Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1941-1942)

Artikel: Expressions de la somme de deux indéterminées en fonction du
produit.

Autor: Mirimanoff, D.

DOI: https://doi.org/10.5169/seals-14296

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-14296
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Monsieur Mirimanoff

féte cette année son quatre-vingtiéme anniversaire. Nous présentons nos
félicitations chaleureuses et nos voeux les meilleurs @ celui qui a su se créer tant
d’amitiés respectueuses parmi ses collégues et a éveillé chez mnous plus d’une vo-
cation mathématique par son ensetgnement incomparable de rigueur et de finesse.
Notre revue, qui lui doit une collaboration trés précieuse, est fiére de

pouvoir publier aujourd’ hut un bel article de lus.
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Expressions de la somme de deux
indéterminées en fonction du produit

Par D. MiriMANOFF, Genéve

Introduetion
Soient f, = 2w;, fa = 2x;%;, ..., fn = X, X5 ..., %, les fonctions symé-
triques élémentaires de n indéterminées z,, z,, ..., z,, f(z) le polynéme

x" ——flx”_l + -+ (_l)n fn ’
qui & pour zéros x;, Ty, ..., T,.

Désignons par C I'ensemble des nombres entiers ordinaires, par X ou
X, le domaine d’intégrité Clx,, x,, ..., x,] (ensemble de tous les poly-
nomes en &,, Z,, ..., L, & coefficients faisant partie de C) et par ¥ ou F',, le
domaine d’intégrité C[f,, fs, ..., f,] (ensemble de tous les polynémes en
fis fas - --5 [ & coefficients faisant partie de C).

Soient maintenant ¢ et y deux fonctions du domaine X, invariants
caractéristiques d'un méme groupe de substitutions. En vertu d’un
théoréme de Lagrange, chacune d’elles est une fonction rationnelle de
Pautre, & coefficients faisant partie de F.

Un cas particuliéerement important est celui o I'une d’elles est la
somme et ’autre le produit de deux indéterminées x,, ;. Pour fixer les
idées, je supposerai 1 = 1, j = 2 et je désignerai par p la somme z, 4 z,
et par ¢ le produit z, z,,

P==2-1%, §=%
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Ces deux fonctions jouent un role important dans les démonstrations
arithmétiques du théoreme fondamental de 1’algebre, dont je crois utile
de rappeler les principes.

Soit f(x) = 0 une équation particuliére sans racines multiples, dont les
coefficients font partie d'un corps réel K. On admet que f(xr) = 0 a au
moins une racine réelle, lorsque son degré n est impair. Pour établir le
théoréme fondamental, il suffit de montrer que le calcul d’une (ou de
plusieurs) racines de f(x) = 0, si » est pair, peut étre ramené & celui d’une
racine d’une équation de degré impair. Soit n = 2¥(2m + 1). Si«,, «, sont
deux racines réelles ou imaginaires conjuguées de f(x) = 0, dont il s’agit
justement de démontrer l’existence, la somme p = «; +«, et le produit
(n—1)

2
est k — 1, inférieur d’une unité & celui de n. Si donc I’on suppose que le
théoréme fondamental soit vrai pour les équations dont le degré est d'un
ordre de parité inférieur & k, on pourra, en partant par exemple d’une
racine de I’équation en ¢, calculer la valeur correspondante de p = fonc-
tion rationnelle de ¢ (formule de Lagrange), en tirer ensuite «, et «, et
établir ainsi I'existence de ces racines. Mais, comme I’a fait remarquer
Gauss, qui le premier a donné une démonstration arithmétique rigoureuse
du théoréme fondamental, ’expression de p en fonction de g (ou de g en
fonction de p) peut devenir illusoire, lorsque I’équation en ¢ (ou en p) a
des racines multiples. Pour éviter cet écueil, Gauss a introduit 'invariant
caractéristique ¢ 4+ cp, que je désignerai par G, et il a montré qu’il est
toujours possible de choisir la constante ¢ de telle facon que 1’équation
en @ n’ait pas de racines multiples. En partant alors d'une racine de
I’équation en @, on pourra calculer p et g, et finalement «,, x,. Et comme
le théoréme fondamental est vrai pour un degré impair, il est vrai pour »
quelconque (induction compleéte). Le point essentiel dans cette démons-
tration arithmétique est donc qu’on a, pour tout ¢ convenablement choisi,

q = o, 05 vérifient des équations du degré » dont I'ordre de parité

K(oqogp00 +05) = K (o0 + ¢ (0 + %)) P)

c’est-a-dire que p = x; +x, et ¢ = %, sont fonctions rationnelles de
G = x5+ c(yq +5), & coefficients faisant partie de K. Et ces fonctions
rationnelles s’écrivent exactement de la méme maniére que dans le cas
de n indéterminées Bys Bap s ans Ly s

1) B. L. van der Waerden, Moderne Algebra, t. 1, 1930, p. 229.
%) C est & Euler ot & F. de Foncenex que I'on doit les premiers principes des démonstra-
tions arithmétiques (cf. Gauss, Demonstratio nova. Diss., 1799).
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Si maintenant on voulait essayer de former, & l'aide des procédés
classiques, les expressions de p (ou ¢) en fonction de ¢ (ou p) ou bien celles
de p et ¢ en fonction de @, soit pour illustrer la méthode arithmétique,
goit pour calculer les racines d'une équation donnée, on serait vite
découragé par la complication extréme des formules et la longueur des
calculs.

La question suivante se pose: existe-t-il, & coté des formules classiques,
des expressions plus simples, dans lesquelles le dénominateur est d’'un
degré moins élevé?

C’est 13, évidemment, un probléme particulier, mais nous allons voir
qu’il comporte une solution précise.

