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Monsieur Mirimanoff
fête cette année son quatre-vingtième anniversaire. Nous présentons nos

félicitations chaleureuses et nos vœux les meilleurs à celui qui a su se créer tant

d'amitiés respectueuses parmi ses collègues et a éveillé chez nous plus d'une

vocation mathématique par son enseignement incomparable de rigueur et de finesse.

Notre revue, qui lui doit une collaboration très précieuse, est fière de

pouvoir publier aujourd'hui un bel article de lui.

LA RÉDACTION

Expressions de la somme de deux
indéterminées en fonction du produit
Par D. Mirimanoff, Genève

Introduction
Soient fx Ext, f2 Ex{Xj, fn x, x2..., xn les fonctions

symétriques élémentaires de n indéterminées xt, x2, xn9 f(x) le polynôme

qui a pour zéros xl9 x2, xn.
Désignons par C l'ensemble des nombres entiers ordinaires, par X ou

Xn le domaine d'intégrité C[xl9 x2, xn] (ensemble de tous les
polynômes en xx, x2, xn à coefficients faisant partie de C) et par jP ou Fn le
domaine d'intégrité C[fl9fi9 ...,/„] (ensemble de tous les polynômes en

/iJa,...,/^ coefficients faisant partie de G).
Soient maintenant cp et y> deux fonctions du domaine X, invariants

caractéristiques d'un même groupe de substitutions. En vertu d'un
théorème de Lagrange, chacune d'elles est une fonction rationnelle de

l'autre, à coefficients faisant partie de F.
Un cas particulièrement important est celui où l'une d'elles est la

somme et l'autre le produit de deux indéterminées xi, xi. Pour fixer les

idées, je supposerai i 1, j 2 et je désignerai par p la somme xx-\-x2
et par q le produit x1x2,

p x1 + x2, q xxx2
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Ces deux fonctions jouent un rôle important dans les démonstrations
arithmétiques du théorème fondamental de l'algèbre, dont je crois utile
de rappeler les principes.

Soit f(x) 0 une équation particulière sans racines multiples, dont les
coefficients font partie d'un corps réel K. On admet que f{x) 0 a au
moins une racine réelle, lorsque son degré n est impair. Pour établir le
théorème fondamental, il suffit de montrer que le calcul d'une (ou de

plusieurs) racines de / (x) 0, si n est pair, peut être ramené à celui d'une
racine d'une équation de degré impair. Soit n 2k(2m + 1). Si ax, <x2 sont
deux racines réelles ou imaginaires conjuguées de f(x) 0, dont il s'agit
justement de démontrer l'existence, la somme p <%x + oc2 et le produit

q <xx(x2 vérifient des équations du degré 'vy —- dont l'ordre de parité

est k — 1, inférieur d'une unité à celui de n. Si donc l'on suppose que le
théorème fondamental soit vrai pour les équations dont le degré est d'un
ordre de parité inférieur à fc, on pourra, en partant par exemple d'une
racine de l'équation en q, calculer la valeur correspondante de p fonction

rationnelle de q (formule de Lagrange), en tirer ensuite o^ et oc2 et
établir ainsi l'existence de ces racines. Mais, comme l'a fait remarquer
Gauss, qui le premier a donné une démonstration arithmétique rigoureuse
du théorème fondamental, l'expression de p en fonction de q (ou de q en
fonction de p) peut devenir illusoire, lorsque l'équation en q (ou en p) a
des racines multiples. Pour éviter cet écueil, Gauss a introduit l'invariant
caractéristique q + cp> que je désignerai par G, et il a montré qu'il est
toujours possible de choisir la constante c de telle façon que l'équation
en 0 n'ait pas de racines multiples. En partant alors d'une racine de

l'équation en 0, on pourra calculer p et q, et finalement o^, <x2 • Et comme
le théorème fondamental est vrai pour un degré impair, il est vrai pour n
quelconque (induction complète). Le point essentiel dans cette démonstration

arithmétique est donc qu'on a, pour tout c convenablement choisi,

c'est-à-dire que p <xx + oc2 et q ocxoc2 sont fonctions rationnelles de

0 o^(x2 + cfa + oc2), à coefficients faisant partie de K. Et ces fonctions
rationnelles s'écrivent exactement de la même manière que dans le cas
de n indéterminées xXi x2, xn2).

x) B. L. van der Waerden, Moderne Algebra, t. 1, 1930, p. 229.
2) C est à Euler et à F. de Foncenex que l'on doit les premiers principes des démonstrations

arithmétiques (cf. Gauss, Demonstratio nova. Diss., 1799).



Si maintenant on voulait essayer de former, à l'aide des procédés
classiques, les expressions de p (ou q) en fonction de q (ou p) ou bien celles
de p et q en fonction de G, soit pour illustrer la méthode arithmétique,
soit pour calculer les racines d'une équation donnée, on serait vite
découragé par la complication extrême des formules et la longueur des
calculs.

