Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft
Band: 14 (1941-1942)

Artikel: Uber eine Beziehung zwischen geschlossenen Lie'schen Gruppen und
diskontinuierlichen Bewegungsgruppen euklidischer R&ume und ihre
Anwendung auf die Aufzéhlung der einfachen Lie'schen Gruppen.

Autor: Stiefel, E.
DOl: https://doi.org/10.5169/seals-14310

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-14310
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber eine Beziehung zwischen geschlossenen
Lie’schen Gruppen und diskontinuierlichen Be-
wegungsgruppen euklidischer Raume und ihre
Anwendung auf die Aufzahlung der einfachen
Lie’'schen Gruppen

Von E. STIEFEL, Ziirich

Die Killing-Cartan’sche Klassifikation der einfachen Lie’schen Gruppen
wurde in letzterer Zeit von mehreren Autoren!) vereinfacht durch Be-
nutzung von geometrischen Methoden; es wurde dabei hauptsidchlich
die Tatsache verwendet, daBl man dem zur Gruppe gehérenden Lie’schen
Ring eine Vektorfigur eines euklidischen Raumes zuordnen kann, welche
die wichtige Eigenschaft besitzt, bei einer endlichen von Spiegelungen
erzeugten Gruppe ®* in sich iiberzugehen. Uberdies mufl @* gewisse
zahlentheoretische Bedingungen erfiillen.

Hier soll nun gezeigt werden, dal diese merkwiirdigen Ganzzahlig-
keitsbedingungen ihren Grund einfach darin haben, daB} @* die ,,Kristall-
klasse‘‘ einer diskontinuierlichen Bewegungsgruppe I représentiert, d. h.,
daB @* ein Gitter invariant 146t. Wir werden zeigen, dafl zu jeder halb-
einfachen Lie’schen Gruppe eine diskontinuierliche durch Spiegelungen
erzeugte Gruppe I" gehort und dal umgekehrt jede Gruppe I' eine Familie
von im kleinen isomorphen Lie’schen Gruppen liefert.

Die Aufzédhlung der halbeinfachen Lie’schen Gruppen wird damit eine
Aufgabe der Kristallographie.

Um diese Erkenntnis zu gewinnen, muf3 aber der infinitesimale Stand-
punkt grundsitzlich aufgegeben werden. Wir legen daher unseren Be-
trachtungen eine geschlossene halbeinfache Lie’sche Gruppe zugrunde und
werden topologische Methoden anwenden, und zwar die Theorie der
maximalen Abel’schen Untergruppe in einer geschlossenen Lie’schen
Gruppe, wie sie von H. Hopf entwickelt wurde. Von der infinitesimalen
Theorie benotigen wir aber einige Resultate.

Dabei zeigt es sich nun, daB I" nicht nur eine Familie von im kleinen
isomorphen Lie’schen Gruppen bestimmt, sondern iiberdies eine Uber-
sicht iiber alle Gruppen der Familie enthilt. Ist einmal eine Gruppe G

1) H. Weyl, B. L.van der Waerden, E. Witt (man vgl. das Literaturverzeichnis am
Schlu).
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in der Familie ausgewahlt, so lassen sich aus I mehrere ,,globale Eigen-
schaften von G ablesen, so z. B. das Zentrum von G und die topologische
Fundamentalgruppe von G .

Auch bei der Definition der Gruppe I', welche zu einer gegebenen
Lie’schen Gruppe G gehort, werden wir nicht den Lie’schen Ring von G
benutzen, sondern I' mit Hilfe gewisser innerer Automorphismen von G
erklaren.

In § 1 ist diese Konstruktion von I" an einem speziellen Beispiel aus-
einandergesetzt, in § 2 dann fiir eine beliebige Gruppe G durchgefiihrt.
Dabei wird ein ,,Diagramm® von G benutzt, das in § 2 Nr. 4 eingefiihrt
ist, und dessen wesentliche Eigenschaften in § 2 Nr. 9, 10 zusammen-
gestellt sind. In § 4 wird die Beziehung zur infinitesimalen Theorie her-
gestellt und dann werden isomorphe Gruppen untersucht. Die diesbeziig-
lichen Resultate sind in Nr. 4, 5, 6 zusammengefalit. § 5 enthélt einen
Bericht iiber die Aufstellung aller Gruppen I'.

Zum Begriff der Halbeinfachheit einer Lie’schen Gruppe sei noch
bemerkt, dafl eine geschlossene Lie’sche Gruppe bekanntlich?) dann und
nur dann halbeinfach ist, wenn ihr Zentrum diskret, also eine endliche
Gruppe ist. Diese Tatsache werden wir im folgenden stillschweigend
benutzen.

§ 1. Die unitire Gruppe in drei Variabeln als Beispiel

Bevor wir zu beliebigen geschlossenen Lie’schen Gruppen iibergehen,
sollen die wesentlichen Ziige der angekiindigten Verwandtschaft an einem
Beispiel aufgezeigt werden. Wir wihlen als Gruppe G die Gruppe der
dreireihigen unitiren Matrizen mit der Determinante -+ 1. In der
Cartan’schen Aufzidhlung trigt sie den Namen A4,. Als topologischer
Raum ist G geschlossen und von der Dimension n = 8.

1. In @ gilt bekanntlich das Hauptachsentheorem: Zu jeder Matrix
x ¢ @ existiert eine Matrix a eG, so dal axe~! Diagonalgestalt hat:

e 0
ara!= es%3 ’ (1)
0 e'%s
wobei also
2, +2,+2,=0 (modl), (2)

3) (7) § 55, speziell p. 282, C. (Die Nummern der Fulnoten beziehen sich auf das
Literaturverzeichnis am Ende der Arbeit.)
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wenn an Stelle von 2z die Zahl 1 als Winkelmall benutzt wird. Soll eine
Matrix  dem Zentrum Z von G angehoren, so ist axa—! = 2 und daher
hat z die Diagonalgestalt (1). Uberdies muB3 aber gelten

T, = =2,=3%1 (modl) . (3)

Das Zentrum besteht also aus den Matrizen (¢e), wo e die Einheits-
matrix und ¢ eine dritte Einheitswurzel bedeutet. Z ist endlich, also &
halbeinfach.

2. Sdamtliche Diagonalmatrizen, (1) bilden eine Abel’sche Untergruppe
T von G, die Z enthilt. Die Eigenschaften von 7' treten am besten
hervor, wenn z,, z,, «, als cartesische Koordinaten in einem dreidimen-
sionalen Raum R? gedeutet werden (Fig. 1). g sei das Gitter der Punkte
mit ganzzahligen Koordinaten. Ein Element ¢ von 7T ist dann etwa
gegeben durch einen Punkt der Ebene

R: z,4+x,4+23,=0,

wobei aber zwei nach dem Gitter g kongruente Punkte der Ebene k2
zu identifizieren sind. Die Ebene R? ist Gitterebene von g3, und zwar
ist das ebene Gitter g2, welches ihr durch g® aufgeprigt wird, hexagonal
(Fig. 2).

Unitére Gruppe 4,

Denken wir uns die nach g? dquivalenten Punkte von R? identifiziert,
so erhalten wir eine Torusfliche. 7' ist also als topologischer Raum ein
Torus.

Die Gruppenmultiplikation innerhalb 7' ist im Raum R? oder auch
in der Ebene R? die gewohnliche Vektoraddition. Im Sinne der gruppen-
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theoretischen Struktur ist also die Lie’sche Gruppe 7' das direkte
Produkt aus zwei eindimensionalen geschlossenen Gruppen (Kreisdre-
hungsgruppen). Ein derartiges direktes Produkt aus zwei oder allgemeiner
endlich vielen Kreisdrehungsgruppen nennen wir im folgenden durch-
wegs ein Toroid.

Um in der Lie’schen Gruppe 7' Parameter einzufiihren, kann man so
vorgehen: Man wihle zwei primitive Vektoren e,, e, des Gitters ¢ als
Grundvektoren eines schiefen Koordinatensystems in der Ebene R? und
es seien w,, w, die Koordinaten.

Die Multiplikation der Gruppenelemente (w,, w,) und (), w;) ergibt
dann das Element (0, + ], w, + ;). Wir nennen o,, w, die ,,Dreh-
winkel“ des Toroids.

Wenn ein Element x von G' mit allen Elementen von 7' vertauschbar
ist, so hat x selbst Diagonalgestalt, gehort also 7' an. Das Toroid 7' ist
also in dem Sinne maximal, daBl es nicht eigentlich in einer anderen
Abel’schen Untergruppe von G enthalten ist.

3. Im folgenden sei a ein beliebiges aber festes Element aus G und

t durchlaufe alle Diagonalmatrizen, d.h. alle Elemente von 7'. Der
innere Automorphismus von G:

x —alza (4)

wird im allgemeinen 7' in ein anderes Toroid iiberfiihren; wir interes-
sieren uns aber jetzt speziell fiir diejenigen a, fiir welche der zugehérige
Automorphismus das Toroid 7' invariant 1i8t. In diesem Fall bewirkt
er einen Automorphismus ¢, von 7T in sich. Samtliche ¢, bilden eine
Gruppe @ von Transformationen von T in sich. Die Einfiihrung dieser
Gruppe @ bildet das Fundament der weiteren Untersuchungen. Es ist
noch zu bemerken, daB simtliche Elemente a, welche einer Nebengruppe
von 7T angehéren, denselben Automorphismus von T' ergeben. Nehmen
wir in unserem Beispiel etwa

0 1 O e’z 0
a=§{—1 0 0], = et ,
0 0 1 0 eves
so erhalten wir
e 0
alta= i ’
0 et

@, besteht also in der Vertauschung von z, und z,. Allgemein enthalt
@ alle Permutationen der drei Koordinaten z,, z,, ;. Weitere Trans-
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formationen kann es aber in @ nicht geben, denn bei einem inneren Auto-
morphismus (4) von G bleiben die Eigenwerte der Matrizen invariant,
also konnen sich die Elemente in der Hauptdiagonalen unserer Matrix ¢
hochstens untereinander vertauschen. @ ist also endliche Gruppe von
der Ordnung 6.

