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Sur une classe de transformations différentielles

dans l'espace à trois dimensions. II.

Par Alexandre Ostbowski, Baie

CHAPITRE II
Transformations M et Transformations de contact

§ 7. Représentation des transformations H sans intégration,
à partir d'une correspondance de rang 1

32. Soit T une transformation B. En exprimant x, yx, y2 comme fonctions

de q, |, rjl9 rj2 et en éliminant g, on obtient un système de deux
équations entre les 6 variables £, rjl9 rj2, x, yx, y2:

(32,1)

que nous appellerons équations directrices de T. Ces équations définissent
une correspondance entre les espaces 8 et 27, telle que les points de
^correspondant aux différents éléments de ligne passant par un point
P(x, yl9 y2) de 8 forment une courbe donnée par (32,1), et de même à un
point général de ^correspond par (32,1) une courbe de 8; une telle
correspondance sera appelée dans la suite une correspondance de rang 1, Or,
puisqu'il n'existe pas d'autres relations entre nos 6 variables, indépendantes

de (32,1), chaque relation linéaire entre les différentielles de ces
6 variables doit être de la forme

X2D2f}) dm + • • • +Vl (32,2)

Mais la relation (13,5) devient, en posant fi —

— mocdrj2 — m$d% — edy1 + ady2 + bdx 0 (32,3)

où oc, /?, a, b, m peuvent être exprimés en fonctions de f, Y\lyr\%> x, yl9 y2.
Ou a donc en choisissant convenablement les fonctions Ax et X2
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i«U Vi — e

j. + Atû;B 6

2^ =—m/S,

(32,4)

(32,5)

(32,6)

(32,7)

(32,8)

(32,9)

33. Les 6 relations (32,4)—(32,9) permettent en général de retrouver
la transformation T à partir du système (32,1), si l'on suppose la forme ds

connue. En effet, on obtient en éliminant At et A2 des trois équations
(32,4)—(32,6), et en remplaçant e, a, b par leurs expressions en r, x, y1, y2 :

Q =A3b — A^e 0

où l'on a

OL.

(33,1)

(33,2)

/Si aZor« (33,1), considérée comme équation en f, ^1? ^2> PCM^ ^re combinée

avec les équations (32,1) ^ow fe valeurs générales des r, x, y19 y2, de sorte

que ces trois équations soient résolubles par rapport à f, rjl9 rj29 on tirera
d'elles |, %, iy2 en fonctions de r, x, yl9 y2.

En substituant ces valeurs et celles des Ax, A2 dans les trois équations
(32,7) — (32,9), on arrive à exprimer q en fonction de r, x, ylf y2. En
effet, si la valeur de me, obtenue de (32,7) est ^ 0, on aura e 1 et
Ton exprimera oc et /? en fonctions de r, x, y19 y2. Si l'expression de oc,

obtenue de cette façon, est indépendante des expressions des f, rjlir}2, on
aura évidemment oc=q, etf} pourra être exprimé en fonction de q, f, r\x,Y\2.
do appartiendra au type I. Et si oc est exprimable par f, rjly rj2f on aura
évidemment affaire à une forme do du type II. Alors on exprimera q (3

en fonction de r, x, yx, y2 au moyen des relations (32,9) et (32,7). Enfin,
si la valeur de me, obtenue de (32,7) est 0, notre do appartient au

type III, et la valeur de q — s'obtiendra des relations (32,8), (32,9).

— Nous avons maintenant à analyser la condition portant sur (33,1).

34. Puisque les équations (32,1) proviennent d'une transformation R
donnée, il est clair que (33,1) est compatible avec (32,1).

Nous avons donc à nous demander, s'il est possible, pour une trans-
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formation R donnée, de choisir les équations (32,1) de sorte que l'équation
(33,1) ne soit pas satisfaite pour chaque valeur de r, en vertu de (32,1).

Dans ce qui suit, nous appelons transformation singulière chaque
transformation R pour laquelle, pour chaque choix de couples équivalents
d'équations Qx 0, Q2 0> °ù Al e^ ^2 sont supposées douées de dérivées

continues du premier et du second ordre, l'équation (33,1) est satisfaite

en vertu de (32,1).
Or, on pourra en tous cas représenter le résultat d'élimination de r

et de q dans une forme résolue par rapport à deux des trois variables
x» Vi > V2 • Nous pouvons donc supposer dès le début, que le rang de la

/ Qf Qf Q1 \I Uivx U1V2 Ulx \

\ ^2*! 2*2V2 ^2* /
reste 2 pour le point général du lieu géométrique donné par (32,1).

Alors, il est facile de voir que, si b ne se réduit pas à un polynôme
linéaire en r (ds est alors une forme adjointe du type I) :

ds dyx — rdy2 — fdx

-j~ 9^ 0 en vertu de (32,1)
(34,2)

(33,1) n'est pas satisfaite en vertu de (32,1) pour chaque valeur de r. En
effet, dans le cas contraire, on aurait en dérivant (33,1) par rapport à r:
Azfr + A2 0. Mais alors, fr étant variable avec r, on aurait A3 A2= 0

et Ax reste d'après notre hypothèse ^Oen vertu de (32,1). Alors l'équation

(33,1) se réduit à Ax 0, et, cette équation n'étant pas satisfaite
identiquement en vertu de (32,1), les expressions (14,1) des f, r\x, rj2 en
fonctions de x, yx, y2,r seraient indépendantes de r. Notre transformation

serait ponctuelle, contrairement à l'hypothèse formulée au § 1.

35. Considérons maintenant la transformation R, To, donnée par

yi=*?i> 2/2 *72> x X(Q> £> *7i>*?2)> r=Q (35,1)

et correspondant aux formes adjointes

ds dyx — rdy2, da dr\x — Qdrj2 (35,2)

Ici on a naturellement à supposer que

4f*0' ^H°- (35>3)

Je dis que TQ est une transformation singulière.
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En effet, si une fonction Q(y1, r\x,y2,Y\2, x, f), douée de dérivées
continues du premier et du second ordre, devient 0 pour y1 r\x, y2 rj2,
on obtient, en appliquant à chacune les deux parenthèses de droite dans
la décomposition

le théorème des accroissements finis, une représentation de la forme

où les dérivées de L et M du premier ordre restent continues. Donc, pour
notre To, les fonctions Qx, Q2 auront en tous cas la forme

Qv Lu(yi — ni) + Mv{y* — *i*) > * 1,2,

où Ll9 L2, Mx, M2 possèdent des dérivées continues du premier ordre.
Mais alors, en éliminant Xl9 A2 des (32,4) — (32,6) pour ces Qv et pour
la forme adjointe ds (35,2), on obtient un déterminant, dont la dernière
ligne sera la suivante:

Lix(y1 — r]l) + M!Lx(y2 — f]2) ; L'2x{yx — rj,) + M'2x{y2 — rj2) ; 0 ;

l'équation (33,1) est donc satisfaite identiquement pour yx= r\x, y2= rj2.

36. Nous allons maintenant montrer que chaque transformation
singulière se réduit à une transformation du type To, (35,1), correspondant aux
formes adjointes (35,2), par transformations ponctuelles dans les espaces S
et £. Montrons d'abord, qu'une transformation singulière conserve cette
propriété, si l'on effectue des transformations ponctuelles dans les espaces
S et 27.

Pour l'espace 27, c'est évident, puisque les dérivées dans (33,2) ne se

Tapportent qu'aux variables x, yl9 y2.
Soit de l'autre côté

y1 y*(X,Y1,Y2) y2 y*(XJlyY2) x x*(X,Tl972) (36,1)

une transformation ponctuelle dont naturellement le Jacobien A est ^ 0.
D'après les calculs du n° 17, la forme adjointe ds se transforme en

EdY1 — AdY2 — BdX MdS (36,2)

où dS est la forme adjointe transformée et
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5 — e
dX a dx

dx

dx

9a;

dX '

(36,3)

Mais alors le déterminant correspondant à (33,1) devient, en négligeant
un facteur ^0, ^ oo :

Q[i¥i

Q[x

(36,4)

Donc ce déterminant s'annule en vertu de Qx 0, Q2 0 pour chaque
valeur de r9 et la transformation résultante est encore singulière.