La question suivante se pose : existe-t-il, à côté des formules classiques,
des expressions plus simples, dans lesquelles le dénominateur est d'un
degré moins élevé?

C'est là, évidemment, un problème particulier, mais nous allons voir
qu'il comporte une solution précise.

Désignons par Q le domaine d'intégrité F[q] (ensemble de tous les

polynômes en q dont les coefficients font partie de F). Je montrerai qu'on
peut établir les quatre théorèmes suivants:

Théorème 1. Il existe, pour tout n ^ 4, une expression de p en fonction
de q sous forme d'un quotient de deux polynômes faisant partie de Q,

dans laquelle le dénominateur est du degré —- par rapport à q et

du degré n(n — 3) par rapport à l'ensemble xl9 x2i xn.
Cette expression sera dite l'expression canonique.

Théorème 2. Dans l'expression canonique, le dénominateur est égal à

le produit 17, que je désignerai par 77M, étant étendu à toutes les com-

binaisons xtx3 deux à deux des n — 2 indéterminées x39 xA9 zn.

Théorème 3. Il existe, pour tout n > 4, une expression de p en fonction

de q, sous forme d'un quotient de deux polynômes de Q, dans laquelle
le dénominateur est du degré (n — 2)2 par rapport aux xly x2, xn.

Cette expression sera dite l'expression réduite.

Théorème 4. Il n'existe pas d'expression de p, sous forme d'un quotient
de deux polynômes de Q, dans laquelle le degré du dénominateur par
rapport aux xl9 x2, xn soit inférieur à (n — 2)2.

Le degré (n — 2)2 est donc le degré le plus petit possible.
Nous verrons que les expressions de p et q en fonction de 0 se déduisent

des équations qui fournissent les expressions canoniques de p. Il suffit
donc d'envisager le couple p, q.
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§ 1. Démonstration du théorème 1

Soit Rxx — R2 le reste de la division du polynôme

par x2 — p x -f- q. Ce reste étant identiquement nul, on a les deux relations
suivantes :

Rx o R2 0 (1)

Or, Rx et R2 étant deux polynômes en p et q à coefficients faisant partie
de Fn, on pourrait, en appliquant l'algorithme d'Euclide, chercher à
calculer le plus grand commun diviseur de Rx et R2, considérés comme des

polynômes en p à coefficients appartenant à Q. Ce plus grand commun
diviseur fournirait, égalé à 0, l'expression cherchée de p. Mais ce procédé,
qui réussit pour n 3, 4 et 5, n'est pas commode: des facteurs parasites
s'introduisent, en effet, au cours des divisions successives et aucune loi
ne se dégage de l'ensemble des opérations effectuées. Aussi ai-je préféré
suivre une voie différente.

Commençons par faire remarquer qu'on a identiquement

a^-
Posons

OC

*

d'où, en particulier,

— x2

x — x2

•1 ' Xn

<*1

>

fc+1

P

*i* + *£**%+ •••+«,*,

Les ock, ainsi définis, sont des polynômes en p et q à coefficients faisant
partie de C, et tout polynôme en p et q à coefficients faisant partie de Fn,
est une fonction linéaire des ock à coefficients appartenant au domaine Q,

en vertu de la relation

on en tire en effet
P2 <*2 + q Pz <*z + 2qoc1 etc.,

expressions connues 3).

Or, jBx et R2 s'expriment très simplement en fonction des <xt et de q.
On a, en effet,

3) Les ak interviennent dans certains chapitres de la théorie additive des nombres.
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-Ri «_i — /i«_i +••• + (— l)"-1/»-! (4)

A partir de B1 et i22 nous construirons une suite de n — 3 polynômes
B3, i£4, Bn_1, fonctions linéaires de oclfoc2, ,ocn_z> à coefficients
faisant partie de Q.

Ces polynômes seront définis par la relation

Bi^—qB^ + pB^1. (5)

Nous verrons tout à l'heure, qu'en égalant ces polynômes à 0 (en vertu
de (1)), on obtient n— 3 équations linéaires à n— 3 inconnues o^,

Ordonnons les termes des Bt suivant les puissances décroissantes de q.

Il est commode alors de distinguer deux groupes de termes, le premier
comprenant les termes en q^1, que nous réunirons en mettant le facteur
qi-1 en évidence, et l'ensemble des termes de degrés plus petits en q. Il est
facile de voir que l'ensemble des termes du premier groupe s'écrit

Si, en effet, cette propriété est vraie de B^2 et de B{_19 elle sera encore
vraie de B{, puisque les termes du premier groupe de Bt s'obtiennent des

premiers groupes de B^2 et jR^ en appliquant la relation (3) que j'écrirai

— <*k + P"h-i QKjc-2 ; (3 bis)

or, la propriété en question est vraie de Bt et B2, elle est donc vraie de
tout B{.