Désignons par ¢ le domaine d’intégrité F([q] (ensemble de tous les
polyndémes en ¢ dont les coefficients font partie de F'). Je montrerai qu’on
peut établir les quatre théorémes suivants:

Théoréme 1. 11 existe, pour tout n > 4, une expression de p en fonction
de ¢ sous forme d’un quotient de deux polyndémes faisant partie de @,
n(n—3)

2
du degré n(n — 3) par rapport & l'ensemble z,, z,, ..., z,.
Cette expression sera dite I’expression canonique.

dans laquelle le dénominateur est du degré par rapport & ¢ et

Théoréme 2. Dans ’expression canonique, le dénominateur est égal &

(@, 25)" 2 y (X123 — 25 7))

s

le produit I1, que je désignerai par II,, étant étendu & toutes les com-
)
binaisons x,z; deux & deux des » — 2 indéterminées x,, z,, ..., ,,.

Théoréme 3. 11 existe, pour tout » > 4, une expression de p en fonc-
tion de g, sous forme d’un quotient de deux polyndmes de ¢, dans laquelle
le dénominateur est du degré (n — 2)2 par rapport aux z,, z,, ..., ,.

Cette expression sera dite ’expression réduite.

Théoréme 4. 11 n’existe pas d’expression de p, sous forme d’un quotient
de deux polynoémes de @, dans laquelle le degré du dénominateur par
rapport aux ,, x,, ..., , soit inférieur & (n — 2)2.

Le degré (n — 2)? est donc le degré le plus petit possible.

Nous verrons que les expressions de p et ¢ en fonction de G se déduisent
des équations qui fournissent les expressions canoniques de p. Il suffit
donc d’envisager le couple p, g.



§ 1. Demonstration du théoréme 1

Soit R,z — R, le reste de la division du polynéme

j(x) = " __]tlxn—l_]L_ +(___ 1)nfn

par 2 — px + q. Ce reste étant identiquement nul, on a les deux relations

suivantes:
'Rl S O 3 .R2 == 0 . (]-)

Or, R, et R, étant deux polynémes en p et g a coefficients faisant partie
de F,, on pourrait, en appliquant I’algorithme d’Euclide, chercher & cal-
culer le plus grand commun diviseur de R, et R,, considérés comme des
polyndmes en p & coefficients appartenant & ¢. Ce plus grand commun
diviseur fournirait, égalé & 0, 'expression cherchée de p. Mais ce procédé,
qui réussit pour » =3, 4 et 5, n’est pas commode: des facteurs parasites
s’introduisent, en effet, au cours des divisions successives et aucune loi
ne se dégage de ’ensemble des opérations effectuées. Aussi ai-je préféré
suivre une voie différente.

Commencgons par faire remarquer qu’on a identiquement

z,) — f(x z, f(xy) —z, f(x
R1= f( 1) f( 2) , R2= 2f( 1) lf( 2) . (2)
Xy — Xy X — Xy
Posons
xk—i—l___x k+1 .
oy = — 2 =aft a2y,
xl_—'xz
d’ol, en particulier,

% =P, g =1

Les «;,, ainsi définis, sont des polyndémes en p et g & coefficients faisant
partie de C, et tout polynéme en p et g & coefficients faisant partie de #',,,
est une fonction linéaire des «, & coefficients appartenant au domaine @,
en vertu de la relation

PXjpmy = & T q%p—2 ; (3)
on en tire en effet
PP=o0s+¢q, PP=o5+ 2qx, etc,

expressions connues 3).
Or, R, et R, s’expriment trés simplement en fonction des «; et de g.
On a, en effet,

8) Les ay, interviennent dans certains chapitres de la théorie additive des nombres.



'Rl = &y — flocn—-z + Tt + (_ l)ﬂﬂ—lf‘n-l ’ (4)
-R2 = q(‘xn—2-—f1“n——3 + (—" l)n_zfn-—-2) + (— l)ﬂ—lf” s

A partir de R, et R, nous construirons une suite de » — 3 polyndmes
R,, R,, ..., R, ,, fonctions linéaires de «,, x;, ...., o, 3, & coefficients
faisant partie de @.

Ces polynémes seront définis par la relation

R, = —qR, ,+pR,,. (5)

Nous verrons tout & ’heure, qu’en égalant ces polynomes & 0 (en vertu
de (1)), on obtient n — 3 équations linéaires & n — 3 inconnues «,,
Ogs cves By ge _

Ordonnons les termes des R, suivant les puissances décroissantes de g.
Il est commode alors de distinguer deux groupes de termes, le premier
comprenant les termes en ¢!, que nous réunirons en mettant le facteur
¢* ! en évidence, et ’ensemble des termes de degrés plus petits en q. Il est
facile de voir que I’ensemble des termes du premier groupe s’écrit

¢ Oy — 1Opiq + o+ (— 1))

Si, en effet, cette propriété est vraie de R, , et de R,_,, elle sera encore
vraie de R;, puisque les termes du premier groupe de R, s’obtiennent des
premiers groupes de B, ; et R, ; en appliquant la relation (3) que j’écrirai

— & + POy = @Gs_s ; (3 bis)

or, la propriété en question est vraie de R, et R,, elle est donc vraie de
tout R,.

Je ferai remarquer de plus que l'avant-dernier terme du premier
groupe de R, ,, multiplié par — g, et le dernier terme du premier groupe
de R, ,, multiplié par p = «,, tombent (termes semblables et de signes
contraires), et que le dernier terme de R, ,, multiplié par — ¢, passe
dans le second groupe de R,.