37. De l'autre côté, comme nous l'avons vu à la fin du n° 19, chaque
forme adjointe du premier type, où b est linéaire et entier en r, est
équivalente, par une transformation ponctuelle, à la forme adjointe dy1—rdx,
qui est de son côté équivalente à dyx — rdy2, la permutation de x et y2

étant une transformation ponctuelle. Il en résulte d'après le résultat du
n° 34 qu'une transformation singulière T* se réduit par une
transformation ponctuelle à une transformation B singulière T'\ pour laquelle
la forme adjointe ds devient

(37,1)

Soit maintenant (32,1) un couple d'équations directrices, correspondant
à T\ L'expression A2r — âx s'annulant en vertu de (32,1) pour chaque
valeur de r, on a évidemment

A2 Ax=^0 (37,2)

en vertu de (32,1). Donc, si le rang de la matrice (34,1) reste 2 dans le

point général de (32,1), on a A3 =fi 0, et les équations (32,1) peuvent être
résolues par rapport à yx et y2. On peut donc écrire ces deux équations
dans la forme

yt— 0. (37,3)

Mais alors, il résulte de (37,2) que Trlx et T2x s'annulent dans le point
général de (37,3), donc identiquement. On obtient donc
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Vi Ti(£> Vu V*), V* Tt(S9 r)1} rj2)

où Tx et T2 sont naturellement deux fonctions indépendantes des

i, tjl9 r\2. En effectuant une transformation ponctuelle dans £, on peut
faire les fonctions Tx, T2 respectivement égales à r\x, rj2. Alors les équations
(32,1) deviennent

Vi^ii* V2 n% • (37,4)

En exprimant x par q, f, ry1? rj2, on obtient

%,%) (37,5)

et (37,1) se transforme en dr\x — rdrj2, donc onar=p,
Mais alors X doit contenir effectivement f et n'est certainement pas

indépendant de q, T n'étant pas une transformation ponctuelle. Donc on a

et la transformation ï1' devient une transformation du type To,
considéré au n° 35.

38. Il est facile à caractériser géométriquement les correspondances
(32,1) déduites des transformations singulières. Généralement, aux points
de £ correspondent oo3 courbes de S. Or, pour la correspondance (37,4),
on n'obtient que oo2 courbes de 8, qui correspondent aux points
(f> Vif Viùy e^ il en es^ évidemment de même pour chaque transformée de

la correspondance (37,4) par transformations ponctuelles, c'est-à-dire pour
chaque correspondance déduite des transformations singulières.
Supposons inversement que, pour la correspondance (32,1), aux points
(f> %> V2) ne correspondent que oo2 courbes L dans S. Alors les points
de Eauxquels correspond une courbe particulière £, forment eux-mêmes
une courbe A dans 27. Et à chaque point de Zsitué sur A, correspond L,
en vertu de notre correspondance. Nous appellerons les correspondances
(32,1), jouissant de cette propriété, correspondance intransitives.

Or, en introduisant des nouvelles coordonnées dans S et U, on peut
faire de sorte, que les lignes L, A deviennent des droites (y1 const. ;

y2 const.); (rj1 const.; rj2 const.), dès lors, en effectuant une
transformation entre les r\x, rj2, on obtient y1 r\x, y2 rj2, c'est-à-dire
(37,4).

Enfin, si les équations (32,1) possèdent la forme (37,4), il résulte de
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(33,1): 6 0. Donc la forme (37,1) est la seule qui puisse être combinée

avec (37,4).
En rassemblant les résultats de ce paragraphe, on obtient:

Théorème V : Chaque transformation R, sauf les transformations singulières,

"peut être déduite d'un couple convenable (32,1) de ses équations directrices

en résolvant les équations (32,4) — (32,9).
Les transformations singulières peuvent être caractérisées par la propriété

qu'elles sont, par des transformations ponctuelles dans Eet 8, équivalentes à

une transformation du type (35,1) correspondant aux formes adjointes (35,2).
Pour qu'une correspondance (32,1) soit déduite d'une transformation

singulière, il est nécessaire et suffisant qu'elle soit intransitive. Une
correspondance intransitive C ne peut être combinée qu'avec les formes
adjointes qui proviennent de (37,1) par les transformations ponctuelles
transformant (37,4) enC, et ne se déduit que des transformations singulières dans
lesquelles se transforment les transformations (35,1) par ces transformations
ponctuelles.

§ 8. Formation des transformations B à partir d'une correspondance
de rang 1, donnée à priori

39. Le but principal de ce paragraphe est de montrer qu'en appliquant
les calculs du n° 33 à un système de deux équations

&v(x> 2/i> 2/2, & Vif V%) °> v 1, 2, (39,1)

et à une forme adjointe ds, données à priori, on obtient en général une
transformation R.

Quant aux équations (39,1), nous supposons qu'elles définissent une
correspondance entre S et Z, de sorte qu'à un point général de l'un de ces

espaces corresponde une courbe dans l'autre. Plus précisément, nous
faisons les hypothèses suivantes:

1) Les équations (39,1) sont, pour un point général de £, résolubles par
rapport à un couple convenable des trois variables x, yl9 y2, pour la
valeur générale de la troisième de ces trois variables. Le même fait
subsiste, si l'on interchange les espaces S et 27.

2) Les fonctions Qx, Q2 son^ douées de dérivées continues du premier
ordre pour le point général P de chacun de nos espaces, et pour le point
général de la courbe qui correspond à P dans l'autre.
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3) Chacune des deux matrices

ai,t Q'îv% I QU #,. I (39>2)

Q' Q'ùal x "a2 x

conserve le rang 2 pour le point général P de chacun de nos espaces, et
pour le point général de la courbe qui correspond à P dans l'autre.

40. Nous allons d'abord analyser la ,,transitivité" de la correspondance
(39,1). La définition de l'intransitivité, donnée au n° 38, revient à ce que
les équations (39,1) peuvent être supposées dans la forme ,,séparée"

®v(£> Vi, rj2) Fv(x, yl9 y2) v 1, 2 (40,1)

Si la correspondance (39,1) n'est pas intransitive, elle sera appelée
transitive.

Pour déduire la condition d'existence d'une relation (40,1), résolvons
(39,1) par rapport à deux des trois variables f, r\x,r\2. Supposons, pour
fixer les idées, que l'on ait

/ fc \ 1 (y

Alors une relation (40,1) représente une relation entre F, rjl9 rj2 en fonctions

de x, yl9 y2, en considérant £ comme un paramètre. Donc, le
Jacobien de rjl9 rj2,F par rapport à x, yl9 y2 s'annule identiquement en

Réciproquement, si cette dernière condition est satisfaite, il existe une
relation entre F, rj1) rj2y dans laquelle £ entre comme paramètre, et en
résolvant cette relation par rapport à F, on obtient une relation de la
forme (40,1).

Or, en calculant, au moyen des équations (39,1) les dérivées partielles
de y\x Tj2 par rapport à x, yt, y2 et en introduisant ces valeurs dans

l'équation a^1?^2'—^- 0, on obtient par un calcul immédiat la con-

0, c'est-à-dire

AxF'yi + A2Fry% + AZF'X 0 (40,2)

Donc, pour qu'il soit possible de déduire des (39,1) une relation de la
forme (40,1), il est nécessaire et suffisant que F satisfasse à l'équation
linéaire (40,2), en vertu des équations (39,1).
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41. Maintenant, pour que (39,1) soit intransitive, il est évidemment
nécessaire et suffisant que l'équation linéaire (40,2) possède deux intégrales
indépendantes F±, F2 qui ne dépendent pas de £, rjl9 r\2. Mais alors,
Aly A2, Az sont proportionnels, en vertu de (39,1), aux trois Jacobiens de

ces deux intégrales, donc à trois fonctions indépendantes, en £, rj±, rj2.
Réciproquement, si l'on peut mettre, en vertu de (39,1), l'équation

(40,2) sous la forme

^ + D2F'V2 + DZFX) 0 (41,1)

où D1, D2, D3 ne dépendent pas de £, r\x,r\2, l'équation linéaire
DxFryi + D2Fry2 + D3FX 0 possède deux intégrales indépendantes qui
ne dépendent naturellement pas de f, rjl9 r\2. Donc :

Une condition nécessaire et suffisante pour que la correspondance (39,1)
soit intransitive est, que les quotients des Al9A29A3 deviennent, en vertu de

(39,1), trois fonctions indépendantes, en £, rjl9 rj2.

Il résulte immédiatement du résultat obtenu :

Une condition nécessaire et suffisante pour que (39,1) soit intransitive est

qu'il existe deux relations :

où les Pv et Qv ne dépendent que de x, y1, y2 et où le rang de la matrice

Px P2 1

est 2. — Deux relations linéaires jouissant de cette propriété seront
appelées dans la suite ,,essentiellement différentes entre ellesi(.

En particulier, (39,1) est intransitif, si deux des trois déterminants
Al9A29 Az s'annulent.

De l'autre côté, si (39,1) est transitif, il peut très bien exister, en vertu
de (39,1), une relation

s 0, (41,2)

où Pl9P2, P3 sont indépendants de f, rjl9rj2. La correspondance (39,1)
sera alors appelée faiblement transitive dans l'espace S.

Il est facile d'interpréter géométriquement la relation (41,2) en termes
de la correspondance (39,1). Pour un point général (f, rjl9 rj2) de 2J, les

cosinus directeurs oc, fi, y de la tangente à la courbe (39,1) dans un point
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correspondant (x, yl9 y2) de S sont évidemment proportionnels aux
déterminants zJ3, Alt A2. De l'autre côté, l'équation de Pfaff

P3dx + Pxdy + P2dy2 0 (41,3)

définit un élément de surface passant par (x, yly y2). Et l'équation (41,2)
dit que toutes les courbes (39,1) de 8 passant par le point (x, yx, y2) sont
tangentes à l'élément de surface (41,3).

