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Differentialgleichungen
unendlich hoher Ordnung

Von H. Mvuceri, Ziirich

1. In einer fritheren Arbeit!) habe ich den Satz bewiesen:

Wenn die linke Seite der Differentialgleichung unendlich hoher Ordnung
LbF@E) + 1L, F'(R) 4+ -+ LFY3E) 4 - = g(2) (1.1)

so beschaffen ist, daf3 die Rethe in jedem reguliren Punkt jeder analytischen
Funktion konvergiert, so qibt es zu jeder Funktion g(z), die in eimem end-
lichen Kreis regulir ist, eine tm selben Kreis requlire Funktion F(z), die die
Gleichung (1.1) erfullt.

In der vorliegenden Arbeit wird gezeigt, wie man eine Losung von (1.1)
finden kann, wenn die rechte Seite g(z) in eine Potenzreihe mit dem
Mittelpunkt z = oo entwickelt werden kann. Diese Losung lafit sich in
einer Halbebene durch ein Integral darstellen (Satz II). Unter gewissen
Voraussetzungen iiber die Koeffizienten {,,7,,...,7,, ... kann man die
analytische Fortsetzung von F(z) iliber diese Halbebene hinaus angeben
(Satz III). Unter weiteren Voraussetzungen iiber die Koeffizienten [, fiihrt
die Methode im Spezialfall g(2) =2z (n = 1, 2, 3, ...) zur Fortsetzung
von F'(z) innerhalb des ganzen KExistenzbereiches. Dieser besteht aus
einem Winkelraum der Offnung 3 7 auf der Riemannschen Fliche von
log .

Ich mochte an dieser Stelle Herrn Rektor Saxer fiir seine zahlreichen
Ratschlige bei der endgiiltigen Redaktion der Arbeit herzlich danken.

2. Satz I.
a) Die Koeffizienten des linearen Operators
Li@) =1lf@ + LR +L{"+ - (2.1)
seien so beschaffen, dap die erzeugende Funktion
L(z) =1y + bz + lyz2 + - (2.2)

eine ganze transzendente Funktion und ihre Ordnung o kleiner als 1 ist.

1) Muggli, H., Differentialgleichungen unendlich hoher Ordnung mit
konstanten Koeffizienten. Comm. Math. Helv., vol. 11, fasc. 2.
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b) Es gebe in der komplexen {-Ebene einen vom Nullpunkt ausgehenden
Halbstrahl der Richtung @ mit folgender Eigenschaft: Die Abstinde aller
Punkte ¢, fir welche L(— () = 0 1st, von diesem Halbstrahl besitzen eine
positive untere Schranke.

Dann konvergiert das iber diesen Halbstrahl erstreckte Integral )

o0

. 1 (?) e 14 Cn-—l .
vl =) pep # 1=1,2,3,..) @3

0

gletchmdfig in bezug auf z in jedem abgeschlossemen Teilbereich der Halb-

ebene
R(z-et?) >0 . (2.4)

Die durch das Integral (2.3) dargestellte Funktion y_,(z) 1st in dieser
Halbebene regulir und erfillt dort die Qleichung

Ly () = — - (2.5)

Der Konvergenzbeweis macht Gebrauch von folgendem

Hilfssatz 1 3): Es sei L(z) eine ganze Funktion der Ordnung o, mit p<<1.
Um jede threr Nullstellen Ay, 2,, ..., Ay, ..., die dem absoluten Betrage nach
geordnet seien, werde je ein Kreis gelegt, und zwar um die k-te mit dem
Radius | Ax|™2. 18t nun o eine beliebige Zahl gréfer als ¢ und || genilgend
grop, so gilt auPerhalb dieser Kreise die Ungleichung

1 121’
W<e . (2.6)

Nach Voraussetzung a) kann verlangt werden, dal ¢ < o < 1 sei. Liegt

der Punkt { = Re*® (R reell und positiv) auf dem Halbstrahl, der die
Voraussetzung b) erfiillt, so gilt fiir B > R,

1

R® .
[T Een] ~° ° &1

aus der Voraussetzung folgt ndmlich, da8 der Halbstrahl nur endlich viele
der Kreisscheiben trifft, auf denen (2.6) falsch sein kann.