Je ferai remarquer de plus que l'avant-dernier terme du premier
groupe de B{_2 > multiplié par — g, et le dernier terme du premier groupe
de J?t_x, multiplié par p oc1, tombent (termes semblables et de signes
contraires), et que le dernier terme de B{^29 multiplié par —q, passe
dans le second groupe de B{.

Ce second groupe est un polynôme du degré i — 2 en g qui s'écrit très
simplement. Mais nous n'avons pas besoin de connaître sa structure.
Je me bornerai seulement à faire remarquer que l'indice max. des oc dans
le second groupe est égal ki — 2 et que oc^ figure dans le terme constant
(coefficient de q°) (— l)n^1/n^t-2> qui est le seul terme de J^ contenant le
facteur fn. En supposant, en effet, que cette propriété soit vraie de



vraie de Rx et B2), l'ensemble des termes en fn dans

{ s'écrira

Faisons maintenant i 3, 4, n — 1 ; l'indice max. des oc du
premier groupe va parcourir alors la suite n — 3, n — 4, 1 et l'indice max.
des oc du second groupe, égal ai — 2, va parcourir la même suite en sens
inverse. On voit donc que les R% (i > 3) sont bien des fonctions linéaires
de oc1,oc2, ...,«w_8.

Ordonnons maintenant les termes des Rt, que nous égalerons à 0,
suivant les indices décroissants des oc et faisons passer les termes connus
dans les seconds membres. Les premiers termes des premiers groupes,
c'est-à-dire q2ocn_z, qzocn^, vont se ranger le long de la diagonale
principale, tandis que les termes à indices max. du second groupe, c'est-à-
dire les termes (— l)n~~1fn(Xi> (— 1)w~1/«^2j •••> (— l)w~1/nan-3 se rangeront

le long de la seconde diagonale.
Posons at / \ a\

0Ct t\ (G)
JJn

le dénominateur Dn étant le déterminant dont les éléments sont les
coefficients des oc, et le numérateur Nn{oCi) le déterminant correspondant
qu'on obtient en appliquant la règle de Cramer.

Il résulte alors des propriétés que nous venons d'établir que

(n—2) (n—3)

n(n—3) (n—2) (n—3)

q 2 + ..._(_(_ 1) 2 ^n-3

et l'on voit que Dn est bien un polynôme du domaine Q, du degré —-

par rapport à q et du degré n(n—3) par rapport aux xx, x2, xn

Comme <% p, on a
N n\oc1) /Q.

et le théorème 1 est établi.

4) Nn (at) se lit ,,numérateur de eet".
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Pour illustrer la méthode que je viens d'esquisser, envisageons le cas
de n 7

Le tableau des R4 s'écrit

-/.) +/»
t («4 — /i<*3 + /a«a — /3<*i + A) — /s?

On voit que la structure des seconds groupes est aussi simple que celle
des premiers.

En égalant les Bj (i 3, 4, 5, 6) à 0, on obtient, après avoir fait passer
les termes connus dans les seconds membres, le système d'équations
canoniques à quatre inconnues o^, oc2, <xz, #4

gX — /i22*3 + /2?2*2 + (— /3<z2 + /7)*i — hq2 + Uq

On en tire les expressions canoniques de 0^ p, oc2, #^3. Je crois
inutile de les donner ici. Mais au cours de ce travail nous serons amené à

calculer les expressions canoniques des oc pour n 4, 5 et 6.

§ 2. Expressions de p et g en fonction de G

Comme nous l'avons dit dans l'introduction, les expressions de p et q

en fonction de O se déduisent des équations canoniques que nous venons
de construire. Il suffit, à cet effet, de remplacer les oci par leurs expressions
en fonction de p et q, de substituer à g la fonction G — c p et de réduire, à
l'aide des relations Rx 0, jB2 0> les puissances de p supérieures à

n — 3, pour que le max. des degrés de p dans les équations ainsi
transformées ne dépasse pas n — 3. On obtiendra ainsi n — 3 équations dont
les inconnues seront p, p2, p^3. Je me bornerai à envisager le cas
de n 4.