Quant aux conditions d'existence pour une relation (41,2) on peut les
déduire facilement, en éliminant au moyen de (39,1) deux des trois
variables |, rjl9 rj2de Al9 A2i Az, et en formant le Wronskien des fonctions
résultantes par rapport à la troisième variable. Mais on n'obtient ainsi
qu'une condition relativement compliquée.

42. Pour déduire de la correspondance (39,1) une transformation JB, on
écrira les équations (32,4) — (32,9) et l'on procédera comme au n° 33.

L'élimination de X± et A2 des trois équations (32,4) — (32,6) conduit à

l'équation (33,1). Supposons que la condition suivante soit satisfaite:

1) On peut tirer de (33,1) et (39,1) les valeurs de £, rjl9 r\2 en fonctions des

r> x> Vu y2) & Vune au moins de ces valeurs dépend effectivement de r.

En substituant ces valeurs et celles de A1? X2 dans les équations
(32,7) — (32,9), on pourra identifier e, oc, fi avec les coefficients d'une
forme adjointe da, si les deux conditions suivantes sont satisfaites avec 1) :

2) Les expressions de f, ^, r\2 en jonctions des r, #, yx, y2 sont indépendantes.

3) Pour deux des expressions de gauche dans (32,7) — (32,9), convenablement

choisies, le quotient est une fonction de r, x, yl9 y2, qui ne peut pas être

exprimée en fonction de £, r}x, rj2 seuls.

Si les trois conditions indiquées sont satisfaites, on parvient toujours
à une transformation M pour laquelle les équations (39,1) sont un couple
d'équations directrices.

43. Quant à la deuxième des trois conditions du numéro précédent, on
montre facilement qu'elle est toujours satisfaite avec la première.

En effet, supposons qu'il existe une relation

entre les valeurs de f, r\x, rj2 tirées des équations (33,1) et (39,1). On peut
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alors, en introduisant des coordonnées convenables dans l'espace £,
supposer que cette relation se réduise à

£ 0 (43,1)

De l'autre côté, on peut supposer, d'après les hypothèses du n° 39, que
les équations (39,1) sont données dans la forme résolue par rapport à deux
des trois variables x, ylf y2i par exemple:

yv — Q* (x, f, %, v%) 0 v 1, 2 (43,2)

Mais alors, puisque (43,1) et (43,2) sont compatibles, on a:

yv Q* (x, 0, Vl, rj2) * 1, 2 (43,3)

Ce couple d'équations n'est assurément pas résoluble par rapport à rjlf r]2i
puisque dans le cas contraire ^ et rj2 seraient indépendants de r. Donc,
le Jacobien de £?f et Q2 par rapport à y}x et rj2 s'annule identiquement
en x, r\x et rj2. Il en résulte une relation identique entre x, û* et Q2i
donc en vertu de (43,3), entre x, yt et y2:

F(x,ylyy2) 0. (43,4)

Mais alors, si (43,4) est une conséquence des équations (39,1) et (33,1),
ce système n'est assurément résoluble par rapport à |, r}x, r\2 que dans

l'hypothèse (43,4), ce qui est contraire à la première des conditions du
numéro précédent.

44. Nous allons maintenant analyser la première des conditions
énumérées au n° 42, à savoir celle qui se rapporte à l'équation (33,1).
Pour pouvoir arriver aux critères maniables sans faire des hypothèses

trop spéciales sur la nature fonctionnelle des fonctions Dv, nous allons

poser la question sous une forme différente.
Une forme adjointe ds sera appelée régulière relativement à la

correspondance (39,1), si elle possède la propriété suivante:

Exprimons au moyen des équations (39,1) deux des trois variables
f> Vu V2> choisies convenablement, en fonctions de la troisième de ces

variables que nous appelons r), et de x, ylt y2. Introduisons ces valeurs dans

Vexpression Q en (33,1) et désignons respectivement par

£* A* b + A? a — A*e (44,1)

et par A* A*, A* ce que deviennent Q, At, A2i Az après cette substitution.

3 Commentera Mathematici Helvetici oo



Alors, Q* contient effectivement chacune des deux variables y] et r et ne 'peut

pas être décomposé en produit F1(rj)F2(r) des deux fonctions F^tj), F2(r)
dont la première est indépendante de r et la seconde indépendante de rj.

Si une forme adjointe ds n'est pas régulière relativement à (39,1), elle
sera appelée singulière relativement à (39,1). On a alors la relation
identique: ^A*b + A?a-A?e F,(v)F2(r) (44,2)

Naturellement, si ds est régulière relativement à (39,1), il n'en résulte pas
encore dans tous les cas que la première condition du n° 42 soit satisfaite.
L'équation Q* 0 pourrait très bien ne pas posséder de racines en rj
pour les valeurs générales de r. Mais elle permet certainement d'exprimer
tj en fonction de r, si par exemple les fonctions Qv sont algébriques — en
admettant naturellement des solutions imaginaires. Dans le cas des
fonctions Qv transcendantes, la discussion ultérieure dépend déjà des

propriétés spéciales de ces fonctions, qui doivent être spécifiées dans chaque
cas particulier.

On peut donc dire que la condition ,,algébriquement complète" pour que
la première condition du n° 42 soit satisfaite, est que ds soit régulière
relativement à (39,1).

45. Il s'agit maintenant de trouver toutes les formes adjointes singulières

relativement à la correspondance (39,1).
Tout d'abord, il résulte de la relation (36,4), où A est indépendant de

r, f, rjl9 rj2, que par une transformation ponctuelle dans l'espace 8, les

formes singulières se transforment en formes singulières et vice versa.
De même, il suit immédiatement de la définition des formes singulières

que par une transformation ponctuelle dans l'espace U aussi, les formes

singulières se transforment en formes singulières et vice versa.

Il en résulte .que pour une correspondance intransitive, toutes les

formes adjointes sont singulières. En effet, par transformations ponctuelles

dans les espaces 8 et Z, les équations directrices d'une correspondance
intransitive (39,1) peuvent être transformées en

Mais alors, l'expression Q* en (44,1) se réduit à une fonction qui ne dépend
ni de %, ni de rj2, ni de £, quelle que soit la forme adjointe ds.

Nous admettrons donc dans la discussion suivante que (39,1) est
transitive et nous allons démontrer d'abord que, si (39,1) possède des formes

adjointes singulières, la correspondance (39,1) est faiblement transitive dans

8, c'est-à-dire qu'il existe une relation identique :
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PXA* + P2A* + PZA* 0 (45,1)

où P19 P2, Pz ne dépendent que de x, yx> y2 et Vun au moins des coefficients
Pl9 P2, Pz ne s'annule pas identiquement.

Supposons d'abord que F2(r) dans (44,2) s'annule identiquement.
Alors, on obtient de (44,2) pour r rx et r r2, rt =fc r2, deux relations
de la forme (45,1), essentiellement différentes entre elles. En effet, Tune
des deux grandeurs — a, e est toujours identique à 1. De l'autre côté,
l'une des deux grandeurs a, b est toujours identique à r, et devient dans

nos deux relations égale à rl9 r2 ^=rl.
Mais alors, d'après ce que nous avons dit au n° 42, la correspondance

(39,1) est intransitive. Nous pouvons donc admettre dans la suite que
F2(r) ne s'annule pas identiquement.

Ecrivons la relation (44,2) pour une valeur r0 de r, telle que F2(r0) ¥" 0,

et désignons les valeurs correspondantes de a, 6, F2(r) respectivement par
ao>bo, f0. On obtient

A?bo + A*ao-A*e=F1(rj)fo

En éliminant F-^rj) entre cette relation et la relation (44,2), on obtient

{KF2(r)- b/0) zJ3* + (a0F2(r) —af0)A* — e (F2(r) - /0) A* 0. (45,2)

Or, s'il existe une valeur rx de r pour laquelle F2(r) ^ f0, l'un des deux
derniers coefficients dans (45,2) reste ^ 0 pour r rl9 puisque ou bien e,

ou bien — a a la valeur 1. Si de l'autre côté, on a pour chaque valeur de r:
F2(r) /0, il résulte de (45,2), en divisant par /0:

et dans cette relation l'un des coefficients reste ^ 0 pour r rx # r0,
puisque ou bien a, ou bien 6 est identique à r.

Donc, la relation (45,2) se réduit dans tous les cas à une relation (45,1),
C. Q. F. D.

Nous allons maintenant montrer que dans une forme adjointe singulière
correspondant à la correspondance (39,1), le coefficient b est un polynôme
au plus linéaire en r, c'est-à-dire qu'une forme singulière est toujours axiale.
Il suffit évidemment de considérer le cas d'une forme du type I, on pourra
donc faire e 1, a r. Or, d'après ce que nous avons dit au n° 41, la
relation (45,2) ne peut, pour aucune valeur de r, être essentiellement
différente de la relation (45,1). Il en résulte que l'on a pour un M convenablement

choisi :
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- 6/0=JfP,, rjt(r)- rfo=MP2, F,(r) - fo=MP1, (45,3)

donc, en éliminant de ces trois relations Ft{r), foet M:

Pi
0 (45,4)

Or, Tune au moins des deux grandeurs Px, P2 ne s'annule pas identiquement,

puisque dans le cas contraire on aurait des deux dernières équations
(45,3) : r — r0. Donc, on peut choisir r0 de sorte que P2 — r0P1 ne s'annule

pas. Mais alors on obtient de (45,4) une expression de 6, qui est au plus
linéaire en r, C. Q. F. D.