Ce second groupe est un polynéme du degré : — 2 en ¢ qui s’écrit trés
simplement. Mais nous n’avons pas besoin de connaitre sa structure.
Je me bornerai seulement & faire remarquer que I'indice max. des « dans
le second groupe est égal & ¢ — 2 et que «;_, figure dans le terme constant
(coefficient de ¢°) (— 1)"1f,x; s, qui est le seul terme de R; contenant le
facteur f,. En supposant, en effet, que cette propriété soit vraie de
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R, ;et R, , (et elle est vraie de R, et R,), ’ensemble des termes en f, dans
R, s’écrira

(_— l)n—lfn (—‘ gy + p(xi-—:i) = (—_- l)n—lfn (— q%p—a =+ Ki—2 -+ q(Xn._,;)

= (— 1", x; 5.

Faisons maintenant ¢+ = 3, 4, ..., » — 1; l'indice max. des « du pre-
mier groupe va parcourir alors la suiten — 3, n — 4, .., 1 et 'indice max.
des &« du second groupe, égal & 1+ — 2, va parcourir la méme suite en sens
inverse. On voit donc que les B, (v > 3) sont bien des fonctions linéaires
de o, gy ey Oy g

Ordonnons maintenant les termes des R;, que nous égalerons & 0,
suivant les indices décroissants des « et faisons passer les termes connus
dans les seconds membres. Les premiers termes des premiers groupes,
c’est-a-dire ¢%*«x, 5, q3x, 4, ..., vont se ranger le long de la diagonale
principale, tandis que les termes & indices max. du second groupe, c¢’est-a-
dire les termes (— 1)*'f,o;, (— 1)*'f, &5, ..., (— 1)*f,x, 5 se range-
ront le long de la seconde diagonale.

Posons o No(x) 9 ©

k2 -Dﬂ

le dénominateur D, étant le déterminant dont les éléments sont les coef-
ficients des «, et le numérateur N,(x,) le déterminant correspondant
qu’on obtient en appliquant la régle de Cramer.

Il résulte alors des propriétés que nous venons d’établir que

(n—2) (n—3)
D,=¢-¢®*...¢" %+ ... +(— 1) 2 fre
(7)

n (n—3) (n—2) (n—3)

=q 1 +"'+(—1) . fz—aa

n(n—3)
2
par rapport & ¢ et du degré n(n—3) par rapport aux z,, x,, ..., &,, -

et I'on voit que D, est bien un polynéme du domaine @, du degré

Comme «;, = p, on a

po el ©

et le théoréme 1 est établi.

4) N, (ay) se lit ,,numérateur de a;*.



Pour illustrer la méthode que je viens d’esquisser, envisageons le cas
de n=1T.
Le tableau des R, s’écrit

B, =ay —froz+ faxa—faxa +faxa —fiq +fs
By =qlos —fiog + fas—faxa  +fay —1fs) +fr
B3:q2 (g — fiots + faa—faoq  + fa) —feq 4 fr4q s
B, = q®(os — fog + faoq — ) + 8 —feqo + faxa,
By = q*(s—fixy + fa) —1a@®  + f59P0q — feqoa + froxs
Be= g%, —f) + f:9* —f1@%x + f59%as — feqos + frx4
On voit que la structure des seconds groupes est aussi simple que celle
des premiers.
En égalant les B, (+ = 3, 4, 5, 6) & 0, on obtient, apreés avoir fait passer
les termes connus dans les seconds membres, le systéeme d’équations
canoniques & quatre inconnues o, &y, %3, %4

Py —h@Pxs + [2Pxs + (— [0 + f2)x — fa@® + 4
Pos + (—HE + [Doa + (f20° — fe@Q) = [39° — f54°
fas  + (@* —fe@)oa + (— hg* + [505) % = — faq* + [og®

faxa — feqos + fsqPoe + (¢° —faq®)on = ,9° — f>¢* .

On en tire les expressions canoniques de &, = p, «g, ..., &, 3. Je crois

inutile de les donner ici. Mais au cours de ce travail nous serons amené a
calculer les expressions canoniques des « pour n = 4, 5 et 6.

I

§ 2. Expressions de p et ¢ en fonction de G

Comme nous I’avons dit dans I'introduction, les expressions de p et ¢
en fonction de G se déduisent des équations canoniques que nous venons
de construire. Il suffit, & cet effet, de remplacer les «; par leurs expressions
en fonction de p et ¢, de substituer & q la fonction @ — cp et de réduire, &
laide des relations R, = 0, R, =0, les puissances de p supérieures a
n — 3, pour que le max. des degrés de p dans les équations ainsi trans-
formées ne dépasse pas n — 3. On obtiendra ainsi n — 3 équations dont
les inconnues seront p, p? ..., p*3. Je me bornerai & envisager le cas
de n = 4.

Le tableau des R, s’écrit

R =3 —foa+fay—1fs,
Ry =gy —fou+fs) —fas
Ry =q%*y —f,) +9fs —faxy.



Le systéme canonique ne contient qu’une seule équation R; = 0 qui
g’écrit
(@ —f) =ha®* —fsq

d’otr
Hha*—1sq
= . 9
P *—fa ®)
Dans cette expression, certainement connue, le degré du dénominateur

est bien égal & 7—%—(”—2_“—@
semble des indéterminées z;. Je rappelle que dans I’expression classique,
fournie par le théoréme de Lagrange, le degré du dénominateur, qui est le
discriminant de g et de ses conjuguées, est égal & 60, tandis que dans une

autre expression classique, le degré du dénominateur, qui est la ,,diffé-

rente‘‘ de ¢, est égal & —71'—(—"—?'—2———12— —1= (m+1) 2(”'—‘2) = 5 par rap-

= 2 par rapport & ¢ et & 4 par rapport & 'en-

port & ¢ et & 10 par rapport aux z,, x,, Z;, Z,.
Si ’on effectue maintenant les transformations dont je viens de parler,
on obtient I’expression suivante de p en fonction de G

_ hP—1G +2c(P—[f, G + ) — (LG — 1)
i & —fi—cfs + E2G—[) —cf, (19

qui se réduit & (9), pour ¢ = 0.
On en tire ’expression de ¢ en fonction de @, puisque

gq=G—cp.