3) Der Richtungswinkel des Integrationsweges steht in Klammern oben neben dem

Integralzeichen,
3) Vgl. z. B. Bieberbach, Lehrbuch der Funktionentheorie, Bd. II, 2. Auflage,

Seite 268.
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Betrachten wir nun einen beliebigen abgeschlossenen Teilbereich der
Halbebene (2.4). Alle Punkte z dieses Teilbereiches erfiillen die Un-

gleichung
R(ze'?) =22a>0 (o fest) .

Im selben Bereich und fiir { = Re*®, R> R,, gilt wegen (2.7) und
o < 1 die Abschétzung

I e——z; Cn'—l

PN . —— n— —— t D o
-~ < R*»! exp [—R(z Re'?) + R

<Rrlexp [—2x R+ Rl <e R,

Daraus folgt aber, daf3 das Integral (2.3) im betrachteten Bereich gleich-
méaBig konvergiert.

Es fehlt noch der Beweis, dafl die Differentialgleichung (2. 5) erfiillt ist.
Er stiitzt sich auf die Tatsache, dal der lineare Operator { ,,beschrankt
und daher ,,stetig* ist ). Unter der ,,Beschrianktheit’‘ von £ verstehen
wir hier folgendes:

Ist ] eine abgeschlossene Kreisscheibe mit dem Mittelpunkt z,, F(2)
eine auf K regulire Funktion, M das Maximum von F(z) auf K, so gibt es
eine nur von £ und &, nicht aber von F(z) abhingige Zahl K, derart, daB

| LF(2) |lzmgg < K- M
gilt ®).

4) Vgl. Pdlya, Liicken und Singularitdten von Potenzreihen. Math., Zeit-
schrift, Bd. 29 (1929), S. 600.

5) Der Radius von & sei 24. Nach Cauchy gilt

v! M
IF(V)(ZG)I§W .

Nach Voraussetzung a) gilt fiir » = »,
v!|ly|<ov .
Es sei ‘

\
Max —— 1% 1 | I |

= K’ .
0<v<vy, (200

Daher

)
vzl""

[+ -] (- -}
| L P(2) |22 < zo |y F) (zp) | < 9oMK' + M =
Y=

V=Vy
<K +2-M=KM .

Dabei sind vy und K’ nur von £ und J abhéngig.
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Da der Operator  linear ist, folgt aus der Beschrinktheit die ,,Stetig-
keit‘‘: Wenn die Folge der auf & reguliren Funktionen F,(z) (1 = 1,2,...)
auf & gleichméBig konvergiert, so gilt fiir z = z,, weiter aber auch fiir
jeden inneren Punkt von K

£ lim Fi(z) =1lm LF,(z) ¢ .
Diese Eigenschaft von £ und die Tatsache, daB das Integral (2.3)

gleichméaBig konvergiert, rechtfertigen, sofern z ein innerer Punkt der
Halbebene

R (z-€?) >0 (2.4)

ist, den zweiten Schritt folgender Umformung

R-&?
. . e— %% Cn——l
(n—1)! Ly ,(2) -*53}}1_111&0 —L—(:_—Z)——‘dc
.R'e';q5 Reidj
. e—-z§ Cn—l . 0 e—zg‘ Cn—l
= 1 —_ 1 p (— v
i e T < R
— fe‘zQ (n1dl = ———————(n—;l) : .
[

Das Zeichen & darf mit dem Integrationszeichen vertauscht werden, weil
die Reihe in der zweiten Zeile auf dem (endlichen!) Integrationsweg
gleichmaBig konvergiert und daher gliedweise integriert werden kann.