46. Nous allons maintenant démontrer que la condition nécessaire et

suffisante pour que ds soit singulière par rapport à (39,1) est que Vaxe de ds

soit situé dans Vêlement de surface

Pzdx + P1dy1 + P2dy2 0

correspondant à la relation (45,1).

Il résulte d'abord de (44,2), 6 étant au plus linéaire en r, que F2(r) peut
être écrit dans la forme

Ft(r) - C(x, yl9 y2)r + D(x, y1} y2) (46,1)

Supposons maintenant que ds soit du type I, on a alors

a r, e=l, b A(x, ylf y2)r + B(x, yl3 y2)

et la relation (44,2) se réduit, en comparant les coefficients des différentes
puissances de r, aux deux relations

A A* + A* CFl BA* - A* DFX

dont on peut toujours déduire F^rj), si la relation

(AD — BG) A* + DA* + CA* 0

obtenue en éliminant Fly est satisfaite. Donc, en vertu de (45,1), il existe
une fonction M(x, yx, y2), telle que

C MP1,— BC MP3, D
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et la condition nécessaire et suffisante pour que D et G puissent être
déduites de ces trois relations est :

Or, eu égard aux expressions (11,7) des cosinus directeurs de l'axe de ds9

cette relation se réduit à

<x0P3 + pQPx + y0P2 0 (46,2)

conformément à notre assertion.

Si ds appartient au type II, on a

b r, a c(x,y1,y2), e=l
et la relation (44,2) conduit aux deux relations

Af CFt cA* - A* DFl
donc, en éliminant Fx :

DA* — cCA* + CA* 0

et, en comparant avec (45,1):

D: — cC:C=P3:P2:P1}

d'où la relation cPx + P2 0, qui se réduit en vertu de (11,7) à (46,2).

Enfin, dans le cas III :

j __—r^ a==l, e=0,
on obtient de (44,2):

- A$ GF± A* D^ DA* + CJ2* - 0

donc, en comparant avec (45,1) : Px 0, ce qui réduit en vertu de (11,7),
dans ce cas aussi, à (46,2), et notre assertion est complètement démontrée.

Relevons enfin que, dans certains cas, même une forme adjointe
régulière relativement à (39,1) peut conduire à une transformation R
qui ne se réduit pas complètement à une transformation ponctuelle,
mais, étant multiforme, possède des composantes qui se réduisent aux
transformations ponctuelles. Pour cela il est nécessaire et suffisant que
l'identité suivante, analogue à l'identité (44,2), ait lieu:

A*b + A*a — A!e^Ft(ti)F%(fi9r) (46,3)
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oh. F^rj) contient effectivement rj> mais est indépendant de r et ne divise

pas toutes les trois expressions A*, tandis que F2(rj,r) contient effectivement

les deux variables rj et r, et ne possède plus de facteurs du type

Dans ce cas on pourrait obtenir, en résolvant l'équation F^rj) 0,

une transformation ponctuelle, tandis que la résolution de l'équation
F2(rj, r) 0 conduit à une transformation B ne se réduisant pas à une
transformation ponctuelle.

On peut montrer que l'identité (46,3) est, en général, réalisable pour
chaque correspondance (39,1), même pour celles qui ne sont pas faiblement

transitives dans 8, en choisissant convenablement la forme axiale ds

(Cf. n° 63).

47. Passons maintenant à la troisième des conditions énoncées au n° 42.

Supposons que cette condition ne soit pas satisfaite pour la forme adjointe
ds, c'est-à-dire que les 3 expressions de gauche dans les relations (32,7)—
(32,9) soient proportionnelles, en vertu des équations (32,1), (32,4)—
(32,6), aux trois fonctions de f, rjl9 rj2:

(47,1)

où les fonctions E, A, B sont indépendantes des x, yl9 y2,r. Alors, en
éliminant de ces trois équations 2^, A2, k:

B

—E

A

0 (47,2)

Désignons la relation (47,2) par

T(x,ylyy2; Ç, r)lt rj2) 0 (47,3)

Nous avons vu que cette relation est une conséquence des cinq relations
(32,1), (32,4) — (32,6), c'est-à-dire qu'elle est satisfaite pour chaque
système (x, yl9 y2; f, rjl3 rç2)> tel qu'il existe trois nombres A1? A2J r
satisfaisant à ces 5 relations. Or, on peut supposer que les relations (32,1)
soient résolues par rapport à deux des trois variables f, tjl9 rj2, p. ex.
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par rapport à rjl9 rj2. Alors nos cinq relations deviennent, après l'élimination

des Aj, A2, en notation du n° 44 :

rjv cov(£ ; x, yl9 y2), v 1, 2, (47,4)

A*b + A*a — A*e 0 (47,5)

En introduisant les expressions (47,4) dans (47,3), on obtient la relation

t(Ç;x,y1,y2) o, (47,6)

qui doit être satisfaite en vertu de la relation (47,5).
Or, supposons que les deux premières conditions du n° 42 soient

satisfaites, donc en particulier que ds soit une forme adjointe régulière relativement

à la correspondance (32,1).
Alors on a en particulier pour | une relation

S TJ{r,x,yx,y2)

où U dépend effectivement de r, puisque dans le cas contraire, d'après
(47,4), tj19 rj2 seraient aussi indépendants de r.

Donc, en résolvant cette relation par rapport à r :

r JB(f, x, Vl, y2) (47,7)

et la relation (47,6), valable en vertu de (47,7), l'est identiquement. Donc,
(47,2) est valable en vertu de (32,1) et notre correspondance est faiblement
transitive dans Vespace 27.

48. Supposons inversement que la correspondance (32,1) soit faiblement
transitive dans 27. Les expressions A, B, E dans la relation (47,2) sont,
à un facteur de proportionnalité près, univoquement déterminées, la
correspondance (32,1) étant transitive. Or, ceci permet généralement de
déterminer les formes ds pour lesquelles la condition dont il s'agit ici, n'est

pas satisfaite. En effet, dans ce cas on peut remplacer les équations
(32,7) — (32,9) par les trois équations (47,1). En supposant les deux
équations (32,1) résolues p. ex. par rapport à r}Xi rj2:

Vv — cov(i, x,y1)y2) 0, *> 1, 2 (48,1)

les 6 équations (32,4) — (32,9) deviennent, pour m — #c:

(48,2)
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Xx — kE A2 kA Ai

tandis que la relation (47,2) devient ici

(48,3)

(48,4)

Ici, la troisième des relations (48,3) résulte des valeurs de Al5 A2 en vertu
de (48,4), et les 3 relations (48,2) se réduisent aux trois relations suivantes :

Aœ2x —Ewlx

e

K

a
K

b

(48,5)

De ces trois relations il résulte que les expressions e, a, 6, donc la forme ds,
conduisant à notre cas d'exception sont univoquement déterminées.

Quant à l'existence de ds, il est clair que, si l'un des quotients des trois
expressions de gauche en (48,5) ne peut pas être exprimé par x, yl9 y%

seuls, on peut toujours trouver une forme ds satisfaisant aux relations
(48,5). Il suffit en effet de procéder comme aux nos 25 et 26.

De l'autre côté, si les trois expressions de gauche en (48,5) sont
proportionnelles aux trois fonctions Pl9 P2, P3 ne dépendant que de x, y19 y2>

il résulte la relation

«in Pi

«i».

«{.

0

donc notre correspondance est faiblement transitive dans l'espace S.

On voit donc que, si notre correspondance n'est pas faiblement transitive

dans 8 aussi, notre cas d'exception se présente pour une seule forme
adjointe ds.

Supposons enfin que la correspondance (39,1) soit faiblement transitive
relativement à deux espaces 8 et 27. Alors, d'après un théorème de S. Lie4),
on peut réduire, par des transformations ponctuelles dans les espaces 8
et £ les deux équations (39,1) à la forme

*) Cf. S. Lie, Oeuvres complètes, T. IP, p. 809, No. 28.



de sorte que (48,4) soit satisfait pour E l9 A B 0. Mais alors il
résulte de (48,5) : _ _
II n'existe donc pas dans ce cas de forme adjointe ds pour laquelle la troisième
condition du n° 42 ne soit pas satisfaite.

§ 9. Réduction des transformations JB aux transformations de contact
de rang 1

49. Comme nous avons vu au n° 32, à une transformation R, T9 se
rattache une correspondance (32,1) de rang 1 entre 8 et £9 qui fait
correspondre au point général de 8 une courbe de 2J9 et vice versa. Or, cette
correspondance (32,1) définit de son côté une transformation de contact de

rang 1 qu'on obtient des formules

(49,1)

(49,2)

9 yXi y2; I, %, rj2) 0 v 1, 2

en éliminant A1? ^2> e^ en résolvant par rapport aux variables f, t]l9 rj2,

n, k, ainsi que par rapport aux variables x, ylf y2ip,q, Toutefois, les

fonctions Ûl9 Q2 doivent satisfaire à la condition que cette résolution soit
possible. Cette condition se réduit d'après S. Lie à ce que tous les éléments
de surface (x, yl9 y2i p, q), satisfaisant à (49,1), (49,2), après l'élimination
de Aj, A2, n'appartiennent pas au même champ d'éléments de surface,
défini par une équation différentielle aux dérivées partielles.