Im Raum R?3 ist die Vertauschung von z, und z, die Spiegelung an
der Ebene z;, — 2, = 0 und in der Ebene R? die Spiegelung an einer
vertikalen Achse durch den Nullpunkt, der das Einselement e¢ von @
darstellt (Fig.2). Da aber die Koordinaten z,, z,, #; nur (mod 1) be-
stimmt sind, konnen wir statt dieser Spiegelachse ebensogut eine zu ihr
nach dem Gitter g?> dquivalente Achse nehmen. Wir erhalten so drei
Scharen o,, 0;, 0; von parallelen dquidistanten Spiegelungsachsen, welche
eine Einteilung der Ebene R? in lauter gleichseitige Dreiecke ergeben.
Die Spiegelungen an diesen Achsen miissen natiirlich als Transforma-
tionen von 7' in sich das Gitter g? invariant lassen, erzeugen also eine
diskontinuierliche Gruppe I' von kongruenten Abbildungen der eukli-
dischen Ebene R?.

I' ist nun die zur Lie’schen Gruppe G gehoérige euklidische Bewe-
gungsgruppe. Sie trigt in der Kristallographie®) die Bezeichnung CZ, ;
thre Kristallklasse wird gerade durch unsere Gruppe @ reprisentiert.
Die in I' enthaltene Untergruppe y der Translationen ist zuféllig iden-
tisch mit der Gruppe der Translationen des Gitters g?; es wird sich aber
spiater zeigen, dafl dies bei anderen Lie’schen Gruppen nicht der Fall
zu sein braucht. Die Gesamtheit aller Spiegelungsachsen nennen wir das
Diagramm der Lie’schen Gruppe G; es hat zusammengefaflt folgende
Eigenschaften:

a) Die Spiegelungen an den Achsen des Diagramms erzeugen eine
diskontinuierliche Bewegungsgruppe I".

b) Das Diagramm ist invariant gegeniiber I'.

Es sei noch ausdriicklich erwahnt, dal das Gitter g nicht zum Dia-
gramm gerechnet wird; wir werden im Gegenteil spiter verschiedene
Gitter in ein und dasselbe Diagramm einlagern.

4. Das Zentrum Z von @ ist Untergruppe von 7'. Es wird daher in R?
durch ein Punktgitter g3 dargestellt, welches eine Verfeinerung von g*
ist. Nun besteht g3 aus allen Knotenpunkien des Diagramms, d. h. aus
den Punkten, in denen sich drei Spiegelachsen schneiden. Geméafl der

?) Zur Kristallographie vgl. man (8).
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Gleichung (3) am Anfang dieses Paragraphen mufl ndmlich ein Element
des Zentrums drei Gleichungen von der Form

Ty — Ty =My, Xpg—x3=My, XTyz— T =My

erfiillen, wobei m,, m,, m,; ganze Zahlen sind. Diese drei Gleichungen
stellen im R? drei Ebenen dar, welche aus R? gerade drei Spiegelachsen
schneiden. Andererseits erkennt man auch direkt, daf3 ein Element von
Z gegeniiber @ invariant sein muB, also der zugehérige Punkt in R? bei
jeder Operation von I' in einen in bezug auf das Gitter g* dquivalenten
Punkt iibergehen muBl. Diese Kigenschaft haben aber nur die Knoten-
punkte des Diagramms.

§ 2. Konstruktion der éuklidischen Raumgruppe zu einer
geschlossenen halbeinfachen Lie’schen Gruppe.

Das Ziel dieses Abschnitts ist die Definition und Untersuchung einer
analogen endlichen Gruppe @ im Fall einer beliobigen geschlossenen
zusammenhingenden Lie’schen Gruppe G . Die Halbeinfachheit von @
wird zunédchst noch nicht verlangt. Dabei werden wir von Ergebnissen
ausgehen, die von H. Hopf*) stammen und in der folgenden Nr. 1 kurz
zusammengestellt sind.

1. Eine abgeschlossene und zusammenhingende Abel’sche Untergruppe
von @ ist ein Toroid 7', also ein direktes Produkt aus endlich vielen ein-
dimensionalen geschlossenen Gruppen (Kreisdrehungsgruppen). Ein
Toroid 7', das ein vorgegebenes Gruppenelement a enthilt, kann wie
folgt konstruiert werden: Es existiert®) in G eine einparametrige zusam-
menhiingende Untergruppe H, welche durch @ liauft. Die abgeschlossene
Hiille von H ist zusammenhingende abgeschlossene Abel’sche Unter-
gruppe von @, also ein Toroid 7', welches H und damit auch & enthilt.

Ist ein Element a von G mit allen Elementen eines Toroids 7' ver-
tauschbar, so gibt es sicher eine Abel’sche Lie’sche Untergruppe H,
welche @ und 7' enthilt, namlich z. B. die abgeschlossene von @ und T
erzeugte Gruppe. Schirfer gilt nun aber®), dafl sogar der Zusammenhang
von H gefordert werden kann, also:

Satz 1: Ist a €@ mit allen Elementen eines Toroids T wvertauschbar,
so gibt es in G ein Toroid, welches a und T' enthdlt.

4) (4) Nr. 17—27.
5) (4) Nr. 17.
¢) Beweis in (4) Nr. 23.
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Ein Toroid .-7T' hei3t maximal, wenn es nicht in einem héherdimensio-
nalen Toroid enthalten ist. Es ergibt sich daher sofort:

Satz 2: Ist a e @ mit allen Elementen eines maximalen Toroids T ver-
tauschbar, so liegt a in T.

Im folgenden wird nun ein maximales Toroid 7, in G ausgezeichnet;
seine Dimension sei /. Ein Element ¢ von 7, nennen wir regulir, wenn
jedes Toroid, auf dem ¢ liegt, in 7', enthalten ist. Mit N, bezeichnen wir
den Normalisator von £; er besteht definitionsgemiB aus allen mit ¢
vertauschbaren Elementen von G. Die zusammenhingende Kompo-
nente N von N,, welche das Einselement ¢ von @ enthilt, ist als abge-
schlossene Untergruppe von G eine Lie’sche Gruppe und 7, ist auch
maximales Toroid in N . ,

Fiir ein regulires Element ¢ gilt: N, = T, . Dies folgt so: Ist b ¢ N},
so existiert ein in N}, maximales Toroid 7', welches b enthilt und dessen
Elemente also (da sie in N, liegen) mit ¢ vertauschbar sind. Nach Satz 2,
angewandt auf die Gruppe N, ist also ¢ ¢ 7' und daher nach Definition
der Regularitit 7' € T\, und somit b ¢ 7, .

Ein singuliires Element ¢ hingegen soll definitionsgemifl auBer auf 7T,
noch auf einem in 7' nicht enthaltenen Toroid 7' liegen. Da 7T, und 7T
in N; enthalten sind, muB die Dimension von N, groBer als I sein. Es
folgt daher die Charakterisierung der singulidren Elemente nach H. Hopf :

Satz 3: Ein Element t e T, ist-regulir oder singulir, je nachdem sein
Normalisator die Dimension | von T, oder héhere Dimension hat.

Auf einem Toroid 7' gibt es immer ein ,erzeugendes‘‘ Element ¢ mit
folgender Eigenschaft: Die von ¢ erzeugte Untergruppe von 7' ist iiberall
dicht in 7', d. h. ihre abgeschlossene Hiille beziiglich 7' ist mit 7' iden-
tisch?).

2. T, sei wieder das ausgezeichnete maximale Toroid in G von der
Dimension ! . Es sei a ein festes Element von G und der zugehérige innere

Automorphismus
x —~>alza

lasse 7, invariant, bewirke also einen Automorphismus ¢, von 7 in sich.
Um die Gruppe @ dieser Automorphismen zu diskutieren, verwenden
wir eine Methode, die wohl von A. Weil®) zum erstenmal angegeben
wurde und auch von H. Hopf und H. Samelson®) benutzt wird: Wir

7) Dies folgt aus dem Approximationssatz von Kronecker, man vgl. etwa (6).
8 (10).
) (8).
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fassen jede Nebengruppe =T, von T, in G als Punkt X eines Raumes W
auf, der auf natiirliche Weise vermittelst des Umgebungsbegriffes in G
zu einem topologischen Raum gemacht wird. Der Raum W ist dann wie
G geschlossen. Dem Einselement ¢ von G entspricht ein spezieller Punkt
E von W . Vermoge der Definition

fo(X) = (a2)T,

gehort zu jedem Gruppenelement a eine Transformation f, von W in
sich; @ ist also Transformationsgruppe des Wirkungsraumes W . Die
,,Jsotropiegruppe‘‘ von W besteht definitionsgemdfl aus den Elementen
a, fir welche gilt

fa (E ) = E ;

sie ist mit 7, identisch. Aus der Tatsache, daBl 7T, zusammenhingend
ist, schliefit man leicht, daB W ein orientierbarer Raum ist.