3. In diesem Abschnitt soll die Gleichung
Lf(z) = g(2) (3.1)

gelost werden, wenn g(z) eine im Punkt z = co regulare Funktion ist,
die folgende Potenzreihenentwicklung besitzen moge:

gy =" L4 2 p S L (3.2)

Es liegt nahe als Losung die Reihe
[(2) = @ 9p_1(2) + @y P_5(2) + A p_3(2) + - -+ (3.3)
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anzusetzen; denn wegen (2.5) geniigt sie ,,formal*“ der Gleichung (3.1).
Ersetzen wir die y_,(z) durch ihre Integraldarstellung (2.3) und ver-
tauschen wir Integration und Summation, so erhalten wir .

(o =]
(®) e—25 2 a,lm

f(z) = —*I‘JT_:_“ES‘" 2 —==—d¢ (3.4)

n=0 n !
0

0

_ (@ e 6() ,
= |

0
dabei bedeutet

GO =ao+ ¢+ 50 o otk L (3.5)

Statt diese Umformungen streng zu rechtfertigen, gehen wir vom
Integral (3.4) aus und untersuchen, unter welchen Bedingungen es eine
Losung von (3.1) darstellt. Dabei wird o6fters von Definitionen und
Satzen aus der Arbeit ,,Liicken und Singularititen von Potenzreihen
von Prof. Pdlya Gebrauch gemacht ¢).

Die Potenzreihe (3.2) von g(z) moége fiir |z] > ¢ konvergieren. Dann
konvergiert die mit den selben Konstanten a,, a,, a,, ... gebildete Reihe
(3.5) in der ganzen endlichen {-Ebene. Ihre Summe G ({) ist eine ganze
Funktion, deren Anwachsen den Typus ¢ der Ordnung 1 nicht iibersteigt.
Die Funktion g (z) wird die Borelsche Transformierte von G (z) genannt 7).

Um die Eigenschaften von g(z) noch besser beriicksichtigen zu konnen,
fithren wir das konjugierte Diagramm J dieser Funktion ein. Man ver-
steht darunter den Durchschnitt aller derjenigen konvexen Bereiche, in
deren AuBenraum g (z) ausnahmslos regulir ist. Der Bereich 5, der selbst
auch konvex ist, besitze die Stiitzfunktion % (¢); aus der Definition folgt,
daB k(p) < tist. Es laf3t sich zeigen, daBl die reelle Funktion k(— ¢) den
Indikator der ganzen Funktion G(z) darstellt; d. h. da3

]1—.1; log I G(R 8”’) I

Iim 5 =k(—g) <t (3.6)

ist 8). Mit diesen Definitionen 1aBt sich folgender Satz aussprechen:

8) Pdlya, a.a.O.
7) Pélya, a.a.0., S.578.
8) Pélya, a.a.0., 8.585, Biatze II, III, IV.
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Satz II.
Es seien die Voraussetzungen a) und b) von Satz I erfillt. Die Potenzreihe

glo) =+ 4. (3.2)

_l_.

konvergiere fir |z| >t und das konjugierte Diagramm von g(z) besitze die
Stitzfunktion k().

Dann konvergiert das Integral

co

(D) z?;
f Z ﬁ ag , (3.4)

‘:
0

wo

G‘(C)"ao-l- C+ C"’+

ist, gleichmdfig in jedem abgeschlossenen Teilbereich der Halbebene

R(z-€?) > k(— D) (3.7)
und erfillt dort die Gleichung
Li)=g() . 9

(Dies gilt wegen k(p) < ¢ speziell auch fiir die Halbebene R (z- %) > ).
Die Halbebene (3.7) wird von einer Stiitzgerade des konjugierten Dia-
grammes  begrenzt ; der Konvergenzbereich liegt daher stets im AuBern
des konjugierten Diagrammes.