50. Nous allons d'abord montrer que la condition nécessaire et
suffisante pour que, la correspondance C (49,1) étant donnée, les équations
(49,1), (49,2) soient résolubles par rapport à |, rjl9 rj2 pour un choix
convenable de Qx, Q29 est que O soit transitive.

En effet, on peut représenter G par deux équations résolues par rapport
à deux des trois variables f, rjl9 rj29 choisies convenablement. Supposons,

pour fixer les idées, que C soit donnée par les équations

ifc=i£(f,a,yx,y,) r=l,2. (50,1)
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1 F

^?2VX

r 1 —

r
Viv%

Vix

i
V2v2

1

Vlœ

r r

Ces deux équations doivent être résolubles par rapport à deux des trois
variables x, yx, y2. Donc, un des trois déterminants

(50,2)

ne s'annule pas identiquement. Donc, en éliminant Xx et A2 des deux
premières équations (49,2), l'équation résolvante peut être écrite dans la forme

A 3 p + A 2 q — A x 0 (50,3)

Supposons qu'il soit impossible de tirer f de cette équation en fonction
de p, q. — Dans certains cas exceptionnels, il pourrait être possible de

tirer de l'équation (50,3) la valeur de |, en fonction de x, yXiy2- Mais
alors on obtiendrait une transformation ponctuelle, et les transformations
de cette espèce restent ici hors de considération. — On a à considérer
deux cas :

a) Supposons que l'on ait identiquement A\ =A\ 0. Mais ceci, puisque

Al ne s'annule pas identiquement, n'est possible que si

On obtient alors, en résolvant (50,1) par rapport à x, t/2, deux équations
de la forme

x x*{S, rjly tj2) y2 y*{£, rjl9 rj2)

et G est intransitive.

b) L'un au moins des deux déterminants Al, Al ne s'annule pas
identiquement. Supposons, pour fixer les idées, que ce soit A 3. Alors on obtient
entre p et q la relation

(50,4)

Or, si l'expression de droite dépendait effectivement de £, on pourrait
tirer de (50,1) | en fonction de p et q, contrairement à notre hypothèse.
Donc A et B ne dépendent que de x, yx, y2, et notre assertion résulte de
la condition déduite au n° 41»

On obtient donc deux équations de la forme

Vv(x,y1,y2) 0V(Ç, rj^ rj2) v 1, 2,

qui peuvent remplacer les équations (49,1).

(50,5)



51. Supposons de l'autre côté que C soit intransitive, c'est-à-dire puisse
être défini par deux équations de la forme (50,5). Alors chaque couple
(49,1) d'équations représentant C peut être écrit dans la forme

où At,A2, Mv Mg sont des fonctions de x, y±, y2, £, rjl9 rj2. Puisque
(50,5) est valable pour C, les équations (49,2), relatives à p, q, se réduisent
aux suivantes:

Kl Mt X "H K2 *2 x _ Kl *1V2 "t" K2^2V2 /frl J\* ~
w V' 4- r V' ' " ~~ T7t i 17t >

V ' '
Ki v l vx i K2 Y 2 yx Ki v 1 vx i K2 v 2 vx

en posant
+ X2M2 /c2

Or, en éliminant *ly /c2 de (51,1), on obtient

Fi, VL P

Vi« Fi,. g =0'
F' F' 1K 1 Vx ' 2Vt X

et cette relation n'est pas satisfaite identiquement en (x, yl9 y2, p, g),
V1 et F2 étant deux fonctions indépendantes en x, ylf y2.

Donc, pour que les équations (49,1), (49,2) soient résolubles par rapport à
S, Vi > r)2> M ^ nécessaire et suffisant que la correspondance C soit transitive5).

Il en résulte en particulier que, dès que les équations (49,1), (49,2) sont
résolubles par rapport à £, tjl9 r\2, elles sont aussi résolubles par rapport à

x, yly y2, ce qui est un résultat général, valable d'après S. Lie pour un nombre
quelconque de variables et un nombre quelconque d'équations directrices.

En particulier, d'après ce que nous avons dit au n° 38, à la correspondance,
définie par une transformation R du premier ordre, se rattache toujours une
transformation de contact, si cette transformation R n'est pas singulière.

Posons maintenant, si C est transitif, pour les expressions des f, rjly rj2,
tirées de (49,1) et (49,2):

|= S(x, yl9 y2,p9 q) ^ H^x, yl9 y2, p, q) ju 1, 2. (51,2)

52. Soit ds une forme adjointe du type I ou II, donnée par (12,4) avec
e l. On obtient alors les expressions de f, rj1, tj2, correspondant à

(32,1), en résolvant (49,1) et les trois équations (32,4) — (32,6) par
rapport à f, rjl9 r\2.

5) C'est un cas spécial d'un théorème général. Cf. A. Ostrowski, Mathematische Mis-
zellen XIX, Zur integrallosen Bestimmung der Berûhrungstransformationen vom Range 1.

Verh. Nat.Ges. Basel (1941), LU, pp. 36—39.
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Pour cela, il suffit évidemment de remplacer dans les équations (49,2)

p, q respectivement par 6, a. On obtient donc de (51,2)

f S(x9 yl9 y29b9 a), ^ S^z, yx, y2, 6, a), // 1, 2, (52,1)

où Ton doit naturellement remplacer r par son expression en fonction de

px, p2, tirée de la relation

ft — a2>2 — 6 0 (52,2)

Or, on a d'après (52,2) pour un élément de ligne dyx =* pxdx, dy2

p2dx :

dyx — ady2 — bdx 0 (52,3)

De l'autre côté, on a pour un élément de surface aux coordonnées p, q :

dyx — pdx — qdy2 0 (52,4)

Donc, l'élément de ligne satisfaisant à (52,3) pour une valeur de r, est
situé sur l'élément de surface, donné par (52,4) pour

p 6 q a (52,5)

Les équations (52,5) définissent, si l'on varie x, yl9 y2,r dans a, 6, un
champ de oo4 éléments de surface, correspondant pour un ds du type I
à l'équation différentielle

(£) («m»

et pour une forme du type II à l'équation différentielle

-^ c(x,y1>y2) (52,7)

On obtient donc le point |, tjly r\2, correspondant à l'élément de ligne

(#> V» V* Pv P2) > (52,8)

en déterminant dans le champ (52,5) l'élément de surface

(*> Vi> y* P> Q) » (52>9)

dans lequel est situé (52,8), et en cherchant le point de £, correspondant
à (52,9) en vertu de la transformation de contact (49,2).
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53. Si la forme adjointe ds est du type III, on arrive à un résultat
analogue, en permutant y2 et yx. On obtient donc dans ce cas la transformation

B, en appliquant au champ d'éléments de surface, rattaché à

l'équation ~

la transformation de contact déduite de (49,1) et (49,2) en y permutant
Vi et y*

D'ailleurs, pour traiter tous les trois types des formes adjointes de la
même façon, il suffirait d'utiliser, au lieu de la transformation de contact
définie par (49,1), (49,2), la transformation homogène de contact se rattachant

à la correspondance (49,1).
Réciproquement, soit T une transformation de contact de rang 1,

déduite de la correspondance (49,1). Soit D un champ d'éléments de
surface dans S. A ce champ correspond une équation différentielle aux dérivées

partielles de premier ordre d'un des trois types I, II, III du n° 11,
donc une forme adjointe ds.

En appliquant T au champ D, on obtient généralement un champ A

d'éléments de surface de E auquel correspond une forme adjointe da.

Or, en faisant correspondre à chaque élément de ligne dt de S l'élément
de surface dx de 2) sur lequel dt est situé, et à dr le point (f, t]l9 rj2) de Z
qui lui correspond en vertu de T, on obtient évidemment une correspondance

entre l'ensemble des éléments de ligne de 8 et l'espace £, qui est
en général une transformation R.

En effet, il suffit pour obtenir cette transformation R de remplacer les

équations (49,2) par les équations (32,4) — (32,6).

54. Toutefois, nous avons encore à discuter les conditions sous
lesquelles, la correspondance (49,1) définissant une transformation de contact

T, on obtient, en appliquant T à un champ donné D d'éléments de

surface, une transformation R au sens du n° 53.

Pour cela il est nécessaire

1) qu'on obtienne par T, des oo4 éléments de surface de D un ensemble A
de oo4 éléments de surface dans Z ;

2) que les oo4 éléments de surface de A se repartissent sur oo3 points de
27 de sorte que par le point général de Epassent oo1 éléments de surface
deZl;

3) que la transformation obtenue ne soit pas une transformation
ponctuelle, c'est-à-dire qu'aux oo1 éléments de surface de D passant par le
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point général de 8, correspondent oo1 éléments de surface de A qui se

repartissent sur oo1 points de U.
On peut ordonner les conditions de 1), 2), 3), différemment en exigeant :

I) que les images des éléments de surface de D par T passent par le

point général de Z\
II) que les images des éléments de surface de D passant par le point

général de 8, passent par oo1 points de U.

