
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1941-1942)

Artikel: Über eine Beziehung zwischen geschlossenen Lie'schen Gruppen und
diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre
Anwendung auf die Aufzählung der einfachen Lie'schen Gruppen.

Autor: Stiefel, E.

DOI: https://doi.org/10.5169/seals-14310

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-14310
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Uber eine Beziehung zwischen geschlossenen
Lie'schen Gruppen und diskontinuierlichen Be-

wegungsgruppen euklidischer Râume und ihre
Anwendung auf die Aufzâhlung der einfachen
Lie'schen Gruppen

Von E. Stiefel, Zurich

Die Killing-Cartarische Klassifikation der einfachen Lie'schen Gruppen
wurde in letzterer Zeit von mehreren Autoren1) vereinfacht durch Be-

nutzung von geometrischen Methoden; es wurde dabei hauptsâchlich
die Tatsache verwendet, da8 man dem zur Grappe gehôrenden Lie'schen
Ring eine Vektorfigur eines euklidischen Raumes zuordnen kann, welche
die wichtige Eigenschaft besitzt, bei einer endlichen von Spiegelungen
erzeugten Gruppe 0* in sich ûberzugehen. Ûberdies mu8 0* gewisse
zahlentheoretische Bedingungen erfùllen.

Hier soll nun gezeigt werden, daB dièse merkwurdigen Ganzzahlig-
keitsbedingungen ihren Grand einfaeh darin haben, daB 0* die ,,Kristall-
klasse" einer diskontinuierlichen Bewegungsgruppe jPreprâsentiert, d. h.,
daB 0* ein Gitter invariant lâBt. Wir werden zeigen, daB zu jeder halb-
einfachen Lie'schen Gruppe eine diskontinuierliche durch Spiegelungen
erzeugte Gruppe jTgehôrt und daB umgekehrt jede Grappe Peine Familie
von im kleinen isomorphen Lie'schen Gruppen liefert.

Die Aufzâhlung der halbeinfachen Lie'schen Gruppen wird damit eine

Aufgabe der Kristallographie.
Um dièse Erkenntnis zu gewinnen, muB aber der infinitésimale Stand-

punkt grundsâtzlich aufgegeben werden. Wir legen daher unseren Be-

trachtungen eine geschlossene halbeinfache Lie'sche Gruppe zugrunde und
werden topologische Methoden anwenden, und zwar die Théorie der
maximalen Abel'schen Untergruppe in einer geschlossenen Lie'schen
Gruppe, wie sie von H. Hopf entwickelt wurde. Von der infinitesimalen
Théorie benôtigen wir aber einige Resultate.

Dabei zeigt es sich nun, daB F nicht nur eine Familie von im kleinen
isomorphen Lie'schen Gruppen bestimmt, sondern ûberdies eine Ober-
sicht iiber aile Gruppen der Familie enthâlt. Ist einmal eine Gruppe G

x) H, Weyl, B. L. van der Waerden, E. Witt (man vgl. das Literaturverzeiehnis am
SchluB).
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in der Familie ausgewàhlt, so lassen sieh aus /'mehrere „globale" Eigen-
schaften von G ablesen, so z. B. das Zentrum von G und die topologische
Fundamentalgruppe von G

Auch bei der Définition der Gruppe F, welche 2u einer gegebenen
Lie'schen Gruppe G gehôrt, werden wir nicht den Lie'schen Ring von G

benutzen, sondern F mit Hilfe gewisser innerer Automorphismen von G

erklâren.
In § 1 ist dièse Konstruktion von F an einem speziellen Beispiel aus-

einandergesetzt, in § 2 dann fiir eine beliebige Gruppe G durchgefûhrt.
Dabei wird ein ,,Diagramm" von G benutzt, das in § 2 Nr. 4 eingefùhrt
ist, und dessen wesentliche Eigenschaften in § 2 Nr. 9, 10 zusammen-
gestellt sind. In § 4 wird die Beziehung zur infinitesimalen Théorie her-
gestellt und dann werden isomorphe Gruppen untersucht. Die diesbeziïg-
lichen Resultate sind in Nr. 4, 5, 6 zusammengefaBt. § 5 enthâlt einen
Bericht xiber die Aufstellung aller Gruppen F.

Zum Begriff der Halbeinfachheit einer Lie'schen Gruppe sei noeh
bemerkt, daB eine geschlossene Lie'sehe Gruppe bekanntlich2) dann und
nur dann halbeinfach ist, wenn ihr Zentrum diskret, also eine endliche
Gruppe ist. Dièse Tatsache werden wir im folgenden stillschweigend
benutzen.

§ 1. Die unitare Gruppe in drei Variabeln als Beispiel

Bevor wir zu beliebigen geschlossenen Lie'schen Gruppen ùbergehen,
sollen die wesentlichen Zuge der angekiindigten Verwandtschaft an einem
Beispiel aufgezeigt werden. Wir wâhlen als Gruppe G die Gruppe der
dreireihigen unitâren Matrizen mit der Déterminante + 1 In der
Cartan'schen Aufzâhlung trâgt sie den Namen A2. Als topologischer
Raum ist G geschlossen und von der Dimension n 8

1. In G gilt bekanntlich das Hauptachsentheorem : Zu jeder Matrix
x € G existiert eine Matrix a cG, so daB axa"1 Diagonalgestalt hat :

(1)
0 eix* J

wobei also
(2)

*) (7) § 55, speziell p. 282, C. (Die Nummern der FuÛnoten beziehen sich auf das
Literaturverzeiehnis am Ende der Arbeit.)
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wenn an Stelle von 2n die Zahl 1 als WinkelmaB benutzt wird. Soll eine
Matrix x dem Zentrum Z von G angehôren, so ist axar1 x und daher
hat x die Diagonalgestalt (1). Ûberdies muB aber gelten

xx x2 xz (mod 1) (3)

Das Zentrum besteht also aus den Matrizen (e e), wo e die Einheits-
matrix und e eine dritte Einheitswurzel bedeutet. Z ist endlich, also G

halheinfach.

2. Sàmtliche Diagonalmatrizen (1) bilden eine AbeVsche Untergruppe
T von G, die Z enthâlt. Die Eigenschaften von T treten am besten
hervor, wenn x1} x2, x3 als eartesische Koordinaten in einem dreidimen-
sionalen Raum B3 gedeutet werden (Fig. 1). gz sei das Gitter der Punkte
mit ganzzahligen Koordinaten. Ein Elément t von T ist dann etwa
gegeben durch einen Punkt der Ebene

R* : xx + x% + xz 0

wobei aber zwei nach dem Gitter gz kongruente Punkte der Ebene B2

2u identifizieren sind. Die Ebene B? ist Gitterebene von gz, und zwar
ist das ebene Gitter g2, welches ihr durch g* aufgepràgt wird, hexagonal
(Kg. 2). Unitâre Gruppe A2

<
i> 4 >

>

Fig. 1 Fig. 2

Denken wir uns die nach g2 âquivalenten Punkte von -B2 identifiziert,
so erhalten wir eine Torusflâche. T ist also als topologischer Raum ein
Torus.

Die Gruppenmultiplikation innerhalb T ist im Raum -B3 oder auch
in der Ebene B? die gewôhnliche Vektoraddition. Im Sinne der gruppen-

352



theoretisehen Struktur ist also die Lie'sche Gruppe T das direkte
Produkt aus zwei eindimensionalen geschlossenen Gruppen (Kreisdre-
hungsgrùppen). Ein derartiges direktes Produkt aus zwei oder allgemeiner
endlich vielen Kreisdrehungsgruppen nennen wir im folgenden durch-
wegs ein Toroid.

Um in der Lie'schen Gruppe T Parameter einzufiihren, kann man so

vorgehen: Man wàhle zwei primitive Vektoren ei, e2 des Gitters g2 als
Grundvektoren eines schiefen Koordinatensystems in der Ebene JR2 und
es seien œl9 co2 die Koordinaten.

Die Multiplikation der Gruppenelemente (g^, co2) und (co^, co2) ergibt
dann das Elément (co1 + o)[, co2 + co2). Wir nennen œl9 œ2 die ,,Dreh-
winkel" des Toroids.

Wenn ein Elément x von G mit allen Elementen von T vertauschbar
ist, so hat x selbst Diagonalgestalt, gehôrt also T an. Das Toroid T ist
also in dem Sinne maximal, daB es nicht eigentlich in einer anderen
Abel'schen Untergruppe von G enthalten ist.

3. Im folgenden sei a ein beliebiges aber festes Elément aus 0 und
t durchlaufe aile Diagonalmatrizen, d. h. aile Elemente von T. Der
innere Automorphismus von G:

x -+a~xxa (4c)

wird im allgemeinen T in ein anderes Toroid ûberfûhren; wir interes-
sieren uns aber jetzt speziell fur diejenigen a, fur welche der zugehôrige
Automorphismus das Toroid T invariant lâBt. In diesem Fall bewirkt
er einen Automorphismus <pa von T in sich. Sâmtliehe <pa bilden eine

Gruppe 0 von Transformationen von T in sich. Die Einfûhrung dieser

Gruppe 0 bildet das Fundament der weiteren Untersuchungen. Es ist
noch zu bemerken, daB sàmtliche Elemente a, welche einer Nebengruppe
von T angehôren, denselben Automorphismus von T ergeben. Nehmen
wir in unserem Beispiel etwa

a=l — 1 0 0 1, t

so erhalten wir

a-1ta=

<pa besteht also in der Vertauschung von xx und x2. Allgemein enthâlt
0 aile Permutationen der drei Koordinaten xl9 x2) x3. Weitere Trans-
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formationen kann es aber in 0 nieht geben, denn bei einem inneren Auto-
morphismus (4) von 0 bleiben die Eigenwerte der Matrizen invariant,
also kônnen sich die Elemente in der Hauptdiagonalen unserer Matrix t
hôehstens untereinander vertauschen. & ist also endliche Grappe von
der Ordnung 6.