Man kann nun jeder Operation ¢ der Gruppe @ eindeutig einen Punkt
von W zuordnen geméaB folgender Vorschrift: Es sei ¢ = ¢, , dann soll
der zugeordnete Punkt die Nebengruppe 4 = a7, sein. Es ist zu zeigen,
daf8 A nicht von der Wahl von a abhingt. Sei also

e = @, oder e Y%a =>b"Y%b fiir alle teT, .

Das Element ba—! ist also mit allen Elementen von 7', vertauschbar
und gehort daher nach Satz 2 zu 7,. Die beiden Elemente ¢ und b
gehoren also in der Tat derselben Nebengruppe an.

Ist M die Bildmenge von @ bei dieser Zuordnung, so ist @ ein-eindeutig
auf M abgebildet. Es gilt nun:

Satz 4: Sei t, ein erzeugendes Element von T,. Dann ist M identisch
mit der Menge der Fixpunkte der Abbildung f, von W in sich.

Beweis a). Sei wieder ¢ = ¢, und

olt) =1, also alfpa=t, .
Somit:
fi,(4) =halo=atyTy=aTy=4,
A ist also Fixpunkt.

b) Sei A Fixpunkt und a ein Element aus dieser Nebenklasse. Aus
f,(4) = A folgt
t,aTy, = aT, oder a‘thaeT, .
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Da ¢, erzeugendes Element von T, ist, gilt die letzte Relation nicht nur
fiir ¢, , sondern fiir alle Elemente von 7', und daher a8t der zu a gehérige
Automorphismus von @ das Toroid 7, invariant.

Wir werden den jetzt bewiesenen Satz 4 spiter verwenden, um mit
Hilfe der Fixpunktsitze der Topologie die Existenz gewisser Trans-
formation in @ herzuleiten.

3. In einer geniigend kleinen Umgebung U(e) der Einheit e von @
lassen sich kamonische Koordinaten (erster Art) einfiihren!®). Ist » die
Dimension von G und £ ein Element von U(e), so seien seine Koordi-
naten &, &,, ..., §,. Der innere Automorphismus

x —>alza (1)

ist fiir Elemente aus Uf(e) eine lineare Transformation:

(@léa);, = bz; 8 & (2)
Thre Matrix sei:
8, = (8:) -

Die Matrizen S, ergeben eine Darstellung unserer Gruppe durch
lineare Transformationen, die adjungierte Darstellung, oder nach Lie die
adjungierte lineare Gruppe. Da G eine geschlossene kompakte Gruppe
ist, kénnen wir nach einem bekannten Satz von H. Weyl!') das Koordi-
natensystem so wihlen, dafl simtliche Matrizen S, orthogonal werden.

Jetzt betrachten wir wieder unser maximales Toroid 7', von der
Dimension I . Der Durchschnitt von 7', mit U(e) ist durch lineare Glei-
chungen in &,, ..., &, gegeben, also kurz gesagt ein Stiick einer /-dimen-
sionalen Ebene R'!; die Gruppenmultiplikation in diesem Durchschnitt
ist die Vektoraddition in R?. Durch eine orthogonale Koordinatentrans-
formation konnen wir erreichen, daff die ! ersten Grundvektoren unseres
Koordinatensystems in R zu liegen kommen. Ist ¢ ein Element von T,
so laft der zugehorige Automorphismus jedes Element von 7T, fest, und
daher muf} die lineare Transformation S, jeden Punkt von R’ fest lassen.
Sie hat daher die Gestalt

8, = ( B0 ) , (3)

0 S

wo E, die l-reihige Einheitsmatrix bedeutet. Die (n —1)-reihigen Matrizen

10) (7), speziell Kapitel VI.
11) (7), Seite 110.
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S; sind alle miteinander vertauschbar; wir kénnen also durch eine ortho-
gonale Koordinatentransformation (welche die ! ersten Grundvektoren
nicht #ndert) erreichen, daB alle S; die bei orthogonalen Matrizen iibliche
Diagonalgestalt haben, also je nachdem ob (n—1) gerade oder ungerade
ist:

8, = D, oder §;= D, , (4)
D, D,
dabei bedeutet D, ein Kiéstchen von der Form

__ [ cos B4(¢) — sin 9;(f)
D, = ( sin 9, (t) cos 9, (f) ) ' (8)
Die Annahme (n—1) ungerade fiithrt aber sofort auf einen Widerspruch.
Denn dann wiirde geméaf3 (4) die lineare Transformation S, einen Punkt
&, welcher in U(e) auf der (I41)-ten Koordinatenachse liegt, fest lassen;
& wire also mit allen Elementen von 7', vertauschbar und wiirde nach
Satz 2 auf T, liegen, was nicht der Fall ist. Es ist daher (n — I) immer

gerade:
n—l=2m. (6)

Aus demselben Grund kann keine der Funktionen #,(f) identisch ver-
schwinden, da sonst wieder in der Hauptdiagonalen von S, unterhalb
E, die Zahl 1 auftreten wiirde.

Die Winkelfunktionen #,(f) sind natiirlich nur (mod 1) bestimmt;
wir kénnen sie aber in U(e) eindeutig machen, wenn wir verlangen, dag
sie stetig sind und fiir { = e verschwinden. Sind = und z’ zwei Elemente
auf T, und in U(e), so hat (z7’) die Koordinaten (v, + 7;) und da fiir
ein festes j die Matrizen D, eine Darstellung von T, bilden, folgt:

D7y + T; ey Ty 7,1) =0Ty, TY) +'95(T{ gr ey le) .

Daher ist 9,(z) eine Linearform in den Koordinaten von 7z . Wir werden
spiater sehen, daf die 2m Linearformen --19,(t) die Wurzeln der Gruppe
G im Sinne der Lie’schen Theorie sind.

Wie in Nr. 1 sei jetzt N, der Normalisator des Elements ¢ aus T, .
Seine Elemente &, welche in U(e) liegen, sind dadurch charakterisiert,
daB sie bei der linearen Transformation 8, fest bleiben; mit anderen
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Worten: die Dimension von N, ist gleich der Dimension der Ebene der
Fixpunkte von 8,; letztere ist aber die Vielfachheit des Eigenwertes
(-4 1) der Matrix 8, . Wir finden daher zunéchst unter Beriicksichtigung
von (4):

Satz b: Sind fir ein spezielles Element t € T, genau v der Funktionen
#,t) =0 (mod 1), so ist die Dimension des Normalisators N, gleich

(T4 24).
Daraus und aus Satz 3 folgt noch:

Korollar : Ddas Element t e T, ist dann und nur dann singuldir, wenn
fir mindestens ein j gilt ,(t) = 0 (mod 1), d. h. wenn v > 1 ist. Die Zahl »
nennen wir auch die Ordnung des singuldren Elements ¢ .

Ist ¢, eine Transformation- von @, lifit also der Automorphismus

r—>alxa

T, invariant, so ergibt S, eine orthogonale Transformation ¢} der Ebene
R! in sich. Offenbar ist die Zuordnung

Pa = P

eine (einstufig) isomorphe Abbildung von @ auf eine Gruppe $* von
orthogonalen Transformationen in R!. Kurz gesagt ist ¢¥ die Trans-
formation, welche durch ¢, in der ,,Tangentialebene‘ R! induziert wird.
Die Transformationen ¢, lassen das Einselement e fest und daher die
Bewegungen ¢ den Nullpunkt unseres kanonischen Koordinatensystems.
&* ist daher eine Gruppe von Drehungen und vielleicht Drehspiegelungen
in R?.

4. R! selbst kann als Abel’sche Gruppe aufgefalit werden, wenn man
die Vektoraddition als Gruppenkomposition nimmt. Da die beiden
Gruppen R! und 7T, in U(e) iibereinstimmen, ist R! Uberlagerungs-
gruppe von 7';; es existiert also eine natiirliche homomorphe Abbildung
von R! auf T,. Der Kern dieses Homomorphismus, d. h. das Urbild
von e, ist eine diskrete Untergruppe von R!, also ein l-dimensionales
Punktgitter g°.

Die Gruppe @* mufl dieses Gitter invariant lassen und ist somit als
Gruppe von Symmetrien eines Gitters eine endliche Gruppe. Somit ist
auch @ endliche Gruppe.

Ist v ein Punkt in R?, so sind also die Werte der Linearformen ,(7)
erklirt; es sei ¢ das Element von 7, welches zu 7 gehért, dann gilt:
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B(x) =0,t) (modl), 1<j<m, (7)

es gehoren also nach dem Korollar zu Satz 5 genau diejenigen Punkte =
zu singuldren Elementen von 7, fiir die mindestens eine der Linear-
formen z. B. #,(r) = 0 (mod 1) wird.

Nach Nr. 3 ist #,(7) nicht identisch Null und daher gibt die Bedingung
%(r) =0 (mod 1) eine Schar o, von (I — 1)-dimensionalen Ebenen

im R!:
0'1: 01(1) = C )

wobei ¢ alle ganzen Zahlen durchléduft. Die Ebenen der Schar sind parallel
und folgen sich in gleichen Absténden, wir nennen sie singulére Ebenen.
Im ganzen ergeben sich m Scharen gy, 0y, ..., 0,, singulirer Ebenen;
sie bilden das Diagramm 12) von @ .

t ist also dann und nur dann singuléres Element von 7T, , wenn 7 auf
einer singulidren Ebene liegt.

Jede Operation ¢ von @ fiihrt regulire Elemente von 7, in regulire
und singulédre in singuldre iiber. Dies folgt einfach daraus, daBl ¢ die
Wirkung eines inneren Automorphismus von G auf 7' ist. Daher muf die
Gruppe @* das Diagramm invariant lassen.