Le tableau des R4 s'écrit

•Si #8 — /i*2 + /2*i — h >

B2 q(oc2 — A*! + f%) — /4 >

i?3 g2K — A) + qft —



Le système canonique ne contient qu'une seule équation JR3 0 qui
s'écrit

d'où

Dans cette expression, certainement connue, le degré du dénominateur

est bien égal à —-—-—- 2 par rapport à q et à 4 par rapport à Pen-

semble des indéterminées xt. Je rappelle que dans l'expression classique,
fournie par le théorème de Lagrange, le degré du dénominateur, qui est le
discriminant de q et de ses conjuguées, est égal à 60, tandis que dans une
autre expression classique, le degré du dénominateur, qui est la ,,diffé-

rente" de q, est égal à —x—- - 1 -—¦—'-£ — 5 par rap-

port à q et à 10 par rapport aux xx, x2, x3, #4.
Si Pon effectue maintenant les transformations dont je viens de parler,

on obtient l'expression suivante de p en fonction de G

qui se réduit à (9), pour c 0.
On en tire l'expression de q en fonction de G, puisque

q G — cp

§ 3. Deux propriétés du dénominateur Dn

Dans la démonstration du théorème 2, nous aurons à nous appuyer sur
deux propriétés très simples du dénominateur Dn.

Faisons xn 0 ; la fonction symétrique fn va s'évanouir; quant aux
/{ dont l'indice i est inférieur à n, elles se transforment en j\ de même
indice, mais relatives aux n—1 indéterminées xl9 x2, xn_x. Pour
éviter la confusion, j'écrirai /,-, l'indice n désignant le nombre des indéter-

(n)
minées correspondantes. Nous pourrons donc écrire

/*(*»= 0) /t. pour %<n (11)
(n) (n—1)

Que devient alors le tableau des JBt



On voit immédiatement que B2 se transforme en qB1, et qu'en général
(n) (n—1)

i
(n)

1

(n—1)
(12)

On en déduit la première des propriétés de Dn que nous nous proposions
d'établir:

Propriété 1. Pour xn 0, le dénominateur Dn se transforme en

Dn(xn 0) g"-2!»,,.!. (13)

Propriété 2. Le degré max. de chacune des indéterminées xx, x2, ¦ ¦, xn
dans les coefficients du polynôme Dn est égal à n — 3.

La démonstration est immédiate. En effet, les éléments du déterminant
Dn sont des fonctions linéaires des /É ; or, les /f contiennent chacune des

indéterminées à la première puissance et le degré du déterminant est
égal à n — 3.

Exemples.
Envisageons le cas de n 5. Le tableau des Rt s'écrit

R1 oct — ^«3
R2

B3

— fzx1 + /4

— /3) + /8

i?4 q* K — A) + f3q2 — /4?*i +

Le système canonique s'écrit

22*2 + (— ht + fù «i — /2g2 + /4?

/5^2 + (23 — hq) «i A^3 — /302 •

Donc

/• hqz-hq*

(14)

(15)

(16)



Pour x5 0, Z>5 devient qz(q2— /4) qzD4k et N^ioc^ se transforme
en qB(ftq2 — fzq) q3Né(oc1) (voir la formule (9)).

Je donnerai encore l'expression de D6.

- h) «•-(#/.—/./.) <? + ihU-fl) +
(17)

Remarque. Si, dans les polynômes Dny on remplace q et les /^ par leurs
expressions en fonction des indéterminées xx, x2, xn. on obtient les
relations suivantes :

D5 (o^a)2^!^ — ^3^4) (^1^2 — #3^5) (^1^2 — ^

Le théorème 2 est donc vrai pour n 4, 5, 6. Dans le paragraphe
suivant nous montrerons qu'il est vrai pour tout n ^ 4.

§ 4. Démonstration du théorème 2

Cette démonstration comprendra deux parties:
Première partie. Nous commencerons par montrer que Dn est divisible

par IIn IJ(x1x2 — x^j), le produit étant étendu à toutes les combi-

naisons i, j deux à deux des indices 3, 4, n.

Partons de la relation

qui devient une identité en xlf x2, xn, lorsqu'on remplace p et q par
x1 -f- x2 et xxx2.

Soit Sn la norme de Dn qu'on obtient en multipliant Dn par tous ses

conjugués. Si l'on pose Dn P(x1x2)y les conjugués P(#i^) s'obtiennent
de P^a^) en appliquant les substitutions (a^a^) (x^^).

Sn II P(Xi Xj) est donc une fonction symétrique faisant partie de Fn.

Par conséquent on a
(18)

?P étant un polynôme en x1x2i à coefficients faisant partie de Fn.
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Appliquons aux deux membres de (18) la substitution {x1x3) (x2x4).
La différence (^{x1x2) — ty{x3xA) étant divisible par (x±x2 — x3x±), il vient

(x1 + x2 — x3 — x4) 8n (x1xa — x3xé)<p

le quotient 99 faisant partie de Xn.
Le facteur xxx2 — x3x± divise donc 8n et par conséquent l'un au moins

des polynômes P(xtx}).
Je dis qu'il divise P(x1x2) (et par conséquent P(#3#4)).