§ 3. Deux propriétés du denominateur D,

Dans la démonstration du théoréme 2, nous aurons & nous appuyer sur
deux propriétés trés simples du dénominateur D,,.

Faisons z, = 0; la fonction symétrique f, va s’évanouir; quant aux
f; dont Pindice 4 est inférieur & n, elles se transforment en f; de méme
indice, mais relatives aux n — 1 indéterminées xz,, x,, ..., z,_;. Pour

éviter la confusion, j’écrirai f;, I'indice n désignant le nombre des indéter-
(n)
minées correspondantes. Nous pourrons donc écrire

fi(xn=0)=fi ’ pour 1<n . (11)
(n) (n—1)

Que devient alors le tableau des R, ?



On voit immédiatement que R, se transforme en ¢R,, et qu’en général
(n) (n—1)

R;(z,=0)=qR,, . (12)
(n) (n—1)
On en déduit la premiére des propriétés de D,, que nous nous proposions
d’établir:

Propriété 1. Pour z, = 0, le dénominateur D, se transforme en
qw—zD n—1 >

-Dn(xn = 0) = qn—zpn—l . (13)

Propriété 2. Le degré max. de chacune des indéterminées z,, z,, ..., z,
dans les coefficients du polynome D, est égal & » — 3.

La démonstration est immédiate. En effet, les éléments du déterminant
D, sont des fonctions linéaires des f, ; or, les f, contiennent chacune des
indéterminées & la premiére puissance et le degré du déterminant est
égal & n — 3.

Exemples.
Envisageons le cas de n = 5. Le tableau des R, s’écrit

R, =y —hos+ fada—fs + fa,
Ry, = q(og — frxa + foou —fs)  + 5 »
By =g —ho +fa) —fg + [,
By=q*oa—Fh) + fhg® —faq + fsxa .

Le systéme canonique s’écrit

oy + (—h@: + fs) o = — L + fuq
fsa + (@® —14@) 4 = 14> — 1342 .
Donec
¢ —he+Ts 9
D5= =q¢"—fu®® 152'““5a 14
f, & — g =2 f£ + s — 1 (14)
¢ —he+tfag
Ns 1) = :15'—‘34 252’“‘45, 15
)= T | She—he il —lida, (19

— e +fhe —he+fs
he—1f ¢ ® — f4q (16)

= (fi —f2) ®— (hhfs — 1) ¢* + (fofa—Fi15) 93_(fi_f3f5) q .

Ny(xg) =



Pour zz; = 0, D, devient ¢3(q> — f,) = ¢3D, et N;(x,) se transforme
en ¢3(f,92 — f3q9) = ¢® N (x,) (voir la formule (9)).
Je donnerai encore I’expression de Dj.

Dy=q"—fa0" + (f1fs — fo) 4°* — (fi fo— fofo) 4° + (fafs—f3) 4° +(17)
+ (fufsfe—1%) ¢?—f.fed*+ fi .

Remarque. Si, dans les polynémes D,,, on remplace g et les f, par leurs
expressions en fonction des indéterminées z,, x,, ..., z,, on obtient les
relations suivantes:

D, = z 2y(2, %3 — 2324) ,

Dy = (2,29)2 (2, %3 — Z32,4) (X, 23 — X3%5) (2,5 — X4 75) ,

Dy = (2,25)® (0,23 — T3%4) (2, %3 — X325) (2, %5 — T3 %) (2, %2 — 24 %5)
(@, %3 — 4 %q) (XX — T5T4) -

Le théoréme 2 est donc vrai pour n = 4, 5, 6. Dans le paragraphe
suivant nous montrerons qu’il est vrai pour tout » > 4.

§ 4. Démonstration du théoréme 2

Cette démonstration comprendra deux parties:
Premiére partie. Nous commencerons par montrer que D, est divisible

par II, = II(x,x, — x;x;), le produit étant étendu & toutes les combi-
%,
naisons i, § deux & deux des indices 3, 4, ..., n.

Partons de la relation
y D n — N n (0‘1) ’

qui devient une identité en z,, z,, ..., z,, lorsqu’on remplace p et ¢ par
T, + x5 et 2,2,

Soit S, la norme de D, qu’on.obtient en multipliant D, par tous ses
conjugués. Si’on pose D, = P(x,x,), les conjugues P(x;x,) s’obtiennent
de P(x,x,) en appliquant les substitutions (x,x;) (z,z;).

8, = IT P(x;x;) est donc une fonction symétrique faisant partie de F,,.

£,

Par conséquent on a

(2, + @5) S, = P(2,2,) » (18)

P étant un polynéme en z, x;, & coefficients faisant partie de F,.
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Appliquons aux deux membres de (18) la substitution (x,x;) (x,2,).
La différence PB(x, ;) — P(x, ,) étant divisible par (z, z, — x,,), il vient

(@) + T3 — 23— x,4) 8, = (2, %y — 232,) @ ,

le quotient ¢ faisant partie de X, .

Le facteur x,x, — x,x, divise donc 8, et par conséquent I'un au moins
des polynoémes P(x;x;).
Je dis qu’il divise P(x,x,) (et par conséquent P(x, x4)).