Im Raum JS3 ist die Vertausehung von xx und x2 die Spiegelung an
der Ebene xx — x2 0 und in der Ebene R2 die Spiegelung an einer
vertikalen Achse durch den Nullpunkt, der das Einselement e von 0
darstellt (Fig. 2). Da aber die Koordinaten xly x2, xz nur (mod 1) be-

stimmt sind, kônnen wir statt dieser Spiegelachse ebensogut eine zu ihr
nach dem Gitter g2 àquivalente Achse nehmen. Wir erhalten so drei
Scharen al9 a2, er3 von parallelen âquidistanten Spiegelungsachsen, welche
eine Einteilung der Ebene R2 in lauter gleichseitige Dreiecke ergeben.
Die Spiegelungen an diesen Achsen mtissen natûrlich als Transforma-
tionen von T in sich das Gitter g2 invariant lassen, erzeugen also eine
diskontinuierliche Oruppe F von kongruenten Abbildungen der eukli-
dischen Ebene R2

F ist nun die zur Lie'schen Grappe 0 gehôrige euklidische Bewe-

gungsgrappe. Sie trâgt in der Kristallographie3) die Bezeichnung C\v ;

ihre Kristallklasse wird gerade durch unsere Gruppe 0 reprâsentiert.
Die in F enthaltene Untergruppe y der Translationen ist zufàllig iden-
tisch mit der Gruppe der Translationen des Gitters g2 ; es wird sich aber
spâter zeigen, daB dies bei anderen Lie'schen Gruppen nicht der Fall
zu sein braucht. Die Gesamtheit aller Spiegelungsachôen nennen wir das

Diagramm der Lie'schen Gruppe 0 ; es hat zusammengefaBt folgende
Eigenschaften:

a) Die Spiegelungen an den Achsen des Diagramms erzeugen eine
diskontinuierliche Bewegungsgruppe F.

b) Das Diagramm ist invariant gegentiber F.

Es sei noch ausdrucklich erwàhnt, daB das Gitter g2 nicht zum
Diagramm gerechnet wird; wir werden im Gegenteil spâter verschiedene
Gitter in ein und dasselbe Diagramm einlagern.

4. Das Zentrum Z von 0 ist Untergruppe von T. Es wird daher in B2

durch ein Punktgitter g\ dargestellt, welches eine Verfeinerang von g2

ist. Nun besteht g\ aus allen Knotenpunkten des Diagramms, d. h. aus
den Punkten, in denen sich drei Spiegelachsen schneiden. GemàB der

8) Zur Kristallographie vgl. man (8).
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Gleichung (3) am Anfang dièses Paragraphen mufi nâmlich ein Elément
des Zentrums drei Gleichungen von der Form

Xl X2 mi> X2 XZ m2> XZ Xl mZ

erfûllen, wobei ml9m2)m3 ganze Zahlen sind. Dièse drei Gleichungen
stellen im i?3 drei Ebenen dar, welche aus i?2 gerade drei Spiegelachsen
schrteiden. Andererseits erkennt man auch direkt, daB ein Elément von
Z gegeniiber 0 invariant sein mu6, also der zugehôrige Punkt in i?2 bei
jeder Opération von F in einen in bezug auf das Gitter g2 âquivalenten
Punkt ubergehen mu8. Dièse Eigenschaft haben aber nur die Knoten-
punkte des Diagramms.

§ 2. Konstruktion der euklidischen Baumgruppe zu einer

geschlossenen halbeinfachen Lie'schen Gruppe.

Das Ziel dièses Abschnitts ist die Définition, und Untersuchung einer
analogen endlichen Gruppe 0 im Fall einer beliebigen geschlossenen
zusammenhângenden Lie'schen Gruppe G. Die Halbeinfachheit von G

wird zunâchst noch nicht verlangt. Dabei werden wir von Ergebnissen
ausgehen, die von H. Hopf*) stammen und in der folgenden Nr. 1 kurz
zusammengestellt sind.

1. Eine abgeschlossene und zusammenhangende AbeFsche Untergruppe
von G ist ein Toroid T, also ein direktes Produkt aus endUch vielen ein-
dimensionalen geschlossenen Gruppen (Kreisdrehungsgruppen). Ein
Toroid î7, das ein vorgegebenes Gruppenelement a enthâlt, kann wie
folgt konstruiert werden : Es existiert5) in G eine einparametrige zusam-
menhângende Untergruppe H, welche durch a làuft. Die abgeschlossene

Hiille von H ist zusammenhangende abgeschlossene Abel'sche

Untergruppe von G, also ein Toroid T, welches H und damit auch a enthâlt.
Ist ein Elément a von G mit allen Elementen eines Toroids T ver-

tauschbar, so gibt es sicher eine Abel'sche Lie'sehe Untergruppe H,
welche a und T enthâlt, nâmlich z. B. die abgeschlossene von a und T
erzeugte Gruppe. Schârler gilt nun aber6), daB sogar der Zusammenhang
von H gefordert werden kann, also:

Satz 1 : Ist a * G mit allen Elementen eines Toroids T vertauschbar,

so gibt es in G ein Toroid, welches a und T enthâlt.

*) (4) Nr. 17—27.
5) (4) Nr. 17.

•) Beweis in (4) Nr. 23.
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Ein Toroid T heiBt maximal, wenn es nicht in einem hôherdimensio-
nalen Toroid enthalten ist. Es ergibt sich daher sofort :

Satz 2 : Ist a eO mit allen Elementen eines maximalen Toroids T ver-
tauschbar, so liegt a in T.

Im folgenden wird nun ein maximales Toroid To in G ausgezeichnet ;

seine Dimension sei l. Ein Elément t von To nennen wir regulâr, wenn
jedes Toroid, auf dem t liegt, in TQ enthalten ist. Mit Nt bezeichnen wir
den NormaUsator von t ; er besteht definitionsgemâB aus allen mit t
vertauschbaren Elementen von G. Die zusammenhàngende Kompo-
nente Nft von Nt9 welche das Einselement e von G enthàlt, ist als abge-
sehlossene Untergruppe von G eine Lie'sche Gruppe und To ist auch
maximales Toroid in Nft.

Fiir ein regulàres Elément t gilt ; Nrt To. Dies folgt so : Ist b e Nft,
so existiert ein in N't maximales Toroid T, welches 6 enthâlt und dessen
Elemente also (da sie in Nt liegen) mit t vertauschbar sind. Nach Satz 2,
angewandt auf die Gruppe N't, ist also t e T und daher nach Définition
der Regularitât T e To und somit b e To

Ein singulâres Elément t hingegen soll definitionsgemâB auBer auf TQ

noch auf einem in To nicht enthaltenen Toroid T liegen. Da To und T
in N't enthalten sind, muB die Dimension von Nt grôBer als l sein. Es

folgt daher die Charakterisierung der singulâren Elemente nach H. Hopf :

Satz 3 : Ein Elément t € TQ ist regular oder singular, je nachdem sein
NormaUsator die Dimension l von To oder hôhere Dimension hat.

Auf einem Toroid T gibt es immer ein ,,erzeugendes" Elément t mit
folgender Eigenschaft : Die von t erz:eugte Untergruppe von T ist ûberall
dicht in T> d. h. ihre abgeschlossene Huile bezûglich T ist mit T iden-
tisch7).

2. TQ sei wieder das ausgezeichnete maximale Toroid in G von der
Dimension l. Es sei a ein festes Elément von G und der zugehôrige innere
Automorphismus

x ->a~-lxa

lasse To invariant, bewirke also einen Automorphismus (pa von TQ in sich.
Um die Gruppe 0 dieser Automorphismen zu diskutieren, verwenden
wir eine Méthode, die wohl von A. WeiP) zum erstenmal angegeben
wurde und auch von H. Hopf und H.Samelson9) benutzt wird: Wir

7) Dies folgt aus dem Approximationssatz von Kronecker, meui vgl. etwa (6).
8) (10).
•) (5).
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fassen jede Nebengruppe xT0 von To in G als Punkt X eines Raumes W
auf, der auf nattirliche Weise vermittelst des Umgebungsbegriffes in G

zu einem topologischen Raum gemacht wird. Der Raum W ist dann wie
G geschlossen. Dem Einselement e von G entspricht ein spezieller Punkt
E von W Vermôge der Définition

fa(X) (ax)T0

gehôrt zu jedem Gruppenelement a eine Transformation fa von W in
sich ; G ist also Transformationsgruppe des Wirkungsraumes W Die
}îIsotropiegruppe" von W besteht definitionsgemâB aus den Elementen
a y fur welche gilt

sie ist mit To identisch. Aus der Tatsache, daB To zusammenhângend
ist, schlieBt man leicht, daB W ein orientierbarer Raum ist.

