
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1941-1942)

Artikel: Differentialgleichungen unendlich hoher Ordnung.

Autor: Muggli, H.

DOI: https://doi.org/10.5169/seals-14311

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-14311
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Differentialgleichungen
unendlich hoher Ordnung
Von H. Muggli, Zurich

1. In einer frtiheren Arbeit1) habe ich den Satz bewiesen:

Wenn die linke Seite der Differentialgleichung unendlich hoher Ordnung

l0F(z) + kF'(z) +...+ luFM(z) +...== g(z) (1.1)

so beschaffen ist, dafi die Eeihe in jedem regulâren Punkt jeder analytischen
Funhtion konvergiert, so gibt es zu jeder Funktion g{z), die in einem end-
lichen Kreis regulàr ist, eine im selben Kreis regulàre Funktion F(z), die die
Gleichung (1.1) erfûllt.

In der vorliegenden Arbeit wird gezeigt, wie man eine Lôsung von (1.1)
finden kann, wenn die rechte Seite g(z) in eine Potenzreihe mit dem

Mittelpunkt z co entwickelt werden kann. Dièse Lôsung lâBt sich in
einer Halbebene durch ein Intégral darstellen (Satz II). Unter gewissen
Voraussetzungen liber die Koeffizienten lo,ll9 ...,£„, kann man die

analytische Fortsetzung von F(z) uber dièse Halbebene liinaus angeben
(Satz III). Unter weiteren Voraussetzungen uber die Koeffizienten lv fiïhrt
die Méthode im Spezialfall g(z) zrn (n 1, 2, 3, zur Fortsetzung
von F(z) innerhalb des ganzen Existenzbereiehes. Dieser besteht aus
einem Winkelraum der Offnung 3 n auf der Riemannschen Flâche von
logz.

Ich môchte an dieser Stelle Herrn Rektor Saxer fur seine zahlreichen
Ratschlâge bei der endgultigen Redaktion der Arbeit herzlich danken.

2. Satz I.
a) Die Koeffizienten des linearen Operators

£/(«) *o f(z) + h /'(*) + h f(z) + • • • (2.1)

seien so beschaffen, da/i die erzeugende Funktion

L(z) lo + l1z + hz*+ "- (2.2)

eine ganze transzendente Funktion und ihre Ordnung q kleiner als 1 ist.

x) Muggli, H.% Differentialgleichungen unendlich hoher Ordnung mit
konstanten Koeffizienten. Comm. Math. Helv., vol. 11, fasc. 2.
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b) Es gebe in der komphxen Ç-Ebene einen vom Nullpunkt auagehenden
Halb8trahl der Bichtung 0 mit folgender Eigenschaft : Die Abstânde aller
Punkte £ fur welche L(— £) 0 ist, von diesem Halbstrahl besitzen eine
positive untere Schranke.

Dann konvergiert das liber diesen Halbstrahl erstreckte Intégral2)

»-.<»>- (»-!)! J -ZÇ=CT*t (»=1,2.8....) (2.3)
0

gleichmàfiig in bezug auf z in jedem abgesehlossenen Teilbereich der Halb-
ebene

«(«.«*•)>(> (2.4)

Die durch das Intégral (2.3) dargestellte Funktion y)-.n(z) ist in dieser
Halbebene regulàr und erfûllt dort die Gleichung

(«) -^- • (2.5)

Der Konvergenzbeweis macht Gebrauch von folgendem

Hilfssatz 1 3) : Es sei L(z) eine ganze Funktion der Ordnung q, mit q<1.
Um jede ihrer Nullstellen Xx, A2, Xki die dem absoluten Betrage nach
geordnet seien, werde je ein Kreis gelegt, uvd zwar um die k-te mit dem

Radius \ X^"1. Ist nun a eine beliebige Zahl grôfler als g und |f| genilgend
grofi, 80 gilt auflerhalb dieser Kreise die Ungleichung

<em (2.6)\L(C)

Nach Voraussetzung a) kann verlangt werden, daB g < a < 1 sei. Liegt
der Punkt £ Rei0 (R reell und positiv) auf dem Halbstrahl, der die
Voraussetzung b) erfûllt, so gilt fur R > Ro

aus der Voraussetzung folgt nâmlich, daB der Halbstrahl nur endlich viele
der Kreisscheiben triflft, auf denen (2.6) falsch sein kann.