Supposons le contraire et soit P{xix3) le polynôme divisible par
xxx2 — x3xé. Il suffit d'envisager les trois cas suivants:

1) i 1, y 3,
2) i 1, j > 4 par exemple j 5, pour fixer les idées,

3) *etj>4.
Dans le premier cas P(xtx0) est divisible par tous les binômes qu'on

obtient de xxx2 — x3xà en appliquant les substitutions du groupe
symétrique des n — 2 indéterminés x2, #4, xh, xn.

Le nombre total des diviseurs de P(xtxj) est donc dans ce cas

(n — 2) (n — 3). Or, le degré 2(n — 2) (n — 3) du produit de ces
binômes étant supérieur, pour n > 4, à celui de P(xixi)i égal à n(n — 3),
on aboutit à un résultat absurde.

Dans le second cas, le nombre des binômes divisant P(xixJ) est
(n — 2) (n — 3) (n — 4) ; le degré du produit des binômes 2 (n — 2)

(n — 3) (n — 4), supérieur à n(n — 3), pour n > 4, résultat absurde.
Dans le troisième cas, le nombre des binômes divisant P{xlxj) est

(n — 2) (n — 3) (n — 4) (n — 5) 1^ ^ ^—-^ — et le degré du produit est supérieur8
à n{n — 3) pour n > 6 Donc Dn est divisible par xxx2 — x3x4[ et par
conséquent par le produit 77n, et l'on voit que la propriété en question
est vraie pour tout n > 4, puisqu'elle est vraie pour n 4, 5 et 6.

Deuxième partie. Posons

Dn 0-nn. (19)

Nous venons de voir que 0 fait partie de Xn. Il reste à montrer que

0 (a^)*-3

11



Or, supposons que le théorème 2 soit vrai pour Dn__1, donc Dn_1

{x1x^fl~^IIn^li et faisons xn 0 dans (19).

Comme
Dn 0

et qu'en

il vient

vertu de (13)
71

<*n=0)

0

Donc 0 {x1x2)n~z + %n' <p, <p faisant partie de Xn.

Soit cnx\ le terme de degré max. en xn dans xncp. Si cn # 0, Z>n va
contenir des termes en x^~z+k, puisque le dernier terme de TIn (x3x^...xn)n-3
(abstraction faite du signe). Or, l'ensemble des termes en xn~* dans Un
s'écrit (x3 xn)n~s-]-y, y s'annulant avec xxx2.

Mais, en vertu de la propriété 2 du § 3,

CnXkn{(XzX4---Xn)n-Z + y} 0.
Si donc cn ^ 0

identiquement. Or, pour xx 0, y s'annule et par conséquent
(x3 xn)n~z 0, conclusion absurde.

On a donc bien cn 0, 0 (x1x2)n~3 et le théorème 2 est établi.

§ 5. Propriétés principales des Nn
A. Nous avons vu que N^oc^ est un polynôme faisant partie du domaine

Q, pour i 1,2, n — 3. Pour i 0, oco 1, le polynôme Nn se
confond avec Dn,

Si pour i > n — 3, on entend par N^oci) le produit <%t-Dn, on aura, en
vertu de (3), pour tout n > 0, la relation suivante

p Nn(oc{) Nn (oci+1) + q Nn(oci-i) (20)
qui se réduit à

p Nn(oco) #nK) (21)

pour i 0. De plus, en vertu du théorème 2,

tfn(*,) *t.Dw g"-3^^ (22)
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Je ferai remarquer encore que Nn(ocn_2) n'est plus un polynôme du
domaine Q. En effet, en vertu de la relation R2 0 on a en multipliant
parDn,

Si donc Nn(ocn__2) était un polynôme du domaine Q, fnDn serait divisible
par q et le quotient serait aussi un polynôme de Q, conclusion absurde,
puisque le dernier terme de fnDn est, abstraction faite du signe, /£~2.

Cette propriété nous sera utile dans la dernière partie de notre travail.

B. Nous pouvons maintenant généraliser la formule (13). Il suffit à cet
effet, de faire xn 0 dans la formule (22), ce qui donne

qu'on pourrait du reste déduire directement du tableau des équations
canoniques.

La formule (23) donne l'expression des premiers termes de N^oCi),
lorsqu'on connaît les premiers termes de JV^^).

Il en résulte, par exemple, que les deux premiers termes de N^oc^
s'écrivent toujours

n (n—3) n (n—3

puisque

Ce procédé s'applique à tous les premiers termes de Nn(oct) dont les
coefficients ont un degré inférieur à n.