Der Beweis ist im wesentlichen derselbe wie fiir Satz I. Wir betrachten
einen abgeschlossenen Teilbereich der Halbebene (3.7). Alle z-Werte in
diesem Teilbereich erfiillen die Ungleichung

R(z-e?) = k(— D) + 3« (3.8)

mit &« > 0. Nach (3. 6) gilt fiir geniigend grofle B
| G(R-€i?) | < eBlE(-D)+al | (3.9)

Ist wie im Beweis von Satz I ¢ < ¢ < 1, so findet man fiir den Integran-
den von (3.4) unter Beriicksichtigung von (3.8), (3.9) und (2.7) die

Abschatzung
e—2%
| <exp { B I=R(:-6) + (= 0) + a4 B1])
< e~oF fir {=Re®, R>R,

%) Der Form nach findet sich dieser Satz schon bei Davis, Linear Operators, S. 296.
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Damit ist die gleichméfBige Konvergenz des Integrales (3.4) im betrach-
teten Bereich bewiesen.

Es bleibt noch (3.1) zu verifizieren; dies geschieht durch folgende
Umformung:

B et G(0)
He=tn ) Ten ¥
R-¢!®
. 5 G (0)

= dm R) Tz

[~ ]

:fme““%) At =g .

0

Die ersten drei Schritte wurden schon im Beweis von Satz I gerecht-
fertigt; in der dritten Zeile steht die Integraldarstellung der Borelschen
Transformierten 1°),

4. Nun mogen zwei verschiedene, aber nicht in einer Geraden liegende
Halbstrahlen die Voraussetzung b) von Satz I erfiillen. Thre Richtungs-
winkel seien @, und @, ; ferner werde

0<®,— D, <m (4.1)
vorausgesetzt.

Das Integral (3.4) erstreckt iiber den Halbstrahl der Richtung @, soll
die Funktion f,(z), erstreckt iiber den Halbstrahl der Richtung @, die
Funktion f,(z) ergeben. Wir wollen untersuchen, welche Beziehung zwi-
schen f,(z) und f,(z) besteht.

Die Halbebenen, in welchen f,(z) und f,(z) durch je ein Integral dar-
gestellt werden, iiberdecken sich teilweise. Insbesondere konvergieren
beide Integrale, wenn der Wert z gleichzeitig die beiden Ungleichungen

R(z-€?) =t + 3«

R(z-€®) =t 4+ 3« (4.2)

erfiillt, wobei « eine beliebige positive Zahl sein kann. Ein solcher z-Wert
befriedigt wegen (4.1) auch die Ungleichung

R(z-ei?) =¢+3a, (4.3)
sofern @ die Ungleichung

10) Pélya, a.a. 0., S. 580.
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O, =P =9, (4.4)
erfiillt 11).
Der offene Winkelraum, dem der Punkt ( dann angehoért, wenn
D, < arg { < D, ist, werde mit S(D, ; D,) bezeichnet.

Nun betrachten wir folgendes Umlaufintegral:

25 G(2)
L(—70)

d¢ (4.5)

Cr
R-e"dj1

e—2t Q¢ - ezG a2t Q¢
it f dc+j Fpdt

$¢1

0

Der geschlossene Integrationsweg €5 bestehe aus den beiden Strecken,
welche von den Punkten O und Re*®, O und Re*®: begrenzt werden,
ferner aus dem Kreisbogen vom Mittelpunkt O, der die Endpunkte dieser
Strecken miteinander verbindet und in S(®, ; @,) verliduft (seine Offnung
ist also kleiner als z). Fiir irgend einen Punkt { = Re*® auf diesem Kreis-
bogen gilt (4.4) und infolgedessen wegen (4.3)

R(zf) = RR(z¢°) = R(t + 3) - (4.3

Aus (3.6) geht hervor, dall von einem gewissen R an und fiir alle Werte

von @ die Ungleichung
|G (R ei?®) | < eR (4 (4.6)
erfiillt ist.