Supposons le contraire et soit P(x;x;) le polyndéme divisible par
x, z, — z3x,. 11 suffit d’envisager les trois cas suivants:

1) i=1, =3,
2) 1=1, >4, par exemple j = 5, pour fixer les idées,
3) tetj> 4.

Dans le premier cas P(x;x,) est divisible par tous les bindmes qu’on
obtient de x,z, — x;, en appliquant les substitutions du groupe symé-
trique des n — 2 indéterminés z,, x,, %5, ..., &,.

Le nombre total des diviseurs de P(x;x;,) est donc dans ce cas
= (n—2) (n — 3). Or, le degré 2(n — 2) (n — 3) du produit de ces
binémes étant supérieur, pour n > 4, & celui de P(x;x;), égal & n(n — 3),
on aboutit & un résultat absurde.

Dans le second cas, le nombre des binémes divisant P(x,x,) est
(n —2) (n —3) (n — 4); le degré du produit des bindémes = 2(n — 2)
(n — 3) (n — 4), supérieur & n(n — 3), pour n > 4, résultat absurde.

Dans le troisieme cas, le nombre des binomes divisant P(x;x;) est
(n—2) (n—3) (n—4) (n—25)

8
& n(n — 3) pour » > 6. Donc D, est divisible par x,z, — x;x, et par
conséquent par le produit IT,, et I’on voit que la propriété en question
est vraie pour tout » > 4, puisqu’elle est vraie pour n = 4, 5 et 6.

et le degré du produit est supérieur

Deuxiéme partie. Posons
D,=@&-1II,. (19)

Nous venons de voir que @ fait partie de X, . Il reste & montrer que
D = (z,2,)" 3.

11



Or, supposons que le théoréme 2 soit vrai pour D,_,, donc D, , =
(%, x,)" 411, ,, et faisons z, = 0 dans (19).
Comme
D, = @ -(mz)" 21,y = @ *xx,D,,
(#n=0)  (2n=0) (#=0)
et qu’en vertu de (13)
D'n = (xl xz)n—an—l
(@n=0)
D = (x,2,)" 3.
(n=0)

Done D = (2;2,)" %+ z, - ¢, ¢ faisant partie de X,,.

il vient

Soit ¢, xf le terme de degré max. en x, dans z,¢. Sic, 5= 0, D, va con-
tenir des termes en z),-3+%, puisque le dernier terme de I, = (z, 2, ... ,)"3
(abstraction faite du signe). Or, 'ensemble des termes en " dans IT,
g’écrit (z; ... 2,)" 34y, ¥ s’annulant avec z, x,.

Mais, en vertu de la propriété 2 du § 3,

Caltk {(@y2y ... 2, )" 349} =0.
Si donc ¢, # 0,
(T3 ... 2)" 3+ y =0

identiquement. Or, pour z; = 0, y s’annule et par conséquent
(25 ... 2x,)"3 = 0, conclusion absurde.
On a donc bien ¢, = 0, @ = (z,2,)" 3, et le théoréme 2 est établi.

§ 5. Propriétés principales des N, («:)

A. Nous avons vu que N, («,) est un polynome faisant partie du domaine
Q,pouri=1,2,...,n — 3. Pour ? = 0, , = 1, le polynéme N, se con-

fond avec D,
Nn(“o) = Dn .

Si pour ¢ > n — 3, on entend par N,(x;) le produit x,D,, on aura, en
vertu de (3), pour tout n > 0, la relation suivante

D Nn((xi) = N'n (‘xi+1) + q N'n(‘xi—l) ’ (20)
qui se réduit a
P Ny(xo) = Nylov) , (21)
pour ¢ = 0. De plus, en vertu du théoréme 2,

N,‘(OC,-) = o‘iDn == qn—ao‘inn . (22)
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Je ferai remarquer encore que N,(x, ;) n’est plus un polynome du
domaine . En effet, en vertu de la relation R, = 0 on a en multipliant
par D,

Q{N %p—s) _fl( n(Ong) + -+ + [ 1)"—2}‘“—21)1&} = (—l)nann

Si donc N, (x,_,) était un polynéme du domaine @, f,D, serait divisible
par q et le quotient serait aussi un polynéme de @, conclusion absurde,
puisque le dernier terme de f,D, est, abstraction faite du signe, f*2.
Cette propriété nous sera utile dans la derniére partie de notre travail.

B. Nous pouvons maintenant généraliser la formule (13). Il suffit & cet
effet, de faire x, = 0 dans la formule (22), ce qui donne

N'n(o‘i) = &y Dn = (xiqn—an_l = qn_an—l (o‘i) ’ (23)

(n=0) (xn=0)

qu’on pourrait du reste déduire directement du tableau des équations
canoniques.

La formule (23) donne l'expression des premiers termes de N, (x;),
lorsqu’on connait les premiers termes de N,_, (x,).

Il en résulte, par exemple, que les deux premiers termes de N,(x,)

s’écrivent toujours
n (n—3) 1&(1:--—3)__1

flq 2 ~f3q 2 ’
puisque
Nylq) = ha? — 159 -

Ce procédé s’applique & tous les premiers termes de N, (x;) dont les
coefficients ont un degré inférieur & ».

C. Dans la formule (22) remplacons z,(k=1, 2,..., n) par _9.}_ En
k

désignant par ¢* ce que devient alors une fonction ¢ de X, on aura

1 n—i &
q*=-q—; fz—ff ;e =—

I,
II* = (— 1)m S g (24)
en posant
m e (r—2) (n—3) ot m—m 3= (n—3) (n — 4)

2
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Par conséquent
(n—2) (n—3) n(n—3) , .