Im folgenden brauchen wir noch einige Eigenschaften der singuldren Ebenen,
die sich am leichtesten beweisen lassen, wenn man zu dem Koordinatensystem
in R! iibergeht, dessen Grundvektoren primitive Vektoren des Gitters g sind. Sei
also fiir den Rest dieser Nr. 4 dieses Koordinatensystem zugrunde gelegt. Dann
ist z. B. nach der Gleichung (7):

$%;(1,0,0,...,0)=0(mod 1) ,

denn der Punkt (1, 0,0, ..., 0) gehért zum Element ¢ von T, . Daraus folgt, daB
die Linearformen 1},(7) im neuen Koordinatensystem ganzzahlige Koeffizienten

haben, also etwa
D(T) = 1Ty + npTy + o + 1T,

d sei der grofite gemeinsame Teiler von n,, ..., %, und p,, ..., p; ganze Zahlen,
so da3
P+ oy =d

ist. Die Ebene x90 aus der Schar g,, welche durch den Nullpunkt léuft, ist als Ebene
mit ganzzahliger Gleichung eine Gitterebene des Gitters g!, trégt also ein Teil-
gitter g'-! von g!. Auf g!-! wenden wir den Kronecker’schen Approximationssatz

an. Es existiert also in x? ein Element 7(7y, ..., T;), dessen Potenzen 3) und die
zu ihnen (mod g#-!) dquivalenten Punkte die Ebene x0 iiberall dicht ausfiillen.

13) Dieges Diagramm wird auch von E. Cartan gelegentlich zur Untersuchung der
Topologie von @ verwendet. (Vgl. E. Cartan: La géométrie des groupes simples,
Annali di Matematica, serie IV, t. 4, p. 209.)

13) Die Multiplikation ist die Vektoraddition.
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Jetzt fithren wir noch das Element

7 T+ P T; + Py
—g T

ein. Es liegt auf derjenigen Ebene x! der Schar g,, welche dem Nullpunkt am néach-
sten liegt und ist erzeugendes Element der ganzen Schar ¢; in dem Sinne, daB
seine Potenzen und die zu ihnen (mod g!) &dquivalenten Punkte die Schar ¢,
tiberall dicht ausfiillen.

6. Die Gruppe @ wurde als endlich erkannt. Nun haben wir in Nr. 2
einen gewissen Wirkungsraum W eingefiihrt und in Satz 4 erkannt, daB
die Transformationen von @ ein-eindeutig auf eine Menge M in W abge-
bildet werden kénnen. Dabei war M die Fixpunktmenge der Abbildung
f:, von W in sich und #, erzeugendes Element von 7', . Daher ist M end-
lich und somit hat f, nur isolierte Fixpunkte. Alle haben denselben
Index !4), und zwar (—1)¥, wenn w die Dimension von W ist. Da i, stetig
in e und also f, stetig in die Identitédt iiberfiihrbar ist, mull die Anzahl
der Fixpunkte gleich der Euler’schen Charakteristik von W sein.

Daher st die Ordnung von @ gleich der Euler’schen Charakteristik von W .
(Drese ist also immer positiv.)

Dies verwenden wir zum Beweis von

Satz 6: Ist t singulires Element von T, von der Ordnung 1, so gibt es
eine Transformation in @, welche t fest lLift, aber nicht die Ideniitit ist.

Um dies einzusehen, wenden wir das eben erhaltene Resultat nicht auf
die ganze Gruppe G an, sondern auf die e-Komponente N; des Normali-
sators N, von ¢ (vgl. Nr. 1). Diesen Ubergang deuten wir durch Uber-
streichen aller Bezeichnungen an.

t hat die Ordnung » = 1, deshalb ist gemiB Satz 5 die Gruppe N
genau (I -+ 2)-dimensional, also hat W die Dimension 2 . Da W orientier-
bar ist (NT.2) und positive Euler’sche Charakteristik hat, ist W eine
Sphire und daher die Euler’sche Charakteristik 2. Die Ordnung der
Gruppe @ ist somit 2 . Jede Operation von @ 1iBt aber ¢ fest; damit ist
Satz 6 bewiesen.

Von Satz 6 gilt folgende Umkehrung:

Satz 7: Bleibt der Punkt v von R ungeindert bei einer Transformation
@} von D*, die nicht die Identitit ist, so liegt T duf einer singuliren Ebene,
welche durch den Nullpunkt liuft.

1) Man vgl. etwa (8), Seite 241, Hilfssatz 1.
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Beweis: ¢! ist eine Drehung oder Spiegelung, 1iB8t also die ganze
Gerade & durch den Nullpunkt und 7z punktweise fest. Dieser Geraden
entspricht in 7T'; eine einparametrige Untergruppe H und a ist mit allen
Elementen von H vertauschbar. Es sei 7' das von H erzeugte Toroid
(Nr. 1). Nun ist ¢ mit allen Elementen von 7' vertauschbar und daher
existiert nach Satz 1 ein weiteres Toroid 7'/, welches ¢ und 7T enthilt.
a liegt nicht auf 7Ty, denn ¢, ist nicht die Identitit. Daher ist auch 7'’
nicht in 7, enthalten.

Jedes Element von H liegt also auf dem Toroid 7'/, das nicht in T,
enthalten ist; demgemil ist jedes Element von H singulidr nach der
urspriinglichen Definition von Nr. 1. Also mufl A in einer singuldren
Ebene liegen, was zu zeigen war.

6. Ein Element z des Zentrums Z ist mit allen Elementen von G ver-
tauschbar, liegt also nach Satz 2 auf 7. Daher ist Z Untergruppe von
T, . Da der zu z gehérige innere Automorphismus die Identitdt ist, mufl
8, die Einheitsmatrix sein. Also miissen alle Funktionen #,(z) =0
(mod 1) sein. Die Elemente des Zentrums Z sind also die singuléren Ele-
mente von der maximal moéglichen Ordnung m .

Der Untergruppe Z von 7, entspricht in der Uberlagerungsgruppe R’
eine Abel’sche Untergruppe g} von R!. Offenbar ist g der Durchschnitt
der Ebenenscharen oy, a;, ..., 0,, . Das am Anfang von Nr. 4 eingefiihrte
Gitter g*, welches die Einheit e von @ darstellt, ist natiirlich in g} ent-
halten.

7. Jetzt wollen wir voraussetzen, dafl die gegebene Lie’sche Gruppe
halbeinfach sei. Das Zentrum Z ist also diskret und dasselbe gilt von
gs. Daher ist g ein l-dimensionales Gitter im Raum R!. Es besteht aus
den Knotenpunkten des Diagramms, d.h. aus denjenigen Punkten,
durch welche m Ebenen des Diagramms laufen.

Die m durch den Nullpunkt laufenden singuliren Ebenen diirfen
demnach nur diesen Nullpunkt gemeinsam haben, befinden sich also
in allgemeiner Lage. Wir finden demnach das Resultat:

Satz 8 : Ist G halbeinfach, so gibt es unter den Linearformen 9,(t) genau
I linear unabhdngige.

Daraus folgt noch m>1, n=1+2m>3l.

Daher gibt es keine 2-dimensionale halbeinfache Gruppe. Ferner miissen
wir hier die Tatsache vorwegnehmen, dafl niemals zwei der 2 m Wurzeln
+ ¢9,(7) identisch sind, d. h. daB niemals zwei der Scharen o,, gy, ..., 0y,
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ganz zusammenfallen kénnen. Wir werden dies in § 4 mit Hilfe der
Lie’schen Theorie erkennen *).

Sei nun «° eine singuldre Ebene durch den Nullpunkt. Es wird viel-
leicht mehrere Scharen unter den o, geben, die diese Ebene enthalten;
es seien dies etwa die Scharen o, 0,, .. ., 0, . Simtliche in diesen Scharen
enthaltene Ebenen bilden ein System paralleler Ebenen und a! sei die-
jenige unter ihnen, welche dem Nullpunkt am néchsten liegt (aber nicht
durch ihn lauft); sie gehére etwa der Schar ¢, an. Nun kann o! in keiner
weiteren Schar o; (2 < j <) enthalten sein, da sonst ¢, und ¢; ganz
zusammenfallen wiirden.

Ein erzeugendes Element tz’ der Schar o, (Nr. 4) liegt auf «!. Wiirde
7’/ noch einer anderen Schar o; (2 < j <) angehéren, so miite auch
«! in o, liegen, was wir eben vermieden haben. Somit hat das zu 7’
gehorige Element ¢’ € 7', als singulires Element genau die Ordnung 1;
nach Satz 6 existiert in @ eine Transformation ¢, welche ¢’ fest 148t und
daher gibt es in der euklidischen Gruppe ®* eine Transformation ¢*,
welche 7’ in einen (mod g?) dquivalenten Punkt iiberfithrt, ohne die
Identitdt zu sein. Da t’ erzeugendes Element der Schar o, ist, iibertrigt
sich diese Eigenschaft auf alle Punkte von o, , speziell auf die Punkte
von «°. Da aber ¢* den Nullpunkt fest 1a8t, muBl jeder Punkt von «°
sogar fest bleiben; daher ist ¢* die Spiegelung an «°. Wir erhalten daraus
zunéchst das Resultat:

Satz 9: Die Qruppe ®* enthilt die Spiegelungen an den singuliren
Ebenen, welche durch den Nullpunkt laufen.