*) Der Richtungswinkel des Integrationsweges steht in Klammern oben neben dem
Integralzeichen.

*) Vgl. z. B. Bieberbach, Lehrbuch der Funktionentheorie, Bd. II, 2. Auflage,
Seite 268.
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Betrachten wir nun einen beliebigen abgeschlossenen Teilbereich der
Halbebene (2.4). Aile Punkte z dièses Teilbereiches erfullen die Un-
gleichung

9t(ze<4>) ^2*>0 (et fest)

Im selben Bereich und fur f Re**, R> Rl9 gilt wegen (2.7) und
a < 1 die Abschàtzung

n-1 exp [ — 91 (zM-C)
^ R*-1 exp [ — 2 oc R + Ra] < er «R

Daraus folgt aber, daB das Intégral (2.3) im betrachteten Bereich gleich-
màBig konvergiert.

Es fehlt noch der Beweis, daB die Differentialgleichung (2.5) erfullt ist.
Er stutzt sich auf die Tatsache, daB der lineare Operator fi ,,beschrânkt"
und daher ,,stetig" ist 4). Unter der 55Beschrânktheit" von fi verstehen
wir hier folgendes :

Ist 51 eine abgeschlossene Kreisscheibe mit dem Mittelpunkt z0, F(z)
eine auf Si regulâre Funktion, M das Maximum von F(z) auf Si, so gibt es
eine nur von fi und Si, nicht aber von F(z) abhângige Zahl K, derart, daB

gilt5).

4) Vgl. Pôlya, Lùcken und Singularitâten von Potenzreihen. Math. Zeit-
schrift, Bd. 29 (1929), S. 600.

5) Der Badius von ft sei 2 3. Nach Cauchy gilt
v\ M

Nach Voraussetzung a) gilt fur v ;> v0

v | lv\ < àv
Es sei

Max V\\l;\ -JE'.
Daher

\2F(z) |,.f0 ^ 1 | lv F(v) (2o) | < VqMK' + M S ^
Dabei sind v% und K' nur von £ und Ô abhàngig.
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Da der Operator fi linear ist, folgt aus der Beschrànktheit die ,,Stetig-
keit" : Wenn die Folge der auf Si regulâren Funktionen F^z) (i 1,2,...)
auf Si gleichmàBig konvergiert, so gilt fur z z0, weiter aber auch fur
jeden inneren Punkt von Si

fi lim F{ (z) lim £ F{ (z) 4)

Dièse Eigenschaft von fi und die Tatsache, daB das Intégral (2.3)
gleichmàBig konvergiert, rechtfertigen, sofern z ein innerer Punkt der
Halbebene

9i(z>ei'p)>0 (2.4)

ist, den zweiten Schritt folgender Umformung

(n — 1) fi tp-n{z) fi lim I —=-——— dÇ

o

R.ei(p Reiq>

lim fi I
—j-i—~f\— ^^ ^m I E h(— C)v —f-t—^:— ^C

R->oo J -LJ\ Ç) 12->oo i/ v=0 J^\ C)
0 0

00

^,n-^,_ (»-l)l

Das Zeichen fi darf mit dem Integrationszeichen vertauscht werden, weil
die Reihe in der zweiten Zeile auf dem (endlichen!) Integrationsweg
gleichmàBig konvergiert und daher gliedweise integriert werden kann.

3. In diesem Abschnitt soll die Gleichung

&f{z) g(z) (3.1)

gelôst werden, wenn g(z) eine im Punkt z oo regulàre Funktion ist,
die folgende Potenzreihenentwicklung besitzen môge :

Es liegt nahe als Lôsung die Reihe

f(z) a0VLi(«) + «i V-i(«) + ««V-s(«) + • • • (3-3)
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anzusetzen; denn wegen (2.5) genugt sie ,,formai" der Gleiehung (3.1).
Ersetzen wir die yl.w(z) durch ihre Integraldarstellung (2.3) und ver-
tauschen wir Intégration und Summation, so erhalten wir

oo

0

dabei bedeutet

- +-^L-Çn+ (3.5)

Statt dièse Umformungen streng zu rechtfertigen, gehen wir vom
Intégral (3.4) aus und untersuchen, unter welchen Bedingungen es eine

Lôsung von (3.1) darstellt. Dabei wird ôfters von Definitionen und
Sâtzen aus der Arbeit ,,Lûeken und Singularitâten von Potenzreihen"
von Prof. Polya Gebrauch gemacht6).