Nao)=(—1) * frd¢ ¥  N¥ap). (25)
En particulier
(n—2) (n—3) n (n—3)
Dn:Nn((xO) == ('—" 1) 2 fz_‘:sq 2 D: . (26)

Le second membre de ces formules reproduit le polynéme N, (x;), mais
les termes se présentent dans I'ordre inverse: le premier terme de N ,(x,)
fournit le dernier, le second I’avant-dernier, etc., ce qui permet de calculer
les derniers termes & partir des premiers.

Application. Nous avons vu que les premiers termes de N,(x,)

b4 :
s ecrivent n (n—8) n(n—3)

g 2 —fsq *®

1

11 résulte alors de la formule (25) que les deux derniers termes s’écrivent

(n—2) (n—3)

(— 1) 2 (_fn—aﬂzl—‘;q2+fn-—1fz_4Q) *

D. Théoréme. Pour tout + << n — 3, le degré de N ,(«,;) par rapport & ¢

est égal & M;———E)- .

Démonstration. Supposons que cette propriété soit vraie pour les
polynémes N, ,(x;,) & » — 1 indéterminées (z+ < n —4). Je dis qu’elle
sera vraie pour N ,(x,).

Envisageons d’abord les polynomes N, («x;) et N,_;(«,;) de méme indice
it <n—4. Comme, en vertu de (22), le degré total de N,_,(x;) par
rapport & l’ensemble des indéterminées z,, x,,..., z,; est égal &
t+ (n—1) (n—4), le coefficient du premier terme de N, ,(x,) est
une fonction symétrique dont le degré, en vertu de notre hypothése, est
égal & . Or ¢ étant inférieur & n, le coefficient ¢; du premier terme de
N, (x;) s’obtient, en vertu de (23) (propriété B), de celui de N,_,(x;) en

remplagant les f, par f;. Par conséquent son degré est aussi égal
¥ (n—1) (n(
a ¢ et le premier terme de N, (x,) 8’écrit

n (n—3)
c;q *®

Notre théoréme est donc établi pour ¢ <L n — 4. Il reste & 1’établir
pour ¢ =mn —3.
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Partons, & cet effet, de I’équation R, = 0 qui, multipliée par D, et
divisée par q2, s’écrit

N'n((xn—a) _—len(ocn—tl) +i2Nn(‘xn—5)_' h _+_ (—" 1)"—4](7&—4Nn(“1) + (_‘1 )n——af'n—-&Dn
+P=o0,
en posant
P (1 faNate) —fuso D

(27)

Il résulte des expressions des derniers termes de D, et de N,(«)
(égal. (7) et propriété C) que le numérateur de ce quotient est divisible

(n — 3)

par ¢% et que P est un polynéme en q¢ du degré n 5 — 2 faisant

partie du domaine Q.

Le premier membre de (27) est donc un polynéme du domaine @ dont
n(n—1)

2 H
son degré par rapport aux x,, Z,, ..., Z, est, en vertu de (22), égal &
mn+1) n—3)<nmn—1).

le degré par rapport & q est en tout cas inférieur & puisque

Comme la fonction ¢ vérifie une équation dont le degré estﬁ—(ﬁ-;————l—) ,
les coefficients de tous les termes du polyndéme, apres la réduction des
termes semblables, doivent étre nuls. Il en résulte que le degré du premier
terme de N, (x,_;) par rapport & ¢ ne saurait étre supérieur & M;—_?,_) ,

nin—3) Mais
3 .

, puisque les équations

puisque les degrés de tousles termes qui suivent sont <

(n —3)

ce degré n’est pas non plus inférieur & 5

canoniques fournissent pour N,(x,_;), & c6té d’autres produits du degré
n (n h— 3) . M . . Ly 7
— le produit +f, ;¢ 2 , quine saurait tomber, apreés la réduc-

tion des termes semblables. Donc le degré du premier terme de N, (x, ;)

n(n —3)
2
vraie pour N,, elle est donc vraie pour tout n et le théoréme D est établi.

est bien , 8i la propriété D est vraie pour N, ;. Or, elle est

E. Théoréme. Pour tout + < n — 3, le polynome N, (x;) est divisible
par ¢¢, dans le domaine Q.

En effet, en vertu de la relation (25) (propriété C) le dernier terme du
polyndéme N, (x;) s’écrit

15



(n—2) (n—3) n(n—3) 4 —n(n—3) {(n—2) (n—8)
—3 % —3 7 K
(—1) * q n g P =1 ? [fiT¢¢

Or, le degré de c; étant égal a 4, la puissance de f, qui figure au dénomi-
nateur de ¢ n’est pas supérieure & f (nous verrons plus loin qu’elle est
égale & fY).

Donc f*3c¥ fait partie de F,,, et I'on voit que N, (x;) est bien divisible
par ¢¢. De plus, le coefficient du dernier terme, que je désignerai par d,,

est
(n—2) (n—3)
T tn—3 %
(—1 2 fite .

Cette propriété nous sera trés utile.

F. Structure des coefficients du premier et du dernier terme de N, (x;).

Les propriétés que nous venons d’établir permettent de calculer les
coefficients ¢, et d; du premier et du dernier terme de N, (x,). En effet, en
vertu de (27), on a la relation suivante

Cp—s _—flcn-—-ll + fzcn—-s — e+ (—1)n~4f7»-461 == (_—l)n_zf'n—3' (28)

Soient maintenant ¢, ,, c, 5, ... les coefficients des premiers termes de

N, 1(ps)y Ny @ps)s-o3hh » fa 5.y fua les fonctions symétriques
(n—1) (n—1) (n—1)
élémentaires des » — 1 indéterminées x;, %5, ..., 2, ;. On aura de

méme la relation

07’1—4_— h 6:;-5 4 e (=) fs c{ = (—D"3f,, . (29

(n—1) (n—1) (n—1)

Cette relation étant une identité en f;,, f; ,..., elle a encore lieu
(n—1) (n—1)

si Pon remplace les f; par les f; 5). Mais alors les c; se transforment en c,,
(n—1)
puisque les ¢; s’expriment de la méme maniére en fonction des f que

les ¢; en fonction des f;, et l'on aura
(n—1)

cn-—4—'—flcn—5 + et + (———].)"'_5/:”_561 = (_—l)n—3fn-—4 .