III) que l'ensemble d'images des éléments de surface de D par T
contienne oo4 éléments de surface de l'espace £.

55. Les conditions I), II) sont respectivement équivalentes aux conditions

2), 1) du n° 42. Donc, d'après le n° 43, la condition I) est satisfaite
avec la condition II).

Quant à la condition II), le résultat de la discussion des nos 46—48

peut être interprété géométriquement en utilisant quelques résultats de
S. Lie6), qui se rattachent à la correspondance (32,1).

A un point général P de 8 correspond par (32,1) une courbe A(P) de 27.

A chaque point de h(P) — donc à chaque élément de ligne de A(P) —
correspond une courbe passant par P, donc un élément de ligne passant
par P. A la correspondance (32,1) se rattache donc une correspondance
entre deux ensembles k respectivement k des oo4 éléments de ligne dans
les espaces 8 et U. Les éléments de ligne de k passant par un point général
P de 8 y forment un ,,cône élémentaire". Les images de ces oo1 éléments
de ligne dans l'ensemble k s'ordonnent le long d'une courbe A(P) qui est
la courbe (32,1) correspondant au point P. Et cela reste vrai si l'on
interchange les espaces 8 et £. L'existence d'une relation du type (41,2),
c'est-à-dire la transitivité faible est d'après n° 41 équivalent avec la
dégénération des cônes élémentaires dans l'espace correspondant. Dans
ce cas, le cône élémentaire appartenant à un point P de S se réduit à

l'élément de surface (41,3) passant par P.

Le résultat de la discussion des nos 46—48 peut être énoncé comme
il suit :

La condition II) est toujours satisfaite, sauf dans le cas où

1) le cône élémentaire appartenant au point général P de 8 dégénère en
élément de surface (41,3) et

2) la forme adjointe ds est axiale et son axe pour le point général P de 8
appartient à Vensemble k.

•) Cf. S. Lie, Liniengeometrie und Berûhrungstransformationen, Oeuvres complètes,
T. II2, pp. 640 —688.
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On peut se demander si Ton n'obtient pas de T une transformation
ponctuelle déjà dès que l'axe de ds appartient à l'ensemble k, même si le
cône élémentaire ne dégénère pas. En effet, si dl est l'axe de ds, passant
par le point général P de 8, les éléments de surface du champ D passant
par P tournent autour de dl. Mais alors, si dX est l'élément de ligne de #c

correspondant à dl, au faisceau d'éléments de surface tournant autour
de dl correspond par notre correspondance le faisceau d'éléments de
surface tournant autour de dX. Donc au point P correspond le point n de E
situé sur dX.

Or, il est vrai qu'on obtient de cette façon une transformation
ponctuelle entre 8 et E. Mais cette transformation n'est pas la transformation
complète, la correspondance entre les éléments de surface de D et leurs
images dans E riétant pas uniforme. En effet, chaque élément de surface

passant par dl contient, si le cône élémentaire riest pas dégénéré, et p. ex.
algébrique, encore d'autres éléments de ligne dont les images dans k sont
différents de dX et ne passent pas par n. Donc, dans ce cas la transformation

ponctuelle n'est qu'une composante de la transformation R totale,
obtenue en appliquant T au champ D. Ceci correspond au cas de l'identité
(46,3).

Quant à la condition III), elle est évidemment équivalente à la
troisième condition du n° 42. On obtient donc de la discussion des nos 47 et 48

le résultat suivant :

Supposons que les conditions I) et II) soient satisfaites. Alors :

a) si le cône élémentaire dans le point général de E riest pas dégénéré, la
condition III) est toujours satisfaite;

P) si les cônes élémentaires dans les points généraux de 8 et de E sont

dégénérés, la condition III) est toujours satisfaite ;
y) si le cône élémentaire est dégénéré dans le point général de Eet ne Vest

pas dans le point général de S, il existe exactement un champ D d'éléments
de surface pour lequel la condition III) riest pas satisfaite.

§ 10. Transformations M et transformations de contact du rang 2.

Le théorème fondamental

56. Rappelons qu'il existe dans l'espace à trois dimensions deux classes

de transformations de contact, sans compter celles dérivées des
transformations ponctuelles :

a) les transformations de contact dites de rang 1, engendrées d'après les

formules (49,1) — (49,3) par une correspondance de rang 1 faisant cor-
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respondre à chaque point de l'un des deux espaces une courbe de
l'autre; et

b) les transformations de contact, dites de rang 2, engendrées par une
correspondance (de rang 2)

faisant correspondre à un point de S une surface de 27 et à un point de 27

une surface de S.
On obtient la transformation de contact engendrée par (56,1) moyennant

les formules

où

(56,2)

dyx cos (n, x) dy1 cos (n, \

dx cos {n, y±) ' dy2 cos (n, i

sont les coordonnées de direction d'un élément de surface dans S passant
par (x, yl9 y2), s'exprimant comme il est indiqué par les cosinus directeurs
de la normale, et n9 k jouent le rôle analogue dans 27. (Pour les éléments
de surface parallèles à l'axe des x, resp. à l'axe des £, on permutera les
variables dans les formules (56,1), (56,2), ou bien l'on introduira des
coordonnées homogènes de direction.)

Toutefois, pour que la correspondance (56,1) puisse conduire à une
transformation de contact, cette correspondance doit satisfaire, outre les
conditions immédiates de continuité et de dérivabilité, à la condition que
les équations (56,1) et (56,2) permettent d'exprimer £, r\x, rj2 en fonctions
de x, ylfy2,P,q et, de même, x, yl9 y2 en fonctions de f, rjlfrj2, n, k.
Cette condition se réduit d'après S. Lie7) à ce que la fonction Q ne satisfait

pas à une certaine équation différentielle.

57. Les résultats des §§7—9 permettent de pressentir le théorème
fondamental suivant :

VI. A) Soit Tc une transformation de contact entre S et Upar laquelle un
champ D d'éléments de surface de 8 se transforme dans un champ A d'éléments
de surface de 27. Soient ds respectivement da les formes adjointes dans S, 27,

correspondant aux champs D, À. Faisons correspondre à un élément de ligne

7) Cf. S. Lie, Oeuvres complètes, T. II2, pp. 704 — 705.
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général dl de S Vêlement de surface de D dans lequel dl est situé, et à cet

élément de surface le point correspondant de E. On obtient de cette façon une
transformation R, Tr, entre 8 et 27, aux formes adjointes ds et do.

B) Réciproquement, soit Tr une transformation R entre S et Ecorrespondant

aux formes adjointes ds, do. Soient D, A les champs d9éléments de surface

dans 8, E, correspondant respectivement à ds, do. Alors, il existe une
transformation de contact Tc entre 8 et E transformant D en A, qui conduit
à la transformation Tr d'après la règle contenue dans la première partie
de ce théorème.

La partie A) de ce théorème a déjà été démontrée aux §§ 8, 9 pour les
transformations de contact de rang 1. Quant à la partie B), sa démonstration

est contenue dans les résultats des §§ 7, 9 pour le cas où Tr n'est

pas une transformation singulière. Et nous avons même vu que dans ce

cas Tc peut être choisie comme une transformation de contact du rang 1.

Il nous reste encore à traiter les transformations de contact de rang 2.

Dans cette discussion il ne sera plus nécessaire de traiter en détail les cas

d'exception dont nous avons eu à nous occuper dans les §§ 8, 9.

58. Supposons que les hypothèses de la partie A) du théorème VI
soient satisfaites pour une transformation Tc de rang 2, donnée par les

formules (56,1), (56,2). En permutant convenablement les variables, on

pourra supposer que les formes adjointes ds, do soient toutes les deux
du type I:

ds dyx — rdy* — fdx; f f(r, x, yl9 y2)

On exprime les coordonnées de direction p, q pour les éléments de surface
de D au moyen du paramètre r par les formules

f(r,x, yx, y2)

surface de A en

k q n (p((J, £, rjlf rj2)

et, de même, pour les éléments de surface de A en introduisant le
paramètre q:

Donc, les équations

combinées avec (56,1) permettent d'exprimer q, f, r\x, rj2 en fonctions des

r> x> Vi y y2 et vice versa. On en obtient pour ds et do ;
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Q' Q'
ds "àr dv* + -7ïL

do —^- drj2 + —±- di + dVl

et, d'après (56,1)
Q'Vl ds + Qrnida =-dQ 0

Qr
—p-ds (58,2)

A notre transformation de contact Tc correspond donc en effet une
transformation entre les espaces aux 4 dimensions (#, yl9 y2, r), (|, tjx, ?j2, q),
satisfaisant à la relation (58,2) et engendrant d'après le théorème I, une
transformation R, Tr. Soit maintenant

dl (dx,dylidy2)

un élément de ligne passant par (x, y1} y2). La condition que dl soit situé
dans l'élément de surface aux coordonnées de direction p, q, est : dy± —
pdx — qdy2 0, donc, si cet élément de surface appartient au champ D\

ds dyx — rdy2 — f(r, x, yly y2)dx 0 (58,3)

Or, si r est déterminé par la relation (58,3), on a un élément de surface t de

D auquel correspond l'élément de surface de A passant par (|, rjl9 rj2).
Pour la valeur du paramètre q correspondant à r, on a d'après (58,2)

da= 0.