Die Potenzreihe (3.2) von g(z) môge fur \z\ > t konvergieren. Dann
konvergiert die mit den selben Konstanten a0, ax, a2, gebildete Reihe

(3.5) in der ganzen endlichen f-Ebene. Ihre Summe G(Ç) ist eine ganze
Funktion, deren Anwachsen den Typus t der Ordnung 1 nieht ùbersteigt.
Die Funktion g(z) wird die Borelsche Transformierte von G (z) genannt7).

Um die Eigenschaften von g (z) noch besser berticksichtigen zu kônnen,
fuhren wir das konjugierte Diagramm 3 dieser Funktion ein. Man ver-
steht darunter den Durehschnitt aller derjenigen konvexen Bereiche, in
deren AuBenraum g(z) ausnahmslos regulàr ist. Der Bereich 3, der selbst
auch konvex ist, besitze die Stûtzfunktion k(<p); aus der Définition folgt,
daB k(cp) ^t ist. Es làBt sich zeigen, daB die réelle Funktion Jc(— <p) den
Indikator der ganzen Funktion G(z) darstellt; d. h. daB

— log I G(Reiv) I

7 N ^ A /o „km sJ—1 LL.-s Jfe(_y) ^t (3.6)

ist 8). Mit diesen Definitionen lâBt sieh folgender Satz aussprechen:

«) Polya, a. a. O.

7) Pàlya, a. a. O., S. 578.

*) Pôlya, a. a. O., S. 585, Sâtze II, III, IV.
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Satz II.
Es seien die Voraussetzungen a) und b) von Satz I erfullt. Die Potenzreihe

konvergiere filr \z\> t und das konjugierte Diagmmm von g(z) besitze die
Stûtzfunktion k(cp).

Dann konvergiert das Intégral

wo

ist, gleichmafiig in jedem abgeschlossenen Teilbereich der Halbebene

«(z-e**) >fc(— 0) (3.7)
erfûllt dort die Gleichung

• 9)

(Dies gilt wegen k(q>) ^t speziell auch fur die Halbebene 9î(z- ei<p) > <).

Die Halbebene (3.7) wird von einer Stùtzgerade des konjugierten
Diagrammes 3 begrenzt ; der Konvergenzbereich liegt daher stets im ÂuBern
des konjugierten Diagrammes.

Der Beweis ist im wesentlichen derselbe wie fur Satz I. Wir betrachten
einen abgesehlossenen Teilbereich der Halbebene (3.7). Aile z-Werte in
diesem Teilbereich erfûllen die Ungleichung

»(«.é«*) ^k(—0) + 3oc (3.8)
*

mit oc > 0. Nach (3.6) gilt fur genugend groBe B

\G(R.ei0) |<c«»<-*) + «3 (3.9)

Ist wie im Beweis von Satz I q < a < 1, so findet man fur den Integran-
den von (3.4) unter Berucksichtigung von (3.8), (3.9) und (2.7) die
Abschàtzung

JBe<*, R>B1

•) Der Form nach findet sich dieser Satz schon bei Davis, Linear Operators, S. 296.
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Damit ist die gleichmâBige Konvergenz des Intégrales (3.4) im betrach-
teten Bereich bewiesen.

Es bleibt noch (3.1) zu verifizieren^ dies geschieht durch folgende
Umformung :

00

Die ersten drei Schritte wurden schon im Beweis von Satz I gerecht-
fertigt; in der dritten Zeile steht die Integraldarstellung der Borelschen
Transformierten 10).

4. Nun môgen zwei verschiedene, aber nicht in einer Geraden liegende
Halbstrahlen die Voraussetzung b) von Satz I erfûllen. Ihre Richtungs-
winkel seien 0X und 02 ; ferner werde

O<02—01<7t (4.1)
vorausgesetzt.

Das Intégral (3.4) erstreckt iiber den Halbstrahl der Richtung &x soll
die Funktion f^z), erstreckt uber den Halbstrahl der Richtung &2 die
Funktion f2(z) ergeben. Wir wollen untersuchen, welche Beziehung zwi-
schen f^z) und f2(z) besteht.