C. Dans la formule (22) remplaçons xk(h 1, 2,..., n) par —. En

désignant par <p* ce que devient alors une fonction cp de Xn, on aura

n* * /* _ f*-*
• /v* — (Xi

•q Y ' u 17 ' **~T '2

TJ* l)m
J n

en posant

(n — 2) (n — 3) o (w—3) (n — é)
m .i L± L- d où m — n + 3 -^ '-A L

13



Par conséquent
(m—2) (n—3) n(n—3)

#*() (25)

En particulier
(n—2) (n—3) n(w—3)

2 £>* (26)

Le second membre de ces formules reproduit le polynôme Nn(oci)9 mais
les termes se présentent dans l'ordre inverse : le premier terme de Nn(<xt)
fournit le dernier, le second l'avant-dernier, etc., ce qui permet de calculer
les derniers termes à partir des premiers.

Application. Nous avons vu que les premiers termes de N^o^)
s'écrivent n(»-*) n («-3) __

Il résulte alors de la formule (25) que les deux derniers termes s'écrivent

(n—2) (n-3)

D. Théorème. Pour tout i ^ n — 3, le degré de Nn(ix^ par rapport à q

4. > t x n(n — 3)
est égal a ——-

Démonstration. Supposons que cette propriété soit vraie pour les

polynômes Nn^1(oci) à n — 1 indéterminées (i < w — 4). Je dis qu'elle
sera vraie pour iVn(aa).

Envisageons d'abord les polynômes Nn(oCi) et Nnrm.1(oci) de même indice
i ^ n — 4. Comme, en vertu de (22), le degré total de Nrtrml(oci) par
rapport à l'ensemble des indéterminées xx, x2, xn^t est égal à

i -f- (n — 1) (n — 4), le coefficient du premier terme de Nn^1(oci) est

une fonction symétrique dont le degré, en vertu de notre hypothèse, est
égal à i. Or i étant inférieur à n, le coefficient ct du premier terme de

Nn((Xi) s'obtient, en vertu de (23) (propriété B), de celui de Nnfm.1(tx^ en
remplaçant les fi par /t- Par conséquent son degré est aussi égal

* (n—1) («(
h i et le premier terme de NJtXi) s'écrit

n(n—3)

Notre théorème est donc établi pour i ^ n — 4. Il reste à l'établir
pour i n — 3.
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Partons, à cet effet, de l'équation R3 0 qui, multipliée par Dn et
divisée par q2, s'écrit

en posant

II résulte des expressions des derniers termes de Dn et de ^(0^)
(égal. (7) et propriété C) que le numérateur de ce quotient est divisible

par q2 et que P est un polynôme en q du degré —-—- — 2 faisant

partie du domaine Q.

Le premier membre de (27) est donc un polynôme du domaine Q dont

le degré par rapport à q est en tout cas inférieur à ——^ puisque

son degré par rapport aux xt, x2, xn est, en vertu de (22), égal à

(n + 1) (n — 3)<n(n— 1).

Comme la fonction q vérifie une équation dont le degré est —-—
2

les coefficients de tous les termes du polynôme, après la réduction des

termes semblables, doivent être nuls. Il en résulte que le degré du premier

terme de Nn(ocn^3) par rapport à q ne saurait être supérieur à —-—-—-,

puisque les degrés de tous les termes qui suivent sont ^ —-—-—-. Mais

ce degré n'est pas non plus inférieur à -, puisque les équations

canoniques fournissent pour Nn(<xn_z), à côté d'autres produits du degré

n iyi 3) n(ft—3)
v

-, le produit ± /w_3 q 2 qui ne saurait tomber, après la réduc-

tion des termes semblables. Donc le degré du premier terme de Nn(ocn__z)

est bien ~ si la propriété D est vraie pour Nn^t. Or, elle est

vraie pour JV4, elle est donc vraie pour tout n et le théorème D est établi.

E. Théorème. Pour tout i < n — 3, le polynôme Nn(<Xi) est divisible
par qi, dans le domaine Q.

En effet, en vertu de la relation (25) (propriété C) le dernier terme du

polynôme Nn(<%i) s'écrit

15



(n—2) (n—3) n(w—¦3) —n{n—Q) (n—2) (n—3)
2 2 VrV a /

Or, le degré de c^- étant égal à i, la puissance de fn qui figure au dénominateur

de cf n'est pas supérieure à /* (nous verrons plus loin qu'elle est
égale à f*).

Donc fn~zc* fait partie de Fn, et l'on voit que #„(#,•) est bien divisible
par ql. De plus, le coefficient du dernier terme, que je désignerai par dt,
est

(n—-2) (n—3)

/ ]\ 2 fn~~zc*

Cette propriété nous sera très utile.

I\ Structure des coefficients du premier et du dernier terme de Nn(<x^.