Man kann nun jeder Opération tp der Gruppe 0 eindeutig einen Punkt
von W zuordnen gemaB folgender Vorschrift : Es sei ç? q>ai dann soll
der zugeordnete Punkt die Nebengruppe A aT0 sein. Es ist zu zeigen,
daB A nicht von der Wahl von a abhàngt. Sei also

<pa (pb oder a~Ha b~Hb fiir aile t € To

Das Elément 6 a-1 ist also mit allen Elementen von To vertauschbar
und gehôrt daher nach Satz 2 zu To. Die beiden Elemente a und b

gehôren also in der Tat derselben Nebengruppe an.

Ist M die Bildmenge von 0 bei dieser Zuordnung, so ist 0 ein-eindeutig
auf M abgebildet. Es gilt nun:

Satz 4 : Sei tQ ein erzettgendes Elément von To. Dann ist M identisch
mit der Menge der Fixpunkte der Abbildung fh von W in sich.

Beweis a). Sei wieder ç? <pa und

<p(t0) t'Q, also a-1 toa tQ

Somit:
fto(A) toaTo at'oTo aTo A

A ist also Fixpunkt.

b) Sei A Fixpunkt und a ein Elément aus dieser Nebenklasse. Aus

ftQ(A) A folgt
toaTo aT0 oder a-H^a e TQ
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Da t0 erzeugendes Elément von To ist, gilt die letzte Relation nicht nur
fur t0 sondern fur aile Elemente von To und daher Iâ8t der zu a gehôrige
Automorphismus von G das Toroid To invariant.

Wir werden. den jetzt bewiesenen Satz 4 spâter verwenden, uni mit
Hilfe der Fixpunktsàtze der Topologie die Existent gewisser
Transformation in 0 herzuleiten.

3. In einer genûgend kleinen Umgebung U(e) der Einheit e von G
lassen sich kanonische Koordinaten (erster Art) einfuhren10). Ist n die
Dimension von G und f ein Elément von U(e), so seien seine Koordinaten

$l9 £2> • • •> £n* Der innere Automorphismus

xa (1)

ist fur Elemente aus U(e) eine lineare Transformation:

(2)
*-i

Ihre Matrix sei:
Sa

Die Matrizen 8a ergeben eine Darstellung unserer Gruppe durch
lineare Transformationen, die adjungierte Darstellung, oder nach Lie die
adjungierte lineare Gruppe. Da G eine geschlossene kompakte Gruppe
ist, kônnen wir nach einem bekannten Satz von H. Weyl11) das Koordi-
natensystem so wâhlen, daB sàmtliche Matrizen 8a orthogonal werden.

Jetzt betrachten wir wieder unser maximales Toroid To von der
Dimension l. Der Durchschnitt von To mit U(e) ist durch lineare Glei-
chungen in £l9 fn gegeben, also kurz gesagt ein Sttick einer Z-dimen-
sionalen Ebene Rl; die Gruppenmultiplikation in diesem Durchschnitt
ist die Vektoraddition in Rl. Durch eine orthogonale Koordinatentrans-
formation kônnen wir erreichen, daB die l ersten Grun.dvektoren unseres
Koordinatensystems in Rl zu liegen kommen. Ist t ein Elément von To

so làBt der zugehôrige Automorphismus jedes Elément von To fest, und
daher muB die lineare Transformation 8t jeden Punkt von Rl fest lassen.
Sie hat daher die Gestalt

^ (3)

wo Ex die î-reihige Einheitsmatrix bedeutet. Die (n—Z)-reihigen Matrizen

10) (7), spezieU Kapitel VL
") (7), Seite 110.
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8rt sind aile miteinander vertauschbar; wir kônnen also durch eine
orthogonale Koordinatentransformation (welche die l ersten Grundvektoren
nicht ândert) erreichen, daB aile 8[ die bei orthogonalen Matrizen iibliche
Diagonalgestalt haben, also je nachdem ob (n—l) gerade oder ungerade
ist:

f Ex \ / E%

Dx 0 \ / 1 0

JD2 1 oder 8t Dx | (4)

0 \ / \ 0 ••

'm'

dabei bedeutet D, ein Kàstchen von der Form

/ cos *,(*) — sin &,(t) \
i \ sin #j(t) cos^(0 / ' K }

Die Annahme (n—l) ungerade fûhrt aber sofort auf einen Widerspruch.
Denn dann wiirde gemâB (4) die lineare Transformation 8t einen Punkt
|, welcher in U(e) auf der (l-\-iyten Koordinatenachse liegt, fest lassen;

| wâre also mit allen Elementen von To vertauschbar und wurde nach
Satz 2 auf To liegen, was nicht der Fall ist. Es ist daher (n — l) immer
gerade :

n — l 2m (6)

Aus demselben Grund kann keine der Funktionen &$) identisch ver-
schwinden, da sonst wieder in der Hauptdiagonalen von 8t unterhalb
Et die Zahl 1 auftreten wiirde.

Die Winkelfunktionen ê^t) sind natûrlich nur (mod 1) bestimmt;
wir kônnen sie aber in U(e) eindeutig machen, wenn wir verlangen, daB
sie stetig sind und fur t e verschwinden. Sind r und rr zwei Elemente
auf To und in U(e), so hat (tt;) die Koordinaten (r, + tJ) und da fur
ein festes j die Matrizen T>i eine Darstellung von To bilden, folgt :

Uti + tî rf + rî) Wi »•••>*,) + HA ,- • •> A) •

Daher ist ^(t) eine Linearform in den Koordinaten von t Wir werden

spâter sehen, daB die 2m Linearformen ±i^(r) die Wurzeln der Grappe
G im Sinne der Lie'schen Théorie sind.

Wie in Nr. 1 sei jetzt Nt der Normalisator des Eléments t aus To.
Seine Elemente f, welche in U(e) liegen, sind dadurch charakterisiert,
daB sie bei der linearen Transformation 8t fest bleiben; mit anderen
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Worten: die Dimension von Nt ist gleich der Dimension der Ebene der
Fixpunkte von 8t; letztere ist aber die Vielfachheit des Eigenwertes
(+1) der Matrix 8t. Wir finden daher zunâchst unter Beracksichtigung
von (4):

Satz 5 : Sind filr ein spezielles Elément t e To genau v der Funktionen
&j(t) 0 (mod 1), so ist die Dimension des Normalisators Nt gleich
(l + 2v).

Daraus und aus Satz; 3 folgt noch :

Korollar : Dds Elément t e To ist dann und nur dann singular, wenn
fur mindestens ein j gilt #,(£) 0 (mod 1), d. h. wenn v ^ 1 ist. Die Zahl v

nennen wir auch die Ordnung des singulàren Eléments t.
Ist (pa eine Transformation von 0, làBt also der Automorphismus

x -> a"1 x a

To invariant, so ergibt 8a eine orthogonale Transformation ç>* der Ebene
Bl in sich. Offenbar ist die Zuordnung

eine (einstufig) isomorphe Abbildung von 0 auf eine Grappe 0* von
orthogonalen Transformationen in Rl. Kurz gesagt ist cp* die
Transformation, welche durch tpa in der ,,Tangentialebene" Rl induziert wird.
Die Transformationen q>a lassen das Einselement e fest und daher die
Bewegungen <p* den Nullpunkt unseres kanonischen Koordinatensystems.
0* ist daher eine Grappe von Drehungen und vielleicht Drehspiegelungen
iniî^

4. Rl selbst kann als Abel'sche Grappe aufgefaBt werden, wenn man
die Vektoraddition als Gruppenkomposition nimmt. Da die beiden
Gruppen Rl und TQ in U(e) ûbereinstimmen, ist Rl Ûberlagerungs-

gruppe von To ; es existiert also eine natûrliche homomorphe Abbildung
von Rl auf TQ. Der Kern dièses Homomorphismus, d. h. das Urbild
von e, ist eine diskrete Untergruppe von Rl, also ein Z-dimensionales

Punktgitter g1.
Die Grappe 0* muB dièses Gitter invariant lassen und ist somit als

Grappe von Symmetrien eines Gitters eine endliche Grappe. Somit ist
aueh 0 endliche Gruppe.

Ist t ein Punkt in Rl, so sind also die Werte der Iinearformen ^(t)
erklàrt; es sei t das Elément von To, welches zu r gehôrt, dann gilt:
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*,(t) â,(t) (mod 1) 1 < ; < m (7)

es gehôren also nach dem Korollar zu Satz 5 genau diejenigen Punkte r
zu singulâren Elementen von To, fur die mindestens eine der Linear-
formen z. B. ^(t) 0 (mod 1) wird.

Nach Nr. 3 ist ^(t) nicht identisch Null und daher gibt die Bedingung
#i(r) 0 (mod 1) eine Schar ax von (l — l)-dimensionalen Ebenen
im R1:

0! : ^(t) c

wobei c aile ganzen Zahlen durchlâuft. Die Ebenen der Sehar sind parallel
und folgen sich in gleichen Abstànden, wir nennen sie singulâre Ebenen*
Im ganzen ergeben sich m Scharen al9a29 • • -, om singulârer Ebenen;
sie bilden das Diagramm12) von 0

t ist also dann und nur dann singulâres Elément von TQ, wenn r auf
einer singulâren Ebene liegt.

Jede Opération q> von 0 fûhrt regulâre Elemente von To in, regulâre
und singulâre in singulâre ûber. Dies folgt einfach daraus, da8 q? die
Wirkung eines inneren Automorphismus von G auf TQ ist. Daher mufi die

Oruppe 0* das Diagramm invariant lassen.