Donc, les valeurs de |, r\x, rj2 obtenues par la règle de la partie A) du
théorème VI sont en effet celles données par Tr9 et la partie A) du
théorème VI est démontrée.

59. Pour démontrer la partie B) du théorème VI, il suffit, d'après les
nos 35—37, de supposer que la transformation Tr soit la transformation
singulière donnée par

yi Vi> V2 V2y x X(q, i, rj1, rj2), t=q, (59,1)

et correspondant aux formes adjointes

ds dy1 — rdy2, do dr\x — odr\2 (59,2)
où
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Tirons q de la troisième des équations (59,1):

et posons

^ yi~i'h)j£ 0 (59,3)

On a, en appliquant la transformation de contact engendrée par (59,3)
au champ d'éléments de surface correspondant à notre ds, pour / 0,

d'après les deux premières des équations (58,1):

f —_ —; (J

4- -', —^° +
RR'X

K "^ *•K

donc, d'après (59,3) :

/ — Xt — Q e^j A/j — U c/2 '/2 — ^ >

c'est-à-dire, exactement la transformation (59,1). Il résulte maintenant
évidemment de la partie A) du théorème VI que les deux dernières équations

(58,1) sont satisfaites pour <p 0, c'est-à-dire pour do, puisque ds

se transforme en do par Tr, et la démonstration du théorème VI est
terminée.

60. Il est facile, pour une transformation B, Tr, déduite d'une
transformation de contact de rang 2, d'obtenir les équations (32,1) de la
correspondance de rang 1 qui lui est adjointe. En effet, on peut supposer que
ds soit du type I. Mais alors, en éliminant r des deux premières équations
(58,1), on a évidemment

0 (60,1)

et aucune de ces deux équations ne peut être une conséquence de l'autre,
puisque dans le cas contraire, il serait impossible d'exprimer £, r\x, y]2 en
fonctions de r, x, ylf y2. —

De l'autre côté, nous avons vu que chaque transformation B, sauf les

transformations singulières, peut être obtenue au moyen d'une
transformation de contact de rang 1. Il est donc naturel de se demander, si l'on
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peut obtenir chaque transformation 2£, Tr, au moyen d'une transformation

de contact de rang 2. Supposons, ce qui est permis, que le ds
correspondant soit du type I et que Tr ne soit pas singulière. Alors, il suffit de

trouver une fonction Q(x, ylf y2, f, rji, r)2), telle que les deux équations
(60,1) soient équivalentes aux deux équations (32,1) appartenant à Tr.
En posant pour Q :

Q Q + Q (60,2)

où /Lt est à choisir convenablement comme une fonction de x, yl9 y2, £, tjl9
rj2, on obtient pour la deuxième équation (60,1):

__
Q'lx

f —ni-1
(60,3)

II suffit donc de trouver une constante t =£ 0 de sorte que l'équation

F{ja, x, yl9yt, f, Vl, rj2) + rD2 0 (60,4)

puisse être résolue par rapport à ju.

61. Or, en formant la dérivée de l'expression de gauche en (60,4) par
rapport à ju, on a après multiplication par (Q'lyi + fiQr2yi)2 :

Vi M2yiMlys) jr 1 —7 —j—, x,yliy2i
lÀ}"i2V1 I

c'est-à-dire, la dérivée par rapport à r du déterminant

Q'2Vi — e

alx

dans laquelle on a remplacé r par —^ +

(61,1)

(61,2)

Si la transformation Tr n'est ni singulière, ni ponctuelle, la dérivée
de (61,2) par rapport à r ne s'annule pas, d'après le n° 34, au point
général de (32,1). Donc, si

QvAv,— Q2VlQiv2 (61,3)
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ne s'annule pas en vertu de (32,1), l'expression (61,1) ne s'annule pas
identiquement en fi, x, y±,y2, £, r\x, rj2.

De l'autre côté, si (61,3) s'annule en vertu de (32,1), (61,1) se réduit à

o' or or or*"*2 x **i vx t"*2 vx &*i x >

ce qui ne s'annule pas dans le point général de (32,1), puisque dans le cas

contraire, (61,2) serait indépendant de r.
Soient ju0 et ^^^,^) (61,4)

choisis de sorte que û2, J", JP^ restent ^ 0. Pour ces valeurs l'équation
(60,4) peut être résolue par rapport à t. La valeur résultante de la
constante t^O, ^ oo étant une fois fixée, l'équation (60,4) peut être alors
résolue par rapport à fx dans le voisinage total du point (61,4). Les équations

(58,1) correspondant à notre choix de Q, peuvent évidemment être
résolues, combinées avec Q 0, puisque ces équations sont équivalentes
aux équations correspondantes du n° 32.

Nous pouvons donc énoncer comme complément au théorème
fondamental :

Chaque transformation R peut être engendrée par une transformation de

contact de rang 2. Chaque transformation R, sauf les transformations singulières,

peut être engendrée par une transformation de contact de rang 1.

62. Nous avons vu qu'aux transformations R transformant ds en da,

correspondent des transformations de contact transformant le champ D
correspondant à ds en le champ A correspondant à da, donc aussi
transformant les équations différentielles aux dérivées partielles du premier
ordre attachée à ds et da, l'une dans l'autre. Le théorème III se réduit
donc maintenant au théorème que, deux équations différentielles aux
dérivées partielles du premier ordre étant données, il existe toujours une
transformation de contact transformant l'une dans l'autre. C'est le fait
qu'exprime S. Lie en disant que les équations différentielles aux dérivées

partielles du premier ordre ne possèdent pas des invariants pour le groupe
de toutes les transformations de contact. De ce résultat de S. Lie résulte
donc une nouvelle démonstration du théorème III.

En particulier, en réduisant une équation différentielle aux dérivées

partielles du premier ordre en deux variables indépendantes, T 0, à

l'équation -J^- 0, on obtient évidemment une solution générale de
ex

l'équation T 0. Notre procédé de démonstration du théorème III,
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développé aux nos 20—23, contient donc une méthode de résolution de

l'équation générale T 0.

Quant au résultat déduit aux nos. 60, 61, il permet évidemment de

préciser un peu le résultat de S. Lie, mentionné plus haut. En effet, il en
résulte que, si Tx 0 et T2 0 sont deux équations aux dérivées
partielles du premier ordre en deux variables indépendantes, on peut
toujours transformer Tx 0 en T2 0, aussi bien par une transformation
de contact du rang 1 que par une transformation de contact de rang 2.

Il est vrai que dans l'énoncé du n° 61 les transformations singulières
forment un cas exceptionnel. Mais dans ce cas, il s'agit des équations

et l'on vérifie aisément que ces deux équations se transforment l'une dans
l'autre par les transformations de contact de rang 1 dont les deux fonctions

directrices, Ql9 Q2, satisfont, en vertu de (32,1), à la condition

3(Ûi,Ûi)

§ 11. Exemples

63. Exemple I. Nous partons de la correspondance suivante

Les équations (49,2) de la transformation de contact qui correspond à

(63,1), deviennent ici

A2 A2 A2 A2
P — ~~ïi Ç y q — —— - j J£ — —— - X j K —— - j

Aj A\ A\ /»i

donc :

Ç —-^,r}i yi,% y2 + x^,n== xq K q

x= — y1 rj1, y2 r}2 + f —
K K

(63,2)

La correspondance (63,1) est transitive et en particulier faiblement
transitive dans chacun des espaces 8, U.

On obtient donc de (63,1), d'après la théorie générale du § 8, pour
chaque ds non-axiale une transformation R. Ce résultat se vérifie
immédiatement dans notre cas. Les valeurs des déterminants Al9 A2i Az étant
respectivement 0, |, 1, l'équation (33,1) devient ici

b + Ça 0 (63,3)
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Donc, pour qu'on puisse tirer de cette équation f en fonction de r, variable
avec r, il est nécessaire et suffisant que

(t)^° * (63'4)

Dans le cas où. a =jk 0, mais — — f(x, ylt y2) est indépendant de r,

on tire de nos relations une transformation ponctuelle entre S et E :

£ f(v,yi> Vè > m &, r)2= y2 — xf(x, yl9 y2), (63,5)

si toutefois le Jacobien de cette transformation reste ^ 0.
Or, ce Jacobien est //£g + /«• Si cette expression s'annule, on a

évidemment le long d'une ligne de niveau de la fonction / dans le plan des

/
x, y2 : y~ ^ / • ^es lignes de niveau sont des droites au coefficient

angulaire /. Il en résulte qu'on obtient l'intégrale générale de l'équation
différentielle aux dérivées partielles ff'y% + fx 0 en résolvant par rapport
à / l'équation

f), (63,6)

où F est une fonction arbitraire de ses deux arguments.