Nun sei « eine beliebige Ebene aus der Schar o, . Wir haben eben
gesehen, dafl die Spiegelung an «° jeden Punkt von « in einen (mod g?)
dquivalenten Punkt iiberfithrt. Somit ergibt die Zusammensetzung der
Spiegelung an « mit der Spiegelung an «° eine Translation des Gitters
g'; also 1laBt die Spiegelung an « wie diejenige an «° das Gitter g! und
das Diagramm invariant.

Daraus folgt nun aber, dafl ¢, iiberhaupt jede singulire Ebene § ent-
hélt, welche parallel zur gewihlten Ebene «0 ist, d. h. da3 die oben ein-
gefiihrten Scharen oy, - . ., 6, ganz in ¢, enthalten sind. In der Tat kann
p durch sukzessive Spiegelungen an den Ebenen von o, in eine Ebene
B’ iibergefiihrt werden, welche zwischen «® und a! hindurch lduft. g’ ist

*) In dieser Nr. 7 werden zweimal Sétze der Lie’schen Theorie benutzt. Wie mir
Herr Prof. H. Hopf mitteilt, ist es ihm gelungen, diese Satze unter Vermeidung der
Lie’schen Theorie ebenfalls durch SchluBweisen ,,ijmn GroBen‘* zu beweisen. Seine
Untersuchungen erscheinen demnéchst in dieser Zeitschrift.
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ebenfalls singulire Ebene und mufl daher wegen der Minimaleigenschaft
von «! mit «° oder &' zusammenfallen. Daher folgt:

Satz 10: Die Spiegelungen an den Ebenen des Diagramms lassen das
Gitter g' und das Diagramm selbst invariant.

Die Scharen gy, ..., 0, sind in ¢, enthalten, also ist z. B. die Linear-
form ¥,(7) ein ganzzahliges Vielfaches von 9,(7):

#(7) = C 9y(7) .

Mit Hilfe der Lie’schen Theorie (§ 4) kann man aber zeigen, dall eine
solche Relation bei halbeinfachen Gruppen nie auftreten kann. Infolge-
dessen ist jede Ebene unseres Diagramms in genau einer der Scharen
o; enthalten, oder mit anderen Worten: Je zwei der Linearformen &,(7)
sind linear unabhéngig und das Diagramm bestimmt als geometrische
Figur die Linearformen ¥#,(7r) eindeutig (abgesehen von einer linearen
Koordinatentransformation).

8. Jetzt bilden wir die von den Spiegelungen an den Ebenen des Dia-
gramms erzeugte Gruppe I'. Gemifl Satz 10 laBt I" das Gitter ¢’ inva-
riant, ist also eine diskontinuierliche Bewegungsgruppe des Raumes R'.
Da wir nach Satz 8 unter den Spiegelungsebenen ! linear unabhingige
haben, enthilt die Untergruppe y der Translationen von I sicher ! linear
unabhingige Translationen, und daher ist I" eine Raumgruppe des Rau-
mes R!im Sinne der Kristallographie. I" fithrt das Gitter ¢! in sich iiber
und demnach ist y eine Untergruppe der Translationsgruppe von g‘.
Bezeichnen wir noch das Gitter, das durch Ausiiben von y auf den Null-
punkt entsteht, mit ¥, so ist y! in g enthalten.

y ist Normalteiler von I'. Daraus folgt leicht, dal die Spiegelung an
einer singuliiren Ebene durch den Nullpunkt das Gitter 3’ invariant laBt.
Andererseits kann die Spiegelung an irgend einer singuliren Ebene
zusammengesetzt werden aus der Spiegelung an einer singulidren Ebene
durch den Nullpunkt und einer Translation von y. Daher a8t die Gruppe
I’ das Gitter y? invariant, und 9! kann somit auch definiert werden als
die Menge der Punkte, welche durch die Transformationen von I” aus
dem Nullpunkt entstehen.

9. Zusammenfassend!®) ergeben sich also unter Beriicksichtigung von
Nr. 6 folgende Grundeigenschaften des Diagramms:

15) Man vgl. auch die Figuren.
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a) Das Diagramm besteht aus m Scharen paralleler dquidistanter Ebenen
wn einem l-dimensionalen Raum R'. Zwei Scharen haben keine Ebene
gemeinsam.

b) Die Knotenpunkte (Schnittpunkte von m Ebenen des Diagramms)
bilden ein Gitter g .

¢) Die Spiegelungen an den Ebenen des Diagramms erzeugen eine dis-
kontinuierliche Raumgruppe I', welche das Diagramm invariant
laipt. Die Untergruppe von I', welche einen Knotenpunkt fest lif3t,
ist eine endliche Gruppe ¥, welche die ,, Kristallklasse'* von I' angibt.

d) Ubt man I' auf einen Knotenpunkt aus, so entsteht ein Gitter y*,
welches in g5 enthalten ist. Die Translationen dieses Gitters bilden die
Translationsuntergruppe y von I'. Die Gruppe I" wird von ¥ und y
erzeugt.

Die Beziehungen zwischen einer halbeinfachen Lie’schen Gruppe und
ihrem Diagramm konnen wie folgt formuliert werden:

e) Der Raum R* ist unmiverselle Uberlagerungsgruppe eines maximalen
Toroids T, aus G, wenn als Gruppenkomposition in R' die Vektor-
addition genommen wird. Die Dimenston von G betrigt n =1 + 2m .

f) Dabei entspricht dem Zentrum von @ das Gitter g, und dem Eins-
element von G ein Gitter g' (Einheitsgitter), welches in g} enthalten
ist, aber y* enthilt. Die Gruppe I' lift g* invariant.

g) Die Punkte auf den Ebenen des Diagramms gehen aus denjenigen
Elementen von T, hervor, deren Normalisatoren in G hohere Dimen-
sion als | (= Dimension von T,) besitzen.

h) Es sei t,, - .., 7; ein Koordinatensystem im R', welches seinen Null-
punkt in einem Knotenpunkt hat, und die Qleichung der j-ten Schar
von Ebenen des Diagramms laute

193(151 :""71):0 ’

wober ¢ alle ganzen Zahlen durchliuft. Dann sind die 2m Linear-
formen 4 i9,(t) die Wurzeln der Gruppe G .

10. Der Satz 9 kann noch verschirft werden. Es zeigt sich nidmlich,
dal &* sogar von den im Satz genannten Spiegelungen erzeugt wird.
Mit der Bezeichnung von Nr.9c ist also ¥ = @* und wir kénnen unseren
Eigenschaften die folgende hinzufiigen:
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i) Bei der natirlichen homomorphen Abbildung von R! auf T, geht die
Gruppe I' in die Qruppe D uber; letztere besteht aus den Automor-
phismen des Toroids T, , welche durch innere Automorphismen von
G bewirkt werden.

Zum Beweis betrachten wir die singuliren Ebenen o, ..., &) durch
den Nullpunkt sowie die Oberfliche S’-! einer kleinen Kugel mit dem
Mittelpunkt im Nullpunkt. Die Ebenen «f, ..., ol teilen diese Ober-
fliche in endlich viele Bereiche B, ein und die Gruppe ®* permutiert
diese Bereiche unter sich. Dasselbe gilt nach Satz 9 von den Spiegelungen
anof,..., o und von der durch diese Spiegelungen erzeugten Gruppe ¥.
Uberdies aber vertauscht die Gruppe ¥ die Bereiche B, transitiv. Unsere
Behauptung wird daher bewiesen sein, wenn wir zeigen koénnen, daB
eine Transformation ¢* von @*, welche einen der Bereiche (etwa B,)
in sich tberfiihrt, die Identitdt ist. Dies aber folgt daraus, dafl ¢* als
euklidische Abbildung von B, in sich einen Fixpunkt 7 im Inneren von
B, haben muf}. (Zum Beweis fiihre man den Schwerpunkt der Ecken von
B, ein.) Nach Satz 7 kann dies nur der Fall sein, wenn ¢* die Identitét
ist, da v nicht auf einer singuliren Ebene durch den Nullpunkt liegt.
Aus diesem Beweis merken wir uns fiir spéter:

Satz 11 : Die (unbeschrinkten) Bereiche, in welche die Ebenen des Dia-
gramms durch den Nullpunkt den Raum R' einteilen, sind Fundamenial-
bereiche der Gruppe ¥ ; speziell ist eine Transformation von ¥, welche etnen
der Bereiche in sich iberfithrt, die Identitit.

§ 3. Die Diagramme der vier Cartan’schen Klassen.

Mit Hilfe der Resultate des § 2, welche in Nr. 9 und 10 zusammen-
gestellt sind, ist die Bestimmung des Diagramms einer vorgelegten ge-
schlossenen halbeinfachen Lie’schen Gruppe leicht durchzufiihren. Es
soll dies fiir die vier Klassen der Cartan’schen Aufzihlung gezeigt werden.