Im folgenden brauchen wir noch einige Eigenschaften der singulâren Ebenen,
die sich am leichtesten beweisen lassen, wenn man zu dem Koordinatensystem
in R1 ûbergeht, dessen Grundvektoren primitive Vektoren des Gitters g1 sind. Sei
also fur den Rest dieser Nr. 4 dièses Koordinatensystem zugrunde gelegt. Dann
ist z. B. nach der Gleichung (7) :

#,(1,0,0, ...,0) 0(modl)
denn der Punkt (1,0,0, 0) gehôrt zum Elément e von To Daraus folgt, dafî
die Linearformen d'i(x) im neuen Koordinatensystem ganzzahlige Koeffizienten
haben, also etwa

# H- «2^2 + " • H-

d sei der grôfîte gemeinsame Teiler von nl9 nl und p19 pt ganze Zahlen,
so daB

+ + d

ist. Die Ebene oc° aus der Schar a19 welche durch den Nullpunkt lâuft, ist als Ebene
mit ganzzahliger Gleichung eine Gitterebene des Gitters g1, trâgt also ein Teil-
gitter g1-1 von g1. Auf g1-1 wenden wir den Kronecker'schen Approximationssatz
an. Es existiert also in ot° ein Elément t(Ti, t?), dessenPotenzen 13) und die
zu ihnen (modflf'-1) âquivalenten Punkte die Ebene <x° iiberall dicht ausfiillen.

la) Dièses Diagramm wird auch von E. Carton gelegentlich zur Untersuchung der
Topologie von O verwendet. (Vgl. E. Carton: La géométrie des groupes simples,
Annali di Matematica, série IV, t. 4, p. 209.)

1S) Die Multiplikation ist die Vektoraddition.
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Jetzt fûhren wir noch das Elément

„, *i + Pi A.)w \ d ' ' d

ein. Es liegt auf derjenigen Ebene oc1 der Schar ax, welche dem Nullpunkt am nâch-
sten liegt und ist erzeugendes Elément der ganzen Schar o1 in dem Sinne, dafi
seine Potenzen und die zu ihnen (modgr*) âquivalenten Punkte die Schar ax
ûberall dicht atisfûllen.

6, Die Gruppe 0 wurde als endlich erkannt. Nun haben wir in Nr. 2

einen gewissen Wirkungsraum W eingeflihrt und in Satz: 4 erkannt, daB
die Transformationen von 0 ein-eindeutig auf eine Menge M in W abge-
bildet werden kônnen. Dabei war M die Fixpunktmenge der Abbildung
/#o von W in sich und t0 erzeugendes Elément von TQ Daher ist M endlich

und somit hat fi% nur isolierte Fixpunkte. Aile haben denselben
Index14), und zwar (—l)w, wenn w die Dimension von W ist. Da t0 stetig
in e und also fi% stetig in die Identitât iiberfûhrbar ist, muB die Anzahl
der Fixpunkte gleich der Euler'schen Charakteristik von W sein.

Daher ist die Ordnung von 0 gleich der Euler'schen Charakteristik von W
(Dièse ist also immer positiv.)

Dies verwenden wir zum Beweis von

Satz 6 : Ist t singulares Elément von To von der Ordnung 1, so gibt es

eine Transformation in 0, welche t fest laflt, aber nicht die Ideniitat ist.

Um dies einzusehen, wenden wir das eben erhaltene Résultat nicht auf
die ganze Gruppe 0 an, sondern auf die e-Komponente Nrt des Normali-
sators Nt von t (vgl. Nr. 1). Diesen Ûbergang deuten wir durch Ûber-
streichen aller Bezeichnungen an.

t hat die Ordnung v 1, deshalb ist gemàB Satz 5 die Gruppe JVj

genau (l + 2)-dimensional, also hat W die Dimension 2 Da W orientier-
bar ist (Nr. 2) und positive Euler'sche Charakteristik hat, ist W eine

Sphàre und daher die Euler'sche Charakteristik 2 Die Ordnung der
Gruppe 0 ist somit 2 Jede Opération von 0 làBt aber t fest ; damit ist
Satz; 6 bewiesen.

Von Satz 6 gilt folgende Umkehrung :

Satz 7 : Bleibt der Punkt r von Rl ungeandert bei einer Transformation
q>* von 0*, die nicht die Identitât ist, so liegt r duf einer singularen Ebene,
welche durch den Nullpunkt lauft.

14) Man vgl. etwa (5), Seite 241, Hilfssatz 1.
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Beweis: ç>J ist eine Drehung oder Spiegelung, lâBt also die ganze
Gerade h durch den Nullpunkt und t punktweise fest. Dieser Geraden
entspricht in To eine einparametrige Untergruppe H und a ist mit allen
Elementen von H vertauschbar. Es sei T das von H erzeugte Toroid
(Nr. 1). Nun ist a mit allen Elementen von T vertauschbar und daher
existiert nach Satz 1 ein weiteres Toroid Tf, welches a und T enthâlt.
a liegt nicht auf To, denn q>a ist nicht die Identitàt. Daher ist auch Tr
nicht in To enthalten.

Jedes Elément von H liegt also auf dem Toroid T', das nicht in To
enthalten ist; demgemâB ist jedes Elément von H singulâr nach der
ursprunglichen Définition von Nr. 1. Also muB h in einer singulàren
Ebene liegen, was zu zeigen war.

6. Ein Elément z des Zentrums Z ist mit allen Elementen von G

vertauschbar, liegt also nach Satz 2 auf To. Daher ist Z Untergruppe von
To. Da der zu z gehôrige innere Automorphismus die Identitàt ist, muB
Sg die Einheitsmatrix sein. Also mussen aile Funktionen #,(z) 0

(mod 1) sein. Die Elemente des Zentrums Z sind also die singulàren Ele-
mente von der maximal môglichen Ordnung m

Der Untergruppe Z von To entspricht in der Ûberlagerungsgruppe Rl
eine Abel'sche Untergruppe glz von Rl. OfEenbar ist glz der Durchschnitt
der Ebenenscharen a1, cy2, am Das am Anfang von Nr. 4 eingefuhrte
Gitter g1, welches die Einheit e von G darstellt, ist natiirlich in glz

enthalten.

7. Jetzt wollen wir voraussetzen, daB die gegebene Lie'sche Gruppe
halbeinfaeh sei. Das Zentrum Z ist also diskret und dasselbe gilt von
gz. Daher ist glz ein Z-dimensionales Gitter im Raum Rl. Es besteht aus
den Knotenpunkten des Diagramms, d. h. aus denjenigen Punkten,
durch welche m Ebenen des Diagramms laufen.

Die m durch den Nullpunkt laufenden singulàren Ebenen durfen
demnach nur diesen Nullpunkt gemeinsam haben, befinden sich also

in allgemeiner Lage. Wir finden demnach das Résultat :

Satz 8 : Ist G halbeinfaeh, so gibt es unter den Linearformen #,(r) genau
l linear unabhàngige.

Daraus folgt noch 7 O/vw ^ Q7

Daher gibt es keine 2-dimensionale halbeinfache Gruppe. Ferner mussen
wir hier die Tatsache vorwegnehmen, daB niemals zwei der 2 m Wurzeln

± iâfir) identisch sind, d. h. daB niemals zwei der Scharen al9a%, am
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ganz zusammenfallen kônnen. Wir werden dies in § 4 mit Hilfe der
Lie'schen Théorie erkennen *).

Sei nun oc° eine singulâre Ebene durch den Nullpunkt. Es wird viel-
leicht mehrere Scharen unter den aj geben, die dièse Ebene enthalten;
es seien dies etwa die Scharen o1, o2, ak Sâmtliche in diesen Scharen
enthaltene Ebenen bilden ein System paralleler Ebenen und oc1 sei die-
jenige unter ihnen, welche dem Nullpunkt am nâchsten liegt (aber nicht
durch ihn lâuft) ; sie gehôre etwa der Schar ax an. Nun kann oc1 in keiner
weiteren Schar oi (2 < j'^ l) enthalten sein, da sonst <rx und oi ganz
zusammenfallen wurden.

Ein erzeugendes Elément rr der Schar ax (Nr. 4) liegt auf oc1. Wûrde
t7 noch einer anderen Schar a5 (2 ^ j < l) angehôren, so miiBte auch
oc1 in Oj liegen, was wir eben vermieden haben. Somit hat das zu rr
gehôrige Elément tr e To als singulâres Elément genau die Ordnung 1;
nach Satz 6 existiert in 0 eine Transformation q>, welche tr fest lâBt und
daher gibt es in der euHidischen Gruppe 0* eine Transformation <p*,
welche %' in einen (mod g1) àquivalenten Punkt uberfûhrt, ohne die
Identitat zu sein. Da xr erzeugendes Elément der Schar ax ist, ùbertrâgt
sich dièse Eigenschaft auf aile Punkte von ax, speziell auf die Punkte
von oc0. Da aber <p* den Nullpunkt fest lâBt, mufi jeder Punkt von oc°

sogar fest bleiben ; daher ist y* die Spiegelung an a0. Wir erhalten daraus
zunâchst das Résultat:

Satz 9: Die Gruppe (P* enihalt die Spiegelungen an den singularen
Ebenen, welche durch den Nullpunkt laufen.