Les propriétés que nous venons d'établir permettent de calculer les
coefficients ct et d{ du premier et du dernier terme de J^w(ai). En effet, en
vertu de (27), on a la relation suivante

Soient maintenant c^_4, c'n_^, les coefficients des premiers termes de

Nn-i(*»-A)> Nn-i(*n-5)> • • • ; /i > /*>•••> /n-i le» fonctions symétriques
(«—i)

élémentaires des w — 1 indéterminées xly x2, ^n__i. On aura de

même la relation

<C-4 — A C +•'•+(- l)^5 /-5 ^ (~ l)^3 fn-, • (29)
(n—1) (n—1) {n—1)

Cette relation étant une identité en fl3 /2 elle a encore lieu
(n—1) («—1)

si l'on remplace les /^ par les ft 5). Mais alors les c^ se transforment en ct-,
(n—1)

puisque les ct s'expriment de la même manière en fonction des / que
les c^ en fonction des fi9 et l'on aura

(n—1)

6) Ce raisonnement est analogue à celui dont se sert Gauss dans sa deuxième démonstration

du théorème fondamental, lorsqu'il remplace les /^ par des indéterminées et ces
dernières par les coefficients de l'équation donnée.
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En appliquant le même raisonnement aux Nn_2, on aura une relation
analogue entre cn_5, clt etc.

On obtiendra ainsi un système de n — 3 équations linéaires entre
n — 3 inconnues cn_3, cw__4, cx, qui s'écrit

(30)

On en tire

-1 /^..(-l)*-*/*-!
0 _l...(_l)-3/._2
0 0... -1

d'où

En général

etc.

(31)

s étant un ensemble de termes dans lesquels figurent aussi des facteurs
fk à indice k > 1. Par conséquent f[ est le seul terme dont le degré par
rapport aux /l5 /2, soit égal à i.

Quelles sont maintenant les propriétés correspondantes du coefficient
di du dernier terme de Nn((x^

Nous avons vu (propriété E) que

(n—2) (n—3)

*<=(-!) 2 tir*** •

Mais, en vertu de (31).

r

et le dénominateur de e* est une puissance de fn égale à /* l'exposant k
étant inférieur à i.

Par conséquent
(w—2) (w—3)

(32)

/S étant une fonction symétrique faisant partie de Fn.
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En particulier
(n—2) (n—3)

C'est sur cette dernière propriété que repose notre démonstration du
théorème 4.

§ 6. Démonstration du théorème 3

Multiplions Nn(oc{) par p.
Pour i 0, on a, en vertu de (21),

pNn(oco) ^K)
et comme Nn(<x0) Dn9 il vient

et l'on retrouve l'expression canonique de p.

Mais, pour i 1, 2,..., » — 4,

p • N^oci) Nn(oci+1) + qNn{<x^) (20)
d'où

„_ Nn(oci+1) +qNn(oci_1)
(33)

Or, en vertu de la propriété E, le numérateur et le dénominateur sont
divisibles par ql. Après la suppression de ce facteur, on obtient une
expression nouvelle pour p, dans laquelle le degré du dénominateur
est n(n — 3) — i <n(n — 3). Le minimum est atteint pour i n — 4.
Le degré du dénominateur est alors

n(n — 3) — (n — 4:) (n — 2)2

et le théorème 3 est démontré.

Envisageons, par exemple, le cas de n 5. L'expression réduite
s'obtient de

N5(<x2)+qN6(oco)

en divisant haut et bas par q.
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En remplaçant les N5(oct) par leurs expressions (14), (15) et (16), on
obtient

+ (/ï—/.) ff4—A/» î" + /./.ff" + (/,/»—/» g—/ î

Mais alors la question suivante se pose:
Existe-t-il des expressions de p en fonction de q, dans lesquelles le

degré du dénominateur est inférieur à (n — 2)2, par rapport aux indéterminées

xl9 x2, xn%

La réponse est négative, comme nous allons le montrer dans la dernière
partie de notre travail.

§ 7. Démonstration du théorème 4

Le raisonnement dont nous sommes servi § 4) pour démontrer que Dn
peut toujours être mis sous la forme

0- jtn 9

0 étant une fonction de Xn, s'applique encore à tout polynôme en q du
domaine Q dont le degré en x1} x2, xn ne dépasse pas n(n — 3) et
dont le produit par p xx + #2 es^ un polynôme faisant également
partie de Q.

Supposons donc qu'il existe une expression de p dans laquelle le
dénominateur soit d'un degré inférieur à (n — 2)2. En vertu de notre remarque
il serait de la forme

0 étant une fonction de Xn d'un degré inférieur à n — 2.
Comme 0 • IIn et IIn sont des fonctions symétriques de xx, x2 et des

x3, #4, xn, il en est de même de 0 ; par conséquent 0 est un polynôme
en p et q dont les coefficients sont des fonctions symétriques entières et à

coefficients entiers des n — 2 indéterminées x3, x±, xn. Mais toute
fonction symétrique de cette espèce est un polynôme en p et q à coefficients

appartenant à Fn.
Or, les puissances de p sont des fonctions linéaires des <x{ à coefficients

appartenant à Q. On peut donc toujours mettre 0 sous la forme d'une
fonction linéaire des at à coefficients faisant partie de Q.