Aus Hilfssatz 1 (siehe Seite 382) folgt

Hilfssatz 2: Ist o grofer als die Ordnung von L((), so lift sich eine Folge
von Kreisen vom Mittelpunkt O finden, deren Radien ins Unendliche wach-
sen, und auf welchen

11) Setzen wir z = ret®, so wird

R(ze'P1) = r cos (p+P)=t+ 3« (4.2)

R(ze'P2) = r cos (p + D) =t+ 3a .
Ware .
R(ze'P) =rcos (p+P) <t+3a,

so hitte cos (¢ + P) im Intervall #; < $ < P, ein Minimum, was wegen (4.1), (4.2) und
t = 0 nicht moglich ist.
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R-e

R-e

1 1

L=0)] <e (4.7)

golt 12) . ,

Bezeichnet R den Radius eines solchen Kreises, und ist dieser geniigend
grof}, so erhilt man auf Grund von (4.3'), (4.6), (4.7) und p<o <1
fir das zweite Integral rechts in (4.5) die Abschitzung

iP,

f) ez(fg) di|<aR exp{R[—(+3a)+ B+ (+o)] }<e ok .

id,

Es gibt also eine ins Unendliche wachsende Folge von R-Werten R,,
Ry, ..., Ry, ..., fiir welche das zweite Integral rechts in (4.5) gegen Null
konvergiert. Gleichzeitig konvergiert das erste Integral gegen f,(z), das
dritte gegen — f,(z). Durchlauft also R die genannte Folge von Werten,
so gilt
""Z§
hia—fo(e) = lim f-20 ae . (4-8)
CRry
Wir setzen nun voraus, daB3 die Funktion L(— ¢{) in S(®,; D,) nur
endlich viele Nullstellen besitzt. Dann ist das Integral rechts in (4. 8) fiir
geniigend groBle & unabhéngig von k. Berechnet man es mit Hilfe der
Residuenmethode, so findet man, dafl f,(z) — f.(2) eine ganze Funktion
ist. Dies bedeutet, daB f,(z) und f,(z) den gleichen Existenzbereich haben;
d. h. daB f,(z) iiber die Halbebene

R(z-e'™) >k (— Py (4.9)
hinaus in der ganzen Halbebene

R(z-6"*) > k(— D,) (4.10)
fortsetzbar ist.

Wir betrachten weiter noch folgenden Fall: Die Funktion L(— ) be-
sitze in S (P, ; D,) zwar unendlich viele Nullstellen, im komplementaren
Winkelraum S(®, ; ®, + 27), dessen Offnung wegen (4.1) groBer als n

12) Die Durchmesser 2|1;|~* der Kreise um die Nullstellen von L(z), auf denen (4.7)
eventuell falsch ist (s. S. 382), besitzen eine endliche Summe. Weil namlich die Ordnung

von L(z) kleiner 1 ist, so konvergiert die Reihe z Ilk\ ! (vgl. z. B. Bieberbach, a. a. O.,

S. 243). Es ist daher moglich, eine Folge von Krelsen um O anzugeben, deren Radien ins
Unendliche wachsen, und die die erwahnten Kreise um die Nullstellen nicht treffen, auf
denen also (4.7) ausnahmslos gilt.

389



ist, dagegen nur endlich viele. Dann weil man von der Funktion
fi(z) — f5(z) nur, dal sie in dem den Halbebenen (4.9) und (4.10) ge-
meinsamen Gebiet regular ist, f,(z) 1a8t sich im allgemeinen nicht in der
ganzen Halbebene (4.10) fortsetzen.

Integrieren wir aber in (3.4) iiber einen Halbstrahl der Richtung @,
mit O, < P <P, + 27, P — D, <m, D, + 20 — D3 < 7, so folgt aus
dem oben Gesagten, daBl man f,(2) unmittelbar in die Halbebene
R(ze'?) > k (— D) fortsetzen kann, von hier aus in die Halbebene
(4.10). Es sind also f,(z) und f,(z) bis auf eine ganze Funktion zwei ver-
schiedene Zweige ein und derselben Funktion.