Nun sei oc eine beliebige Ebene aus der Schar ax. Wir haben eben

gesehen, da8 die Spiegelung an oc° jeden Punkt von oc in einen (mod g1)

àquivalenten Punkt ûberfiihrt. Somit ergibt die Zusammensetzung der
Spiegelung an oc mit der Spiegelung an oc° eine Translation des Gitters
g1 ; also lâBt die Spiegelung an oc wie diejenige an oc° das Gitter g1 und
das Diagramm invariant.

Daraus folgt nun aber, daB ax iiberhaupt jede singulâre Ebene /? ent-
hâlt, welche parallel 2ur gewâhlten Ebene oc° ist, d. h. daB die oben ein-

gefuhrten Scharen a2, • • -, ok ganz in ax enthalten sind. In der Tat kann
fl durch sukzessive Spiegelungen an den Ebenen von a± in eine Ebene
flr ubergefûhrt werden, welche zwischen oc° und oc1 hindurch lâuft. /?7 ist

In dieser Nr. 7 werden zweimal Sàtze der Lie'schen Théorie benutzt. Wie mir
Herr Prof. H. Hopf mitteilt, ist es ihm gelungen, dièse Sâtze unter Vermeidung der
Lie'schen Théorie ebenfalls durch SchluÛweisen ,,im GroBen'* zu beweisen. Seine
Untersuchungen erscheinen demnâchst in dieser Zeitschrift.
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ebenfalls singulâre Ebene und muB daher wegen der Minimaleigenschaft
von oc1 mit <x° oder oc1 zusammenfallen. Daher folgt :

Satz 10: Die Spiegelungen an den Ebenen des Diagramms lassen das
Gitter g1 und das Diagramm selbst invariant.

Die Scharen a2, • -, ak sind in ax enthalten, also ist z. B. die Linear-
form #!(t) ein ganzzahliges Vielfaches von #2(T):

Mit Hilfe der Lie'schen Théorie (§ 4) kann man aber zeigen, dafi eine
solche Relation bei halbeiniachen Gruppen nie auftreten kann. Infolge-
dessen ist jede Ebene unseres Diagramms in genau einer der Scharen

aj enthalten, oder mit anderen Worten : Je zwei der Linearformen ^(t)
sind linear unabhângig und das Diagramm bestimmt als geometrische
Figur die Linearformen ^(r) eindeutig (abgesehen von einer linearen
Koordinatentransformation).

8. Jetzt bîlden wir die von den Spiegelungen an den Ebenen des

Diagramms erzeugte Gruppe F. GemàB Satz 10 lâBt F das Gitter g1

invariant, ist also eine diskontinuierliche Bewegungsgruppe des Raumes Rl.
Da wir nach Satz 8 unter den Spiegelungsebenen l linear unabhângige
haben, enthàlt die Untergruppe y der Translationen von F sicher l linear
unabhângige Translationen, und daher ist F eine Raumgruppe des Raumes

Rl im Sinne der Kristallographie. F fiihrt das Gitter g1 in sich ûber
und demnach ist y eine Untergruppe der Translationsgruppe von g1.

Bezeichnen wir noch das Gitter, das durch Ausuben von y auf den Null-
punkt entsteht, mit y1, so ist y1 in g1 enthalten.

y ist Normalteiler von F. Daraus folgt leicht, daB die Spiegelung an
einer singulàren Ebene durch denNullpunkt das Gitter y1 invariant lâBt.
Andererseits kann die Spiegelung an irgend einer singulâren Ebene

zusammengesetzt werden aus der Spiegelung an einer singulâren Ebene
durch den Nullpunkt und einer Translation von y. Daher lâBt die Gruppe
F das Gitter y1 invariant, und y1 kann somit auch definiert werden als

die Menge der Punkte, welche durch die Transformationen von F aus
dem Nullpunkt entstehen.

9. Zusammenfassend15) ergeben sich also unter Berucksichtigung von
Nr. 6 folgende Grundeigenschaften des Diagramms:

15) Man vgl. auch die Figuren.
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a) Das Diagramm besteht aus m Scharen paralleler àquidistanter Ebenen
in einem l-dimensionalen Raum Rl. Zwei Scharen haben keine Ebene
gemeinsam.

b) Die KnotenpunJcte (Schnittpunkte von m Ebenen des Diagramms)
bilden ein Gitter glz

c) Die Spiegelungen an den Ebenen des Diagramms erzeugen eine dis-
Jcontinuierliche Raumgruppe F, wélche das Diagramm, invariant
laflt. Die Untergruppe von F, welche einen Knotenpunkt fest làjit,
ist eine endliche Gruppe ï7, welche die ^Kristallklasse" von F angibt.

d) Vbt man F auf einen Knotenpunkt aus, so entsteht ein Gitter y1,
welches in glz enthalten ist. Die Translationen dièses Gitters bilden die
Translationsuntergruppe y von i\ Die Gruppe F wird von W und y
erzeugt.

Die Beziehungen zwisehen einer halbeinfachen Lie'schen Gruppe und
ihrem Diagramm kônnen wie folgt formuliert werden:

e) Der Raum Rl ist universelle Vberlagerungsgruppe eines maximalen
Toroids To aus G, wenn dis Gruppenkomposition in Rl die Vektor-
addition genommen wird. Die Dimension von G betràgt n l + 2 m

f) Dabei entspricht dem Zentrum von G das Gitter glz und dem Eins-
element von G ein Gitter g1 (Einheitsgitter), welches in glz enthalten

ist, aber y1 enthalt. Die Gruppe F laflt g1 invariant.

g) Die Punkte auf den Ebenen des Diagramms gehen aus denjenigen
Elementen von To hervor, deren Normalisatoren in G hohere Dimension

als l Dimension von To) besitzen.

h) Es sei rl9 r, ein Koordinatensystem im Rl, welches seinen Null-
punkt in einem Knotenpunkt hat, und die Gleichung der j-ten Schar

von Ebenen des Diagramms laute

wobei c aile ganzen Zahlen durchlauft. Dann sind die 2m Linear-
formen ± iê^r) die Wurzeln der Gruppe G

10. Der Satz 9 kann noch verschàrft werden. Es zeigt sich nâmlich,
dafi 0* sogar von den im Satz: genannten Spiegelungen erzeugt wird.
Mit der Bezeichnung von Nr. 9 c ist also W 0* und wir kônnen unseren
Eigenschaften die folgende hinzufugen:
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i) Bei der natihrlichen homomorphen Abbildung von Rl auf To geht die
Gruppe F in die Oruppe 0 ûber; letztere besteht aus den Automor-
phismen des Toroids To, welche durch innere Automorphismen von
G bewirkt werden.

Zum Beweis betrachten wir die singulàren Ebenen oQ, ot^ durch
den Nullpunkt sowie die Oberflâche S1'1 einer kleinen Kugel mit dem

Mittelpunkt im Nullpunkt. Die Ebenen &J, oc^ teilen dièse Ober-
flàehe in endlich viele Bereiche Bk ein und die Gruppe 0* permutiert
dièse Bereiche unter sich, Dasselbe gilt nach Satz 9 von den Spiegelungen
an oQ oPm und von der durch dièse Spiegelungen erzeugten Gruppe W.
Ûberdies aber vertauscht die Gruppe W die Bereiche Bk transitiv. Unsere
Behauptung wird daher bewiesen sein, wenn wir zeigen kônnen, daB
eine Transformation ç?* von 0*, welche einen der Bereiche (etwa Bx)
in sich ùberfùhrt, die Identitât ist. Dies aber folgt daraus, daB <p* als
euklidische Abbildung von Bx in sich einen Fixpunkt t im Inneren von
Bx haben muB. (Zum Beweis fiihre man den Schwerpunkt der Ecken von
J5X ein.) Nach Satz 7 kann dies nur der Fall sein, wenn (p* die Identitât
ist, da r nicht auf einer singulàren Ebene durch den Nullpunkt liegt.
Aus diesem Beweis merken wir uns fur spâter:

Satz 11 : Die (unbeschrânkten) Bereiche, in welche die Ebenen des Dia-
gramms durch den Nullpunkt den Raum Rl einteilen, sind Fundamental-
bereiche der Gruppe W ; speziell ist eine Transformation von W, welche einen
der Bereiche in sich ûberfûhrt, die Identitât.

§ 3, Die Diagramme der vier Cartan'schen Klassen.

Mit Hilfe der Resultate des § 2, welche in Nr. 9 und 10 zusammen-
gestellt sind, ist die Bestimmung des Diagramms einer vorgelegten ge-
schlossenen halbeinfachen Lie'schen Gruppe leicht durchzufuhren. Es
soll dies fur die vier Klassen der Cartan'schen Aufzàhlung gezeigt werden.

1. Die Gruppe Dt besteht aus allen 2Z-reihigen orthogonalen Matrizen
von der Déterminante (+ 1). Wir betrachten in D% aile Matrizen von der
Gestalt

\°
0 Ax,

wobei A ,• eine zweireihige Drehmatrix ist :
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(cos Tj — sin xi \
sin x} cos Ty /

(2)

Lassen wir xx xx unabhângig variieren, so bilden aile Matrizen t
ein Z-dimensionales Toroid To Es lassen sich ohne groBe Mûhe folgende
Eigensehaften des Normalisators Nt von t in Dx bestâtigen:

a) Hat t keine mehrfachen Eigenwerte, so fâllt Nt mit To zusammen.
Daraus folgt, daB To maximales Toroid ist.

b) Die Dimension von Nt ist dann und nur dann > l, wenn es zwei
Indizes (x ^= v gibt, so daB

t^ xv oder x^ — xv (mod 1)

ist. (Es bewirkt z. B. xx — xx (mod 1) wohl ein Zusammenfallen
von zwei Eigenwerten, aber keine Dimensionserhôlmng von Nt.)