1. Die Gruppe D, besteht aus allen 2l-reihigen orthogonalen Matrizen
von der Determinante (- 1). Wir betrachten in D, alle Matrizen von der
Gestalt

b= : ; (1)
0 A4,
wobei A4, eine zweireihige Drehmatrix ist:
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A;= ( (2)

cos T; — sin 7
sin T Cos T,

Lassen wir 7, ,..., 7; unabhingig variieren, so bilden alle Matrizen ¢
ein [-dimensionales Toroid 7', . Es lassen sich ohne grofle Miihe folgende
Eigenschaften des Normalisators N, von ¢ in D, bestétigen:

a) Hat ¢ keine mehrfachen Eigenwerte, so fillt N, mit 7', zusammen.
Daraus folgt, daB T, maximales Toroid ist.

b) Die Dimension von N, ist dann und nur dann > 1, wenn es zwei
Indizes u s v gibt, so daf3

Ty = Ty oder 7, = — 7, (mod 1)
ist. (Es bewirkt z. B. 7; = — 7; (mod 1) wohl ein Zusammenfallen

von zwei Eigenwerten, aber keine Dimensionserhohung von N, .)
Daher lauten die Gleichungen der Ebenen des Diagramms:
T, =+, (mod 1), mFEY . (3)

Die Diagrammebenen durch den Nullpunkt kénnen aufgefaflt werden
als Diagonalebenen eines Wiirfels im R!. Somit ist

m=2(;)=l(l——-l), n=1(21—1) . (4)
Die Wurzeln der Gruppe sind die 2 (I — 1) Linearformen

+i(r, £7) -

Die Gruppe ¥ wird also erzeugt durch die Spiegelungen an den Diagonal-
ebenen eines Wiirfels im R'; sie hat die Ordnung 2*-11! und besteht
aus den monomialen Substitutionen

1,'; = S,Tk(,-) ’ 85 = j: 1 ) (5)

wobei aber unter den ¢, die negativen nur in gerader Anzahl auftreten
kénnen; k(j) ist eine beliebige Permutation der Indizes.

2. Die Gruppe B, besteht aus allen (21 + 1)-reihigen orthogonalen
Matrizen und wird analog diskutiert wie D, . Man erhilt:

m = [2, n=12141).

Ebenen des Diagramms:

T, 7 =0 (mod 1), uFEv, u,y=1,2,...,1
und
7, =0 (mod 1) , §j=1,2,...,1.
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Hier sind also die Mittelebenen des oben genannten Wiirfels hinzuge-
treten. Die Gruppe ¥ ist die volle Symmetriegruppe des Wiirfels und
besteht aus allen Substitutionen von der Form (5), wobei die ¢, jetzt
aber an keine Nebenbedingung gebunden sind. IThre Ordnung ist 2¢1!

3. Die Gruppe C, besteht aus allen I-reihigen Matrizen x, deren
Elemente Quaternionen sind und welche die Orthogonalitétsrelation er-

fiillen:

al=g',

wobei z/ aus z entsteht durch Ersetzen jedes Elements durch die kon-
jugiert komplexe Quaternion und nachfolgende Transposition. Etwas
bequemer ist es, die Quaternionen als 2-reihige komplexe Matrizen von

der Gestalt _
a b
— — 6
(_% a) (6)

aufzufassen, so daBl dann « eine 2 l-reihige unitdre Matrix von spezieller
Form wird. Wir betrachten wieder speziell Diagonalmatrizen

4,
4, O
t = 2
o )
4,
mit '
L] 0
Aj = ( 0 e—itj) ‘ (8)

Die Diskussion des Normalisators N, ergibt, dal seine Dimension dann
und nur dann > [ ist, wenn ¢ mehrfache Eigenwerte besitzt. Somit bilden
alle ¢ ein maximales Toroid 7, und fiir die Ebenen des Diagramms erhélt
man:
7, £7,=0 (modl), u#v, u,v=1,2,...,1
und
27,=0 (mod 1) , =], Ly «n nd s

Vergleicht man dies mit B, , so folgt
m=1012, n=101(210+4+1)

und die Ebenen des Diagramms durch den Nullpunkt stimmen mit den-
jenigen von B, iiberein. Die Gruppe ¥ tst ebenfalls dieselbe wie bei B, .

24 Commentarii Mathematicl Helvetici 369



4. Die Gruppe A, besteht aus allen (I 4+ 1)-reihigen unitiren Matrizen
von der Determinante (4 1). Ihre Diskussion ergibt sich analog wie
im § 1, wo der Fall I = 2 behandelt wurde. Man erhilt:

141 Il+1
m=( _; )=—L-Qt—)_’ n=1(1+2) .

Das Diagramm lafit sich am besten beschreiben, wenn man ein reguléres
Simplex im R! benutzt, das seinen Mittelpunkt im Nullpunkt des Koor-
dinatensystems hat. Die Diagrammebenen durch den Nullpunkt sind
dann die Mittelnormalebenen von je zwei Simplexecken. Die Gruppe ¥
ist also die volle Symmetriegruppe von unserem Simplex, d. h. die sym-
metrische Permutationsgruppe seiner Ecken von der Ordnung (I 4+ 1)!.

In Fig. 2—b sind obige Diagramme im Fall I = 2 dargestellt. Die
Knotenpunkte, welche das Gitter g, ergeben, sind markiert und die
in bezug auf I' dquivalenten Knotenpunkte, welche das Gitter §* liefern,
besonders hervorgehoben. (§ 2, Nr. 9.) AuBerdem sind zwei primitive
Vektoren des ,,Einheitsgitters‘ g’ eingezeichnet, obwohl wir dieses Gitter,
wie schon in § 1 erwdhnt, nicht zum Diagramm rechnen. Die Diagramme
von B, und C, gehen durch Drehung um 45° auseinander hervor.

Orthogonale Gruppe D, Orthogonale Gruppe B, Komplexgruppe C,

Fig. 3 Fig. 4 Fig. 5

§ 4. Isomorphe Gruppen.

1. Es sei in der geschlossenen Lie’schen Gruppe G' ein maximales
Toroid T, gewihlt. Wie in § 2, Nr. 3 beziehen wir eine Umgebung U(e)
der Einheit von @ auf kanonische Koordinaten. £ sei ein beliebiges
Element € U(e) und ¢ ein Element von 7',. Die adjungierte Matrix S,
von ¢ hatte die Form:
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S, = D, D= (cos ?;(f) —sin Y, (t)) . (1)

sin 9 (t) cos 9, (t)

Jetzt beschreibe ¢ eine Gerade:
t=4.1,

wobei die Zahl A variabel, aber das Element 7 ¢ U(e) fest ist. Dann er-
halten wir die infinitesimale Transformation

0,
4, 0
K,==—C-Z—Sf—- = A, , worin

di |x=o X

0 3

4.,

(0 —¥()

4=(om o)

und O, die l-reihige Nullmatrix ist. Bei der Differentiation wurde benutzt,
daB die 9;(r) Linearformen sind. Ubt man die Transformation K, auf
ein Element & aus, so erhilt man das Element [z, £], wobei die eckige
Klammer die Kommutatorbildung im Lie’schen Ring von G' bedeutet.
Das charakteristische Polynom von K, lautet:

f(u) = u’jl_l; {u—1i9;(v)} {u-+1d(z)} .
Andererseits weill man!é), dal dieses Polynom die Form hat
n—r
fl) =w I {u—ou(v) }

wobei r der Rang des Rings ist und die «,(r) Linearformen bedeuten, die
man die Wurzeln des Rings nennt. Ist G halbeinfach, so ist keine der
Wurzeln «,(7) identisch Null und daher mufl [ = 7 sein. Die Dimension
des maximalen Toroids 7', ist also der Rang von G und daher unabhingig
von der speziellen Wahl von 7 .

AuBerdem aber miissen die 2m Linearformen -+ i¢d,(7) mit den Wur-
zeln «,(7) iibereinstimmen. Nach Cartan und Weyl'?) sind die Wurzeln

16) Man vgl. (11), Kapitel III, S. 353.
17) (11) Satz 2, Seite 364.
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ox(t) einfach und die Vielfachen 2«,, 3«x,, ... einer Wurzel kommen
nicht unter den Wurzeln vor. Dies haben wir im § 2, Nr. 7 benutzt.

Weiterhin aber haben nach Cartan und van der Waerden'®) isomorphe
halbeinfache Lie’sche Ringe dieselben Wurzeln (abgesehen von einer
linearen Koordinatentransformation der 7,) und umgekehrt sind zwei
Lie’sche Ringe mit denselben Wurzeln isomorph. Da andererseits die
Wurzeln und das Diagramm sich gegenseitig bestimmen, kénnen wir
folgenden Satz aussprechen:

Satz 12 : Zwei halbeinfache Lie’sche Gruppen sind dann und nur dann
wm kleinen isomorph, wenn sie dasselbe Diagramm besitzen.

Dabei bedeutet isomorph im kleinen, dafl es in beiden Gruppen Um-
gebungen der Einheit gibt, welche isomorph aufeinander abgebildet
werden koénnen.

Wir haben hier die Theorie der Lie’schen Ringe in vollem Umfang
benutzt; ohne Zweifel aber lieBe sich die Theorie der Ringe geschlossener
Gruppen, bedeutend vereinfachen durch Anwendung von Methoden im
groBen, wie sie in § 2 auseinandergesetzt wurden. Man miilte dabei die
nun von vornherein bekannten Symmetrien des Diagramms ausniitzen.

2. Fassen wir alle im kleinen isomorphen Gruppen zu einer Familie
zusammen, 80 gibt es nach O. Schreier'®) in der Familie eine ausgezeich-

nete Gruppe G mit folgender Eigenschaft: jede andere Gruppe der
Familie ist isomorph zur Faktorgruppe von G' nach einem Normalteiler

von é, der diskret und im Zentrum enthalten ist. G ist die universelle
Uberlagerungsgruppe aller Gruppen der Familie.