Soient sm, 8$, 8$, des fonctions symétriques du domaine Fn dont
le degré ne dépasse pas m.
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En vertu de notre hypothèse, 0 est une somme de termes de la forme
8m

* Qk ^i >
^es indices k, i, m vérifiant les relations 2k -\- i ^.n — 3,

m < n— 3 — 2k — i.
Groupons ensemble les termes dans lesquels les indices k, i ont même

somme k + i. On aura n — 2 groupes gn_z, gn-*> •••> 9i> 9o> les valeurs
correspondantes de k + i étant n — 3, n — 4, 1, 0.

Ces groupes s'écriront

9n-Z — S0 ^n-3

9ù 5n-3

et l'on aura
® 9n-* + 9n-*+--+9o- (34)

Je dis que tous les gk sont nuls. La démonstration comprendra trois
parties : dans la première je montrerai que gn_3 0, dans la seconde que
g0 — 0, dans la troisième que gk 0, quel que soit k.

1) En vertu de nos hypothèses 0 • IJn est un polynôme P(q) faisant
partie de Q, de même que le numérateur p ' 0 ' IJn p - P(q).

Multiplions P(q) par g*1"3. Le produit est un polynôme du domaine Q

divisible par g**"3.

Or

$Ls qDn) + s^Dn (35)

en posant
P* â'^"-3^» • (36)

Or, le produit de gn~3P(g) par p étant encore un polynôme du domaine
Q, il en résulte que

So^K-a) + soqN(oc^) + ••••) (37)

est un polynôme de Q, conclusion absurde, si s0 ^ 0, le premier terme

«) En vertu de (20) pNn(an^) Nn(an^) + î
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soN(ocn_2) n'étant pas un polynôme en q § 5, A), tandis que tous les autres
le sont.

Donc s0 0 et par conséquent grn_3 0, Pn_3 0.

2) II en résulte que

est un polynôme de Q divisible par qn~s.

Or, les polynômes Nn(<Xi) d'indices i > 0 (et < n —2) étant tous
divisibles par q, il devrait en être de même du polynôme Po. Mais le polynôme
Po est égal à sn_zDn et Dn n'est pas divisible par q. Donc sn__3 0 et par
conséquent g0 0, Po 0.

3) Je dis maintenant que Pn_3_t- est nul, si les polynômes Pk d'indices
h <n — 3 — i sont nuls.

Commençons par faire remarquer que les polynômes Pk sont
divisibles par qk, en vertu du théorème du § 5, E, en particulier le polynôme

est divisible par
Or, la somme

Pn_4 + Pn-5 + ' ' * + Pw-3-i'
étant divisible par g**"3 et

Pn—4 ~T ¦* n-5 "T " * ~T Pw-2-i

par g*1-2-*, il en résulte qu'en vertu de nos hypothèses, P^^ies^ divisible
par qn-~2^i. Donc le quotient p

-Z-iqn

est divisible par q et par conséquent le dernier terme (terme en q°) de ce

quotient, qui s'écrit

est identiquement nul.
Or,

(n—2) (n—3)

(38)
(«—2) (w—3)

<*„_<,_, (-1) 2 (/^I^ /;+1 + /;+2 -S(2)) etc.

/Sf(1), #<2», etc. étant des fonctions symétriques du domaine Fn (§ 5, F).
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Convenons maintenant de dire que l'ordre d'un produit des ft est
inférieur à celui d'un autre produit des /*, si le facteur fn y figure à une
puissance plus petite. Il résulte alors des expressions (38) que l'ordre du
premier terme ± /n^ï* tn &e ^n-3-* es^ inférieur à ceux de tous les autres
termes des dk dont les indices sont < n — 3 — i. Comme de degré de

st est inférieur à n, aucun de ces termes n'est semblable à «^/"!?'*/n- Par
conséquent sj7^1!^ ne sera pas supprimé, si si:^ 0, après la réduction des

termes semblables. Il en résulte que st 0.

Pour la même raison sf\, sfl2 > • • • son^ nuls. Donc

0 Pn_^t- 0 si les Pk d'indices k < n — 3 — i

sont nuls. Et comme Po 0, tous les Pk et tous les gk sont aussi nuls.
Le théorème 4 est donc démontré.

Remarque. La même méthode permet de montrer qu'abstraction faite
d'un facteur faisant partie de (7, il n'existe qu'une seule expression réduite
dans laquelle le dénominateur est du degré (n — 2)2 par rapport aux
xx, x2i xn (unicité de l'expression réduite).

Je tiens, en terminant, à adresser mes remerciements affectueux à

Monsieur G. de Rahm pour les renseignements précieux qu'il m'a donnés

au cours de ce travail.

(Reçu le 25 avril 1941.)
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