaformule(11,7) p.174,01, au lieu de C, il faut lire c.
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n’est pas faiblement transitive dans S. En effet, les valeurs des déterminants
4, sont ici:

A, =28, Ay=2z&, A,=1,
et une relation

2P(x, Y1, Y2) & + 22 Py(, Yy, Yu) &2 4 Py(x, 4y, yYy) = 0

ne peut subsister en vertu de (64,1), donc identiquement, que si
P, =P, =P, =0. Les équations (49,2) deviennent ici

20,8422, x8? A

— ¥V __Al y, — ¢ = ____ll ’
20,2 + 22, 22§ A
T A S §

Donc, en posant £ = x &, on obtient pour la transformation de contact
engendrée par (64,1):

t \
£=—_x_ s M=Y1—28, =y, — 1, k=q, n=2qxt—2x,
. (64,2)
x—:_-f_ ’ ?!1=771+2t ’ y2=772+t2 » § =k, p=—'2"5t"]“25’
ol ¢ est & tirer, suivant le cas, de 1'une des deux équations
2qt2 — 2t 4 px =0, 2kt2—2—mé=0. (64,3)

D’aprés notre théorie générale, on obtient de la transformation (64,2),
en 'appliquant & chaque champ d’éléments de surface dans §, une trans-
formation R. Toutefois, ¢ dépendant d’une équation quadratique, il serait
possible qu’a une branche de valeurs de ¢t corresponde une transformation R
se réduisant & une transformation ponctuelle. Nous avons vu au n® 45
que ce cas se présente pour un champ linéaire d’éléments de surface, dont
I’axe est situé dans le cone élémentaire de S, défini par la correspondance
(64,1).

65. Pour notre correspondance, ces cas sont faciles & caractériser direc-
tement. Nous avons & déterminer les champs D d’éléments de surface,
pour lesquels la premiére équation (64,3) posséde une solution indépen-
dante de p, g.

Supposons que D soit déterminé par une relation

p= ]‘(93 L5 Y1, yz) .
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On obtient alors pour un ¢ = ¢(z, y,, ¥,) la relation

2qt* — 2t + xf(q) = 0, (65,1)

identique en ¢, z, ¥,, ¥,. En dérivant par rapport a ¢, on a

242 = — xf; (q, Z, Y, ?/2) )

donc f, est indépendant de g et I'on obtient

i(Q: x, yl: ?/2) ':—:A(x’ yl’ yz)q + B(x’ yl’ y2) .

11 résulte alors de (65,1):

;o xB(x,2?/1,y2) , 2t2+xA(x,y1,y2)=O ?

done, en particulier,

xB?+ 24 =0, (65,2)
comme condition pour D. L’équation (65,1) se réduit alors &
2gt — 2t +xB—-i2-5;—-q—z (2t — z B) (gt + “’gB —1)=0
et posséde, en plus de la racine ¢ = _95_25 indépendante de g, la racine
b= — sz + ;

qui conduit & une transformation R ne se réduisant pas & une transforma-
tion ponctuelle.

Notre champ D correspond évidemment & la forme adjointe ds du
type I: B
ds =dy, —rdy, + 5 (x Br — 2) dx (65,3)

ou B est une fonction arbitraire en z, y,, ¥,.
Pour une forme adjointe du type II, ¢ s’exprime en fonction de
c(x, ¥, ¥2) Par «, y,, y,. Mais dans ce cas, la relation

2¢(x, yy, Yo)1? — 2t 4+ px =0

ne peut évidemment posséder une racine finie, indépendante de p, et le
cas d’un ds du type II est impossible.

Le cas de la forme ds du type III se réduit enfin en permutant y, et y,
au cas II, est donc également impossible.
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Quant & la forme (65,3), on obtient par (11,7) pour les cosinus direc-

teurs de son axe z B
% : Po: Yo=1: B: 5 - (65,4)

Pour vérifier que cet axe est situé sur le cone élémentaire qui se rat-
tache d’aprés le n? 55 & notre correspondance, déduisons I’équation de ce
cone. On obtient les équations des courbes (64,1) correspondant aux
différents points de 2’ et passant par un point fixe (x, 4,, y,) de S, en
éliminant 7, et 7, des 4 équations

m— Y, +2X§=0, ne— Y, + X282 =0,
mM—U —ﬂ-2x§=0, Ng— Yo + 2282 =0,

ou X, Y,, Y, sont des coordonnées courantes. On obtient
Y, —y—26(X—2)=0, Y,—y,—(X2—2%)E =0, (65,5)

on a donc dans le point (z, y,, ¥,) pour les différentielles dz, dy,, dy, le
long d’une courbe correspondant & une valeur de &:

de:dy,.:dy,=1:2%:2x&2, (65,6)

et I’équation de notre cone élémentaire est

dys, dy: \*_
2 s x( i )--0 . (65,7)

Il est maintenant évident que pour £ = B l’élément de ligne carac-
térisé par (65,4) est situé sur le cone (65,7).