Die Halbebenen, in welchen fx(z) und f2(z) durch je ein Intégral dar-
gestellt werden, uberdecken sich teilweise. Insbesondere konvergieren
beide Intégrale, wenn der Wert z gleichzeitig die beiden Ungleichungen

*(*.6«*i) ^t + Soc

erfùllt, wobei oc eine beliebige positive Zahl sein kann. Ein solcher z-Wert
befriedigt wegen (4.1) auch die Ungleichung

9t(z.e<*) ^t + 3oc (4.3)
sofern 0 die Ungleichung

10) Pôlya, a. a. O., S. 580.
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1 ^ ^ 2

erfûllt u).
Der offene Winkelraum, dem der Punkt f daim angehôrt, wenn

^i < arg C < ^2 isl>> werde mit S^ ; <P2) bezeichnet.

Nun betrachten wir folgendes Umlaufintégral :

L(-C) ^

(-0

Der geschlossene Integrationsweg f£R bestehe aus den beiden Strecken,
welche von den Punkten 0 und 22 e**1, 0 und 22 e1*2 begrenzt werden,
ferner aus dem Kreisbogen vom Mittelpunkt 0, der die Endpunkte dieser
Strecken miteinander verbindet und in 8(0X ; @2) verlâuft (seine Offnung
ist also kleiner als n). Fiir irgend einen Punkt C R^ auf diesem Kreisbogen

gilt (4.4) und infolgedessen wegen (4.3)

Aus (3.6) geht hervor, da6 von einem gewissen 22 an und fur aile Werte
von 0 die Ungleichung

|G(22e**)|<e*«+a> (4.6)
erfûllt ist.

Aus Hilfssatz 1 (siehe Seite 382) folgt

Hilfssatz 2: Ist a grôfier als dieOrdnung von L(Ç), so lajit sich eine Folge
von Kreisen vom Mitteljrunkt 0 finden, deren Radien ins Unendliche wach-

sen, und auf welchen

n) Setzen wir z — re»>, so wird

ft (2 e**x „ r cos (cp + ^i) ~ t + 3 a

SRfze**2) r cos (cp + <P2) ^lt + 3a
Wâre

9Kze^) « r cos {cp + 0) <: t -f- 3a

so hàtte cos (cp -\- 0) im Intervall ^ < 0 < 08 ein Minimum, was wegen (4.1), (4.2) und
t > 0 nicht môglich ist.
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gilt 12)

Bezeichnet R den Radius eines solchen Kreises, und ist dieser genûgend
groB, so erhâlt man auf Grund von (4.30, (4.6), (4.7) und q < a< 1

fur das zweite Intégral rechts in (4.5) die Abschâtzung

/- <nR ex-p{R[—{t+3oc)

Es gibt also eine ins Unendliche wachsende Folge von jR-Werten Bl9
R2, Rk, fur welche das zweite Intégral rechts in (4.5) gegen Null
konvergiert. Gleichzeitig konvergiert das erste Intégral gegen /^z), das
dritte gegen — /2(z). Durchlâuft also R die genannte Folge von Werten,
so gilt

/i(*)-/.(*) Km (£ erZ(Gf, dÇ (4.8)

Wir setzen nun voraus, da6 die Funktion L(— Ç) in S(0t; &2) nur
endlich viele Nullstellen besitzt. Dann ist das Intégral rechts in (4.8) fur
genûgend groBe h unabhângig von h. Berechnet man es mit Hilfe der
Residuenmethode, so findet man, da6 fx{z) — f2(z) eine ganze Funktion
ist. Dies bedeutet, daB f±(z) und /2(z) den gleichen Existenzbereich haben;
d. h. daB fx(z) liber die Halbebene

%{z.ei*1)>k{— 0t) (4.9)

hinaus in der ganzen Halbebene

R(3.6'*f)>4(— 02) (4.10)
fortsetzbar ist.

Wir betrachten weiter noch folgenden Fall: Die Funktion L(— f) be-
sitze in S (0t ; 02) zwar unendlich viele Nullstellen, im komplementâren
Winkelraum S(02; 01 + 2n), dessen Offnung wegen (4.1) grôBer als n

12) Die Durchmesser 2|AJb|~1 der KJreise um die Nullstellen von L(z), auf denen (4.7)
eventuell falsch ist (s. S. 382), besitzen eine endliche Summe. Weil namlich dieOrdnung

00

von L(z) kleiner 1 ist, so konvergiert die Reihe U | X^.1"*1 (vgl. z. B. Bieberbach, a. a. O.,