%) Ce raisonnement est analogue & celui dont se sert Gauss dans sa deuxidme démons-
tration du théoréme fondamental, lorsqu’il remplace les f; par des indéterminées et ces
derniéres par les coefficients de I’équation donnée.
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En appliquant le méme raisonnement aux N,_,, on aura une relation

analogue entre c,_;, ..., ¢;, etc.

On obtiendra ainsi un systéme de » — 3 équations linéaires entre

n — 3 inconnues ¢, 5, C,_4, ---, €, qui 8’écrit

Co—z — [1€ps + faCps — *** + (—1)"4f, 4 = (—1)"2f, 4
Cp—a _flcn—s + et + (___.1)"—5]‘(”__501 = (—l)n‘-sfn—‘i

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

Ca—hei=—/a
G =h
On en tire

fl _"'f2 L (_—' l)z_lfz

—1 froe (— 1) fiy

Gy = 0 —1...(—1)"2fi,
0 0... —1 f1

d’ol1

ci=f; ca=f—1f; ca=fi —2fifs+ [, ete.

En général

c;=fi+e .

(31)

¢ étant un ensemble de termes dans lesquels figurent aussi des facteurs
f« & indice & > 1. Par conséquent fi est le seul terme dont le degré par

rapport aux f, f,, ;.. soit égal & <.

Quelles sont maintenant les propriétés correspondantes du coefficient

d; du dernier terme de N, (x,)?
Nous avons vu (propriété E) que

(n—2) (n—3)
=) frer.
Mais, en vertu de (31).
i
of =+t
M

et le dénominateur de &* est une puissance de f, égale a f¥ | ’exposant k&

étant inférieur & 4.
Par conséquent
(n—2) (n—3)

di=(—1) * (i -+,

S étant une fonction symétrique faisant partie de F',,.

2 Commentarii Mathematici Helvetici

(32)
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En particulier

(n—2) (n—3)

dn—a = ("—' 1) 2 (fﬁj + fnS) .

C’est sur cette derniére propriété que repose notre démonstration du
théoréme 4.

§ 6. Démonstration du théoréme 3
Multiplions N ,(x;) par p.

Pour + = 0, on a, en vertu de (21),
pNn((xO) = Nn(‘xl)

et comme N, (x,) = D,, il vient
N (o)
P = _______;;___

et ’on retrouve 1’expression canonique de p.

Mais, pour ¢ = 1,2,...,n — 4,

P Np(og) = Ny(oiys) + gV, (05) (20)
d’ol
p = Nn (“i+})v;l—(“qi;vn (ai-—l) . (33)

Or, en vertu de la propriété E, le numérateur et le dénominateur sont
divisibles par ¢®. Aprés la suppression de ce facteur, on obtient une
expression nouvelle pour p, dans laquelle le degré du dénominateur
est n(m — 3) — ¢t < n(rn — 3). Le minimum est atteint pour : =n—4.
Le degré du dénominateur est alors

nn—3) —((n—4) = (n — 2)2

et le théoréme 3 est démontré.

Envisageons, par exemple, le cas de n = 5. L’expression réduite
s’obtient de
_ Ns(o‘z) + g N5 (x0)
4 Ny (1)

en divisant haut et bas par ¢.
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En remplacant les N (x,) par leurs expressions (14), (15) et (16), on
obtient

pr= ¢+ (fi—f) @*—fifs @+ fafad®+ (fafs— 1) a— i
fi9* — 33 + fafs a—fafs )

Mais alors la question suivante se pose:

Existe-t-il des expressions de p en fonction de ¢, dans lesquelles le
degré du dénominateur est inférieur & (n — 2)2 par rapport aux indéter-
minées ,, Z,, ..., L,? )

La réponse est négative, comme nous allons le montrer dans la derniére
partie de notre travail.

§ 7. Démonstration du théoréme 4

Le raisonnement dont nous sommes servi (§ 4) pour démontrer que D,
peut toujours étre mis sous la forme

@I,

@ étant une fonction de X, s’applique encore & tout polynéme en g du
domaine @ dont le degré en x,, z,, ..., £, ne dépasse pas n(n — 3) et
dont le produit par p = z; + z, est un polynome faisant également
partie de Q.

Supposons donc qu’il existe une expression de p dans laquelle le déno-
minateur soit d’un degré inférieur & (»n — 2)2. En vertu de notre remarque

il serait de la forme
d- 11,

@ étant une fonction de X, d’un degré inférieur & n — 2.

Comme @ - II, et II, sont des fonctions symétriques de z,, x, et des
Xy, Xy, ..., T,, 1l en est de méme de @ ; par conséquent P est un polynéme
en p et g dont les coefficients sont des fonctions symétriques entieres et &
coefficients entiers des » — 2 indéterminées x,, z,, ..., ,. Mais toute
fonction symétrique de cette espéce est un polynéme en p et g & coeffi-
cients appartenant & F,,.

Or, les puissances de p sont des fonctions linéaires des «, & coefficients
appartenant & . On peut donc toujours mettre @ sous la forme d’une
fonction linéaire des «,; & coefficients faisant partie de Q.