Betrachten wir die Richtung @, als fest, die Richtung @, als variabel
innerhalb des Bereiches, fiir welchen unsere Uberlegungen giiltig sind, so
gelangen wir zu den Aussagen des folgenden Satzes:

Satz III.

Die Voraussetzung a) von Satz I sei erfullt. Es set L(0) % 0 und es gebe
einen Winkelraum S(¥, ; ¥,), ¥, <V¥,, derart, dafy L(—) nur an endlich
vielen Stellen  in S(¥, ; ¥,) verschwindet.

Das konjugierte Diagramm J von g (2) besitze die Stitzfunktion k(D).
a) Dann stellt das Integral

(01 g—2t @
o = [ — gt (&.11)
0

integriert iber etnen Halbstrahl in S (¥, ; ¥,), auf welchem L(— ) nie Null
wird, in der Halbebene
R(z-e'™) >k (— D)) (4.9)

eine Funktion dar, welche die Qleichung
Lfz) =9 (3.1)
erfillt.

b) Die durch (4.11) dargestellte Funktion f,(z) ist iber die Halbebene
(4.9) hinaus fortsetzbar, und zwar mindestens innerhalb des Summen-
bereiches B aller Halbebenen

R(z-¢?) >k(—P) mit P, <d<Y,.

Dabei sind 2wei dieser Halbebenen mit @ = @' und @ = ®” dann und
nur dann als zusammenhdingend anzusehen, wenn der innerhalb S (¥, ; ¥,)
gemessene Winkel zwischen den Halbstrahlen der Richtung @' und ®@”
kletner als 7 ist.
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Der Bereich B ist einfach zusammenhéngend aber nicht mehr schlicht,
sobald ¥,—¥, grofler als z ist. Im allgemeinen wird B von einem Rand-
stiick von J§ und zwei Halbstrahlen, die J beriihren, begrenzt] (vgl. Fig.).

Der Bereich B wird im allgemeinen nicht den Existenzbereich von f,(z)
darstellen. Daf3 dies jedoch unter speziellen Voraussetzungen der Fall
sein kann, zeigt der folgende Satz IV.

5. Satz IV. Die erzeugende Funktion L(z) des Operators L erfiille die Vor-
aussetzung a) von Satz I; die dem abs. Betrage nach geordneten Nullstellen
Ais Aoy oony Ay, ... vou L(2) erfillen flir k = k, folgende Bedingungen?):

a) Die A, liegen alle auf der negativen reellen Achse,
b) die A, sind einfache Nullstellen,

k>0

Auf dem Halbstrahl der Richtung @, @ # 0, sei L(—) nie Null. Dann
besteht der Existenzbereich der durch

. 1 (0) g—zt gn—1
f(z) = (n—l)!?f L= d¢ (5.1)

dargestellten Losung der Differentialgleichung

L) =—r ®=1,2,3,...) (5.2)

13) Aus der Voraussetzung a) von Satz I folgt, daf die Funktion L(z) unendlich viele
Nullstellen besitzt.
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aus zwes Exemplaren der rechten Halbebene (Rz > 0) und einem Exemplar
der linken Halbebene (Rz < 0). Die Halbebenen sind so aneinander zu
heften, daf sie zusammen einen Winkelraum von der Oeffnung 3n auf der
Riemannschen Fliche von log z ergeben.

Aus Satz ITI geht hervor, daBl f(z) im beschriebenen Bereich wirklich
regular ist (W, =0, ¥Y,=2n, k(—D) =0, G({) = ™).

Uber der rechten Halbebene liegen zwei Blitter des Bereiches; die zu-
gehorigen Zweige der Funktion f(z) seien f,(z) und f,(z). Man erhilt f,(z)
bis auf eine zu addierende ganze Funktion, wenn man in (5.1) iiber den
Halbstrahl der Richtung @, = — § < 0 integriert, f,(z) analog, wenn
man @, = § > 0 setzt; dabei ist J so klein zu wihlen, daf alle Nullstellen
von L(—{), die in S(— 4 ; d) liegen, reell sind; dann sind f,(z) und f,(z)
unabhingig von J.