S. 243). Es ist daher môglieh, eine Folge von Kreisen um O anzugeben, deren Radien ins
Unendliche wachsen, und die die erwâhnten Kxeise um die Nullstellen nicht treffen, auf
denen also (4.7) ausnahmslos gilt.



ist, dagegen nur endlich viele. Dann weiB man von der Punktion
fi(z) — fï(z) mxT> da8 sie in dem den Halbebenen (4.9) und (4.10) ge-
meinsamen Gebiet regulâr ist, f^z) làBt sich im allgemeinen nicht in der

ganzen Halbebene (4.10) fortsetzen.
Integrieren wir aber in (3.4) tiber einen Halbstrahl der Richtung 0Z,

mit 02 < 0Z < &1 + 2 n, 0Z — 02 < 7t, 0X + 2n — 0Z < n, so folgt aus
dem oben Gesagten, da8 man f±(z) unmittelbar in die Halbebene
3l(zei03) > h (— 0Z) fortsetzen kann, von hier aus in die Halbebene
(4.10). Es sind also fx(z) und /2(z) bis auf eine ganze Funktion zwei ver-
schiedene Zweige ein und derselben Punktion.

Betrachten wir die Richtung &x als fest, die Richtung &2 als variabel
innerhalb des Bereiches, fur welchen unsere Ûberlegungen giiltig sind, so

gelangen wir zu den Aussagen des folgenden Satzes:

Satz III.
Die Varaussetzung a) von Satz I sei erfûllt. Es sei L(0) ^ 0 und es gebe

einen Winkelraum $(3^; W2), W1<XP2, derart, dafî L(—f) nur an endlich
vielen Stellen Ç in /S^S^ ; W2) verschwindet.

Das Jconjugierte Diagramm 3 von g{z) besitze die Stutzfunktion Jc(@).

a) Dann stellt das Intégral

(4.11)

integriert liber einen Halbstrahl in #(¥/1 ; ï^)» aufwelchem L(—Ç)nieNull
urird, in der Halbebene

l${(z-ei01)>Jc(—01) (4.9)

eine Funktion dar, welche die Gleichung

2f(z) g(z) (3.1)
erfûllt.

b) Die durai (4.11) dargestellte Funktion f^z) ist liber die Halbebene

(4.9) hinaus fortsetzbar, und zwar mindestens innerhalb des Summen-
bereiches 93 aller Halbebenen

5R(z.e**)>&(— 0) mit T1<0<W2
Dabei sind zwei dieser Halbebenen mit 0 0! und 0 0" dann und
nur dann als zusammenhangend anzusehen, wenn der innerhalb S^P1 ; W2)

gemessene Winkel zwischen den Halbstrahlen der Richtung 0! und 0"
kleiner als n ist.
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Der Bereich SB ist einfach zusammenhângend aber nicht mehr schlicht,
sobald W2—XP1 grôfier als n ist. Im allgemeinen wird 93 von einem Rand-
stiick von 3 und zwei Halbstrahlen, die 3 berûhren, begrenzt] (vgl. Fig.).

Der Bereich 23 wird im allgemeinen nicht den Existenzbereich von fx{z)
darstellen. DaB dies jedoch unter speziellen Voraussetzungen der Fall
sein kann, zeigt der folgende Satz IV.

5. Satz IV. Die erzeugende Funktion L(z) des Operators Q erfûlle die Vor-
aussetzung a) von Satz I; die dem abs. Betrage nach geordneten Nullstellen
Xx, X2, hk, von L(z) erfûllen filr Je ^Jc0 folgende Bedingungen12):

a) Die Xk liegen aile auf der negativen reellen Achse,

b) die Afc sind einfache Nullstellen,

c) lim inf. I Xk — >0

Auf dem Halbstrahl der Richtung 0, 0^0, sei L(—£) nie Null. Dann
besteht der Existenzbereich der durch

L(-C)

dargestelUen Losung der Differentialgleichung

Zf(z)=~èr (»=1,2,3,...)

(5.1)

(5.2)

13) Aus der Voraussetzung a) von Satz I folgt, daô die Funktion L(z) unendlich viele
Nullstellen besitzt.
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ans zwei Exemplaren der rechten Halbebene (SRz > 0) und einem Exemplar
der linken Halbebene (${z < 0). Die Halbebenen sind so aneinander zu
heften, dafî aie zusarnmen einen Winkelraum von der Oeffnung Sn auf der
Miemannschen Floche von log z ergeben.