Wir betrachten nun zunéchst eine gegebene halbeinfache Gruppe G
und eine beliebige Untergruppe Z ihres Zentrums Z, die von selbst diskret
in @ ist. Im Diagramm von G entspricht dem Zentrum Z das Gitter g,
und der Untergruppe Z ein Gitter g, welches in g} enthalten ist. Jedoch
enthilt g' das Gitter g/, das die Einheit von G darstellt und das wir
Einheitsgitter nannten. G und seine Faktorgruppe @ /Z sind im kleinen
isomorph, haben daher nach Satz 12 dasselbe Diagramm. Jedoch ist
fiir die Faktorgruppe G/Z nun das Einheitsgitter das Gitter g geworden.
Wir finden daher zunéchst:

Satz 13: Der Ubergang von G zu einer Faktorgruppe nach einer
Untergruppe des Zentrums driickt sich darin aus, daff vm Diagramm an
Stelle des alten Einheitsgitters g' ein neues g' tritt, wobei

g' cg' cg; .

18) Man vgl. etwa (9); ferner (12).
19) Man vgl. etwa (7), Kapitel VIII.
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Das Diagramm bestimmt also die Familie, wiihrend das Einheitsgitter
g' die verschiedenen Gruppen derselben Familie voneinander unterscheidet.

Nehmen wir als duBersten Fall g’=g/, so erhalten wir die Gruppe G/ Z ;
sie ist isomorph zur Gruppe der inneren Automorphismen von G, oder
auch zur adjungierten linearen Gruppe von G . Das zugehorige Einheits-
gitter g} ist durch das Diagramm allein bestimmt, denn es besteht aus
seinen Knotenpunkten (§ 2, Nr. 9); in der Tat haben ja auch alle Gruppen
einer Familie dieselbe adjungierte lineare Gruppe.

3. Etwas mehr Miithe macht die umgekehrte Konstruktion, ndmlich das
Aufsuchen einer Uberlagerungsgruppe zur gegebenen Gruppe G . Es
sei zunidchst an die Resultate von § 2, Nr. 9, 10 erinnert, speziell aber
daran, da88 wir unter ! das Gitter verstehen, das durch Ausiiben von I"
auf einen Knotenpunkt entsteht. Das Einheitsgitter ¢! von G enthilt
immer p!. In Nr. 2 haben wir ein ,,feinstes’* Einheitsgitter konstruiert;
es entsteht nun die Frage, ob auch das ,,grobste’ Gitter ¢! als Einheits-
gitter einer Gruppe der Familie auftreten kann. Wir zeigen zunéchst:

Satz 14: Ist die Gruppe G einfach rusammenhingend, so gilt y' = g*.

Wir werden den Satz in folgender Form beweisen: Ist y? echtes Teil-
gitter von ¢!, so existiert in G eine geschlossene Kurve, welche in @
nieht nullhomotop ist. Zu diesem Zweck betrachten wir die Einteilung
des Raumes R! in Polyeder P, durch simtliche Ebenen des Diagramms.
Die Gruppe I' wird erzeugt durch die Spiegelungen an den Wianden dieser
Polyeder und permutiert sie transitiv.

AuBerdem verwenden wir noch die Gruppe I, , welche von ¥ und den
Translationen des Gitters g’ erzeugt wird. I', enthilt I" als Untergruppe,
denn I'" wird nach § 2 Nr.9d durch ¥ und y erzeugt, und g’ enthilt 3*.
Die Gruppe I', 1iB8t das Diagramm invariant und permutiert daher
ebenfalls die Polyeder P, unter sich. Da nun y’ echtes Teilgitter von g’
sein soll, ist I" echte Untergruppe von I, . Es gibt daher in I, eine Trans-
formation S, welche ein vorgegebenes Polyeder (etwa P,) in sich iiber-
fiihrt, ohne die Identitdt zu sein.

Jetzt nehmen wir fiir P, speziell ein Polyeder, das eine Ecke im Null-
punkt O hat. Die Transformation S fiihrt sicher O in eine andere Ecke
O’ von P, iiber. Denn wiirde S den Nullpunkt fest lassen, so wire S e ¥,
und daher miiBte nach Satz 11 S die Identitidt sein, was nicht der Fall ist.
Jedoch ist O’ sicher ein Punkt des Gitters g’.

Nun sei C eine Kurve, welche O mit O’ verbindet und mit Ausnahme
dieser beiden Punkte im Inneren von P, verlduft. Thr entspricht bei der
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natiirlichen homomorphen Abbildung von R? auf 7, (§2, Nr. 4) eine
geschlossene Kurve C’ auf T,, welche von e ausliuft und auBer e nur
regulire Elemente von 7', enthilt. Eine solche Kurve ist nach Cartan?)
dann und nur dann nullhomotop in &, wenn sie bereits in 7', nullhomotop
ist. Dies ist nicht der Fall, da das Urbild C von C’ im universellen Uber-
lagerungsraum R! von T, eine offene Kurve ist. Damit ist Satz 14 be-
wiesen.

Nach einem Satz von H. Weyl®) ist nun die universelle Uberlagerungs-

gruppe G einer geschlossenen halbeinfachen Gruppe G ebenfalls geschlos-
sen, so daB also ihr Diagramm definiert ist. Dieses Diagramm ist nach
Satz 12 also allen Gruppen der ganzen Familie gemeinsam, so daf3 wir
vom Diagramm der Familie sprechen konnen. & ist einfach zusammen-
hingend und das zugehoérige Einheitsgitter ist nach Satz 14 das Gitter ¢!,
welches durch das Diagramm allein schon gegeben ist. Damit ist die zu
Anfang dieser Nr. gestellte Frage beantwortet.

Jede andere Gruppe G der Familie ist nach Nr. 2 Faktorgruppe von
G nach einer Untergruppe Z des Zentrums; diese Untergruppe wird im
Diagramm dargestellt durch ein Gitter g! mit

y'cgl cgp;

g' wird das Einheitsgitter von @ . Bekanntlich ist nun Z isomorph zur
topologischen Fundamentalgruppe von G und offenbar ist andererseits
Z isomorph zur Gruppe g'/y’, falls man diese beiden Gitter als Trans-
lationsgruppen auffaflt.

4. Zusammenfassend ergibt sich nun leicht:

a) Das Diagramm einer Familie geschlossener halbeinfacher und im
kleinen isomorpher Gruppen gibt die volle Ubersicht iber die Gruppen
der Familie, und zwar

b) Dem Gitter y*, das durch Ausiiben von I' auf einen Knotenpunkt ent-
steht, entspricht die universelle Uberlagerungsgruppe der Familie.

¢) Dem Qitter g}, das aus den Knotenpunkten des Diagramms besteht,
entspricht die adjungierte lineare Gruppe der Familie.

d) Jedem beliebigen Qitter g*, welches y* enthilt, aber in g, enthalten ist,
entspricht eine Qruppe G der Familie und wmgekehrt; dabei ist g'
das. ,,Einheitsgitter von @, d. h. das maximale Toroid in G entsteht
durch Identifikation der nach g dquivalenten Punicte.

30) (2) speziell Abschnitt IV, ferner (11), S. 377—380.
1) (11), 8. 380, Satz 2.
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e) Die topologische Fundamentalgruppe von G ist isomorph zur Faktor-
gruppe g' [yt .
Schlieflich folgt aus Satz 12 und obiger Eigenschaft d):

f) Zwei geschlossene halbeinfdache Lie’sche Gruppen sind dann und nur
dann isomorph (im grofen), wemn sie vm Diagramm und im Ein-
heitsgitter g' ubereinstimmen.

b. Wir betrachten wieder die Einteilung des Raumes R’ in Polyeder
P, durch die Ebenen des Diagramms. Dann gilt:

Satz 16: Jedes Polyeder P, ist Fundamentalbereich der Gruppe I'.

Man kann dies direkt aus der Definition der Gruppe I" als die von den
Spiegelungen an den Wénden der P, erzeugte Gruppe entnehmen. Unter
Benutzung unserer bisherigen Uberlegungen kann man aber auch wie
folgt schliefen:

Es sei G die einfach zusammenhingende Gruppe der zum Diagramm
gehorigen Familie und P, ein Polyeder, das eine Ecke im Nullpunkt O
des Koordinatensystems hat. Ferner sei § eine Transformation von I,
welche P, in sich iiberfiihrt und O’ sei der Bildpunkt von O vermaoge S .
O’ ist Punkt des Einheitsgitters y? von G . (Nr. 4b). Wire nun 0’ £ 0,
so kénnten wir wie beim Beweis von Satz 14 eine geschlossene Kurve
C' in G konstruieren, welche in @ nicht nullhomotop wire. Da @ einfach
zusammenhingend ist, gibt es eine derartige Kurve nicht und daher ist
0’ = 0. Jede Transformation von I', welche P, in sich iiberfiihrt, 148t
also den Nullpunkt fest und ist daher eine Transformation von ¥. Dann
ist sie aber die Identitdt (Satz 11). Da I' die Polyeder P, transitiv permu-
tiert, ist Satz 15 bewiesen.

Aus Satz 15 folgt noch, dafl es in I" keine anderen Spiegelebenen als
die Ebenen des Diagramms gibt; die Ebenen des Diagramms kénnen also
auch definiert werden als die Ebenen der in I" enthaltenen Spiegelungen,
d. h. es gilt:

Satz 16 : Das Diagramm ist durch die Raumgruppe I' bestvmmd.