Daher lauten die Gleichungen der Ebenen des Diagramms :

xfl=±xv (mod 1), ii ^ v (3)

Die Diagrammebenen dureh den Nullpunkt kônnen aufgefaBt werden
als Diagonalebenen eines Wûrfels im B1. Somit ist

m==2( 2) ==Z(Z~1) ' n W—1) (4)

Die Wurzeln der Gruppe sind die 2 1(1 — 1) Linearformen

± i (!•„ ± T,)

Die Gruppe W wird also erzeugt dureh. die Spiegelungen an den Diagonalebenen

eines Wûrfels ïm Rl; sie hat die Ordnung 2l~1l\ und besteht
aus den monomialen Substitutionen

A £j*k(s) ^ ± 1 (5)

wobei aber unter den es die negativen nur in gerader Anzahl auftreten
kônnen; k(j) ist eine beKebige Permutation der Indizes.

2. Die Gruppe Bx besteht aus allen (2 l + l)-reihigen orthogonalen
Matrizen und wird analog diskutiert wie Dx. Man erhâlt :

m P, n l (2 l + 1)

Ebenen des Diagramms:

xfA±xv 0 (modl)r fi ^ v ^, v 1, 2, l
und

t, 0 (mod 1) ; 1, 2, l <
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Hier sind also die Mittelebenen des oben genannten Wurfels hinzuge-
treten. Die Gruppe W ist die voile Symmetriegruppe des Wurfels und
besteht aus allen Substitutionen von der Form (5), wobei die ej jetzt
aber an keine Nebenbedingung gebunden sind. Ihre Ordnung ist 2l l

3. Die Gruppe Cl besteht aus allen Z-reihigen Matrizten x, deren
Elemente Quaternionen sind und welehe die Orthogonalitâtsrelation er-
fûllen:

wobei x' aus x entsteht durch Ersetzen jedes Eléments durch die kon-

jugiert komplexe Quaternion und nachfolgende Transposition. Etwas
bequemer ist es, die Quaternionen als 2-reihige komplexe Matrizen von
der Gestalt

a \

-6 a) (6)

aufzufassen, so daB dann x eine 2 Z-reihige unitâre Matrix von spezieller
Form wird. Wir betrachten wieder speziell Diagonalmatrizen

mit
/ ei

Al

0
0

'
Ax

0

Die Diskussion des Normalisators Nt ergibt, daB seine Dimension dann
und nur dann > l ist, wenn t mehrfache Eigenwerte besitzt. Somit bilden
aile t ein maximales Toroid To und fur die Ebenen des Diagramms erhalt
man:

r^ ± xv 0 (mod 1) ft^v, /j,,v=l,2i...,l
und

2r, 0 (modl) j 1, 2, .,ï

Vergleicht man dies mit Bt, so folgt

und die Ebenen des Diagramms durch den Nullpunkt stimmen mit den-

jenigen von B% ûberein. Die Gruppe W ist ebenfalU dieselbe wie bei B%.
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4. Die Grappe At besteht aus allen (l + l)-reihigen unitâren Matrîzen
von der Déterminante (+1). Ihre Diskussion ergibt sich analog wie
im § 1, wo der Fall l =* 2 behandelt wurde. Man erhâlt:

m
m-

Das Diagramm làfit sich am besten beschreiben, wenn man ein regulàres
Simplex im Rl benutzt, das seinen Mittelpunkt im Nullpunkt des Koor-
dinatensystems hat. Die Diagrammebenen durch den Nullpunkt sind
dann die Mittelnormalebenen von je zwei Simplexecken. Die Gruppe S*

ist also die voile Symmetriegruppe von unserem Simplex, d. h. die sym-
metrische Permutationsgrappe seiner Ecken von der Ordnung (l + 1)

In Fig, 2—5 sind obige Diagramme im Fall l 2 dargestellt. Die
Knotenpunkte, welche das Gitter glz ergeben, sind markiert und die
in bezug auf F àquivalenten Knotenpunkte, welche das Gitter y1 liefern,
besonders hervorgehoben. (§ 2, Nr. 9.) Aufierdem sind zwei primitive
Vektoren des ,,Einheitsgitters" g1 eingezeichnet, obwohl wir dièses Gitter,
wie schon in § 1 erwahnt, nicht zum Diagramm rechnen. Die Diagramme
von B2 und C2 gehen durch Drehung um 45° auseinander hervor.

Orthogonale Gruppe Dt Orthogonale Gruppe Bt Komplexgruppe

X
¦8
,x

X
X

X
X
X
X

X.
X
X

Fig. 3 Fig. 4 Fig. 5

§ 4. Isomorphe Gruppen.

1* Es sei in der geschlossenen Lie'schen Gruppe 0 ein maximales
Toroid To gewàhlt. Wie in § 2, Nr. 3 beziehen wir eine Umgebung U(e)
der Einheit von 0 auf kanonische Koordinaten. | sei ein beliebiges
Elément € U(e) und t ein Elément von To. Die adjungierte Matrix St
von t hatte die Form :

370



d 1 Dt=r**'® -sin^Av, (1)

Jetzt beschreibe £ eine Gerade:

t= A. t
wobei die Zahl A variabel, aber das Elément t € U(e) fest ist. Dann er-
halten wir die infinitésimale Transformation

dSt

/0 -#,(T)
' U(T) ©

und Oj die Z-reihige Nullmatrix ist. Bei der Difïerentiation wurde benutzt,
daB die ^(r) Linearformen sind. Ûbt man die Transformation Kt auf
ein Elément f aus, so erhàlt man das Elément [t, f], wobei die eckige
Klammer die Kommutatorbildung im Lie'schen Ring von 0 bedeutet.
Das charakteristische Polynom von Kt lautet:

fi
Andererseits weiB man16), daB dièses Polynom die Form hat

wobei r der Rang des Rings ist und die ock(r) Linearformen bedeuten, die

man die Wurzeln des Rings nennt. Ist G halbeinfach, so ist keine der
Wurzeln ock{r) identisch Null und daher muB l r sein. Die Dimension
des maximalen Toroids To ist also der Rang von G und daher unabhângig
von der speziellen Wahl von To

AuBerdem aber mûssen die 2 m Linearformen ± iê^r) mit den Wurzeln

ock(r) ûbereinstimmen. Nach Cartan und Weyl11) sind die Wurzeln

") Man vgl. (11), Kapitel III, S. 353.
17) (11) Satz 2, Seite 364.
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ock(T) einfach und die Vielfachen 2<xk, 3<xk, einer Wurzel kommen
nicht unter den Wurzeln vor. Dies haben wir im § 2, Nr. 7 benutzt.

Weiterhin aber haben nach Cartan und van der Waerden18) isomorphe
halbeinfache Lie'sche Ringe dieselben Wurzeln (abgesehen von einer
linearen Koordinatentransformation der rk) und umgekehrt sind zwei
Lie'sche Ringe mit denselben Wurzeln isomorph. Da andererseits die
Wurzeln und das Diagramm sich gegenseitig bestimmen, kônnen wir
folgenden Satz aussprechen:

Satz 12 : Zwei halbeinfache Lie'sche Gfruppen sind dann und nur dann
im kleinen isomorph, wenn sie dasselbe Diagramm besitzen.

Dabei bedeutet isomorph im kleinen, daB es in beiden Gruppen Um-
gebungen der Einheit gibt, welche isomorph aufeinander abgebildet
werden kônnen.

Wir haben hier die Théorie der Lie'schen Ringe in vollem Umfang
benutzt ; ohne Zweifel aber lieBe sich die Théorie der Ringe geschhssener

Gruppen bedeutend vereinfachen durch Anwendung von Methoden im
groBen, wie sie in § 2 auseinandergesetzt wurden. Man muBte dabei die

nun von vornherein bekannten Synûnetrien des Diagramms ausntitzen.

2. Fassen wir aile im kleinen isomorphen Gruppen zu einer Familie
zusamjnen, so gibt es nach 0. Schreier1*) in der Familie eine ausgezeich-

nete Gruppe G mit folgender Eigenschaft: jede andere Gruppe der

Familie ist isomorph zur Faktorgruppe von G nach einem Normalteiler

von G, der diskret und im Zentrum enthalten ist. G ist die universelle
Ûberlagerungsgruppe aller Gruppen der Familie.