Soient s,,, s%, s& ... des fonctions symétriques du domaine F, dont
le degré ne dépasse pas m.
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En vertu de notre hypothese, @ est une somme de termes de la forme
sk gk x., les indices k,%, m vérifiant les relations 2k 4 ¢ <n—3,
m<n—3—2k—:+.

Groupons ensemble les termes dans lesquels les indices %, ¢ ont méme
somme k + 2. On aura » — 2 groupes ¢, s, 9o, ---> §1, Jo, 18 valeurs
correspondantes de k£ - ¢ étant » —3,n —4,...,1,0.

Ces groupes s’écriront
' In-3 = S0 Xp—3 >

' 1
Jna = 8 Gp_g+ 35))q0‘n—5 )

1 2
gn—-5 = 82 O‘n—5 + 8; ) qocn—-(i + Sg)qz(xn—7 ’

oooooooooooooooooooooooooooooooooooo

gy = 8p_4 01+ 85,'25 q
Jgo = 8u_3
et I'on aura
=g, 5+ Gua+ " +9go- (34)

Je dis que tous les g, sont nuls. La démonstration comprendra trois
parties: dans la premiére je montrerai que g,_; = 0, dans la seconde que
go = 0, dans la troisiéeme que g, = 0, quel que soit k.

1) En vertu de nos hypothéses @ - IT, est un polynéme P(q) faisant
partie de @, de méme que le numérateur p- @ - II, = p - P(q).
Multiplions P(g) par ¢ 3. Le produit est un polynome du domaine @
divisible par ¢"—3.
Or
qﬂmaP(Q) = SONn(“n—-a) '+' (81 Nn (O‘n—4) + 85)1) an (“n—S))

+ o+ (84N, (%) + 8P gD,) + 8,5D, (35)

=P, 3+ P,y + "+ Py,
en posant
Py = gxq"21II, . (36)

Or, le produit de ¢g"3 P(q) par p étant encore un polynéme du domaine
@, il en résulte que

8oV (y—2) + 80qN (%p—g) + -+ ) (37)

est un polynéme de @, conclusion absurde, si s, # 0, le premier terme

¢) En vertu de (20) , pNy(dg—s) = Np(®p—) + ¢ Nu(ctp—y) -
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8oV (x,_p) n’étant pas un polynoéme en ¢ (§ 5, A), tandis que tous les autres
le sont.
Donc s, = 0 et par conséquent g, ; = 0, P,_, = 0.

2) Il en résulte que
I%V4 ﬁ—‘IZFﬁ %_'.°'+'190

est un polynéme de @ divisible par ¢"-3.

Or, les polynémes N, («;) d’indices ¢ > 0 (et < n —2) étant tous divi-
sibles par g, il devrait en étre de méme du polynéme P,. Mais le polynéme
P, est égal & s,_;D, et D, n’est pas divisible par ¢q. Donc s,_, = 0 et par
conséquent g, = 0, P, = 0.

3) Je dis maintenant que P,_, ; est nul, si les polynomes P, d’indices
k <mn—3—1¢ sont nuls.

Commencons par faire remarquer que les polynémes P, sont divi-
sibles par ¢*, en vertu du théoréme du § 5, E, en particulier le polyndéme

P, g i=8N,(x, 3 + 3?—)1 qN, (xp_gg) + -

est divisible par ¢"3-".
Or, la somme

I;—4“F Iup5"k""+ IZ~&4
étant divisible par ¢"—3 et

-FZ—4'+'I%%4 +""'—F-P%-%4

par ¢™2%%, il en résulte qu’en vertu de nos hypotheses, P,_,_, est divisible
par ¢"2-%. Donc le quotient p
n—3—¢

qn -3—1

est divisible par ¢ et par conséquent le dernier terme (terme en ¢°) de ce
quotient, qui s’écrit

1 2
85y it 80y Aoy it 8 by

est identiquement nul.

Or,
(n—2) (n—3) )
dpgi=(—1) 2 (i fH+HP8D),
(38)
(n—2) (n—38) o ]
Bpoai = (—1) 2 (i3 T+ 12T8®) , ete.

S 8@ ete. étant des fonctions éymétriques du domaine F, (§ 5, F).
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Convenons maintenant de dire que l'ordre d’un produit des f, est
inférieur & celui d’un autre produit des f,, si le facteur f, y figure & une
puissance plus petite. Il résulte alors des expressions (38) que ’ordre du
premier terme + %3 f* de d,_, ; est inférieur & ceux de tous les autres
termes des d, dont les indices sont <7 — 3 —1¢. Comme de degré de
8, est inférieur & n, aucun de ces termes n’est semblable & s,/*3%f:. Par
conséquent s, /"3 ne sera pas supprimé, si s, = 0, apres la réduction des
termes semblables. Il en résulte que s, = 0.

Pour la méme raison s{;, s,, ... sont nuls. Donc

Ins:i=0, P, ,,=0, siles P, dindices bk<n—3—1

sont nuls. Et comme P, = 0, tous les P, et tous les g, sont aussi nuls.
Le théoreme 4 est donc démontré.

Remarque. La méme méthode permet de montrer qu’abstraction faite
d’un facteur faisant partie de C, il n’existe qu’une seule expression réduite
dans laquelle le dénominateur est du degré (n — 2)? par rapport aux
Xy, X3, ..., X, (unicité de l’expression réduite).

Je tiens, en terminant, & adresser mes remerciements affectueux a
Monsieur G. de Rahm pour les renseignements précieux qu’il m’a donnés
au cours de ce travail.

(Regu le 25 avril 1941.)
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