Durch Ausrechnung der Residuen erhilt man aus (4.8)

;2 (—A)mt .
he)—he) =B ——opr 3 S ¢, (5.9

wo E(z) eine ganze Funktion bedeutet. Wir zeigen, dal} die rechts stehende
Dirichletsche Reihe fiir Rz > 0 konvergiert.

Dazu miissen wir auf Hilfssatz 1 zuriickgreifen (s.S.382). Die Radien
|27t der Kreise um die Nullstellen 1, konvergieren mit wachsendem %
gegen Null; die Absténde der Nullstellen dagegen bleiben nach Voraus-
setzung c) unseres Satzes oberhalb einer positiven Schranke. So werden
also von einem gewissen k = k, an (k, = k,) die Mittelpunkte zweier
benachbarten Nullstellen von diesen Kreisen nicht bedeckt. Durch diese
Mittelpunkte kénnen wir daher die Kreise um O legen, von denen in
Hilfssatz 2 die Rede ist. Damit treffen wir fiir die Integrationswege Cp,
in (4.8) die Festsetzung

1 :
Rk=‘2“(}~k+)~k+1) fir k=k, .

Die Folge der Integrale iiber die €z, ist von k = k, an identisch mit
der Folge der Teilsummen der Reihe in (5.3) vermehrt um E(z). Also
konvergiert diese Reihe, sobald (4.8) gilt; dies ist der Fall fir z in
S(— n/2 + 8 ; /2 — J) mit beliebig kleinem 4§, d. h. fir Rz>0.

Weiter zeigen wir, daBl die Reihe in (5.3) fiir Rz < 0 divergiert. Die
Ordnung der Funktion L’(z) ist wie die von L(z) kleiner als 1. Hat man
Rz < — a < 0, so gelten fiir k = k, = k, folgende Abschitzungen
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Die dritte Ungleichung besagt, daBl die betrachtete Reihe in der linken
Halbebene nicht absolut konvergiert.
Die Ordnung der Funktion L(z) ist kleiner als 1. Infolgedessen sind ihre
Nullstellen A, so verteilt, da3
lim B

=0 5.5
k>0 ‘Akl ( )

gilt 14).

Daraus folgt, daB fiir die Dirichletsche Reihe in (5.3) die Konvergenz-
grenze mit der Grenze der absoluten Konvergenz zusammenfallt 18).
Dies kann nur die imaginare Achse sein.

Die Beziehung (5.5), die Voraussetzung c) unseres Satzes und die
Divergenz der untersuchten Reihe in der linken Halbebene stellen die -
Voraussetzungen eines Satzes von Carlson und Landau dar 1¢). Dieser
sagt aus, daB die Konvergenzgerade unserer Dirichletschen Reihe zu-
gleich die natiirliche Grenze der durch sie dargestellten Funktion ist.

Wir haben also gefunden, daf3 die Funktion

Af(z) = fi(z) — f(2) ,

welche fiir Rz > 0 definiert ist, nicht iiber die imaginére Achse fortgesetzt
werden kann. Nun laBt sich aber f,(z) iiber die positive imaginidre Achse
fortsetzen; dann ist aber eine Fortsetzung von f,(z) = f,(z) — 4f(z) iiber
die positive imagindre Achse unméglich. Analog schlieBt man, dafl f,(z)
nicht iiber die negative imagindre Achse fortsetzbar ist.

(Eingegangen den 4. Dezember 1941.)

4) Vgl. z. B. Bieberbach, a. a. O., S. 243.

15) Vgl. z. B. Hardy, The General Theory of Dirichlet’s Series, 8. 9.

16) Carlson, F. und Landau, E., Neuer Beweis und Verallgemeinerung des
Fabryschen Liickensatzes. Gottinger Nachrichten 1921, S. 184—188.
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