Wir betrachten nun zunâchst eine gegebene halbeinfache Gruppe G

und eine beliebige Untergruppe Z ihres Zentrums Z, die von selbst diskret
in G ist. Im Diagramm von G entspricht dem Zentrum Z das Gitter g£

und der Untergruppe Z ein Gitter g1, welches in glz enthalten ist. Jedoch
enthâlt g1 das Gitter g1, das die Einheit von G darstellt und das wir
Einheitsgitter nannten. G und seine Faktorgruppe G /Z sind im kleinen
isomorph, haben daher nach Satz 12 dasselbe Diagramm. Jedoch ist
fur die Faktorgruppe G/Z nun das Einheitsgitter das Gitter g1 geworden.
Wir finden daher zunâchst:

Satz 13 : Der Vbergang von G zu einer Faktorgruppe nach einer

Untergruppe des Zentrums druckt sich darin aus, daji im Diagramm an
Stelle des alten Einheitsgitters g1 ein neues g1 tritt, wobei

g1 ^gl ^glz -

18) Man vgl. etwa (9); ferner (12).
«) Man vgl. etwa (7), Kapitel VIII.
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Das Diagramm bestimmt also die Familie, wâhrend das Einheitsgitter
g1 die verschiedenen Gruppen derselben Familie voneinander unterscheidet.

Nehmen wir als àuBersten Fall gl=glz, so erhalten wir die Gruppe G/Z ;

sie ist isomorph zur Gruppe der inneren Automorphismen von G, oder
auch zur adjungierten linearen Gruppe von. G Das zugehôrige Einheitsgitter

glz ist durch das Diagramm allein bestimmt, denn es besteht aus
seinen Knotenpunkten (§ 2, Nr. 9) ; in der Tat haben ja auch aile Gruppen
einer Familie dieselbe adjungierte lineare Gruppe.

3. Etwas mehrMùhe macht die umgekehrte Konstruktion, nâmlich das
Aufsuchen einer Ûberlagerungsgruppe zur gegebenen Gruppe G Es
sei zunàchst an die Resultate von § 2, Nr. 9, 10 erinnert, speziell aber
daran, daB wir unter y1 das Gitter verstehen, das durch Ausùben von F
auf einen Knotenpunkt entsteht. Das Einheitsgitter g1 von G enthâlt
immer y1. In Nr. 2 haben wir ein 55feinstes" Einheitsgitter konstruiert;
es entsteht nun die Frage, ob auch das ,,grôbste" Gitter y1 als Einheitsgitter

einer Gruppe der Familie auftreten kann. Wir zeigen zunàchst:

Satz 14 : Ist die Gruppe G einfach zttsammenhangend, so gilt y1 g1.

Wir werden den Satz; in folgender Form beweisen: Ist y1 echtes Teil-
gitter von g1, so existiert in G eine geschlossene Kurve, welche in G

nieht nullhomotop ist. Zu diesem Zweck betrachten wir die Einteilung
des Baumes M1 in Polyeder Pk durch sàmtliche Ebenen des Diagramms.
Die Gruppe JPwird erzeugt durch die Spiegelungen an den Wânden dieser

Polyeder und permutiert sie transitiv.
AuBerdem verwenden wir noch die Gruppe Fg, welche von V und den

Translationen des Gitters g1 erzeugt wird. Fg enthâlt F als Untergruppe,
denn F wird nach § 2 Nr. 9d durch W und y erzeugt, und g1 enthâlt y1.
Die Gruppe Fg lâBt das Diagramm invariant und permutiert daher
ebenfalls die Polyeder Pk unter sich. Da nun y1 echtes Teilgitter von g1

sein soll, ist Techte Untergruppe von Fg Es gibt daher in Fg eine
Transformation S, welche ein vorgegebenes Polyeder (etwa PJ in sich ûber-
fûhrt, ohne die Identitàt zu sein.

Jetzt nehmen wir fur P1 speziell ein Polyeder, das eine Ecke im Null-
punkt O hat. Die Transformation 8 fùhrt sicher 0 in eine andere Ecke
Or von Pt uber. Denn wûrde S den Nullpunkt fest lassen, so wâre S c W,
und daher muBte nach Satz 11 S die Identitàt sein, was nicht der Fall ist.
Jedoch ist O1 sicher ein Punkt des Gitters g1.

Nun sei G eine Kurve, welche O mit Or verbindet und mit Ausnahme
dieser beiden Punkte im Inneren von Px verlâuft. Ihr entspricht bei der
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natiirlichen homomorphen Abbildung von Rl auf To (§ 2, Nr. 4) eine
geschlossene Kurve C auf To, welche von e auslâuft und auBer e nur
regulâre Elemente von To enthâlt. Eine solche Kurve ist nach Cartan20)
dann und nur dann nullhomotop in G, wenn sie bereits in To nullhomotop
ist. Dies ist nicht der Fall, da das Urbild G von Gr im universellen Ûber-
lagerungsraum Rl von To eine offene Kurve ist. Damit ist Satz 14 be-
wiesen.

Nach einem Satz von H. Weyl21) ist nun die universelle Ûberlagerungs-

gruppe G einer geschlossenen halbeinfachen Gruppe G ebenfails geschlos-
sen, so daB also ihr Diagramm definiert ist. Dièses Diagramm ist nach
Satz 12 also allen Gruppen der ganzen Familie gemeinsam, so daB wir
vom Diagramm der Familie sprechen kônnen. G ist einfach zusammen-
hângend und das zugehôrige Einheitsgitter ist nach Satz 14 das Gitter y1,
welches durch das Diagramm allein schon gegeben ist. Damit ist die zu
Anfang dieser Nr. gestellte Frage beantwortet.

Jede andere Gruppe G der Familie ist nach Nr. 2 Faktorgruppe von
G nach einer Untergruppe Z des Zentrums ; dièse Untergruppe wird im
Diagramm dargestellt durch ein Gitter g1 mit

g1 wird das Einheitsgitter von G Bekanntlich ist nun Z isomorph zur
topologischen Fundamentalgruppe von G und offenbar ist andererseits
Z isomorph zur Gruppe g1/ y1, falls man dièse beiden Gitter als Trans-
lationsgruppen auffaBt.

4. Zusammenfassend ergibt sich nun leicht:

a) Das Diagramm einer Familie geschlossener halbeinfacher und im
kleinen isomorpher Gruppen gibt die voile Vbersicht uber die Gruppen
der Familie, und zwar

b) Dem Gitter y1, das durch Ausûben von F auf einen Knotenpunkt ent-

steht, entspricht die universelle Vberlagerungsgruppe der Familie,

c) Dem Gitter glZi das aus den Knotenpunkten des Diagramms besteht,

entspricht die adjungierte lineare Gruppe der Familie.

d) Jedem beliebigen Gitter g1, welches y1 enthâlt, aber in gz enthalten ist,
entspricht eine Gruppe G der Familie und umgekehrt; dabei ist g1

das,,Einheitsgitter(t von G, d.h. das maximale Toroid in G entsteht

durch Identifikation der nach g1 àquivalenten Punkte.

»°) (2) speziell Abschnitt IV, ferner (11), S. 377—380.
«) (11), S. 380, Satz 2.
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e) Die topohgische Fundamentalgruppe von G ist isomorph zur Faktor-
gruppe g1/y1.

SchlieBlich folgt aus Satz 12 und obiger Eigenschaft d):

f) Zwei geschhssene halbeinfache Lie'sche Oruppen sind dann und nur
dann isomorph (im groflen), wenn sie im Diagramm und im Ein-
heitsgitter g1 ûbereinstimmen.

5. Wir betrachten wieder die Einteilung des Raumes Rl in Polyeder
Pk durch die Ebenen des Diagramms. Dann gilt:

Satz 15: Jedes Polyeder Ph ist Fundamentalbereich der Oruppe F.
Man kann dies direkt alis der Définition der Gruppe F als die von den

Spiegelungen an den Wânden der Pk erzeugte Gruppe entnehmen. Unter
Benutzung unserer bisherigen Ûberlegungen kann man aber auch wie
folgt schlieBen:

Es sei G die einfach zusammenhângende Gruppe der zum Diagramm
gehôrigen Familie und Px ein Polyeder, das eine Ecke im Nullpunkt 0
des Koordinatensystems hat. Ferner sei S eine Transformation von F,
welche Px in sich ûberfuhrt und 0 ' sei der Bildpunkt von 0 vermôge S

0! ist Punkt des Einheitsgitters y1 von G (Nr. 4 b). Wàre nun Ol ^0
so kônnten wir wie beim Beweis von Satz 14 eine geschlossene Kurve
G! in G konstruieren, welche in G nicht nullhomotop wâre. Da G einfach
zusammenhàngend ist, gibt es eine derartige Kurve nicht und daher ist
01 0 Jede Transformation von F, welche Px in sich ûberfuhrt, lâBt
also den Nullpunkt fest und ist daher eine Transformation von W. Dann
ist sie aber die Identitât (Satz 11). Da F die Polyeder Pk transitiv permu-
tiert, ist Satz 15 bewiesen.

Aus Satz 15 folgt noch, daB es in F keine anderen Spiegelebenen als

die Ebenen des Diagramms gibt ; die Ebenen des Diagramms kônnen also
auch definiert werden als die Ebenen der in F enthaltenen Spiegelungen,
d. h. es gilt:

Satz 16 : Das Diagramm ist durch die Raumgruppe F bestimmt.