Unter Beriicksichtigung von Nr. 4f folgt dann:

Satz 17: Zwei einfach zusammenhingende halbeinfache geschlossene
Lze’sche Gruppen sind dann und nur dann isomorph, wenn die zugehorigen
Raumgruppen I dieselben sind. (Abgesehen von einer linearen Koordi-
natentransformation in R!.)
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Im Falle einer einfach zusammenhiingenden Gruppe @ kann nun die
Raumgruppe I" aus der Automorphismengruppe @ des Toroids 7', kon-
struiert werden; denn @ ergibt in einer Umgebung der Einheit von G
die euklidische Gruppe @* =¥ (§2 Nr.3) und das Toroid 7, selbst
bestimmt im universellen Uberlagerungsraum das Einheitsgitter g = 1.
Nach §2 Nr.9d wird aber I" durch ¥ und die Translationen von pl
erzeugt. Somit schliet man aus Satz 17 weiter

Satz 18: Es sei G eine einfach zusammenhingende halbeinfache ge-
schlossene Lie’sche Gruppe und @ die Gruppe der Automorphismen eines

maximalen Toroids T,, welche durch innere Automorphismen wvon G

bewirkt werden. Dann ist G durch die Transformationsgruppe @ von T,
bis auf Isomorphie bestimmd.

Wir machen noch ausdriicklich darauf aufmerksam, da8 die Gruppe
@ als Transformationsgruppe eines Torus gegeben sein muB} ; die Kenntnis
ihrer gruppentheoretischen Struktur allein geniigt nicht. (Gegenbeispiel
B, und C, im § 3.)

6. Die Polyeder P, haben interessante Eigenschaften in bezug auf
die Klassen konjugierter Elemente in der Lie’schen Gruppe. Wir legen
wieder eine einfach zusammenhingende Gruppe G zugrunde und ¢ sei
ein reguldres Element des maximalen Toroids 7T, (§ 2, Nr. 1). Ferner sei
t’ ein Element aus T, welches zu ¢ in G konjugiert ist:

t'=ata, ae@G.

t’ ist ebenfalls regulir. Der innere Automorphismus von @
x —>alza

fithrt 7', in ein Toroid 7T iiber, welches ¢’ enthilt und somit nach der
Definition der Regularitat (§ 2, Nr. 1) mit 7, identisch sein muB. Es
geht also ¢/ durch eine Operation von @ aus ¢ hervor. Zwei regulire
Elemente ¢ und ¢’ von 7', sind also dann und nur dann konjugiert in @,
wenn sie in bezug auf die Gruppe @ dquivalent sind; d. h. wenn ihre
Urbilder v und 7/ in R’ in bezug auf die Gruppe I’ diquivalent sind.
Letzteres folgt wieder daraus, dal I" von @* = ¥ und den Translationen
von 9! erzeugt wird. Diese Translationen sind aber gerade die Decktrans-
formationen des Uberlagerungsraumes R! von 7, .
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E. Cartan hat nun gezeigt, daB iiberhaupt jedes Element von @ zu
einem Element von T, konjugiert ist 22). Daraus schliefen wir:

Satz 19: Ist die gegebene Lie’sche Gruppe G einfach zusammenhiingend,
so sind die Polyeder P, , in welche die Diagrammebenen den Raum R!

einteilen, Fundamentalbereiche fiir die in G konjugierten Elemente.

Genauer ist damit folgendes gemeint: Ist 2 ein beliebiges Element von

G, so gibt es in T, ein dazu konjugiertes Element ¢, dessen Urbild ©
im R’in einem vorgegebenen Polyeder P, liegt. Befindet sich 7 im Inneren
von P, , so gibt es in P, keinen anderen Punkt v’ mit derselben Eigen-
schaft wie 7.

Der Beweis folgt leicht aus Satz 15.
Satz 19 liBt sich anwenden auf die Theorie der Integration in & und
damit auf die Darstellungstheorie von & . In der Tat hat man oft Funk-

tionen in G zu integrieren, welche in einer Klasse konjugierter Elemente
konstant sind (z. B. Charaktere). Dann kann man P, als Integrations-
gebiet nehmen, wobei das Volumenelement das gewohnliche euklidische
Volumenelement im R? ist.

§ 5. Bericht iiber die Aufstellung aller Diagramme.

1. Die Bestimmung aller Diagramme ist eine Aufgabe der Kristallo-
graphie, denn nach Satz 16 wird ein Diagramm durch eine diskontinu-
ierliche Bewegungsgruppe I' eines l-dimensionalen Raumes gegeben.
Dabei hat I' die wesentliche Eigenschaft, durch Spiegelungen erzeugt
zu werden.

Samtliche diskontinuierlichen Raumgruppen, welche durch Spiege-
lungen erzeugt werden, hat Coxeter®®) bestimmt. Betrachtet man seine
Gruppen, so erkennt man, dal zu jeder durch Spiegelungen erzeugten
Raumgruppe wirklich eine Lie’sche Gruppe gehért.

Spiter hat Witt?*) etwas einfacher alle endlichen durch Spiegelungen
erzeugten Gruppen bestimmt. Dabei erhilt er natiirlich auch alle nicht-
kristallographischen Gruppen, d.h. alle Gruppen, die wie z.B. die
Ikosaedergruppe im R3, keine Kristallklasse einer Raumgruppe abgeben.
Witt benutzt sein Resultat zur Klassifikation der halbeinfachen Lie’schen
Ringe nach der Methode von van der Waerden (vgl.folgende Nr. 3).
Dabei miissen gewisse der gefundenen Gruppen durch Ganzzahligkeits-

1) Vgl. auch (5), Hilfssatz 4.
13) Man vgl. (8).
M) (12).
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bedingungen ausgeschaltet werden, die ihren wahren Grund eben darin
haben, da die Gruppen ein Gitter invariant lassen miissen.

Ich bin aber davon iiberzeugt, daB die Gruppen I sich auch mit den
Mitteln der modernen Kristallographie bestimmen lassen; vielleicht lieBe
sich hier die zahlentheoretische Methode von Frobenius, wie sie J. J.
Burckhardt®®) weiter entwickelt hat, anwenden.

2. Im Fall I = 1 existiert offenbar nur ein Diagramm, welches etwa
von den Punkten mit ganzzahligen Koordinaten auf einer x-Achse
gebildet wird. Das Gitter g, besteht ebenfalls aus diesen Punkten, wih-
rend y’ aus den Punkten besteht, deren Koordinaten gerade sind. Zwi-
schen g, und y! gibt es kein weiteres Gitter und somit existieren nach
§ 4 Nr. 4 genau zwei Gruppen vom Rang ! = 1: Die einfach zusammen-
hingende Gruppe (Quaternionengruppe) und ihre adjungierte lineare
Gruppe (Drehungsgruppe des dreidimensionalen Raumes).

Fiir | = 2 kann man die Diagramme gema Nr. 1 so erhalten, dal man
unter den 17 Symmetriegruppen der Ebene diejenigen heraussucht,
welche durch Spiegelungen erzeugt werden. Man erhilt auBler den schon
bekannten aus § 3 stammenden Diagrammen (Fig. 2—5) nur ein neues
(Fig. 6), es gehort zur Cartan’schen Ausnahmegruppe G, . (Gruppe der
Automorphismen der Cayley’schen Algebra.) Ein Blick auf das Dia-
gramm zeigt, daB die beiden Gitter g, und y’ iibereinstimmen, daher
existiert keine weitere zu G, im kleinen isomorphe Gruppe, und G, ist
einfach zusammenhingend.

3. Fiir einen beliebigen Wert von [ sei nun ¢ eine der Scharen paralleler
Ebenen des Diagramms. Die Spiegelungen an den Ebenen dieser Schar
erzeugen eine Gruppe, welche aufler diesen Spiegelungen nur Trans-
lationen enthilt. Es sei a, der Vektor einer primitiven Translation dieser
Translationsgruppe; a, steht senkrecht auf den Ebenen der Schar und
die Lange dieses Vektors ist der doppelte Abstand von zwei benachbarten
Ebenen. Die 2m Vektoren + a, nennen wir die Vektoren des Diagramms
(in Fig. 6 sind sie eingezeichnet). Diese Vektoren sind Gittervektoren des
Gitters ¢!, das ja aus den Translationen von I' besteht. Das Vektor-
system -+ a, bestimmt das Diagramm eindeutig und umgekehrt und die
Gruppe I' 148t dieses Vektorsystem invariant.

Jetzt seien a und b zwei beliebige Vektoren des Diagramms. Die Spie-
gelung an irgend einer zu a normalen Ebene des Diagramms ist eine
Operation von I" und fijart b in einen anderen Diagrammvektor b’
iiber. Es ergibt sich sofort:

15) In (1) und friitheren Arbeiten.
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(ab)

I — s
b/ =b—2 (@)

a, (1)

worin die runden Klammern Skalarprodukte andeuten. Da b und b’
Translationen von I' sind, ist auch (b’ — b) eine solche. Dieser Vektor
ist aber proportional zur Translation a von I", ist daher ein ganzzahliges
Vielfaches von aq . Denn a ist, wie man leicht sieht, die kiirzeste Trans-
lation von I' in der Richtung a . Somit folgt:

(ab)

(a a)
Zahl und das Diagramm enthdilt auch den nach (1) berechneten Vektor b’ .

Sind a und b zwei Vektoren des Diagramms, so ist 2

eine ganze

Dies ist die Ganzzahligkeitshedingung, die Witt verwendet und auf
die van der Waerden?) seine schone und elementare Klassifikation der
einfachen Lie’schen Gruppen gegriindet hat.

Ausnahmegruppe G,

(Eingegangen den 26. Januar 1942.)

) (9), § 2, S. 448. Die dort angegebene Bedingung 3 enthélt eine weitere Aussage,
welche sich aber aus unserer Bedingung herleiten 148t durch Diskussion der Méglichkeiten
fiir die gegenseitige Lage zweier Vektoren.
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(1)

(2)

(3)
(4)
(5)
(6)
(7)
(8)
9)
(10)
(11)

(12)
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