Aus Satz III geht hervor, daB f(z) im beschriebenen Bereieh wirklich
regulàr ist ^ 0, W2 2n, k(-&) =0, G{Ç) f""1).

Ûber der rechten Halbebene liegen zwei Blâtter des Bereiches ; die zu-
gehôrigen Zweige der Funktion f(z) seien fx(z) und /2(z). Man erhâlt fx(z)
bis auf eine zu addierende ganze Funktion, wenn man in (5.1) ûber den
Halbstrahl der Riehtung 01 — ô < 0 integriert, /2(z) analog, wenn
man @2 ô > 0 setzt ; dabei ist ô so klein zu wàhlen, daB aile Nullstellen
von L(—f), die in S(— ô ; ô) liegen, reell sind; dann sind f^z) und f2(z)

unabhàngig von ô.

Durch Ausrechnung der Residuen erhâlt man aus (4.8)

wo E(z) eine ganze Funktion bedeutet. Wir zeigen, daB die rechts stehende
Dirichletsche Reihe fur 31 z > 0 konvergiert.

Dazu miissen wir auf Hilfssatz 1 zurûckgreifen (s. S. 382). Die Radien
lA^-1 der Kreise um die Nullstellen Xk konvergieren mit wachsendem h

gegen Null; die Abstânde der Nullstellen dagegen bleiben nach Voraus-
setzung c) unseres Satzes oberhalb einer positiven Schranke. So werden
also von einem gewissen k kx an (kx ^ k0) die Mittelpunkte zweier
benachbarten Nullstellen von diesen Kreisen nicht bedeckt. Durch dièse

Mittelpunkte kônnen wir daher die Kreise um O legen, von denen in
Hilfssatz 2 die Rede ist. Damit treffen wir fur die Integrationswege (&Rk

in (4.8) die Festsetzung

^ y(Afc + Afc+1) fur k^k,

Die Folge der Intégrale uber die (&Rk ist von k kx an identisch mit
der Folge der Teilsummen der Reihe in (5.3) vermehrt um E(z). Also

konvergiert dièse Reihe, sobald (4.8) gilt; dies ist der Fall fur z in
8(— n/2 + ô ; 7tJ2 — ô) mit beliebig kleinem ô, d. h. fur 5Rz > 0

Weiter zeigen wir, daB die Reihe in (5.3) fur SRz < 0 divergiert. Die
Ordnung der Funktion Lr(z) ist wie die von L(z) kleiner als 1. Hat man
91 z < — oc < 0, so gelten fur k ^ k2 ^ k0 folgende Abschàtzungen
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Die dritte Ungleichung besagt, da8 die betrachtete Reihe in der linken
Halbebene nicht absolut konvergiert.

Die Ordnung der Funktion L(z) ist kleiner als 1. Infolgedessen sind ihre
Nullstellen Xk so verteilt, daB

lim -TA^ 0 (5.5)

gilt 14).

Daraus folgt, daB fur die Dirichletsche Reihe in (5.3) die Konvergenz-
grenze mit der Grenze der absoluten Konvergenz zusammenfâllt15).
Dies kann nur die imaginàre Achse sein.

Die Beziehung (5.5), die Voraussetzung c) tinseres Satzes und die
Divergenz der tintersuchten Reihe in der linken Halbebene stellen die
Voraussetzungen eines Satzes von Carlson und Landau dar 16). Dieser
sagt aus, daB die Konvergenzgerade unserer Dirichletschen Reihe zu-
gleich die natiirliche Grenze der durch sie dargestellten Funktion ist.

Wir haben also gefunden, daB die Funktion

welche fur %{z > 0 definiert ist, nicht uber die imaginàre Achse fortgesetzt
werden kann. Nun lâBt sich aber f^z) iiber die positive imaginàre Achse
fortsetzen ; dann ist aber eine Fortsetzung von /2(z) fx(z) — Af(z) liber
die positive imaginàre Achse unmôglich. Analog schlieBt man, daB fx(z)
nicht uber die négative imaginàre Achse fortsetzbar ist.

(Eingegangen den 4. Dezember 1941.)

") Vgl. z. B. Bieberbach, a. a. O., S. 243.
15) Vgl. z. B. Hardy, The General Theory of Dirichlet's Séries, S. 9.
16) CarUon, F. und Landau, E,, Neuer Beweis und Verallgemeinerung des

Fabryschen Lûckensatzes. Gottinger Nachriehten 1921, S. 184—188.
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