Unter Berucksichtigung von Nr. 4f folgt dann:

Satz 17: Zwei einfach zusammenhângende halbeinfache geschlossene

Lie'sche Gruppen sind dann und nur dann isomorph, wenn die zugehorigen

Raumgruppen F dieselben sind. (Abgesehen von einer linearen Koordi-
natentransformation in Rl.)
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Im Falle einer einfach zusammenliângenden Gruppe G kann nun die
Raumgruppe F aus der Automorphismengruppe 0 des Toroids To kon-
struiert werden; denn 0 ergibt in einer Umgebung der Einheit von G
die euklidische Gruppe 0*=W (§2 Nr. 3) und das Toroid To selbst
bestimmt im universelles Ûberlagerungsraum das Einheitsgitter g1 y1.
Nach § 2 Nr. 9d wird aber F durch W und die Translationen von y1
erzeugt. Somit schliefit man aus Satz; 17 weiter

Satz 18: Es sei G eine einfach zusammenhàngende Jialbeinfache ge-
schlossene Lie'sche Gruppe und 0 die Gruppe der Automorphismen eines

maximalen Toroids To, wehhe durch innere Automorphismen von G

bewirkt werden. Dann ist G durch die Transformationsgruppe 0 von To
bis auf Isomorphie bestimmt.

Wir maehen noch ausdrucklich darauf aufmerksam, daB die Gruppe
0 als Transformationsgruppe eines Torus gegeben sein muB ; die Kenntnis
ihrer gruppentheoretischen Struktur allein geniigt nicht. (Gegenbeispiel
Bl und Gl im § 3.)

6. Die Polyeder Pk haben intéressante Eigenschaften in bezug auf
die Klassen konjugierter Elemente in der Lie'schen Gruppe. Wir legen
wieder eine einfaeh zusammenhàngende Gruppe G zugrunde und t sei
ein reguUres Elément des maximalen Toroids TQ (§ 2, Nr. 1). Ferner sei
tr ein Elément aus TQ, welches zut in G konjugiert ist :

tf a-11a a c

tf ist ebenfalls regulâr. Der innere Automorphismus von G

x -> ar1 xa

fûhrt TQ in ein Toroid T ûber, welches t! enthâlt und somit nach der
Définition der Regularitât (§ 2, Nr. 1) mit TQ identisch sein muB. Es
geht also t1 durch eine Opération von 0 aus t hervor. Zwei regulàre
Elemente t und t! von To sind also dann und nur dann konjugiert in G

wenn sie in bezug auf die Gruppe 0 âquivalent sind; d. h. wenn ihre
Urbilder t und r7 in Bl in bezug auf die Gruppe F âquivalent sind.
Letzteres folgt wieder daraus, daB F von 0* W und den Translationen
von y1 erzeugt wird. Dièse Translationen sind aber gerade die Decktrans-
fonnationen des Ûberlagerungsraumes R1 von To
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E. Cartan hat nun gezeigt, da8 ûberhaupt jedes Elément von G zu
einem Elément von TQ konjugiert ist22). Daraus schlieBen wir:

Satz 19 : Ist die gegebene Lie'sche Gruppe G einfach zusammenhângend,
so sind die Polyeder Pk, in welche die Diagrammebenen den Baum Bl
einteilen, Fundamentalbereiche filr die in G konjwgierten Elemente.

Genauer ist damitfolgendes gemeint: Ist x ein beliebiges Elément von
G, so gibt es in To ein dazu konjugiertes Elément t, dessen Urbild r
im Rl in einem vorgegebenen Polyeder Pk liegt. Befindet sich r im Inneren
von Pk so gibt es in Pk keinen anderen Punkt r ' mit derselben Eigen-
schaft wie t

Der Beweis folgt leicht aus Satz 15.

Satz 19 lâBt sich anwenden auf die Théorie der Intégration in 5 und
damit auf die Darstellungstheorie von G In der Tat hat man oft Funk-
tionen in G zu integrieren, welche in einer Klasse konjugierter Elemente
konstant sind (z. B. Charaktere). Dann kann man Pk als Integrations-
gebiet nehmen, wobei das Volumenelement das gewôhnliche euklidische
Volumenelement im iî' ist.

§ 5. Bericht ûber die Auîstellung aller Diagramme.

1. Die Bestimmung aller Diagramme ist eine Aufgabe der KristaUo-
graphie, denn nach Satz 16 wird ein Diagramm durch eine diskontinu-
ierliche Bewegungsgruppe F eines Z-dimensionalen Raumes gegeben.
Dabei hat F die wesentliche Eigenschaft, durch Spiegelungen erzeugt
zu werden.

Sâmtliche diskontinuierlichen Raumgruppen, welche durch Spiegelungen

erzeugt werden, hat Coxeter23) bestimmt. Betrachtet man seine

Gruppen, so erkennt man, daB zu jeder durch Spiegeltingen erzeugten
Raumgruppe wirklich eine Lie'sche Gruppe gehôrt.

Spâter hat Wittu) etwas einfacher aile endlichen durch Spiegelungen
erzeugten Gruppen bestimmt. Dabei erhâlt er natûrlich auch aile nicht-
kristallographischen Gruppen, d. h. aile Gruppen, die wie t. B. die
Ikosaedergruppe im Jî3, keine Kristallklasse einer Raumgruppe abgeben.
Witt benutzt sein Résultat 2ur Klassifikation der halbeinfachen Lie'schen

Ringe nach der Méthode von van der Waerden (vgl. folgende Nr. 3).
Dabei mûssen gewisse der gefundenen Gruppen durch Ganzzahligkeits-

») Vgl. auch (5), Hilfssatz 4.
M) Man vgl. (8).
M) (12).
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bedingungen ausgeschaltet werden, die ihren wahren Grund eben darin
haben, daB die Gruppen ein Gitter invariant lassen mussen.

Ich bin aber davon ûberzeugt, daB die Gruppen F sich auch mit den
Mitteln der modernen Kristallographie bestimmen lassen; vielleicht lieBe
sich hier die zahlentheoretische Méthode von Frobenius, wie sie J. J.
Burckhardt25) weiter entwickelt hat, anwenden.

2. Im Fall l 1 existiert offenbar nur ein Diagramm, welches etwa
von den Punkten mit ganzzahligen Koordinaten auf einer #-Achse
gebildet wird. Das Gitter glz besteht ebenfalls aus diesen Punkten, wàh-
rend y1 aus den Punkten besteht, deren Koordinaten gerade sind. Zwi-
schen gz und y1 gibt es kein weiteres Gitter und somit existieren nach
§ 4 Nr. 4 genau zwei Gruppen vom Rang 1=1: Die einfach zusammen-
hângende Grappe (Quaternionengruppe) und ihre adjungierte lineare
Gruppe (Drehungsgruppe des dreidimensionalen Raumes).

Fur 1 2 kann man die Diagramme gemâB Nr. 1 so erhalten, daB man
unter den 17 Symmetriegruppen der Ebene diejenigen heraussucht,
welche durch Spiegelungen erzeugt werden. Man erhâlt auBer den schon
bekannten aus § 3 stammenden Diagrammen (Fig. 2—5) nur ein neues
(Fig. 6), es gehôrt zur Cartan'schen Ausnahmegruppe 6?2. (Gruppe der
Automorphismen der Cayley'schen Algebra.) Ein Blick auf das

Diagramm zeigt, daB die beiden Gitter glz und y1 ubereinstimmen, daher
existiert keine weitere zu G2 im kleinen isomorphe Gruppe, und G% ist
einfach zusammenhângend.

3. Fur einen beliebigen Wert von l sei nun a eine der Scharen paralleler
Ebenen des Diagramms. Die Spiegelungen an den Ebenen dieser Schar

erzeugen eine Grappe, welche auBer diesen Spiegelungen nur Trans-
lationen enthâlt. Es sei o^ der Vektor einer primitiven Translation dieser

Translationsgruppe ; aa steht senkrecht auf den Ebenen der Schar und
die Lange dièses Vektors ist der doppelte Abstand von zwei benachbarten
Ebenen. Die 2 m Vektoren ± aa nennen wir die Vektoren des Diagramms
(in Fig. 6 sind sie eingezeichnet). Dièse Vektoren sind Gittervektoren des

Gitters y1, das ja aus den Translationen von F besteht. Das Vektor-
system ± û<j bestimmt das Diagramm eindeutig und umgekehrt und die

Gruppe F lâBt dièses Vektorsystem invariant.
Jetzt seien a und b zwei beliebige Vektoren des Diagramms. Die Spie-

gelung an irgend einer zu a normalen Ebene des Diagramms ist eine

Opération von F und fiïjart b in einen anderen Diagrammvektor b7

liber. Es ergibt sich sofort:

ls) In (1) und frûheren Arbeiten.
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b' -69-• (1)

worin die runden Klammern Skalarprodukte andeuten. Da b und b'
Translationen von F sind, ist auch (b' — b) eine solche. Dieser Vektor
ist aber proportional zur Translation a von F, ist daher ein ganzzahliges
Vielfaches von a Denn a ist, wie man leicht sieht, die kurzeste Translation

von F in der Richtung a Somit folgt :

Sind a und b zwei Vektoren des Diagramms, so ist 2 4—\- eine ganze
(a a)

Zahl und das Diagramm enthâlt auch den nach (1) berechneten Vektor b7.

Dies ist die Ganzzahligkeitsbedingung, die Witt verwendet und auf
die van der Waerden26) seine schône und elementare Klassifikation der
einfaehen Lie'schen Gruppen gegrundet hat.

Fig. 6

(Eingegangen den 26. Januar 1942.)

*•) (9), § 2, S. 448. Die dort angegebene Bedingung 3 enthâlt eine weitere Aussage,
welche sich aber aus unserer Bedingung herleiten lâÛt durch Diskussion der Môgliehkeiten
fur die gegenseitige Lage zweier Vektoren.
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