Donc, on obtient une transformation ponctuelle si ds est une forme

+ rf(x, yl9 y2)dx //^ + /£ # 0 (63,7)

On obtient alors par un calcul facile q — r et

do dY}x — Qdr}2 — gxdÇ

De l'autre côté, la relation (45,1) entre Al9A2,A3 correspond ici aux
valeurs Px= 1, P2 P3 0, donc, d'après le n° 46, l'axe d'une forme ds

singulière doit être situé dans l'élément de surface dyx 0, c'est-à-dire
être orthogonal à l'axe des yx. Or, d'après (11,7)8), ceci se réduit à a 0

pour une forme singulière du type II et — —=A(x,yl9 y2) pour les
(t T

formes singulières du type I, conformément aux conditions (63,4).

64. Exemple II. La correspondance

Q1 ffr — yt + 2xÇ 0 Q2 rj2 — y2 + x*Ç* 0 (64,1)

8) Notons une fauted'impression dans la formule 11,7) p. 174, où, au lieu de O, il faut lire c.
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n'est pas faiblement transitive dans 8. En effet, les valeurs des déterminants
Av sont ici :

A1 2£, At 2x£*, Az=l,
et une relation

O fJ I /y ni ni \ C I O /y JP /y /%i ni \ t2 I ~P <y 11 tl \ — Ciùrx\X) yl9 yr2)ç ~r ^xjr2\x, yl9 y2)ç -f- ±3\x, y-±, y2) — u

ne peut subsister en vertu de (64,1), donc identiquement, que si
Pi P2 P3 0 Les équations (49,2) deviennent ici

Donc, en posant ^ a: £, on obtient pour la transformation de contact
engendrée par (64,1):

— » Vi yi — 2t > n2 y2 — t2 ,>< $, n 2qxt —
(64,2)

x=— y1 rJl + 2t 2/2 *?2 + *2, ?=*, p

où t est à tirer, suivant le cas, de l'une des deux équations

2qt2 — 2t + px 0, 2Kt2 — 2t — 7iÇ=0. (64,3)

D'après notre théorie générale, on obtient de la transformation (64,2),
en l'appliquant à chaque champ d'éléments de surface dans S, une
transformation R. Toutefois, t dépendant d'une équation quadratique, il serait
possible qu'à une branche de valeurs de t corresponde une transformation R
se réduisant à une transformation ponctuelle. Nous avons vu au n° 45

que ce cas se présente pour un champ linéaire d'éléments de surface, dont
l'axe est situé dans le cône élémentaire de S, défini par la correspondance
(64,1).

65. Pour notre correspondance, ces cas sont faciles à caractériser
directement. Nous avons à déterminer les champs D d'éléments de surface,

pour lesquels la première équation (64,3) possède une solution indépendante

de p, q.
Supposons que D soit déterminé par une relation
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On obtient alors pour un t t (#, yx, y2) la relation

2qt* — 2t + xf{q) 0, (65,1)

identique en q, x, yly y2. En dérivant par rapport à q, on a

2t* — xf'q(q, z, yl9 yt) 9

donc /^ est indépendant de q et l'on obtient

/fe *> 2/i> 2/2) =A{x, yx, y2)q + B{x, yx, y2)

Il résulte alors de (65,1):

t= 2l

donc, en particulier, xB* + 2A 0 (65,2)

comme condition pour D. L'équation (65,1) se réduit alors à

X^q =(2t-xB) (qt+ -?&*--1) 0

et possède, en plus de la racine t indépendante de q, la racine
2

qui conduit à une transformation M ne se réduisant pas à une transformation

ponctuelle.
Notre champ D correspond évidemment à la forme adjointe ds du

typel: R
ds dy1 — rdy2 + - - (xBr — 2)dx (65,3)

où B est une fonction arbitraire en x, yx, y2.
Pour une forme adjointe du type II, q s'exprime en fonction de

c(x, yx> y2) par x, yly y2. Mais dans ce cas, la relation

2c(x,y1,y2)t* — 2t + px 0

ne peut évidemment posséder une racine finie, indépendante de p, et le

cas d'un ds du type II est impossible.
Le cas de la forme ds du type III se réduit enfin en permutant yx et y2

au cas II, est donc également impossible.
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Quant à la forme (65,3), on obtient par (11,7) pour les cosinus directeurs

de son axe ~2
«o : fio ' Vo 1 : B : -^— (65,4)

Pour vérifier que cet axe est situé sur le cône élémentaire qui se
rattache d'après le n° 55 à notre correspondance, déduisons l'équation de ce
cône. On obtient les équations des courbes (64,1) correspondant aux
différents points de Zet passant par un point fixe (x, yl9 y2) de 8, en
éliminant ^ et rj2 des 4 équations

Vl — Tx + 2X| 0 n% — Y2 + X2£2 0

0 rj2 — y2 + xH* 0

où X, Ylf Y2 sont des coordonnées courantes. On obtient

Y1 — y1 — 2Ç(X — x) 0, Y2 — y2 — (X* — x*)Ç* 0, (65,5)

on a donc dans le point (x, y1} y2) pour les différentielles dx, dyl9 dy2 le
long d'une courbe correspondant à une valeur de | :

dx : dyx : dy2 1 : 2| : 2xÇ*, (65,6)

et l'équation de notre cône élémentaire est

II est maintenant évident que pour | B l'élément de ligne caractérisé

par (65,4) est situé sur le cône (65,7).

66. Exemple III. Considérons maintenant la correspondance de rang 2

Q x £ + yx r\x + y2 rj2 — 1 0 (66,1)

qui se réduit évidemment à la polarité par rapport à la sphère-unité. On
obtient immédiatement par les formules (56,2) la transformation de
contact qui s'y rattache:

— xp — y2q

y*
yx yx

(66,2)
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1 „nj ___________________________ y — - ___ _________________________1

rjx— %n — r\2K
' r\x—£n — yj2k

___
* *

2 Y\—£n — r\K '
V *

(66,3)

A une forme adjointe ds du type I correspond le champ d'éléments de
surface défini par p — f(q, x, yl9 y2). En introduisant ici les valeurs de

p, q, x, yl9 y2 données par (66,3), on obtient la relation

JL+//_J_L ~ n — K )=0
Vi \ rà' ni—%n—n** ' Vi—£n—V2k ' vi—^7t~n**I

(66,4)

qui définit le champ correspondant A d'éléments de surface dans 27. La
forme adjointe do qui se rattache à __ est du type I, si Ton peut tirer n
de (66,4) en fonction de n, f, rjl9 r}2. do est du type II, si (66,4) ne définit
que k en fonction de f, r\x, rj2.

Enfin, si l'expression de gauche dans (66,4) ne dépend ni de n ni de k>

on obtient en (66,4) une relation entre £, rjl9 rj2, et à notre ds ne correspond

aucune transformation R. Nous allons déterminer les fonctions
f(q, x, yl9 y2) pour lesquelles se présente ce cas d'exception.

Tout d'abord, toutes les fonctions / indépendantes de x9 yl9 y2,
appartiennent à cette classe.

Supposons maintenant que / ne soit pas indépendant de toutes les trois
variables x, yl9 y2. Alors, en dérivant f(q, x, ylf y2) par rapport à n et k
on obtient en utilisant les formules (66,3):

Donc, si ni n ni k n'entrent effectivement dans (66,4), on a

(66-5)

Introduisons ici les expressions de f et rj2 tirées de (66,2). On obtient
pour p f(q, x, yl9 y2):
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f q

ce qui est équivalent au système

/i + //;x 0 4+^ 0 (66,6)

II résulte de la seconde des équations (66,6), que / est une fonction
(p(q, x, u) des trois expressions q, x,u — yx — qy2. Mais alors, la première
équation (66,6) se réduit à

Or, cette équation, aux notations près, a été déjà résolue au n° 63. On
obtient sa solution de celle de l'équation (63,6) en y remplaçant y2 par
u, yx par q et / par <p. Donc, en introduisant l'expression de u, les fonctions
f(q, x, yx, y2) cherchées s'obtiennent en résolvant par rapport à /
l'équation

)> (66,7)

où F est à considérer comme une fonction arbitraire des deux arguments
indiqués.

En particulier, les équations (66,6) ne sont évidemment jamais
satisfaites, si / est indépendant de q, sauf dans le cas déjà exclu, où / est aussi

indépendant de x, yx, y2.
Donc, notre cas d'exception ne se présente pas, si / est indépendant de

q sans être constant. On voit donc, en permutant les variables que, si ds

appartient au type II, la condition nécessaire et suffisante pour qu'à ce ds

corresponde une transformation R engendrée par (66,1), est que c ne soit

pas une constante. Enfin, puisque pour / 0 la transformation R est

impossible, on voit, en permutant les variables, qu'à la forme ds du

type III ne correspond aucune transformation R.
Notre discussion permet évidemment de former toutes les équations

différentielles aux dérivées partielles en deux variables indépendantes,
auxquelles la transformation par polaires réciproques n'est pas applicable.

(Reçu le 3 octobre 1940.)
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