66. Exemple I11. Considérons maintenant la correspondance de rang 2
Q=xéf+yrm+ Yn—1=0 (66,1)

qui se réduit évidemment & la polarité par rapport & la sphére-unité. On
obtient immédiatement par les formules (56,2) la transformation de con-
tact qui 8’y rattache:

1 P
M= er—vid  C T hi—ep—vad
1 2 1 2 (66,2)
Ne =— — g 3 %z__f_ ) K____________?/_z__,
Y1— 2P — Yaq Y1 Y1
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Y, = y X = —
— Em— _ _ ’
M Na K 7751 Em—myk (66,3)
- « . — "
8 m—Erm—mar ’ p m 4 U}

A une forme adjointe ds du type I correspond le champ d’éléments de
surface défini par p = f(q, =, ¥,, ¥,). En introduisant ici les valeurs de
P, q, %, Y, Y, données par (66,3), on obtient la relation

E ( N2 — T 1 — K )
——+ - ’ ’ ’ =0 ’
M1 f o Mm—Ern—nak Yy —Em—nyk N —Em—npk

(66,4)

qui définit le champ correspondant A d’éléments de surface dans 2. La
forme adjointe do qui se rattache & 4 est du type I, si l’on peut tirer =
de (66,4) en fonction de =, &, #,, 1,. do est du type 11, si (66,4) ne définit
que « en fonction de &, 7, 7,.

Enfin, si I’expression de gauche dans (66,4) ne dépend ni de z ni de «,
on obtient en (66,4) une relation entre &, 7,, 7,, et & notre ds ne corres-
pond aucune transformation R. Nous allons déterminer les fonctions
f(q, x, y, y,) pour lesquelles se présente ce cas d’exception.

Tout d’abord, toutes les fonctions f indépendantes de =z, y,, y,, appar-
tiennent a cette classe. .

Supposons maintenant que f ne soit pas indépendant de toutes les trois
variables z, y,, ¥,. Alors, en dérivant f(q, , y,, y,) par rapport & n et «
on obtient en utilisant les formules (66,3):

== 5(?/1f;1 + y2f3,/2 -+ xf;) - f:; )
(66,5)

e
Y1
1

—?;1— = nz(y1f;1+yzf1;,+xﬂ;)_f;2 .

R\ﬁl&

mlm )

Donge, si ni # ni « n’entrent effectivement dans (66,4), on a

A
Yy, + Yoy, + xf, = & = —n’-’z—

Introduisons ici les expressions de & et 7, tirées de (66,2). On obtient
pour p = (¢, %, Y1, Ya):
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ylf;,+?/2f;;2+xf; _ f::: ijz
Y, — &f — Yaq f q

ce qui est équivalent au systeme
fotftfy, =0, f,+af, =0. (66,6)

Il résulte de la seconde des équations (66,6), que f est une fonction
® (g, x, u) des trois expressions ¢, x, ¥ = ¥y, — qy,. Mais alors, la premiére
équation (66,6) se réduit a
/ /
Pt PP =0 .

Or, cette équation, aux notations pres, a été déja résolue au n® 63. On
obtient sa solution de celle de 1’équation (63,6) en y remplacant y, par
u, ¥, par q et f par ¢. Done, en introduisant ’expression de u, les fonctions
f(q, ®, ¥, ¥y,) cherchées s’obtiennent en résolvant par rapport a f
I’équation

h—a9y.—xf=F(f,q), (66,7)

ol F' est & considérer comme une fonction arbitraire des deux arguments
indiqués.
En particulier, les équations (66,6) ne sont évidemment jamais satis-
“faites, si f est indépendant de ¢, sauf dans le cas déja exclu, ou f est aussi
indépendant de x, y,, ¥,.

Done, notre cas d’exception ne se présente pas, si f est indépendant de

q sans étre constant. On voit done, en permutant les variables que, si ds
appartient au type 11, la condition nécessaire et suffisante pour qu’a ce ds
corresponde une transformation R engendrée par (66,1), est que ¢ ne soit
pas une constante. Enfin, puisque pour f =0 la transformation R est
impossible, on voit, en permutant les variables, qu’a la forme ds du

type III ne correspond aucune transformation R.

Notre discussion permet évidemment de former toutes les équations
différentielles aux dérivées partielles en deux variables indépendantes,
auxquelles la transformation par polaires réciproques n’est pas applicable.

(Recu le 3 octobre 1940.)
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